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Keywords: Transport demand models are widely used to inform policy making and produce forecasts of
Transport appraisal future demand. A core output derived from demand models is the Value of Travel Time (VTT),
Values of travel time estimates which provides insights on the trade-offs that travellers are willing to make in terms of travel
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time and travel cost. VIT estimates are a critical input to cost-benefit analyses and feasibility
assessments of potential projects and thus play a crucial role in transport planning and policy
decisions. While much of the early work on VTT made use of revealed preference (RP) data,
their use decreased due to growing concerns about reporting errors that may result in omitted
observations and measurement errors in the model inputs. As a consequence, VIT measures
have, for the last two decades, primarily been estimated using state-preference (SP) surveys.
While SP methods can assess the individual trade-offs in a controlled manner, they are prone
to behavioural incongruence. More recently, RP data from passively-collected data sources have
raised the promise of accounting for some of the limitations of traditional RP surveys due to
the minimal (or even no) active input from the respondent. The present study utilises such a
dataset that combined a 2-week trip diary captured through smartphone GPS tracking with a
household survey containing individual socio-demographic information. A mixed Logit model
for mode choice was specified and the estimated parameters were then applied on the National
Travel Survey to calculate the VTT estimates. Those estimates were further adjusted based on
trip distances to get more representative national VTT values. This process resulted in estimates
similar to the official UK guidelines used in transport appraisal that were obtained from SP data,
where our results are not affected by concerns about response quality or survey artefacts. The
findings hence strengthen the case for shifting towards passively generated RP data sources and
are important for transport practitioners.

1. Introduction

Transport projects and schemes can substantially impact our day-to-day lives, as well as mid-term decisions like whether or not
a buy a car or long-term decisions like where to live. They also have a profound impact on the economic growth of the country,
its productivity and people’s well-being. Cost-benefit analyses (CBA) and feasibility assessment of potential transport projects are
primarily based on the monetary savings from travel time reductions. It is estimated that savings on travel time are responsible
for around 80% of the predicted benefits of a new transport project in the UK (Mackie et al., 2001; Fosgerau and Jensen, 2003;
Daly et al., 2014). The Values of Travel Time (VTT) estimates, which are used to quantify the trade-offs that decision-makers are
willing to make in terms of travel time and travel cost, are hence critical components of CBA. An accurate estimation of VTTs is
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thus important in order to properly evaluate the costs and the benefits of a new transport project and sufficiently forecast future
demand for specific services, e.g. a new public transport route, leading to better informed decisions during the planning phase.

Estimates of the trade-offs that travellers would be willing to make in terms of travel time and cost were first produced in the
1960s. For a long period of time, VIT estimates were derived as relative values to the average wage cost or as a percentage of it
(wage cost method or cost savings approach — CSA) and that method is still in use in several countries (Daly et al., 2014). Another
approach involved Contingent Valuation, where VTTs were derived from direct questions about how much a participant would be
willing to spend for a particular service or an improvement of a current one. In recent decades, most types of VTT analysis are based
on the work of Daly and Zachary (1975), who first estimated VIT values from behavioural models based on theoretical frameworks
of time allocation (Becker, 1965; DeSerpa, 1971) and the Random Utility framework (Marschak, 1960; McFadden, 1973; Domencich
and McFadden, 1975; Williams, 1977; Ben-Akiva and Lerman, 1985; Train, 2009).

Revealed Preference (RP) data, usually coming from travel diaries, would at face value provide the natural data source for
estimating VTTs, and indeed were used in early studies (Beesley, 1965; Daly and Zachary, 1975). Nonetheless, while RP data
provide the ability to capture real-world choices, most of the parameters influencing them are outside of the analyst’s control.
Furthermore, traditional RP data sources include recalled/reported data that are prone to issues like omitted trips (particularly
short ones), perception and rounding errors, etc. — often leading to large measurement errors. During the 1980s, there was also
an increasing desire to capture VTTs for non-work trips — largely ignored up to that point — in addition to commuting VTTs. RP
data, however, were proved to be unsuitable for providing useful real-world observed choices on non-work trips with the available
data collection methods of that era. The aforementioned limitations of RP data led to the growing popularity, over the last two to
three decades, of Stated Preference (SP) data as the main input to models, with RP data often being used only in limited scale for
verification of the SP results (Mackie et al., 2003). SP surveys present respondents with a number of hypothetical scenarios, where
they are asked to choose among a set of alternatives. This approach has a long tradition for example in the United Kingdom (UK)
with the first major SP survey conducted in 1984 (MVA et al., 1987) and follow-up studies in 1994 (Accent and Hague Consulting
Group, 1996) with the same data then re-analysed by Mackie et al. (2003) before the most recent study involving primary data
collection taking place in 2014-2015 (Batley et al., 2019; Department for Transport, 2015; Hess et al., 2017).

SP surveys are generally seen to have the advantage of providing the analysts with an environment where they have control
over a large number of parameters that could influence VTT estimates, such as the attributes of the alternatives. On the other
hand, SP surveys are prone to behavioural incongruence and hypothetical bias and are often criticised for being too sensitive to
the experimental design and the representation of the SP scenarios (Brownstone and Small, 2005; Daly et al., 2014; Haghani et al.,
2021). Concern in a VTT context has also been raised in relation to the use of overly simplistic settings in some countries (Hess
et al., 2020).

In a recent study examining the impact of hypothetical bias in SP surveys within several domains including transport (Haghani
et al.,, 2021), the authors concluded that although it is more sensible to assume that individuals would likely overstate their
Willingness-to-pay (WTP) in a hypothetical scenario (Li et al., 2020), there are a number of transport studies showing the opposite
(Nielsen, 2004; Brownstone and Small, 2005; Shires and de Jong, 2009; Krcal et al., 2019). That downward bias of SP has also been
proven in two meta-analyses on VTIT values across countries and time of Shires and de Jong (2009) and Wardman et al. (2016).

Evidence from neuro-imaging studies also suggests that individuals would often react differently in a stressful situation compared
to the lab setting of an SP survey, e.g. be willing to pay more in order to avoid an unpleasant outcome (Loewenstein, 2005; Kang
and Camerer, 2013; Haghani et al., 2021). In addition to that, Kang and Camerer (2013) showed that a certain part of the brain was
more strongly activated when participants had to make a real choice compared to a hypothetical one. Other psychological effects
can also come into play during an SP survey influencing participants’ responses, such as the desirability to appear more socially
acceptable to the analyst (social desirability bias) (Champ and Welsh, 2006), the feeling that their choices will lack of any real-world
consequences (lack of consequentiality) (Krcal et al., 2019), or the opposite with respondents deliberately giving misleading answers
to avoid a potentially harmful outcome resulting from that study, e.g. a road pricing scheme (strategic bias) (Lu et al., 2008; Meginnis
et al., 2018).

With that evidence in mind and considering that VTT estimates are to be used for the purpose of project evaluation during a CBA,
it is only sensible to assume that policy makers would be mostly interested in the trade-offs individuals are willing to make under
real-life conditions, sometimes stressful, while taking into account real distributions of travel time and cost and not the ones imposed
by the analyst (Louviere and Hensher, 2001; Brownstone and Small, 2005). This thus motivates an increased interest in revealed
preference (RP) data for VTT studies. For example, in a review of transport appraisal studies performed in various countries, Daly
et al. (2014) concluded that despite SP data being the standard approach so far, researchers and practitioners should reconsider the
use of RP data due to the benefits they can provide, while also taking advantage of the new emerging and more robust data collection
methods. In addition to that, several studies using traditional RP data sources, such as national travel surveys, have showcased that
VTT estimates can still be derived, which are consistent with the official SP-based values (Lorenzo Varela et al., 2018). Nonetheless,
there is still a lack of similar studies utilising emerging data sources for VIT estimation purposes.

Emerging data sources, primarily from sensors, such as GPS and mobile phone data, have provided new breakthroughs and
challenges to researchers. Travel diaries captured through GPS tracking are able to produce large panels of RP data per participant
at a very high spatial and temporal resolution. Compared to traditional pen-and-paper diaries, GPS-based surveys offer the advantage
of capturing an increased number of daily trips giving a more representative depiction of individual mobility behaviour without
resulting in user fatigue. Though there have been limited efforts to infer VTTs from anonymous RP data sources (e.g Bwambale
et al., 2019), the absence of socio-demographic information of the travellers and trip characteristics (e.g. trip purpose) have meant
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that it is not possible to capture the heterogeneity in the VITs among different socio-demographic groups of users or due to the
differences in trip purpose (e.g. commute, business, leisure) from such data.

A passively collected GPS trip diary without any additional mode or trip purpose information could require significant pre-
processing efforts (Schuessler and Axhausen, 2009), which could still might not be sufficient enough to avoid biased estimates (Vij
and Shankari, 2015). Contrary to that, a semi-passive GPS travel diary with minimum input from the participants and linked to a
background household survey can help to account for those limitations. Several studies have used GPS datasets complimented with
a background survey, but most of them have limited their analysis on descriptive statistics of individual mobility behaviour based
on the observed choices (Arifin and Axhausen, 2012) or estimated models of mode choice, but without reporting VTT estimates
(Montini et al., 2017; Huang et al., 2021). An exception is the study of Calastri et al. (2018), who estimated mode choice models
based on GPS data for the purpose of uncovering latent mode availability and consideration constraints of the individuals during
their decision-making process. Their study also reported VITs based on the estimated parameters, however, this was purely as a
means of validating their proposed approach, with no emphasis on extrapolating the findings to a representative sample, as required
for official VTT values.

The focus of GPS studies so far in the literature has thus not been on the estimation of behaviourally accurate VTTs, representative
of the country’s population, which are derived from GPS tracking, and more importantly they have not been compared with national
official estimated SP-based VTTs before. That limitation in the current literature and the lack of empirical evidence could partly
explain the reluctance of policy makers to accept the use of new emerging GPS data for VTT estimation for appraisal purposes, a task
that is still heavily reliant on SP surveys. Aiming to address that limitation, the current study utilises such an emerging data source,
namely a 2-week GPS trip diary including 540 participants and 12524 trips, collected as part of the European Research Council
funded “DECISIONS” project, for the purpose of estimating a behavioural model of mode choice. The estimated parameters are then
applied to the National Travel Survey (NTS) data and VTT estimates are derived, which are further adjusted by distance band to
ensure proper representativeness of the UK’s population. The main aim of the study is to compare the final distance-weighted VTT
estimates with the latest official SP-based VTTs currently used in appraisal in the UK.

The remainder of the paper is as follows. In the following section, a review of the literature concerning previous VTT studies
and their findings and the use of GPS data for transport-related research is performed. In the third section, the datasets used in
the current study are described, while in the fourth section, the modelling framework is outlined. Following that, the modelling
outputs and the derived VTT estimates are analysed in the fifth and sixth sections, respectively. A discussion regarding the policy
implications of the study is performed in the following section, while in the final one the conclusions and limitations of the current
study are summarised and the scope for future studies is outlined.

2. Literature review
2.1. Studies on values of travel time estimates

Originating from the studies of Becker (1965) and DeSerpa (1971), the idea of optimal time allocation and the monetisation
of non-work activity participation led to the first formulations of the Value of Time. Besides the importance of VTIT estimates for
CBA and transport project appraisal, they also provide important insights on individual transport behaviour that can lead to better
informed policy measures. The willingness-to-pay for a reduction of travel time is closely related to the overall scheduling and time
allocation of the individual during the day. As a result, individuals will tend to value higher their time in contexts that would
lead to more significant time restrictions (or more potential time savings) in their overall daily schedules. Such contexts can be
longer distance trips, which will leave the individuals with significantly less time to accomplish other activities. That is largely
empirically proven in the literature, with VTTs increasing by distance (Small, 2012). Another context can be types of activities for
which individuals are required to arrive in time, such as commuting trips, or times of day which provide the individuals with greater
time restrictions, such as trips during the am peak period. The aforementioned rationale is closely related to the prospect theory
(Tversky and Kahneman, 1991) postulating that individuals will put a higher value to avoid a negative outcome than achieving a
positive one.

According to empirical evidence from the literature, SP-based VTTs tend to be lower compared to their RP-based counterparts
and that can be attributed to several biases arising in the hypothetical setting of an SP design (Shires and de Jong, 2009; Wardman
et al., 2016). As an example, we refer to the context of deriving WTP for toll pricing and specifically to the studies of Vrtic et al.
(2010) and Brownstone and Small (2005). Vrtic et al. (2010) using SP data found that individuals have lower VTTs in the presence of
tolls, compared to untolled roads, as they are willing to take longer routes in order to bypass the tolls. That finding, however, might
be subject to strategic bias (Lu et al., 2008; Meginnis et al., 2018) from individuals who purposefully overstate their cost sensitivities
to dissuade policy makers from such a measure, which will in turn decrease their WTP. Their behaviour in reality might in fact be
significantly different as stated in Brownstone and Small (2005), who examined and compared SP and RP WTP for toll pricing among
a range of road corridors in the United States. The authors of that second study found that the estimates obtained from hypothetical
SP surveys systematically underestimated the VTTs compared to RP-based estimates. A potential cause could be that VTT estimates
will depend to a large extent on the travel time and cost range values of the SP scenarios, which could differ substantially in a
real-life scenario, such as the case of severe congestion during the morning peak, forcing individuals to place higher valuations of
time so as to avoid arriving late at work. That could be the case in a real-life context, in which individuals might not leave enough
time to take the longer route to avoid the tolls due to other constraints (a case of lack of consequentiality Krcal et al., 2019). That
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demonstrates that the hypothetical setting of an SP survey might not be sufficient to capture real-life behaviour, which would adapt
according to the time restrictions arising in the daily activity schedules, resulting in biased estimates.

Another reason for the higher RP-based VTTs, however, could also be attributed to choice set mispecification for the case of choice
tasks including only one alternative actually under consideration (i.e. captive users), as mentioned in Shires and de Jong (2009). It is
generally acknowledged that lack of any explicit information on availability/consideration of alternatives is an important limitation
of RP datasets that has hindered their wider adoption for VIT estimation. The analyst observes only the chosen alternatives and
has no control over the alternatives actually considered by the individual during her decision making process and thus included in
her choice set. Li et al. (2015) have stated that this problem is not exclusive to RP, however, since choices on SP experiments can
also be subject to latent choice set formation mechanisms. The presence of those types of behavioural mechanisms on SP data has
been proved empirically, as well, in the study of Thiene et al. (2017) examining destination choices for recreational activities.

It is clear then that the derivation of unbiased VTT estimates relies to a large extent on the SP survey design (Bliemer and Rose,
2009). Several techniques have been developed to accomplish that, such as the inclusion of an opt-out alternative, which guarantees
that respondents are not forced to choose an alternative. That, however, might also have the adverse effect of choosing the opt-out
more often if the attributes of the SP scenario are not reasonable or the SP design is not meaningful to the respondents. As a
result, significant effort has been put for making the SP survey more comprehensive and relatable to the respondents by including
images and graphics to better describe the attributes of the choice setting. Several sources of the aforementioned biases could also be
influenced by the type of SP survey, with higher chances of social desirability bias, for example, occurring from face-to-face interviews
(Champ and Welsh, 2006).

RP data of limited scale have also been used in VTT studies to provide realistic attribute levels for the SP design — to pivot the
SP values around RP values in particular. That has been established as the usual approach in SP survey design for VIT estimation,
where respondents are asked to provide information of a small number of recently completed trips (Li et al., 2020). Those reference
trips are then being used as anchor points to pivot the attributes of travel time and cost for the SP choice scenario around them
using reasonable variations of the observed times and costs. It may be noted that even if the combination of RP and SP data is the
recommended approach to get the best out of both kinds of data, RP data is still largely avoided as the main source of data input
for model estimation due to reporting/measurement errors and difficulties in getting a wide range of time-cost trade offs in the real
world.

In addition to the above, there is a constant debate about SP survey complexity and whether to include more attributes per
choice task or to have more choice tasks with a limited number of attributes per alternative. The reason for that is to avoid causing
too much cognitive fatigue to the respondent, whose choices would become more random as she becomes more fatigued (Bradley
and Daly, 1994). The opposite might also be true, however, with choices becoming more deterministic as respondents learn how to
respond to choice tasks as they go along (Hess et al., 2012). Instances of both fatigue and learning can occur for the same individual
with evidence suggesting the presence of better quality responses at first (learning) followed by a quality decrease in further choice
tasks (fatigue) (Hess et al., 2012). Furthermore, empirical evidence suggests that respondents, after a while, will tend to put more
emphasis on certain attributes, such as cost, and neglect others, a behavioural process known as attribute-non-attendance (Hensher
and Greene, 2010).

All of the aforementioned sources of hypothetical biases can have adverse impacts to the overall survey. It is true to say that
the need to account for them has provided a strong motivation for developing state-of-the-art methodological frameworks, most of
which having been implemented in the latest official UK VTT study and in other similar studies across Europe. Nonetheless, their
mere existence poses significant limitations considering the importance of deriving national VTT estimates to be used in project
appraisal, which would be driving future investments for at least the following decade, given their slow update rate documented so
far. Even if the analyst is able to successfully account for the majority of those biases in the estimated VTTs, it requires significant
effort to do so, which increases the cost and the time required to design an appropriate survey that would minimise any source of
hypothetical bias, which is still never guaranteed.

Despite those limitations and potential pitfalls, SP surveys are currently the state-of-the-art approach for VIT estimation, with
RP data being used only as auxiliary data to inform the attributes in the SP survey (Small, 2012; Ehreke et al., 2015). Studies have
also proposed a combination of RP-SP choices during estimation for forecasting purposes acknowledging the hypothetical natural of
SP data and the limitations that could arise in forecasting future demand (Cherchi and Ortuzar, 2006). Nonetheless, even in those
cases, the VTT estimation primarily relies on SP data to avoid the limitations of RP data to capture non-linearities in the sensitivities,
a notion that is still relevant among the research community due to the data limitations of the past. The dominance of SP data on
VTT estimation can be clearly seen by examining the latest reported studies on national VTIT values. The Danish (Fosgerau, 2006),
Swiss (Axhausen et al., 2006), Norwegian (Halse et al., 2022), Swedish (Borjesson and Eliasson, 2014), Dutch (Kouwenhoven et al.,
2014), German (Ehreke et al., 2015) and the UK (Batley et al., 2019) national VTT studies have based their analysis on SP data
using only a limited number of RP trips as reference points for the SP attributes.

2.2. GPS data for transport research

Various forms of new emerging data sources are increasingly being used for transport-related research during the past decade
(Grant-Muller et al., 2021). Mobile phone data have been one of the first emerging data sources, which gained popularity among
researchers and practitioners due to their ubiquitous nature and their ability to capture a wide spectrum of daily urban mobility

patterns (Bwambale et al., 2019; Essadeq and Janik, 2021). Similar to mobile phone data, social media data (e.g. Twitter, Foursquare,

228



P. Tsoleridis et al. Transportation Research Part A 165 (2022) 225-245

15:53 ) 0000 02-UK 5 15:52

5:51 PM-6:05 PM 5:51 PM-6:05 PM

How did you travel? Select all that Went home or place | am staying
apply.

Went to work/work-related
v Walk (or jog/wheelchair)
Dine out/get coffee or take-out

In household vehicle (or motorcycle,

d)
b Appointment/shopping/errands

In other personal vehicle (e.qg., rental,

Soclal/leisure/vacation activity
carshare, work car)

Exercise (e.g., gym, jog, bike, walk

Any taxi (regular or Uber/Lyft) dog)

Any bus (e.g., public, school, shuttle)

Attended school/class

Any rail (e.g., tram, metro, urban rail)

Fig. 1. User interface of smartphone application used for the GPS trip diary (Calastri et al., 2020).

Drop off, pick up, accompany person

Weibo etc.) have also been used for the purpose of understanding individual mobility behaviour and are capable of providing
interesting insights of aggregate mobility patterns (Yan and Zhou, 2019; Ebrahimpour et al., 2020).

Contrary to the aforementioned emerging passively collected data sources, GPS data offer the advantage of providing large panels
of real-world observed behaviour at a high spatio-temporal resolution. GPS data have been extensively used for transport research
during the past twenty years (Wolf, 2004) for studies of understanding daily travel time budgets (Gallotti et al., 2015), destination
(Huang and Levinson, 2015, 2017), mode and destination (Tsoleridis et al., 2021), mode (Montini et al., 2017; Calastri et al., 2018),
trip chaining and mode (Huang et al., 2021) and route choice behaviour (Li et al., 2005; Hess et al., 2015).

Traditional pen-and-paper trip diaries are likely to result in misreporting of trips, where shorter trips might be omitted by the
individuals, while also time spend on travelling tends to be overstated compared to the actual one leading directly to biased (lower)
VTT estimates (Kelly et al., 2013). GPS data, on the other hand, due to their passively collected nature, do not require individuals
to recall their daily trips (Hess et al., 2015) resulting on average in a larger number of trips per day (Forrest and Pearson, 2005).
The type of the GPS device can also have an impact on the quality of the reporting trips, with studies based on GPS loggers noting
that many individuals tend to forget them Bohte and Maat (2009). Contrary to that, it is much less likely for individuals to forget
their smartphone making it a more suitable GPS device for capturing their trips (Calastri et al., 2020).

Despite those advantages, however, there are instances of missing trips in those datasets, as well, due to signal issues or due to
individuals turning off the GPS tracking from their devices either for battery or privacy preservation (Calastri et al., 2020). GPS data
provide values at a very high resolution, however that characteristic is also one of their most important limitations since significant
pre-processing efforts are required to make the data useful for analysis and for deriving insights on mobility behaviour (Stopher
et al., 2005; Marchal et al., 2011).

Coupled with minimum input from the participants, such as mode and trip purpose, and an additional background household
survey, GPS data have the potential of providing significant advantages over traditional RP data. Despite their extensive use in
transport research over the past years, however, no study so far has tried to utilise such a dataset for the estimation of nation-wide
VTT estimates and for their comparison with the official SP-based values.

3. Data

3.1. DECISIONS data

Several datasets are utilised in the current study. A behavioural model of mode choice is estimated using the labelled GPS dataset,
which was collected between November 2016-March 2017, as part of the “DECISIONS” research project aiming to understand
individual transport and energy choices. A detailed description of the dataset (referred to as DECISIONS dataset in the remainder of
this paper) is presented in Calastri et al. (2020). That survey consists of several submodules including a trip diary captured through
GPS tracking using a smartphone application and a household survey capturing important sociodemographic information of the
participants. The GPS trip diary includes the participants’ trips during a 2-week period, in which additional information on the
purpose and the chosen mode had to be provided at the end of each trip (semi-passively collected) as depicted in Fig. 1 showing
the interface of the smartphone application.

The GPS diaries initially included 721 unique individuals and 56,693 observed trips around the UK (5.7 daily trips per individual)
with the vast majority of those being around the region of Yorkshire and the Humber, and predominantly around the city of Leeds.
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Fig. 2. Spatial distribution of interzonal flows between MSOAs across the UK.

As a result, only trips within the region of Yorkshire were selected for the subsequent analysis to avoid larger estimation errors for
less represented areas, such as London. The spatial distribution of trips initially included in the dataset, represented as interzonal
flows between MSOA zones across the UK, is depicted in Fig. 2, while Fig. 3 shows only the trips starting and finishing within the
region of Yorkshire. The observed modes of transport included car, bus, rail, taxi, cycling and walking.

A significant effort was undertaken during the cleaning phase with an emphasis on detecting inconsistencies between consecutive
trips, in terms of time (following trip starting before the end of the previous trip) and space (space gaps between two consecutive
trips). Furthermore, a large number of trips were left untagged, meaning that participants did not provide mode and purpose
information, and these thus had to be removed from the analysis. No pattern was identified for the erroneous observations or
untagged trips that were removed and those were considered as missing at random for the subsequent analysis. Unique activity
locations were defined by clustering the observed latitude/longitude coordinate pairs. Hierarchical Agglomerative Clustering (HAC)
was used for that purpose, since it does not require the analyst to predetermine the number of clusters. A distance threshold of
200 m was selected for the observed destinations to be considered in the same cluster, which resulted in the most plausible clusters
for the sample after testing thresholds between 50-500 m. As a result from that process, home and work locations were identified
based on the tagged purposes for those locations, the time of the day that those locations were visited and the time spent there.
Trips were then assigned into tours, starting from and finishing at the home location, per individual and for each day of the survey.

The aforementioned process allowed us to adopt a tour-based approach in terms of mode availability per individual and choice
task. In that sense, if an individual chooses car for the first trip of the tour and she is the only person participating in that trip, we
can safely assume that she is the driver and she will have to return the car back home. As a result, all mode alternatives will be
available for the trips of the tour with the exception of the last trip, where only car is available. Therefore, in such a choice task the
last trip is not included in the model, since it is not relevant in a mode choice context. Conversely, if the individual is not the only
person participating in a car trip, then we cannot assume that she is the driver and as a result all modes will be available for the
remainder of the tour. In the case, the individual chooses any other mode for the first trip, i.e. bus, rail, taxi, cycling or walking,
then car would be available for the first trip of the tour and it would become unavailable for the remaining trips of the tour. In such
cases, car would be included as an alternative only in the choice set of the first trip. Therefore, the utilised approach despite still
being trip-based, it utilises some tour-based feasibility constraints in an attempt to increase the behavioural realism of the model.
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Fig. 3. Spatial distribution of interzonal flows between MSOAs across the region of Yorkshire.

A significant problem inherent to RP data and especially to those derived from new emerging data sources, such as GPS, is the
lack of any information on the non-chosen alternatives. To overcome that obstacle, the “Directions” Google API was implemented
providing travel times and distances for a range of modes.! Travel times/distances for both chosen and unchosen mode alternatives
were re-calculated using the API for consistency reasons and to ensure that all values would come from the same data generation
process (Calastri et al., 2018). The requests passed on to the API were for two weeks in the future from the date of analysis and
for the same day of the week and time of day as in the initial dataset. Two weeks in the future were chosen, so as to avoid the
short-term negative impacts of a recent traffic disruption and because the API cannot be used for past dates.

The API provided travel times for car/taxi based on traffic information for the specific time of day when the observed trip was
performed. Travel times on the shortest distance routes are calculated for walking and cycling trips. For bus and rail trips, a timetable
approach is used and a detailed breakdown of the whole route is provided including walking segments, waiting times and transfers
between different services. That level of detail was essential in order to quantify in-vehicle and out-of-vehicle travel times and to
be in line with the official VTT estimates. The travel times for the observed modes acquired from the API were compared with the
stated travel times for validation purposes. The mean absolute difference across modes was very small, namely 8 mins, indicating
that, on average, Google API is capable of providing travel times comparable with the actual ones.

Travel cost was also missing for all alternatives. Car costs were calculated using the official WebTAG specifications regarding
fuel® and operating costs (Department for Transport, 2014). Parking costs were also calculated based on the location of the observed
destination (central areas, local high streets etc.) and the activity duration there. Information on hourly and fixed parking costs was
obtained from the local authorities in the region of Yorkshire. Fuel, operating and parking costs were added together to form the
total car travel cost used for estimation. Bus and rail costs were calculated based on a distance-based fare of the most popular bus
and rail operators in the region and a discount was applied for season ticket holders. Finally, taxi cost was calculated using fixed,
hourly and distance-based average costs for different cities around Yorkshire.

The final dataset used for model estimation contained 12,524 trips and 540 unique individuals, which is significantly smaller
than the SP sample used for analysis in the official study consisting of 7692 individuals and 15 choice tasks per individual (Hess
et al., 2017). Regarding the observed/chosen modes, 47.6% were car trips, 14.6% bus, 5.2% rail, 3.2% taxi, 3.3% cycling and
26.1% walking trips. Commuting and business trips were observed for 19.1% and 9.7% of the sample, respectively. The majority
of respondents were female (59.6%) of an average of 40 years old, 75.4% had at least one car in their household and finally
20.7% and 13.3% had a bus and rail season ticket, respectively. The average trip distance across modes per choice task is 2.4 miles

1 More details can be found here: https://developers.google.com/maps/documentation/directions/overview.
2 Historical petrol and diesel prices for the survey period (November 2016-March 2017) were obtained from https://www.racfoundation.org/data/uk-pump-
prices-over-time.
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(3.9 km) with a maximum of 61.1 miles (98.4 km) depicting the urban nature of the trips captured in this survey and the absence
of longer-distance interurban trips.

In addition to the aforementioned tour-based approach for defining mode availability, a further step was taken to define mode
consideration in order to form the final set of alternatives actually considered during the decision making process. Several approaches
have been proposed to account for consideration of alternatives, which differ in their level of complexity ranging from fully
probabilistic choice set formation approaches (Manski, 1977; Swait and Ben-Akiva, 1987; Calastri et al., 2018) to captivity models
(Gaudry and Dagenais, 1979; Swait and Ben-Akiva, 1986) to the incorporation of penalties in the utility function for alternatives
exceeding certain attribute thresholds (Cascetta and Papola, 2001; Martinez et al., 2009) and finally to defining consideration of
alternatives in a deterministic manner with exogenous thresholds. In the current study, the latter approach was utilised taking into
account the observed behaviour in the sample and the results obtained from the API. In that regard, car and taxi trips were excluded
for short trips below 5 mins, which was the minimum observed time for those modes in the sample. Bus and rail were excluded
for trips in which the API returned only walking segments due to short distances or lack of service. Finally, regarding cycling
and walking, which are modes that require physical effort, they were excluded for long distance trips, namely 20 km and 3 km
respectively, which were the maximum observed cycling and walking distances in the sample. Having said that, however, we do
acknowledge that there are more behaviourally accurate ways to model alternative consideration, e.g. using a probabilistic choice
set formation approach, which could form the basis of future research on that topic in order to assess the impact of uncovering such
behavioural mechanisms on the estimated VTTs.

3.2. NTS dataset

The estimates derived from the best-performing model estimated on the DECISIONS were applied on the NTS dataset. The NTS
is the official annual survey in the UK providing invaluable long-term information on travel behaviour and mobility trends.®> Three
consecutive years of the NTS data were used, namely 2015-2016-2017, to ensure a representative sample, while also providing an
overlap with the period of the DECISIONS survey. A non-sensitive version of the NTS dataset was acquired,* where information on
personal income was missing. Furthermore, household income was not reported for more than 65% of participants for each year
rendering it practically unusable. In addition, since the parameters were estimated on a dataset containing trips mostly around the
region of Yorkshire (DECISIONS), it was decided to exclude trips in London from the NTS data, due to the individuals there generally
having a different set of available modes, e.g. underground. Contrary to London, the remaining areas around the UK have similar
mode availability with regard to public transport, i.e. bus and rail. Furthermore, an important assumption made at this point is that
individuals in Yorkshire exhibit a mobility behaviour, which is transferable to the rest of the UK.

The NTS dataset did not provide any information on travel cost for car trips and for a large number of bus and rail trips. For the
former, only information on parking cost was provided and fuel and operating costs were imputed using the same approach as in
the DECISIONS dataset (Department for Transport, 2014). Fare cost for bus and rail was missing or reported as zero for 49% and
13.4% of bus and rail trips, respectively, which were performed by season ticket holders. Since it is not reasonable to assume a zero
VTT for season ticket holders, an average daily cost of a season ticket was applied for bus and rail, based on the cost calculations
performed for the DECISIONS data.

The final NTS dataset used for the analysis, excluding London-based trips, included 453,438 trips performed by 29,127 unique
individuals (3.1 daily trips per individual), with 52.6% of those being female and with an average age of 50 years old. The average
trip distance is 7.9 miles (12.7 km) with a maximum of 719 miles (1157.1 km) showing a more accurate depiction of mobility
behaviour including both urban and interurban trips. Regarding the observed modes, 80.4% were car trips, 5.1% bus, 1.2% rail,
1.2% taxi, 1.9% cycling and 10.1% walking trips. Finally, commuting and business trips account for 17.4% and 4.0% of NTS trips,
respectively. Detailed descriptive statistics of DECISIONS and NTS trips per mode and purpose are presented in Table 1.

4. Modelling framework

The VTT estimates presented in the current study are derived from a behavioural model based on the Discrete Choice Modelling
(DCM) framework (Ben-Akiva and Lerman, 1985; Train, 2009). A DCM framework based on Random Utility Maximisation assumes
that each individual » has a preference for a specific alternative i among a set of J alternatives in a choice task ¢ represented as
a latent utility U,,, consisting of a deterministic part V;,, and a disturbance term ¢;,,. Different distributional assumptions about
the disturbance term would yield a different specification form. The most commonly used specification is the Multinomial Logit
model (MNL) assuming a type-I (Gumbel) Extreme Value distributed disturbance term (McFadden, 1973). The deterministic part
V., consists of alternative- and individual-specific attributes, x;,, and z,, respectively, as shown in Eq. (1). The choice probabilities

of an MNL model are derived from Eq. (2).

Uint = Vint + €int = f(ﬂa Xint» zn) + €int (1)

eVint ( )

PuP) = ——— 2
int Z‘j’:] e‘/jm

3 Details can be found here: https://www.gov.uk/government/collections/national-travel-survey-statistics.
4 The NTS dataset was acquired from https://beta.ukdataservice.ac.uk.
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Table 1
Number of DECISIONS and NTS trips per mode and purpose.
Mode Commuting Business Other Total
(non-work)

DECISIONS trips

Car 1015 (8.1%) 693 (5.5%) 4253 (34.0%) 5961 (47.6%)
Bus 510 (4.1%) 201 (1.6%) 1117 (8.9%) 1828 (14.6%)
Rail 243 (1.9%) 55 (0.4%) 350 (2.8%) 648 (5.2%)

Taxi 23 (0.2%) 30 (0.2%) 352 (2.8%) 405 (3.2%)
Cycling 121 (1.0%) 19 (0.2%) 269 (2.1%) 409 (3.3%)
Walking 477 (3.8%) 214 (1.7%) 2582 (20.6%) 3273 (26.1%)
Total 2389 (19.1%) 1212 (9.7%) 8923 (71.2%) 12,524 (100%)
NTS trips

Car 62,750 (13.8%) 16,199 (3.6%) 285,594 (63.0%) 364,543 (80.4%)
Bus 5054 (1.1%) 406 (0.09%) 17,580 (3.9%) 23,040 (5.1%)
Rail 2133 (0.5%) 488 (0.1%) 2916 (0.6%) 5537 (1.2%)
Taxi 725 (0.2%) 143 (0.03%) 4786 (1.0%) 5654 (1.2%)
Cycling 3475 (0.8%) 254 (0.1%) 4927 (1.1%) 8656 (1.9%)
Walking 4729 (1.0%) 487 (0.1%) 40,792 (9.0%) 46,008 (10.1%)
Total 78,866 (17.4%) 17,977 (4.0%) 356,595 (78.6%) 453,438 (100%)

where f is a vector of parameters to be estimated.

The basic MNL specification assumes that individuals will have the same sensitivity to the specified parameters. Deterministic
taste variation in response to specific attributes can be captured as shifts from their base level for specific types of individuals or
choice tasks. In the present study, deterministic heterogeneity was captured by specifying shifts from the base level of the alternative
specific constants (ASCs) for specific sociodemographic attributes. Furthermore, shifts were also included for the base time and cost
parameters of level-of-service (LOS) variables for business and commuting trips. An elasticity specification was used for interactions
with continuous sociodemographic attributes, such as age and income, with a separate beta being specified for respondents who did
not provide any income information.

Even in the case of accounting for deterministic heterogeneity, however, it is reasonable to assume that some degree of
heterogeneity would still remain uncaptured among and/or within individuals leading to biased estimates. Mixed Logit models
(McFadden and Train, 2000) can be used to account for that, offering a more flexible specification, where parameters are allowed
to vary randomly across individuals. Mixed Logit models are considered as the most general form of a Logit, since they are able to
approximate any other specification (McFadden and Train, 2000). The results, however, will largely depend on the distributional
assumptions for each random parameter, a task bestowed on the analyst.

The choice probabilities in a mixed Multinomial Logit Model (MMNL) model are now given by an integral over the distribution of
individuals’ sensitivities (which follow a density function ¢(f|£2)), where this integral does not offer a closed form solution. Simulated
log-likelihood estimation is an alternative way of calculating the integral of choice probabilities, based on drawing random numbers
from a pre-specified distribution. From that process, the choice probabilities can be calculated as the average over the draws (Eq. (3))
and the simulated log-likelihood can be computed as shown in Eq. (4).

R
P (2) = % . P 3)
r=1
N —_—
SSL(@®) = Y In(P,,,(®)) @

n=1
where p" is a random draw from a distribution with ¢(f|£).

It is reasonable to assume that the impact of LOS parameters should be strictly negative, indicating that an additional minute
spent travelling or an additional unit of cost spent for a trip will decrease the utility and therefore the choice probability for a
certain mode alternative. The specified distribution for the random LOS parameters should be able to account for that, with the
negative log-normal distribution being the most applied one for that purpose. In the current study, the long tails of the log-normal
distribution resulted in numerical issues during estimation, prompting us to take a different approach. As a consequence, the negative
log-uniform distribution was chosen instead, with its shorter tails ensuring no problems during estimation, similarly to the official
UK study, which provided the first large scale application of that distribution (Hess et al., 2017). Under that distribution, a variable
x is log-uniformly distributed, if y = log(x) is uniformly distributed. The log-uniform distribution is defined by two additional
parameters, a and b denoting its lower bound and spread, respectively. The mean and the variance of the log-uniform distribution
are calculated as following (Hess et al., 2017):

a+b _ 4
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In total, nine parameters were specified as random, namely travel time for car, taxi, walking and cycling, in-vehicle (IVT) and
out-of-vehicle (OVT) travel times for bus and rail and finally travel cost. Due to the multidimensionality of the integral, Modified
Latin Hypercube Sampling (MLHS) draws were chosen over Halton draws to avoid the multicollinearity issues identified with
multidimensional Halton sequences (Hess et al., 2006). For the simulated log-likelihood estimation, 1000 MLHS numbers r; s were
drawn from a uniform distribution for each randomly distributed 8, which was specified as gy, = e****'v. At that number of
draws, a sufficient level of stability was observed among the estimates and model fit, hence it was decided not to increase the
number of draws any further.

Finally, another issue worth addressing is the potential presence of heteroscedasticity in the choices occurring from the variance
differences across the choice tasks. In the official SP-based VTT study, a multiplicative error term was used instead of the additive
one in Eq. (1) following the proposed specification in Fosgerau and Bierlaire (2009), such as U,,, = V;,¢;,,- That specification can
be simplified by taking a logarithmic transformation as log(U;,,) = log(V;,,) + log(e;,;) (Fosgerau and Bierlaire, 2009), which requires
a strictly positive V;,,. Instead of that specification, we tried to capture heteroscedasticity by assuming that more uncertainty, hence
variance, will exist for choice tasks/trips of longer distances. Therefore, for those trips, the systematic part of the utility, V;,,, will
be smaller compared to trips of shorter distances. In order to capture that, additional scale parameters ¢, are specified for different
distance bands / and multiplied with the utility function with one scale parameter ¢,  being fixed to 1.0. If the base ¢, refers to
trips in the shortest distance band then the remaining estimated ¢, should be smaller and ideally decreasing as distance increases.

5. Modelling results

The outputs of the behavioural models estimated on the DECISIONS dataset, base MNL, scaled MNL and scaled MMNL, are
presented in Table 2. The scaled MNL model showed significant model fit improvements over the base MNL of 15.5 LL units with 2
additional parameters, namely the scaling parameters ¢. Those scaling parameters are significantly lower than 1.0 and are decreasing
as the distance band increases. Therefore they are able to uncover significant heteroscedasticity among the choices based on distance,
hence conforming to our initial hypothesis.

The scaled MNL model was used as the initial point of departure for the MMNL specification with the purpose of capturing
unobserved heterogeneity. The MMNL model with 9 additional parameters provided significant improvements in model fit reducing
the LL by 1166.5 units from the scaled MNL model. The adjusted p? of 0.7723 also signifies that the model is able to explain
a significant portion of the variation in the dataset. The Alternative Specific Constants (ASCs) reveal that, all else held equal,
individuals of higher income or those who are employed have a negative inherent preference for bus, while also bus is less preferred
for trips over the weekend. Interestingly, individuals have an inherent positive attitude for rail compared to car signifying the
perceived quality superiority of rail over bus, despite both being public transport modes. Individuals have a negative preference for
taxi, although that is not the case for younger individuals below 30 years old. Individuals of lower education (with no undergraduate
degree), which can be considered a proxy of income, have a significantly higher dispreference for taxi. Furthermore, there is a
negative preference for cycling and an even higher dispreference from unemployed individuals, but less so from male individuals
and students. Cycling is also more preferred by both the lowest and the highest personal income bands. Finally, all else held equal,
individuals and specifically those of younger ages and students have a positive inherent preference for walking.

The importance of capturing non-linear sensitivities with a Box-Cox transformation (Box and Cox, 1964) of travel time and cost
attributes for a more accurate VTT estimation has been stated before in the literature (Koppelman, 1981; Gaudry et al., 1989). A
common approach is to have either linear or logarithmic specifications of time and cost attributes in the utility function assuming a
linear increase of sensitivities or a decreasing one, respectively, as the attribute values increase. Such a specification can be limiting
as it assumes that one of those two extreme cases exist in the sample. On the other hand, a Box—Cox transformation provides a more
generalised specification as it allows the analyst to capture non-linearities across the whole spectrum of possible values. Using a
Box-Cox transformation, an attribute x is specified as ! with A being an estimable parameter capturing the degree of non-linearity.
If 4 is not statistically different than 1.0, then the sensitivities for that particular attribute are indeed increasing linearly. If A is not
statistically different than 0, then the sensitivities take a logarithmic form leading to a steep increase at first for small values followed
by a decreasing rate for high attribute values (decreasing marginal disutilities). In most cases, the estimated A will be between 0
and 1.0, however empirical evidence shows that it can also take values above 1.0 capturing a slow increase in sensitivities for small
values and followed by a steeper increase for higher values (increasing marginal disutilities) as shown in Gaudry et al. (1989).

In the current study, a Box—Cox transformation was specified for all LOS attributes in order to assess the estimated A parameters
and their behavioural meaning. For the final model, it was decided to keep a Box—Cox transformation for car, bus, taxi, cycling,
walking, OVT bus and OVT rail, which resulted in A = 0.4581 significantly different than 1.0 and O capturing significant decreasing
marginal disutilities, but still not at the extreme of a logarithmic specification. Contrary to the above travel times, a linear
specification was used for rail IVT. A behavioural meaning of those specifications and the respective uncovered sensitivities could
be that individuals are more sensitive for higher in-vehicle travel times when travelling by rail compared to travelling by car, for
example. That can be attributed to an increased discomfort caused by longer distance rail trips or to an increased time restriction
for the rest of the daily schedule imposed by the longer distance trip, which prompts the individuals to choose faster and more
expensive services. Commuters and business car travellers have also increased time sensitivities due to the importance of arriving
on time for those activities compared to non-work trips. Increased car time sensitivities were found for trips during the am peak
period (7.00-10.00), while the opposite was true for the pm period (16.00-19.00), relative to all other time periods of the day. That
denotes the increased time restrictions of morning trips and the need to arrive on time to the various destinations (mostly work
locations), compared to evening trips, most of which are either leisure, shopping or returning trips to home. The decreased time
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Fit statistics Base MNL Scaled MNL Scaled MMNL
Log-likelihood (0) —14,974.45
Log-likelihood (model) —4535.41 —4519.92 —3353.41
Adjusted p* 0.6941 0.6950 0.7723
AIC 9162.81 9135.83 6820.82
BIC 9504.84 9492.73 7244.64
Number of parameters 46 48 57
Number of individuals 540
Number of observations 12,524
Parameter Estimate (Rob. t-rat. 0) [Rob. t-rat. 1]

Base MNL Scaled MNL Scaled MMNL
Alternative-specific constants
Constant Bus —0.0929 -0.26 0.3195 (0.80) —0.0905 (-0.20)
Constant Bus shift -1.1902 -1.44 —1.4445 (-1.46) —4.4972 (-5.77)

for personal income>50k
Constant Bus shift for weekend
Constant Bus shift

for unemployed individuals
Constant Rail

Constant Taxi

Constant Taxi shift for male
Constant Taxi shift for age 18-24
Constant Taxi shift for age 25-29
Constant Taxi shift

for lower education levels
Constant Taxi shift

for personal income 40k-50k
Constant Cycling

Constant Cycling shift for male
Constant Cycling shift

for personal income 10k-20k
Constant Cycling shift

for personal income 75k-100k
Constant Cycling shift

for not reported income

Constant Cycling shift for weekend
Constant Cycling shift for student
Constant Cycling shift

for unemployed individuals
Constant Walking

Constant Walking shift for age 18-29
Constant Walking shift

for lower education levels
Constant Walking shift for weekend
Constant Walking shift for student

—-0.7165 (-4.05)
0.7378 (1.08)

2.4421 (2.21)
—1.8075 (—4.09)
—0.6434 (-2.10)
1.5014 (4.67)
0.9324 (2.64)
—1.3979 (-2.46)

—-0.7975 (-2.18)
—4.0728 (-7.85)
1.1047 (2.69)
0.8020 (1.93)
3.5150 (3.49)
—2.4544 (-1.69)
—-0.6604 (-2.01)
1.1559 (2.23)
-1.1964 (-2.22)
3.0294 (5.73)
0.6964 (2.62)
—-0.7563 (-3.47)

—0.5704 (-2.87)
0.7277 (2.37)

—-0.8230 (-3.99)
0.7066 (0.94)

3.1648 (2.58)
-1.3129 (-2.37)
—-0.7479 (-2.19)
1.8120 (4.66)
1.1385 (2.79)
—1.5940 (-2.44)

—0.9311 (-2.26)
—4.1352 (-7.21)
1.2663 (2.80)
0.9510 (2.08)
4.0077 (3.61)
-2.9037 (-1.72)
—-0.7803 (-2.06)
1.4223 (2.49)
—-1.5084 (-2.59)
3.1564 (5.34)
0.6948 (2.55)
—0.7843 (-3.43)

—0.6310 (-2.90)
0.8039 (2.53)

-1.1573 (-4.19)
0.7765 (1.43)

2.3179 (2.23)
—1.8398 (-2.91)
—-0.5739 (-1.32)
2.8605 (6.74)
2.0238 (3.86)
—2.4137 (-2.66)

-1.3510 (-2.35)
—4.3336 (-6.71)
2.0747 (4.89)
2.0946 (4.97)
5.7908 (4.96)
—2.9202 (-2.89)
—1.5423 (-2.51)
2.8486 (5.57)
—5.5566 (—10.02)
3.4426 (4.95)
0.8225 (2.82)
—-1.1039 (-4.09)

—0.8050 (-3.11)
1.1111 (2.92)

LOS parameters

Travel time Car (Box—Cox)

Travel time Car shift for commuting
Travel time Car shift for business
Travel time Car shift for am peak
Travel time Car shift for pm peak
IVT Bus (Box—Cox)

IVT Bus shift for am-pm peak

IVT Rail (linear)

IVT Rail shift for am-pm peak
Travel time Taxi (Box-Cox)

Travel time Taxi shift for am peak
Travel time Taxi shift for pm peak
Travel time Cycling (Box-Cox)
Travel time Walking (Box—Cox)
Box-Cox lambda for Travel time

for Car, Bus, Taxi, Cycling, Walking
OVT Bus (Box-Cox)

OVT Bus for income non respondents

—-0.2426 (-3.02)
—-0.1478 (-2.92)
—0.0408 (-0.97)
—-0.1637 (-3.08)
0.1282 (2.47)
—-0.1281 (-3.19)
—0.0998 (-3.33)
—0.0080 (-0.66)
—0.0327 (-2.91)
—0.4525 (-3.22)
-0.1709 (-2.71)
—0.1423 (-3.24)
—0.3343 (-3.15)
—-0.6774 (-3.26)
0.5424 (5.25) [-4.43]

—1.1484 (-5.59)
—-1.1920 (-5.14)
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—-0.1680 (-2.33)
—-0.1709 (-2.95)
—0.0308 (-0.65)
—-0.1817 (-3.07)
0.1279 (2.43)

—-0.1363 (-3.32)
—-0.1010 (-3.29)
—-0.0105 (-0.71)
—0.0366 (—2.65)
—0.5299 (-3.40)
—0.1918 (-2.85)
—0.1346 (-2.96)
—0.3478 (-3.22)
—-0.6116 (-3.32)

0.5942 (5.91) [-4.03]

—1.2007 (-5.57)
-1.2663 (-5.05)

—0.2347 (-3.37)*
—-0.1180 (-1.79)
—0.2315 (-3.48)*
0.1720 (2.41)*

—0.0902 (-2.51)*

—0.0472 (-2.54)*
—-0.2877 (-3.70)
—-0.1305 (-2.31)

0.5932 (5.57) [-3.82]*

—-1.4745 (-6.62)

(continued on next page)
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OVT Rail (Box-Cox)

OVT Rail for income non respondents
Box-Cox lambda for OVT Bus, OVT Rail
Income elasticity for OVT Bus, OVT Rail

Travel cost (log)

—1.7365 (-3.50)
—1.4853 (-3.04)

0.1452 (1.59) [-9.35]

0.0880 (2.26)
—-0.8362 (-10.73))

—1.8308 (-3.44)
—-1.5539 (-2.93)

0.1884 (1.97) [-9.59]

0.0962 (2.36)
—0.9428 (-10.43)

—1.4900 (—4.48)

0.3131 (4.67) [-10.25]

0.0572 (1.11)

Random LOS parameters

a of Travel time Car (Box-Cox)

b of Travel time Car (Box-Cox)

a of IVT Bus (Box-Cox)

b of IVT Bus (Box—Cox)

a of IVT Rail (linear)

b of IVT Rail (linear)

a of Travel time Taxi (Box—Cox)

b of Travel time Taxi (Box—Cox)

a of Travel time Cycling (Box-Cox)
b of Travel time Cycling (Box—Cox)
a of Travel time Walking (Box-Cox)
b of Travel time Walking (Box—Cox)
a of OVT Bus (Box—Cox)

b of OVT Bus (Box—Cox)

a of OVT Rail (Box—Cox)

b of OVT Rail (Box-Cox)

a of Travel cost (log)

—0.1553 (-0.60)*
—3.0508 (-5.60)*
—0.2598 (-0.97)*
—2.9434 (-5.64)*
—-0.9137 (-7.59)*
—7.4859 (-4.01)*
0.9373 (4.86)
-1.7604 (-8.33)
2.2121 (8.32)
—-3.6775 (-8.09)
-0.6679 (-1.81)
0.8886 (6.97)
1.3095 (6.15)
—1.8183 (-7.20)
0.0579 (0.22)
1.1181 (7.41)
—1.8271 (-4.53)*

b of Travel cost (log) - - 3.0789 (5.83)*

Scale parameters
Scale ¢, for trip distances <3 km - 1.0000 (-) 1.0000 (-)

Scale ¢, for trip distances 3 km-20 km - 0.8313 (16.50) [-3.35] 0.8031 (14.84) [-3.64]
Scale ¢; for trip distances >20 km - 0.6805 (8.54) [—4.01] 0.6560 (7.09) [-3.72]

sensitivity for car in the pm period could also denote the individuals’ desire to take that extra time to diffuse themselves from the
stress of work in the privacy of their car. That difference in time sensitivities between am—pm periods, however, was not evident
for public transport and taxi trips. More specifically, individuals showed the same increased sensitivities in both periods for bus and
rail trips possibly due to similar crowding levels in those modes from people going to and returning from work resulting in similar
unpleasant conditions. For taxi trips, individuals had a lower sensitivity for pm compared to am period, but still higher relative to
all other periods of the day.

A Box—Cox 4 not statistically different than 0 was found for travel cost, which led us to keep a logarithmic specification of
travel cost for the final models presented here signifying the presence of cost damping effects in the sample (Daly, 2010). That also
signifies that cost sensitivity decreases at a faster rate than the time sensitivities, which will result in higher valuations for larger
potential time savings, i.e. in longer distance trips (De Borger and Fosgerau, 2008; Small, 2012). Different combinations of personal
and household income were specified as elasticities for the LOS parameters, with only the elasticity of personal income and OVT
for bus and rail resulting in statistically significant estimates for the MNL models, at least. The sign of the parameter is positive,
meaning that as income increases, the sensitivity to OVT also increases, which is behaviourally sensible. That OVT-income elasticity,
however, became statistically insignificant in the MMNL model. Finally, all of the g parameters of the log-uniform distributions,
i.e. the spread, were found to be statistically significant capturing significant inter-individual heterogeneity.

6. Values of travel time estimates

The estimated parameters of the scaled MMNL model (see Table 2) were applied to the NTS dataset, which provides mobility-
related information on a sample of the UK population. Acknowledging the fact that the NTS dataset is still a sample of the
UK population, we further adjusted the resulting VTTs using appropriate distance-based factors in order to calculate VIT values
representative for the population of the UK (with the exclusion of London). Distance correction was performed using mode-specific
information on travel distances for work trips obtained from the Census of 2011. The process is detailed below and also depicted
in Fig. 4.

Sample level VTT calculation

VTTs were computed using sample enumeration over the car, bus and rail trips of the NTS sample. VTTs are calculated as the
relative importance of one unit of change in time relative to one unit of change in cost. In mathematical terms, that is represented
as the ratio of the partial derivatives of travel time over travel cost, as shown in Eq. (7).
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Fig. 4. Comparison approach between SP and GPS-based VTTs.

Sample enumeration is required because the attributes of travel time for car and bus and travel cost for all three modes enter the
VTT calculation due to their specification in the respective utility functions. Taking car travel time as an example, its specification
using a Box—Cox transformation leads to a partial derivative of ﬁ,‘;”’tt(cf;,’””_”. Furthermore, travel cost, specified using a logarithmic

transformation, leads to a partial derivative of g, ’CL Therefore, the VTTs are computed for each choice task of the sample taking
car

into account their respective trip attributes of travel time and cost for the chosen mode.

Deriving representative VIT for different distance-bands

In the guidance provided by DfT, the VTT values were both adjusted based on covariates included in the NTS data and were
further weighted based on trip distances of different synthetic household income bands acknowledging the impact of distance on the
VTT (Zhang and Laird, 2014; Batley et al., 2019). In the current study, due to the absence of any information relating to the distance
weighting per income band, only the first correction was performed. According to that, distance-based factors were derived based on
the relative importance of the mode-specific distance bands from the Census 2011 (excluding London) over the NTS distance bands
and applied on the sample level VTTs (Eq. (8)). For that purpose, the NTS car, bus and rail trips were allocated to the same eight
distance bands as the ones in the Census, namely 0-2 km, 2-5 km, 5-10 km, 10-20 km, 20-30 km, 30-40 km, 40-60 km and over
60 km, and the trip distributions over those distance bands were calculated for both datasets. The distance-based correction factor

percy
. _ ti.pm (o}
w, for trip + was computed as w, = oreNTS where perc;

tip.m

and perc)™® are the Census and the NTS distributions of distance
dl,i,p,m thpm
band i for trip ¢ of purpose p and mode m, respectively.® Due to the lack of any additional explicit information regarding distances

for non-work trips, the same correction factors were applied in those cases, as well. The distance band distributions of the NTS and
the Census 2011 per mode and purpose, as well as the respective correction factors applied are presented in Table 3.

- (wVTT, ,,,)
VTprm — Zr t t,p.m (8)
2w
where VTT,,,, and VTT,, are the VTT for choice task #, purpose p and mode m and the weighted average VTT, respectively.

Due to the complex specification of the utility function and the resulting VTT calculation, we rely on simulation for the calculation
of standard errors for the different VITs and not on the most commonly used approach of the Delta method (Daly et al., 2012).
Confidence intervals and standard errors for the estimated VTTs were calculated using multivariate normal draws based on the
estimated parameters and the covariance matrix of the behavioural model (Train, 2009). Specifically, 3000 draws for the estimated
parameters were drawn and simulated VTTs were calculated for each of the 3000 samples. At that number of draws the distance-
adjusted means of the simulated VTTs per mode and purpose had only small discrepancies from V7T, so no further draws were
deemed necessary for the analysis. The 95% confidence interval was then calculated for the resulting simulated VTT distribution
per mode and purpose using the percentile interval method and the standard errors were calculated as the standard deviations of
the simulated VTT distributions. Finally, the t-stat of the difference between the estimated VIT means were calculated based on

5 Details can be found here: https://www.nomisweb.co.uk/census/2011/dc7701ewla.
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Table 3

Distance band distributions and distance-based correction factors per mode.
Distance band Census NTS (%) Correction

2011 (%) factor

Car
0-2 km 13.52 7.65 1.77
2-5 km 21.83 20.57 1.06
5-10 km 22.67 21.48 1.06
10-20 km 21.97 23.31 0.94
20-30 km 9.04 11.19 0.81
30-40 km 3.93 5.03 0.78
40-60 km 3.18 5.89 0.54
Over 60 km 3.87 4.88 0.79
Bus
0-2 km 12.39 3.91 3.17
2-5 km 40.22 30.13 1.34
5-10 km 28.18 37.17 0.76
10-20 km 11.91 23.32 0.51
20-30 km 2.67 4.08 0.65
30-40 km 1.00 0.91 1.11
40-60 km 1.05 0.34 3.08
Over 60 km 2.57 0.15 16.74
Rail
0-2 km 3.55 - -
2-5 km 5.74 2.97 1.93
5-10 km 10.84 9.09 1.19
10-20 km 17.62 22.64 0.78
20-30 km 15.75 18.63 0.85
30-40 km 12.10 17.28 0.70
40-60 km 16.77 10.08 1.66
Over 60 km 17.65 19.31 0.91

Eq. (9).
VTT, - VTT.
= staty,y, = Lotces ~VITsp ©)
S'e'ZGPS + S'e:zsp

VTTs in the official study were segmented into distance bands of 0-20 miles, 20-100 miles and over 100 miles, however, those
were later revised by the DfT to 0-50 miles, 50-100 miles, 100-200 miles and over 200 miles (Batley et al., 2019). The behavioural
model in the current study was estimated on a dataset where the maximum trip distance was 61.1 miles. Despite that, we decided
to apply the estimates on NTS trips of longer distances, as well, to present a more complete comparison across the different distance
bands with the official VTT study. As a result, the same distance bands of <20 miles, 20-100 miles and over 100 miles have
been used. In addition to not having long distance trips in the estimation data, the application data of NTS also includes only a
small number of medium and long distance trips, namely 8.09% of trips are above 20 miles, 2.16% above 50 miles and 0.78%
above 100 miles. The same issue of a small number of long distance NTS trips was tackled in the official SP study by conducting
additional intercept sampling favouring trips of longer distance and specifically business trips (Batley et al., 2019), however that
was not possible in our case. Therefore, we should acknowledge the fact that calculated VTTs for medium (20-100 miles) and
longer distances (above 100 miles) might contain higher estimation errors. Furthermore, when comparing the derived VTTs of the
current study with the official ones, the exclusion of London is an important factor to be taken under consideration, as well. As a
consequence, in the current study there is no “Other PT” as a mode alternative, which was included in the official VTTs and mainly
referred to London-specific mode alternatives, such as light rail and the underground. The exclusion of London-based trips from the
NTS data, also has an impact on the total sample size for our GPS-based VTTs, which is much smaller than the NTS sample size
used in the official SP study.

The official VIT estimates based on the latest nationwide UK SP survey (adjusted for 2016 prices) are presented in Table 4,
both overall and distance segmented values, and are compared with the respective GPS-based VTT estimates of the current study.
In the official VTT study, bus was not included as an alternative for business trips, hence we decided to follow the same approach
here, as well, for consistency reasons. The overall VIT values, which are to be used for appraisal, show only negligible differences
with the official ones, despite that only a limited number of longer distance trips was used in the calculation of the GPS-based
VTTs and that a different distance weighting method was applied without any explicit information on non-work trips. The distance
segmented values are mainly used for reporting purposes (Daly et al., 2014), however, interesting findings can be extracted by
their examination. Firstly, there are very small differences between the GPS-based and SP-based VTTs for the shortest distance band
below 20 miles, and there is a higher estimation accuracy on the VTTs of that distance band due to the larger sample size in the
NTS data. Another reason for these small discrepancies could be the that the SP surveys were able to sufficiently capture individual
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Table 4
Official VTT estimates per mode, purpose and distance band based on the latest SP survey (Batley et al., 2019) and the respective
derived GPS-based VTT estimates (£/hour) (2016 prices).

Distance band Commute trips Other trips Business trips

All modes All modes All modes Car Other PT Rail

Official SP values

All distances 11.69 5.34 19.01 17.46 8.69 28.80
<20 miles 8.63 3.78 8.67 8.56 8.69 10.54
20-100 miles 12.67 6.77 16.74 16.53 8.69 30.23
>100 miles 12.67 9.67 29.85 26.84 8.69 30.23
GPS-based values
All distances 12.90 5.40 17.13 16.60 - 33.43
<20 miles 11.24 4.68 11.16 11.20 - 9.78
20-100 miles 30.52 15.67 36.59 36.21 - 43.78
>100 miles 75.57 24.29 82.25 70.12 - 187.96
Table 5

Confidence intervals and standard errors of the mean estimates for the overall official VIT estimates per mode and purpose
(Batley et al., 2019; Hess et al., 2017) and the respective derived GPS-based VTT estimates (£/hour) (2016 prices).

Mode-Purpose VTT (St.error) [95% C.I.] t-stat diff
SP-based values GPS-based values

Car

Commuting 12.20 (2.05) [8.18-16.23] 13.52 (2.68) [9.17-19.78] 0.39

Business 17.46 (2.04) [13.47-21.45] 16.60 (4.60) [9.94-27.40] -0.17

Other 5.12 (1.84) [1.53-8.72] 5.45 (1.28) [3.50-8.32] 0.15

Bus

Commuting 3.29 (0.48) [2.34-4.23] 5.46 (1.14) [3.59-7.97] 1.75

Other 3.40 (0.43) [2.56-4.24] 3.99 (0.88) [2.60-5.94] 0.60

Rail

Commuting 12.95 (0.91) [11.17-14.73] 12.41 (3.28) [7.26-20.00] -0.16

Business 28.80 (2.49) [23.91-33.68] 33.43 (9.11) [19.82-55.09] 0.49

Other 9.05 (0.64) [7.80-10.30] 14.26 (3.94) [7.32-23.39] 1.31

mobility behaviour in such hypothetical scenarios of small trip distances. On the contrary, starker differences are observed across
the remaining VTTs for medium to long distance trips, which to a large extend can be attributed to the small number of trips in those
bands. Nonetheless, those significant differences could also be attributed to the inherently more unpredictable nature of longer trips
that is more challenging to be sufficiently accounted for in the hypothetical setting of an SP survey. As it is evident from Table 4,
the GPS-based values might be able to capture a more behaviourally accurate depiction of the VTTs, which increase significantly for
longer distance trips capturing the individuals’ increased time restrictions during their daily activity schedule, as it is also supported
by the literature. Having said that, however, it is important to note that a more balanced sample would be required in terms of trip
distances in order to draw more robust conclusions about that.

The standard errors of the estimated mode- and purpose-specific VIT means (across all distances) and their 95% confidence
intervals are presented in Table 5 along with the t-statistic of the difference of the means between the GPS-based and the official SP-
based VTTs. Overall, standard errors of the GPS-based VTTs are higher and that can be attributed to a higher degree of heterogeneity
captured in our study compared to the SP survey or it could also simply be due to the smaller sample size. For all VTTs presented in
Table 5, we cannot reject the null hypothesis of difference from the official valuations, at the 95% confidence level. Furthermore,
the GPS-based VTTs follow the general trends of the SP values. Values for rail are higher than car and bus, with the latter has the
lowest values overall. Furthermore, business VITs are higher than commuting and other non-work trips. Commuting values are in
general higher than non-work trips, however, the opposite was found for SP bus and GPS rail VTTs for non-work trips. Bus VTT
for commuting trips show the largest difference compared to the rest, followed by other non-work rail VTTs, but those are still not
statistically significant differences. Finally, in most cases, the GPS-based VTTs are higher than the SP-based ones conforming with
previous evidence in the literature (Wardman et al., 2016), however the downward hypothetical bias for SP is less significant in
that case.

The distributions of the simulated VTTs are also presented in the box plots in Figs. 5-7. In those plots, the impact of the smaller
sample size for rail trips becomes evident as it leads to wider distributions highlighting the uncertainty around the estimation of
those VTTs, contrary to the more compact distributions of commuting and non-work VTTs.

7. Discussion

The results of this study clearly demonstrate that the argument of RP data collection limitations of the past does not hold anymore
in the current age of data revolution. Semi-passively collected emerging data sources have the ability to provide the analysts with
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Fig. 5. Box plots of GPS-based Car VITs per purpose.

large panels of observed mobility behaviour at a high spatio-temporal resolution and at a relatively low cost. Those types of datasets,
in that case a GPS trip diary coupled with a background household survey, have the ability of providing robust behavioural models
and VTT estimates statistically equal with official national values derived from traditional SP surveys.

It may be noted though that the overall sample size of the finally utilised estimation dataset was smaller compared to the
SP survey, as a large share of trips had to be removed from the original DECISIONS data during the cleaning phase in order to
exclude inconsistent, incomplete and untagged trips. Furthermore, the trips recorded in the DECISIONS dataset were mostly urban
trips, while the official SP survey included longer distance trips, as well. The aforementioned limitations, however, can be easily
overcome in nationally important studies by designing a more comprehensive data collection process. Those limitations can be partly
justified since the DECISIONS dataset was not collected with the purpose of estimating nation-wide VTT values in mind. Despite
those limitations, the study has two key findings which are of importance to transport planners and policy makers:

1. The study demonstrates that the overall VTT estimates were similar to the official SP-based values used for appraisal, even
with a smaller sample size. As a result, there is a smaller hypothetical bias in the official SP study compared to the usual
RP/SP documented in the literature across a range of studies (Wardman et al., 2016).

2. Segmenting the VTTs by distance bands, larger discrepancies start to become evident among longer distance bands with the
SP-based VTTs being smaller in most cases. That hints to a downward bias for SP surveys potentially originating from the
hypothetical nature of the longer trips, which made them difficult to comprehend. In contrast, the smaller differences of VTTs
for shorter distance bands could mean that the design of the SP survey was sufficient enough to capture realistic mobility
behaviour.

The results hence demonstrate that by harnessing recent technological advances in data collection, transport planners and policy-
makers can make a successful shift to RP data sources, which have more behavioural validity compared to SP. Furthermore, the
findings of the current study also demonstrate that smaller sample sizes derived from GPS smartphone data could be sufficient for
the estimation of behaviourally accurate VTTs for the whole population. That finding could lead to a more frequent data collection
process for the purpose of updating the national VTT estimates, compared to the so far slower update rate of traditional SP-derived
VTTs (approximately every 10-20 years for most countries with some exceptions, e.g. in Sweden and Norway).

GPS-derived VTTs could also be used by policy-makers to complement the official SP-derived VTTs, since the more frequent
GPS studies could help to detect any significant deviations from the previously SP-based estimated VTTs due to income increase or
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Fig. 6. Box plots of GPS-based Bus VTTs per purpose.

other unforeseen circumstances that could occur in the meantime, such as economic recession or the introduction of new disruptive
modes/technologies into the transport market. Technologies like online shopping and its ever-increasing popularity especially in a
post-Covid world, electric vehicles, shared ride modes (Uber, Lyft etc.) and policy initiatives like Mobility as a Service are constantly
changing the transport sector, which has become more volatile than ever before. Transport is rapidly changing and the usual update
rate of nation-wide official VTTs might be too slow nowadays to provide insights into the current trade-offs or even capture the
sensitivities on new technologies in hypothetical scenarios and in a behaviourally realistic manner. As a result, new transport projects
might not be properly evaluated if the appraisal is based on individual trade-offs that no longer represent the current behaviour of
the target population.

8. Conclusions

The current paper presents a study of deriving VTT estimates in a manner comparable to the official values currently used in
appraisal. Though the level of detail included in the initial GPS trip diaries provided challenges during the data cleaning phase,
there were significant advantages in terms of accuracy. For example, the time-stamped geo-locations provided the ability to better
capture individual mobility behaviour by making it possible to get precise travel times for the chosen modes and to extract travel
times between specific latitude/longitude pairs (opposed to between TAZ centroids as done in traditional RP survey data). It also
enabled the estimation of more behaviourally rich models by offering a more comprehensive representation of tours, where even
very short stops and/or trips have been included.

Despite those advantages, it is worth noting that limitations do exist in the utilised dataset, as well. Information on trip attributes
were obtained several years after the initial data collection period from an API that does not provide historical network information,
hence the actual traffic conditions for each trip cannot be retrieved. Furthermore, additional information on weather conditions and
other intrinsic information that would influence both the formation of the consideration set and the choice itself are not accounted
for in the present study. Future studies using GPS data for VIT estimation should aim to incorporate a probabilistic choice set
formation framework to account for the inherent latent choice sets in RP datasets. An immediate extension of the current study is
to analyse the impact of such a framework on the estimated VTTs and assess their discrepancies from the official SP-based VTTs.
Further trip-specific attributes can be incorporated in the analysis to enrich the estimation dataset regarding historical weather
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conditions, hilliness/slope and the type of land uses both around home locations and also along the route to the destination of each
choice task.

The findings in the current study can provide practitioners and policy makers with additional confidence when it comes to using
new emerging data sources for future nationwide VTT studies. The small differences across the overall VIT estimates, regardless of
distance bands, showcase that RP data captured through new emerging data collection methods — GPS in this case — can provide
behaviourally reasonable VTT estimates that are in line with the official SP-based values currently used in appraisal. Of course, a
reader may ask why RP data should be used if the results are no different from SP data. The simple answer to this question is that
RP data provides the truth, and the fact that the findings in this case are in line with the SP results thus arguably also serves as a
validation of SP rather than RP and a result of the rigorous work of the researchers involved in the official study. Furthermore, our
results are achieved using a much smaller sample size during estimation, compared to the SP study, which can lead to a reduced
cost or more frequently performed surveys in general. Performing a large scale GPS-based RP study at the country level will result
in a significantly more accurate representation of individual mobility behaviour, capturing choices over a large number of real-life
scenarios, independent of the researcher’s assumptions, while also resulting in less fatigue for the respondents.

This study comes at a time where ubiquitous sensing data sources are steadily gaining ground in transport research and provides
empirical evidence for their further adoption into the field of practice. Nonetheless, more studies are required offering similar
practical applications, even in small sample sizes, before we can see a departure from the current state of practice that has been
dominant over the last several decades.
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