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We investigate time-varying turbulence statistical properties of edge-localized modes in fusion
plasmas. By utilizing a simplified stochastic model, we calculate a time-dependent probability
density function (PDF) and various entropy-related quantities such as entropy, entropy production,
entropy flux, mutual information, and information flow and path-dependent information geometry.
A thorough analysis is performed to elucidate the effects on ELM dynamics (evolution, suppression,
mitigation, etc.) of different values of stochastic noise and different forms of a time-varying input
power. Furthermore, the time-irreversibility and hysteresis are investigated through the employment
of forward and back processes where a time-varying input power varies mirror-symmetrically in
time. Among all the statistical quantities, the path-dependent information geometry is shown to be
a robust diagnostic for quantifying hysteresis and self-regulation as well as for an early detection of
subtle changes in ELM dynamics, e.g., caused by a sudden change in the input power.

I. INTRODUCTION

Plasmas in fusion devices are volatile and constitute
one of the prototypical examples of non-equilibrium sys-
tems [1] involving large fluctuations. Excited on a broad
range of scales (e.g., micro instability for electron/ion
transport), various instabilities cause anomalous trans-
port/loss of energy/particles that are larger than what is
expected from collisional values, significantly degrading
the confinement. In a typical low-confinement mode (L-
mode), confinement degrades as the plasmas become hot-
ter with increasing input power. The tendency to more
complex dynamics as the free energy is increased is in fact
common to many systems such as in Rayleigh-Bénard
convection, where an increase in temperature contrast
across the system leads to turbulent convection. Under-
standing anomalous transport is critical for achieving the
well-controlled extraction of fusion energy in magnetic
fusion, with significant practical implications (ITER, fu-
ture power plants).

At the same time, the volatile characteristics of fusion
plasmas provides us with a valuable theoretical frame-
work in which one can investigate non-equilibrium pro-
cesses and test statistical methods to disentangle com-
plex dynamics (e.g., interaction, correlation, causality
among different players involved in transport) [2, 3].
To address this, various statistical methods [3–7] in-
cluding bi-coherence spectral analysis, phase-space por-
trait, Reynolds stress analysis, wavelet analysis, cross-
phase analysis etc. have been valuable. However, the
exploration of non-perturbative statistical methods us-
ing Probability Density Functions (PDFs) taking into ac-
count strong fluctuations [8–16] will help us characterize
rare, large-amplitude events in PDF tails [17–22], whose
early prediction can be vital for ensuring enough time for
applying controls. Furthermore, a PDF method will en-

able us to employ and test different statistical diagnostics
based on information theory (e.g. transfer entropy, etc.)
or information geometry. The latter refers to the applica-
tion of differential geometry to probability and statistics
[23–25].

This paper aims to touch on these practical and the-
oretical issues through stochastic modelling of Edge-
Localized Modes (ELMs) [6, 26–31] that occur in the
high-confinement mode (H-mode) plasmas. The H-mode
is the enhanced confinement regime [32] that is attained
when plasmas bifurcate from the L-mode at the critical
input power Pcr. The latter, the so-called L-H transition,
is caused by the spontaneous formation of the E×B flow
velocity shear layer in the edge plasma accompanied by
the reduction in the turbulence and transport and the
steepening of pressure profile [7, 33–46].

ELMs manifest as sudden, quasi-periodic oscilla-
tions/bursts caused by instabilities of pressure/current
gradient in the transport barrier for a sufficiently high
input power in the H-mode. In particular, rare, bursty,
large amplitude (Type I) ELMs impose a large heat load,
or even damage to the fusion container walls. There-
fore, great attention has been paid to ELM mitigation
or suppression using resonant magnetic perturbations
or a pellet injection, e.g., in DIII-D, JET, ASDEX-U,
EAST tokamaks [30, 31, 47]. Notably, the potential for
stochastic magnetic field to reduce the pressure gradi-
ent by electron transport was suggested more than a few
decades ago [48]. There have been more recent works
(e.g., [49, 50] and references therein) demonstrating the
importance of magnetic perturbations in transport at ki-
netic level, for instance, those arising internally (due to a
disruption) or externally (due to external coils) acting in
such a way as to inhibit runaway electrons (avalanches).
Thus, a proper stochastic modelling of ELMs will be ben-
eficial instead of utilizing averages or moments.
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In this paper, we investigate non-perturbative statis-
tical diagnostics in a stochastic model of ELMs. These
include: i) the entropy-related quantities such as entropy,
entropy production, entropy flux, mutual information,
and information flow; ii) information geometry. In par-
ticular, statistical properties are not necessarily station-
ary in fusion plasmas and can undergo significant tem-
poral changes, especially near the onset of bursts, abrupt
events, etc. Thus, we focus on a time-dependent PDF
method [25, 45, 46, 52–60] to capture time-varying sta-
tistical properties and path-dependent information geom-
etry.

Specifically, for a stochastic variable x with a PDF
p(x, t), our path-dependent information geometry cap-
tures the evolution from p(x, t0) to p(x, tF ) along a par-
ticular path between the times t = (t0, tF ) among an
infinite number of trajectories between the two. This
has the advantage over using other metrics such as the
Kullback-Leibler (K-L) divergence (see Appendix A) that
compares two given PDFs p(x, t0) and p(x, tF ), which
does not tell us anything about the evolution.

Furthermore, far from equilibrium, the time-evolution
of a system does not obey time-symmetry (time-
irreversibility) even when a model parameter is symmet-
ric in time. In order to quantify this time-dependence,
we are interested in how a PDF changes with time in the
forward and back processes for a time-varying parameter
which is mirror-symmetric in time. For our stochastic
ELM model, the model parameter would be an input
power, as discussed in §II.

In order to perform a thorough investigation of evolu-
tion paths of ELMs under different condition, we take ad-
vantage of a simple computational model. Given the sim-
plicity of our model, our study will be quantitative with
the focus on identifying overall tendencies and generic
properties. We aim to answer the following questions:

• What are the effects of stochastic noise on ELM
dynamics?

• What are the effects of a non-constant model pa-
rameter (input power)?

• How do we characterize irreversibility and hystere-
sis and how are they affected by stochasticity and
the temporal form of an input power?

• What is a robust diagnostic capturing a sudden
change in model parameters?

• What is a robust diagnostic that detects subtle
changes to the system, the onset of bursts due to
a sudden internal event (i.e., disruption, explosive
event, burst, instability) or external perturbation,
which is important for predicting ELMs?

• How do we characterize self-regulation among dif-
ferent variables that have different physical units?

The remainder of this paper is organized as follows. We
provide a stochastic ELM model in Section II. Sections

III and IV present the summary of our main entropy-
related statistical diagnostics, including thermodynamic
and path-dependent information geometry diagnostics.
Sections V and VI contain our numerical methods and
results. We conclude in Section VII. Appendices A-D
contain some background material including some of the
details of the deterministic model of ELMs and the re-
sults that are not included in the main text of the paper.

II. STOCHASTIC ELM MODEL.

To elucidate the effects of stochastic noises on ELMs,
we utilize a minimal deterministic ODE model of ELM
dynamics proposed and analyzed in [26], which provided
detailed theoretical explanations of the model’s connec-
tion to plasma physics and nuclear fusion. This model
involves the evolution of the pressure gradient, magnetic
fluctuation amplitude together with the ion radial-force
balance relation that the electric fields contain the contri-
butions from the pressure gradient as well as the poloidal
velocity [26].

For the input power Pin far above the critical power-
threshold Pcr [61], diamagnetic velocity dominates over
the poloidal velocity so that the electric field is mainly
driven by the pressure gradient. This is the limit we
will focus on for our comprehensive computational study.
Due to the absence of the contribution from the poloidal
flow to E × B shear flows, the L-mode bifurcates into
the ELMy H-mode without an ELMy free H-mode gap.
The resulting ODE model for the dimensionless pres-
sure gradient p and magnetic fluctuations EM is given
in Eqs. (C1)-(C3) in Appendix C where some fixed point
solutions are described to make this paper more self-
contained for readers.

A. Langevin model

We extend the deterministic ODE model (C1)-(C3) by
adding the two independent, short-correlated Gaussian
stochastic noises ξ and η to incorporate uncertainty in
the ODE model. Here, ξ and η are assumed to be of
the strength Qx and Qy, respectively, with the following
statistical properties

〈ξ(t)ξ(t′)〉 = 2Qxδ(t − t′), 〈η(t)η(t′)〉 = 2Qyδ(t − t′),

〈ξ(t)η(t′)〉 = 0, 〈ξ〉 = 〈η〉 = 0, (1)

where δ(t − t′) means that the memory time of ξ and η
is shorter than any other characteristic time scales (e.g.,
ELM period) in the system. Specifically, we use the vari-
ables x = p and y =

√
EM for convenience to represent

the dimensionless pressure gradient p and the magnetic
fluctuations EM . Our stochastic ODE model then takes
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the following form:

dx

dt
= Φ − D̃(x)x − xy2 + ξ = f + ξ, (2)

dy

dt
=

1

2
λ(x − 1)y + η = g + η, (3)

D̃ = d0 + d(x − c2x4)Θ(P̃ − x). (4)

Here, Θ(x) is the Heaviside function with Θ(x) = 1 for

x ≥ 0 and Θ(x) = 0 for x < 0; P̃ is the critical pressure
gradient x for the complete suppression of turbulence due
to the shear; c ≡ P̃−3/2. Φ is the control parameter that
represents the energy flux (input power) by assuming a
constant temperature. λ and d0 ≪ d are non-negative
constants.

We note that the Heaviside function Θ is discontinu-
ous, but the additional factor (x − c2x4) ensures that D̃
in Eq. (4) is nevertheless continuous (but not differen-
tiable). Since the Fokker-Planck Eq. (5) below involves
d
dxD̃, one might wonder whether this lack of differen-
tiability affects the solutions or not. Various numerical
experiments were done smoothing out the discontinuity
in Θ over a small but finite region, and indicate that us-
ing a true Heaviside function or a slightly smoothed one
yield the same results.

Physically, ξ, η in Eqs. (2)-(3) represent the contribu-
tions from the internal (incoherent unresolved-scale dy-
namics) and any external perturbations that are not in-
cluded in the ODE model. These include fluctuating en-
ergy flux of unresolved scales, the outward energy flux at
the edge (e.g. [8, 62]), pellet pacing [30], mini-avalanches
[46], stochastic magnetic fields induced by internal dis-
ruption, kinetic instabilities (due to the runaway elec-
trons) [51], or external magnetic coils, etc. The accu-
rate quantification of the values of Qx and Qy is infea-
sible since they would depend on many factors (differ-
ent turbulence models, experimental conditions, plasma
configurations, etc.). Thus, our aim is to elucidate the
generic effects of stochastic noise and time-dependent in-
put power Φ on ELM dynamics, as noted previously. To
this end, we investigate how different values/forms of Qx

and Qy and Φ(t) affect statistical properties and dynam-
ics of ELMs.

Finally, we note that Eqs. (2)-(4) are non-
dimensionalised such that time t is in the units of
[(cs/ρs)kρs(∆

4
c/ρ2

sL
2
p)]

−1, where cs =
√

Te/mi is the ion
sound speed, ρs = cs/ωci, ωci is the ion cyclotron fre-
quency, and k and ∆c are the poloidal wave number and
radial correlation length of the turbulence (see [26, 63]
for details).

B. Joint PDF p(x, y, t)

In the stochastic model with non-zero ξ and η, the tra-
jectories of x are random and its probability taking cer-
tain value is described by a PDF. A joint PDF p(x, y, t)
represents the likelihood of x and y taking different values

around what are expected from the deterministic model.
Since x and y can take any real number, their values
can be considered as the spatial coordinates. The time-
evolution of p(x, y, t) is then governed by the following
Fokker-Planck equation [64], which is effectively a par-
tial differential equation in the two (spatial) + one (time)
coordinates since x, y ∈ R;

∂p

∂t
= − ∂

∂x
(f p) − ∂

∂y
(g p) + Qx

∂2p

∂x2
+ Qy

∂2p

∂y2

≡ −∂xJx − ∂yJy. (5)

In Eq. (5)

f ≡ Φ − D̃(x)x − xy2, g ≡ λ

2
(x − 1)y, (6)

Jx = fp − Qx∂xp, Jy = gp − Qy∂yp, (7)

where Jx and Jy are the probability currents of x and y.
Eq. (5) represents the local conservation of probability
density. That is, the local temporal change of a PDF at
particular x and y is caused by the probability current
flowing in or out of that region. The probability current
consists of the two parts due to the deterministic force
(f or g) and diffusion due to the stochastic noise. Con-
sequently, for larger stochastic noise (Qx, Qy), a PDF
spreads more and becomes more widely distributed (in
x, y).

We note that an alternative method to the Fokker-
Planck method is to perform multiple, stochastic simu-
lations of Eqs. (2)-(4) [65]. This would however require
dealing with various issues in processing noisy data to cal-
culate time-dependent PDFs and information diagnostics
accurately, which is circumvented in the Fokker-Planck
method.

C. Marginal PDFs

Integrating Eq. (5) over y gives us the Fokker-Planck
equation for the marginal PDF p(x, t) =

∫

dy p(x, y, t):

∂p(x, t)

∂t
= − ∂

∂x

∫

dy (f p) + Qx
∂2p

∂x2

≡ −∂xJ̃x. (8)

Here, we used the boundary condition Jy(x, y →
±∞, t) = 0 (p(x, y → ±∞, t) = 0) and defined the ef-

fective probability current J̃x as

J̃x =

∫

dy Jx =

∫

dy [f(x, y)p(x, y, t) − Qx∂xp(x, t)].

(9)
By using p(x, y, t) = p(y|x, t)p(x, t) where p(y|x, t) is a
conditional PDF of y for given x at time t, we have

J̃x =

∫

dy [f(x, y)p(y|x, t)p(x, t) − Qx∂xp(x, t)]

≡ f̃p(x, t) − Qx∂xp(x, t), (10)
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where f̃ ≡
∫

dy f(x, y)p(y|x, t). We note that f̃ cannot
be calculated without knowing p(y|x) or p(x, y, t).

Similarly, the x integral of Eq. (5) and Jy(x, y →
±∞, t) = 0 (p(x → ±∞, y, t) = 0) yields (p(y, t) =
∫

dx p(x, y, t))

∂p(y, t)

∂t
= − ∂

∂y
(g p) + Qy

∂2p

∂y2

≡ −∂yJ̃y. (11)

Here,

J̃y =

∫

dx Jy =

∫

dx [g(x, y)p(x, y, t) − Qy∂yp(y, t)]

=

∫

dx [g(x, y)p(x|y, t)p(y, t) − Qy∂yp(y, t)]

≡ g̃p(y, t) − Qy∂yp(y, t), (12)

where g̃ ≡
∫

dx g(x, y)p(x|y, t). We note that f̃ and g̃
in Eqs. (10) and (12) are formally introduced to help the
discussions in the following section III.

III. ENTROPY-RELATED STATISTICAL

DIAGNOSTICS

Entropy measures disorder or the lack of information
[25, 66–70]. While in equilibrium it is well-defined with a
clear thermodynamic meaning of the heat flow measured
in units of the absolute temperature, its meaning is less
clear in non-equilibrium. Nevertheless, entropy and its
related concepts like entropy production, entropy flow,
mutual information, and information flow are among the
most popular and often invoked for characterizing plasma
states and dynamics in non-equilibrium processes. These
quantities are defined in §IIIA-III B and used for our
analysis in §V.

Note that in practical settings, there have been various
attempts to estimate entropy directly from time-series
[73, 74] when a PDF is not available. For instance, [75]
utilized permutation entropy to analyze non-stationary
fusion plasma data for characterizing plasma states and
the detection of changes in plasmas.

A. Entropy, entropy production, entropy flow

For PDFs, we calculate differential entropies Sx, Sy,
and S from the marginal PDFs p(x, t), p(y, t), and the
joint PDF p(x, y, t), respectively, as follows:

Sx = −
∫

dx p(x, t) ln (p(x, t)), (13)

Sy = −
∫

dy p(y, t) ln (p(y, t)), (14)

S = −
∫

dxdy p(x, y, t) ln (p(x, y, t)). (15)

It is useful to note that the values of S, Sx and Sy

change under the coordinate transformation (e.g. under
EM = y2 → y), while being independent of a linear trans-
lation (e.g. y → y + const). This means that entropy
cannot be used to detect large events associated with the
sudden change in the mean value or advection (such as
the emergence of large vortices). Furthermore, they take
both negative and positive values, and only their relative
value is meaningful.

The time-derivatives of Eqs. (13)-(15) relate entropy

to the total entropy production rate ṠT and flow rate
Ṡm. Specifically, we use Eq. (8) [ṗ = −∂xJx − ∂yJy,
Jx = fp − Qx∂xp and Jy = gp − Qy∂yp] and integration

by parts to express d
dtS(x, y, t) = Ṡ as

Ṡ = −
∫

dxdyṗ ln p =

∫

dxdy[∂xJx ln p + ∂yJy ln p]

= −
∫

dxdy[Jx∂x ln p + Jy∂y ln p]

= ṠT − Ṡm, (16)

where

ṠT =

∫

dxdy

(

1

Qxp
J2

x +
1

Qyp
J2

y

)

,

Ṡm =

∫

dxdy

(

1

Qx
Jxf +

1

Qy
Jyg

)

. (17)

Note that ṠT ≥ 0 represents the rate of entropy pro-
duction due to internal processes. It is non-negative by
definition and serves as a proxy of irreversibility. Sm

is entropy flux to the environments (heat bath with the

temperature Qx and Qy). ṠT and Ṡm consist of the con-
tributions from Jx, f and Jy, g, respectively:

ṠT =
dST

dt
≡ ṠTx + ṠTy, (18)

Ṡm =
dSm

dt
≡ Ṡmx + Ṡmy, (19)

where

ṠTx =

∫

dxdy
1

Qxp
J2

x , ṠTy =

∫

dxdy
1

Qyp
J2

y , (20)

Ṡmx =

∫

dxdy
1

Qx
Jxf, Ṡmy =

∫

dxdy
1

Qy
Jyg. (21)

ṠTx and ṠTy represent the entropy production rates in

x and y, respectively, while Ṡmx and Ṡmy represent the
entropy flow rates from x and y to its heat bath, respec-
tively. For instance, Ṡmx is positive when the entropy
flows from the system x to its environment (at temper-
ature Qx) while negative when the entropy flows from

the environment to the system, and similarly for Ṡmy.
In non-equilibrium stationary states where PDFs do not
change in time, Ṡ = 0 and ṠT = Ṡm. ST was often used
as a proxy for irreversibility (see [67, 68]).

While Eq. (16) gives ṠT = Ṡm + Ṡ, a similar rela-
tion does not hold in general for the individual x or
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y components due to the interaction between x and y.
To see this, we calculate Ṡx from the marginal PDF
p(x, t) =

∫

dy p(x, y, t) by using Eqs. (8)-(10)

Ṡx = −
∫

dx∂tp(x, t) ln p(x, t) =

∫

dx ∂xJ̃x ln p(x, t)

= −
∫

dx J̃x∂x ln p(x, t), (22)

where we recall J̃x =
∫

dyJx. Similarly, from the
marginal PDF p(y, t) =

∫

dx p(x, y, t), we obtain

Ṡy = −
∫

dy∂tp(y, t) ln p(y, t) =

∫

dy ∂yJ̃y ln p(y, t)

= −
∫

dy J̃y∂y ln p(y, t). (23)

Now, using Eq. (9) in Eq. (22) leads to

Ṡx =

∫

dx

[

J̃2
x

Qxp(x, t)
− J̃xf̃

Qx

]

, (24)

and similarly for Ṡy.

Obviously, the right-hand side of Eq. (24) cannot be

written as ṠTx−Ṡmx (see Eqs. (20)-(21)) since Jx 6= J̃x in
general. It is only when f is independent of y as f = f(x)

that Jx = J̃x and thus Ṡx = ṠTx − Ṡmx. Similarly,
it is only when g is independent of y as g = g(y) that

Ṡy = ṠTy − Ṡmy holds. The importance of the coupling
between x and y through f(x, y) or g(x, y) is quantified
through mutual information in §III B.

B. Mutual information, information flow

For two independent variables x and y, p(x, y, t) =
p(x, t)p(y, t), leading to the equality S = Sx + Sy in
Eqs. (13)-(15). In general, Sx + Sy − S ≡ I ≥ 0, where I
is the mutual information [69, 70] defined by

I =

∫

dxdy p(x, y, t) ln
p(x, y, t)

p(x, t)p(y, t)
. (25)

Taking the time derivative of Eq. (25) gives us

dI

dt
=

∫

dxdy ∂tp(x, y, t) ln
p(x, y, t)

p(x, t)p(y, t)
, (26)

since the time-derivative of the term including the loga-
rithm vanishes due to the total probability conservation
∫

dxdy p(x, y, t) = 1. Then, Eq. (26) can be recast as
follows by using ∂tp(x, y, t) = −∂xJx − ∂yJy:

dI

dt
= Ty→x + Tx→y. (27)

Here, Ty→x and Tx→y are information flows from y to x
and from x to y, respectively, defined by

Ty→x =

∫

dxdy ln

[

p(x, t)p(y, t)

p(x, y, t)

]

∂xJx(x, y, t)

= −
∫

dxdy Jx(x, y, t)∂x ln

[

p(x, t)

p(x, y, t)

]

(= ∂τI(x(t + τ), y(t))|τ→0), (28)

Tx→y = −
∫

dxdy Jy(x, y, t)∂y ln

[

p(y, t)

p(x, y, t)

]

(= ∂τI(x(t), y(t + τ))|τ→0). (29)

To relate Eq. (28) to ṠTx, Ṡmx, Ṡx, we rewrite it as

Ty→x = −
∫

dxdy Jx(x, y, t)∂x ln

[

p(x, t)

p(x, y, t)

]

= −
∫

dxdy Jx(x, y, t)

[

∂xp(x, t)

p(x, t)
− ∂xp(x, y, t)

p(x, y, t)

]

.

(30)

Then, using

∂xp(x, y, t) =
1

Qx
[fp(x, y, t) − Jx], (31)

and Eqs. (22), (20), and (21), we recast Eq. (30) as

Ty→x = Ṡx +

∫

dxdy
Jx

Qx
[fp − Jx]

= Ṡx + Ṡmx − ṠTx, (32)

where Ṡx is given in Eq. (22). Thus, Eq. (32) gives us the

expression showing how ṠTx is affected by the interaction
between x and y through Ty→x:

ṠTx = Ṡx + Ṡmx − Ty→x. (33)

A similar analysis gives

ṠTy = Ṡy + Ṡmy − Tx→y, (34)

where Ṡy is given in Eq. (23). From Eqs. (18)-(19), we
have

ṠT = ṠTx + ṠTy

= (Ṡx + Ṡy) + (Ṡmx + Ṡmy) − [Ty→x + Tx→y]

= (Ṡx + Ṡy) + (Ṡmx + Ṡmy) − d

dt
I(x, y)

(= Ṡ + Ṡm), (35)

where we used Eqs. (25) and (27) and Eqs. (18)-(21).

In the following, we numerically calculate ṠTx, Ṡmx,
ṠTy, Ṡmy, S, Sx, Sy, and I under different conditions
and present some of the results in §V. In particular,
special attention is paid to the effect of a sudden change
in a model parameter Φ on the entropy production rate
and the comparison of their values in forward and back
processes.
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IV. PATH-DEPENDENT INFORMATION

GEOMETRIC DIAGNOSTICS

Our path-dependent information geometry quantifies
the temporal change in a PDF by a dimensionless dis-
tance along the evolution path. To clarify its meaning,
one-variable systems are first considered in §IV A, fol-
lowed by the multi-variable case in §IV B below.

A. One-variable system

For a stochastic variable x which has a time-dependent
PDF p(x, t), the statistical state (x) takes a continuous
value, making it difficult to count the number of different
states among two PDFs. A convenient way of doing this
is to calculate the information rate Γ, and then its time-
integral to obtain the information length L(t) as follows
[45, 52–60]

Γ2(t) =

∫

dx
1

p(x, t)

[

∂p(x, t)

∂t

]2

,

L(t) =

∫ t

0

dt1Γ(t1). (36)

We recall that Γ can also be calculated from the in-
finitesimal symmetric relative entropy between p(x, t)
and p(x, t + δt) in the limit δt → 0, and that the unit
of Γ−1 in Eq. (36) is time, representing a dynamical time
unit for information change. Alternatively, Γ represents
the rate of change in information; the faster the temporal
change in a PDF, the larger the information rate Γ is.
L(t) can be interpreted as the total clock time mea-

sured in units of Γ−1, or the total number of statistically
different states that x passes through between time 0 and
t. By definition, L(t) = 0 at t = 0. In simple terms, L(t)
quantifies the cumulative change in p(x, t) taking into ac-
count the uncertainty in measuring the mean value due
to a finite width of p(x, t). Furthermore, Γ and L are
invariant under (time-independent) change of variables,
which can thus be directly compared with each other un-
like physical variables having different units.

For a Gaussian PDF, Γ2 can be rewritten in terms of
a metric tensor (see Appendix B). The simplest inter-
pretation of Γ and L can be made in the special case
of a Gaussian PDF whose width does not change with
time, keeping a constant standard deviation σ. In this
limit, Γ(t) basically gives us the rate of change of a mean

value µ(t) measured in units of σ as Γ(t) =
∣

∣

∣

1
σ

dµ
dt

∣

∣

∣
. Thus,

L(tF ) = µ(tF )−µ(t=0)
σ for µ(t) > 0 for t = (0, tF ), quan-

tifying the total change in the mean value as a dimen-
sionless number. The key point is thus that the evolu-
tion path involving a widely distributed PDF will involve
smaller information length as a large uncertainty in the
broad distribution obscures the information change.

This concept has been applied to different types of
problems. In particular, in the relaxation problem where

p(x, t) settles into an equilibrium PDF, say, p(x, t → ∞).
In that case, we can quantify the total change in infor-
mation by L(t → ∞) = L∞. Since the latter will take
different values when the initial condition or parameters
change, we can investigate, for instance, how L∞ depends
on the different initial conditions for the same parame-
ter values in the long time limit to quantify attractor
structures (e.g. stable or chaotic attractors) of dynami-
cal system [25, 58].

Finally, for a Gaussian process p(x, t), Γ2 was shown

to be related to ṠT and Ṡ as follows [25]:

Γ2 =
D

σ2
ṠT + Ṡ2. (37)

Eq. (37) becomes simplified for constant σ as Γ2 =
1

σ2 (∂t〈x〉)2 = D
σ2 ṠT , with a direct proportionality be-

tween the entropy production ṠT and the information
geometric diagnostics Γ2.

B. Multi-variable system

For a system with m variables xi (i = 1, 2, ..,m), we
can extend Eq. (36) to [25, 46]

Lxi
(t) =

∫ t

0

dt1Γi(t1), (38)

Γ2
xi

(t) =

∫

dxi
1

p(xi, t)

[

∂p(xi, t)

∂t

]2

, (39)

where p(xi, t) =
∫

Πj 6=i(dxj) p(x1, x2, ..., xm) is a
marginal PDF of xi. Note that Γxi

and Lxi
depend on

the path of xi, and the correlation or causality among
different variables can be inferred by comparing Γxi

for
different xi, as shown in [45, 46].

Specifically, for m = 2 with the joint PDF p(x, y, t),
we obtain

L(t) =

∫ t

0

dt1Γ(t1), (40)

Γ2(t) =

∫

dxdy
1

p(x, y, t)

[

∂p(x, y, t)

∂t

]2

. (41)

From the marginal PDFs p(x, t) and p(y, t) (Eq. (38) for
xi = x, y), we have

Lx(t) =

∫ t

0

dt1Γx(t1), (42)

Ly(t) =

∫ t

0

dt1Γy(t1), (43)

Γ2
x(t) =

∫

dx
1

p(x, t)

[

∂p(x, t)

∂t

]2

, (44)

Γ2
y(t) =

∫

dy
1

p(y, t)

[

∂p(y, t)

∂t

]2

. (45)

For two independent variables x and y, Γ2 = Γ2
x + Γ2

y.
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For more than a one-variable system, comparing the
time-evolution of Γ or L can give us a measure of correla-
tion. For instance, the strong correlation between the two
switching species was captured by their same evolution
of L(t) [56]. Furthermore, self-regulatory dithering in the
L-H transition was manifested by the similar evolution of
L’s of zonal flows and turbulence [45, 46]; Γ’s calculated
from marginal PDFs of zonal flows and turbulence com-
pete with each other. Also, the path-dependence of L(t)
is desirable for measuring hysteresis involved in phase
transitions [46, 53] such as the L-H transition.

V. NUMERICAL METHODS AND SETUP

As noted previously, in this paper we solve the Fokker-
Planck equation as given in Eqs. (5)-(7). We use second-
order finite differences to discretize x and y [45, 46],
using grid spacings as small as 10−3 in both x and y.
For the time-stepping, we use second-order Runge-Kutta
with time steps as small as 2 × 10−5.

Given our definition EM = y2, y can be interpreted
as magnetic field fluctuation. Since both y > 0 and
y < 0 will have a similar effect on ELM dynam-
ics with the same EM value, we look for the solution
p(x, y, t) = p(x,−y, t). This leads to the symmetry con-

dition ∂p
∂y = 0 at y = 0. Thus, the Fokker-Planck

equation is solved in a half-plane y ≥ 0. Our compu-
tational domain is a 2D-box in x = [xmin, xmax] and
y = [0, ymax]. We choose/adjust the values of xmin,
xmax, and ymax to ensure that the solution becomes
sufficiently small at the boundaries of the 2D-box (e.g.,
p(xmax, y, t) = p(xmin, y, t) = p(x, ymax, t) = 0) so that
our computational solution from a finite-size box is a
good approximation of the solution obtained from the
true infinite domain. Specifically, we check that the to-
tal probability maintains

∫∫

p(x, y, t) dxdy = 1 to within
10−4.

As an initial condition, all the processes use a narrow
Gaussian PDF with the mean values 〈x(0)〉 = 1.2 and
〈y(0)〉 = 0.2 and standard deviations σx(0) = σy(0) =
0.04. We fix the parameters d0 = 10−3, d = 0.1,
P̃ = 1.05, and λ = 5 and consider Φ/d in the range
[0.4, 1.2] in order to capture the most interesting dynam-
ics (see Appendix C). Note that in the deterministic
model with ξ = η = 0, as Φ/d increases from 0.4 to
1.2, ELMs gradually change from giant ELMs to grassy
ones with the shortening of oscillation period. For noise
levels, we explored the range Qx, Qy = 10−5 − 10−3

and here present results for only Qy = 10−5 and Qx =
10−5, 3 × 10−5, 10−4, 3 × 10−4.

We have considered the different time-dependences of
Φ/d summarized in Table 1. CT1, CT2, CT3 are
the three cases where Φ/d is kept constant at Φ/d =
0.4, 0.8, 1.2, respectively, for time t = [0, 100]. In the
case of a time-dependent Φ/d, its value is varied between
[0.4, 1.2] for time t = [0, 50] or [0, 100]. RU/RD refers
to ramp-up/down where Φ increases/decreases linearly in

TABLE I. Summary of different cases

Cases Φ(t)/d time-dependence and time interval

CT1-3 Constant at 0.4, 0.8, 1.2 for t = [0, 100]

Forward Increase over time as 0.4 → 1.2

RU1 0.4 + 0.8t/100 for t = [0, 100]

RU2 0.4 + 0.8t/50 for t = [0, 50]

JU1 0.4 for t = [0, 50], then 1.2 for t = [50, 100]

JU2 0.4, 0.6, 0.8, 1.0, 1.2 for ten time units for t = [0, 50]

Back Decrease over time as 1.2 → 0.4

RD1 1.2 − 0.8t/100 for t = [0, 100]

RD2 1.2 − 0.8t/50 for t = [0, 50]

JD1 1.2 for t = [0, 50], then 0.4 for t = [50, 100]

JD2 1.2, 1.0, 0.8, 0.6, 0.4 for ten time units for t = [0, 50]

time, as indicated in Table 1; RU1 and RU2 (RD1 and
RD2) differ in the rate of the increase (decrease) of Φ/d
in time. In comparison, JU/JD refers to jump-up/down
where the change in Φ occurs in steps; JU1 and JU2
(JD1 and JD2) involves one and five step changes, re-
spectively, in going from Φ/d = 0.4 (1.2) to Φ/d = 1.2
(0.4). We note that JU/JD cases are intended to mimic
a step-wise increase in neutral beam power in experi-
ments.

For our conventions, the four cases where Φ increases
with time are referred to as forward processes (say, de-
noted by a PDF pF ) while the four cases where Φ de-
creases with time are back processes (denoted by a PDF
pB). Φ(t) is mirror-symmetric in time such that Φ(t) for
the forward process is the same as Φ(tm) for the back
process where tm is the mirror image time.

VI. RESULTS

In the following subsections §VI A-VID and Appendix
D, we selectively discuss results for different diagnos-
tics. Specifically, the results CT1-3 with constant Φ
are shown in Figures 14-16 in Appendix D while some
of the highlights from time-dependent Φ are presented in
§VI A-VID and Appendix D.

It is important to note that unlike a deterministic
model, stochastic noise causes random trajectories and
consequently phase-mixing with the loss of phase infor-
mation over time. This leads to the decrease in ELM
oscillation amplitude over time – the so-called amplitude
death in nonlinear dynamical systems (see Figures 14-
16). One consequence is that for constant Φ, p(x, y, t)
starting with a given initial PDF will completely lose the
phase information after a sufficiently long time and settle
into a stationary PDF (whose spatial form is determined
by parameter values). This signifies the complete ELM
suppression. The time it takes to reach a stationary PDF
depends on Qx and Qy. In addition, the frequency of
ELM oscillation is also affected by stochastic noise and
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becomes shorter in the early evolution for Φ/d = 0.4 in
Figure 14, reminiscent of ELM mitigation.

A. JU1 and JD1
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FIG. 1. JU1: Joint PDFs, marginal PDFs at different times.
The top row shows the joint PDFs p(x, y, t) at the times indi-
cated above each panel. Contours are on a logarithmic scale,
starting at 10−2 and doubling with each successive contour
line. The second row shows the corresponding marginal PDFs
p(x, t), and the third row p(y, t).

To highlight the impact of a sudden change in Φ on
time-dependent PDFs, we start with the cases with the
most abrupt change in Φ/d, JU1 and JD1. Figures 1-2
present the snapshots of joint PDF p(x, y, t) and marginal
PDFs p(x, t) and p(y, t) for Qx = 10−5 at each ten time
units t = 30, 40, 50, 60, 70. The latter is chosen to high-
light the evolution of PDFs around t = 50 when the sud-
den step change in Φ occurs. In the contour plots shown
in the first row, the red (blue) color denotes high (low)
probability. The PDF evolution between t = 30 and
t = 50 is rather monotonic in both figures, involving the
gradual spreading of a PDF due to phase-mixing caused
by random trajectories while Φ is kept constant. In con-
trast, much more complicated PDF shapes are seen at
t = 60 caused by a step change in Φ at t = 50. The latter
tentatively drives a system further into non-equilibrium,
causing large fluctuations or intermittency. Such behav-
ior is reflected in time-series in Figures 3-4, as shall be
seen below.

If the system were to equilibrate quickly at any time
to a quasi-stationary state, we would expect pF (t =
30) = pB(t = 70), pF (t = 40) = pB(t = 60), and
pF (t = 50) = pB(t = 50) with no hysteresis, the back
process being a mirror image of the forward process.
However, a quick glance at Figures 1-2 immediately re-
veals that this is not the case. Furthermore, the marginal
PDFs p(x, t) and p(y, t) in Figures 1-2 behave very dif-
ferently. For instance, the forward process in Figure 1
involves much more complicated PDF structures with
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FIG. 2. JD1: As in Figure 1, joint and marginal PDFs at
different times as indicated above the columns.

multiple peaks and widely distributed (signifying large
fluctuations) while PDFs in Figure 2 are narrower with
a single peak. (Note that the x and y ranges in Figure 2
are smaller than in Figure 1.)
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FIG. 3. JU1: Φ = 0.04 for t = [0, 50], then Φ = 0.12 for
t = [50, 100]. Time-traces of 〈x〉, 〈y〉, σx, σy, Sx, Sy, S, I =

Sx+Sy−S, ṠTx, ṠTy, Tx→y, Ty→x, Γx, Γy, Lx, Ly as labelled
above each panel. Qx = 10−5, 3×10−5, 10−4, 3×10−4 color-
coded as black, green, red, blue, respectively.

Corresponding to Figures 1-2, respectively, Figures 3-4
show time-traces of 〈x〉, 〈y〉, σx, σy in the first row, Sx,
Sy, S, I = Sx+Sy−S [Eqs. (13)-(15), (25)] in the second

row, ṠTx, ṠTy, Tx→y, Ty→x [Eqs. (18), (20), (28)-(29)] in
the third row, and Γx, Γy, Lx, Ly [Eqs. (42)-(45)] in the
last row. Different colors are used for different Qx = 10−5

(black), 3×10−5 (green), 10−4 (red), and 3×10−4 (blue).
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FIG. 4. JD1: Φ = 0.04 for t = [0, 50], then Φ = 0.12 for
t = [50, 100]. Labelling and color-coding as in Figure 3.

Overall, the larger Qx is, the larger σx, σy, Sx, and Sy

and the smaller 〈x〉, 〈y〉, and I become. This means: i)
even though Qx acts directly only on x, it effectively in-
creases stochasticity in y through the coupling between
x and y; ii) the phase-mixing by stochastic noise obvi-
ously makes the trajectories more unpredictable, with
large uncertainties in x and y and smaller I (less correla-
tion) while damping the amplitude of oscillations. Fur-

thermore, 〈y〉, σx, σy, Sx, Sy (Ṡmx, Ṡmy - not shown),

ṠTx, ṠTy tend to be all in phase while 〈y〉 and 〈x〉 are
out of phase, the peak of 〈x〉 appearing before that of
〈y〉. This is due to the linear instability of y driven by x.

Now, the step increase in Φ at t = 50 is seen to increase
not only the oscillation amplitude but also the fluctua-
tion level, causing the peaking up of σx, σy, Sx, and Sy

around the time t ∼ 60. Interestingly, in all cases that
we investigated, ṠTx, Ṡmx, ṠTx, and ṠTy are significantly

larger than Tx→y and Ty→x. That is, ṠTx and Ṡmx (ṠTy

and Ṡmy) take quite similar values that are much larger

than Tx→y. For this reason, the results for Ṡmx and Ṡmy

are not included in the figures in this paper.
Tx→y and Ty→x exhibit rapid temporal changes when

I is large. Their signs tend to be opposite. Note that a
negative sign of Tx→y means the information flows from
y to x, which is equivalent to a positive sign of Ty→x. By
definition, Tx→y and Ty→x sensitively depend on entropy
with no dependence on 〈x〉, 〈y〉. Consequently, they do
not detect any changes occuring in mean values [52], for
instance, Note also that Tx→y and Ty→x take zero val-
ues at t = 0 due to the lack of correlation in the initial
condition, and thus does not reveal the instantaneous
statistical property at t = 0.

Now, comparing Figures 1-2, we see that the forward

process (towards instability) is driven further from equi-
librium by perturbation, with larger σx, σy, Sx, Sy, etc.

In particular, ṠTy shoots up to a much larger value
(∼ 15000) in JU1 compared with JD1 (∼ 6000). How-
ever, the opposite tendency is observed for the values of
Tx→y and Ty→x which are larger in JD1 than JU1. This
can be understood in terms of stronger correlation in the
back process than the forward process.

Another useful way of quantifying the hysteresis is to
compare the total numbers of different statistical states
(Lx and Ly) in the forward and back processes. The
last row shows that JU1 involves the total change of
Lx,Ly up to ∼ 50. In comparison, JD1 undergoes the
increases of Lx,Ly over 130. These demonstrate that
the forward and back processes undergo very different
changes (evolution) in PDFs, e.g., the former involving
more widely distributed PDFs.

Finally, unlike Tx→y(t = 0) = Ty→x(t = 0) = 0, Γx(t =
0) 6= 0 and Γy(t = 0) 6= 0 quantify how quickly the PDFs
change at t = 0 due to an initial non-equilibrium state.
Notably, among all different diagnostics, it is Γx, Γy that
detect Φ change earliest, with almost vertical line seen
at t = 50. This is because the information rate is very
sensitive to the temporal change of a PDF caused by
Φ change. It is also notable that despite the different
evolution of x and y in all other diagnostics, including
a PDF, Lx and Ly behave quite similarly. This will be
further elaborated in §VI D.

B. JU2 and JD2

We now consider the second most drastic cases of JU2
and JD2. The snapshots of joint PDFs p(x, y, t) and
marginal PDFs p(x, t) and p(y, t) are shown at time
t = 10, 20, 30, 40, 50 in Figures 5-6 at the times of the step
changes in Φ. Again, the clear differences between for-
ward and back processes are seen as pF (t = 10) 6= pB(t =
40), etc. Nevertheless, the disparity in PDFs between the
forward and back processes is smaller compared with the
cases of JU1 and JD1 in Figures 1-2, suggesting less
hysteresis. As shall be seen later, a similar trend persists
when Φ undergoes less dramatic changes.

Corresponding to Figures 5-6, respectively, Figures 7-8
show time-traces of 〈x〉, 〈y〉, σx, σy in the first row, Sx,
Sy, S, I = Sx+Sy−S [Eqs. (13)-(15), (25)] in the second

row, ṠTx, ṠTy, Tx→y, Ty→x [Eqs. (18), (20), (28)-(29)] in
the third row, and Γx, Γy, Lx, Ly [Eqs. (42)-(45)] in the
last row, following the same format as in Figures 3-4.
Again, different colors are used for different Qx = 10−5

(black), 3×10−5 (green), 10−4 (red), and 3×10−4 (blue).
Compared with Figures 1-2, the overall magnitudes of

diagnostics measuring randomness σx, σy, Sx, Sy, ṠTx,

ṠTy are smaller due to less dramatic change in Φ. For

instance, while ṠTy reaches up to 15,000 for JU1, its
maximum is less than 10,000 for JU2.

Among all the diagnostics, it is again the information
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FIG. 5. JU2: Joint PDFs, marginal PDFs at different times.
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FIG. 6. JD2: Joint PDFs, marginal PDFs at different times.

rate (especially, Γx at t = 10, 20, 30 for JU2) that cap-
tures the sudden step changes in Φ earliest and most
clearly. Lx,Ly increase up to ∼ 55, 95, in Figures 7 and
8, respectively, with about 40 difference. This is much
smaller than what was observed for JU1-JD1. This is
another manifestation of the reduced hysteresis due to
less dramatic change in Φ. Finally, we again observe
rather remarkably similar evolutions of Lx and Ly in both
processes.

C. RU1 and RD1

The next dramatic case is the linear ramp-up/down
case for time t = [0, 50], whose results are presented in
Appendix E. In this subsection, we briefly go over the
least dramatic case of a linear ramp-up/down for time
t = [0, 100] to highlight the main points. Figures 9-10
show the time-series of various diagnostics in the same
format as in Figures 3-4. Overall, we observe similar
trends such as similar evolutions of Lx and Ly, larger val-
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FIG. 7. JU2: Φ = 0.4, 0.6, 0.8, 1.0, 1.2, each for ten time units
for t = [0, 50]
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FIG. 8. JD2: Φ = 1.2, 1.0, 0.8, 0.6, 0.4, each for ten time units
for t = [0, 50]

ues of ṠTx and ṠTy in the forward process than those in
back process. The fluctuation-related diagnostics (stan-
dard deviations and entropy-related diagnostics) are seen
to be all reduced compared with the more dramatic cases
in §VI A-VIB.

D. Information phase-portrait: Γx vs Γy

.
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FIG. 9. RU1: Φ = 0.04 + 0.08t/100, so increasing from 0.04
to 0.12 over t = [0, 100]
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FIG. 10. RD1: Φ = 0.12−0.08t/100, so decreasing from 0.12
to 0.04 over t = [0, 100]

In §VI A-VIC, similar evolution of Lx and Ly was
noted. Given that all other diagnostics show quite dif-
ferent behavior, this is not a trivial result. It highlights
that the coupling (correlation) between x and y can be
well captured by information geometry, that is, by the
number of different statistical states that each variable
passes through despite the differences in the details of
the time-evolutions of the two variables [56].

As noted earlier, the forward process is more out of
equilibrium and expected to be less correlated compared
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FIG. 11. Γx against Γy for Φ/d = 1.2 (CT3), RU1, and
RD1, from left to right.

with back process. To demonstrate this, Figure 11 shows
the information phase-portrait which plots Γy against Γx.
The diagonal line Γx = Γy is overplotted in black solid
line along which the time-scales of the change in p(x, t)
and p(y, t) coincide. The oscillation around Γx = Γy re-
veals regulatory interaction between x and y as a result
of overshooting (due to inertial) and restoring forces (due
to interaction). In particular, when Γx and Γy cross each
other, the time-scales of x and y match with a perfect
balance. In Figure 11, such regulatory behaviour is most
prominent in the case of CT3 for a constant Φ/d = 1.2,
then RD1. Quite large deviation from Γx = Γy is ob-
served for RU1 (forward process) due to intermittency.

E. Information rate vs entropy-related diagnostics

In §IV A, it was noted that for one Gaussian variable,
the information rate can be related to entropy-related di-
agnostics as in Eq. (37). In general for a coupled nonlin-
ear system, it is unknown what relationship might hold.
To gain some insight, it is useful to see how well or badly
Eq. (37) would work. To look into this, we use numer-

ically obtained results Γx, ṠTx, Ṡx from p(x, t) and Γy,

ṠTy, Ṡy from p(y, t) and compare the left and right sides
of the following Eqs. (46) and (47):

Γ2
x

?
=

Qx

σ2
x

ṠTx + Ṡ2
x, (46)

Γ2
y

?
=

Qy

σ2
y

ṠTy + Ṡ2
y . (47)

Figure 12 shows the results for the case of RU2 and
RD2, with Qx = 10−5. The top row shows results for
RU2, the bottom row for RD2. The first panel in each
row shows the x quantities from Eq. (46), and the sec-
ond panel the y quantities from Eq. (47), as labelled also
above each panel. Γ2

x and Γ2
y are in blue, and the right-

hand sides of Eqs. (46) and (47) are in red. In the initial
evolution stage, the red and blue lines overlap reasonably,
suggesting that Eqs. (46) and (47) are good approxima-
tion. The disparity between the left-hand and right-hand
sides of Eqs. (46) and (47) gradually increases over time,
with the overall tendency of the entropy-related quanti-
ties on the right-hand side exceeding the other.
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FIG. 12. RU2-RD2: The top row shows results for RU2,
the bottom row for RD2. The first panel in each row shows
the x quantities from Eq. (46), and the second panel the y
quantities from Eq. (47), as labelled also above each panel.
Γ2

x and Γ2
y are in blue, and the right-hand sides of Eqs. (46)

and (47) are in red.

VII. CONCLUSION

We presented the detailed investigation into how sta-
tistical properties change with time in a stochastic model
of ELMs under different conditions. We employed a time-
dependent PDF method and various entropy-related
quantities (entropy, entropy production, entropy flux,
mutual information, and information flow) and path-
dependent information geometry (information rate, in-
formation length). To quantify hysteresis, we considered
the forward and back processes for an input power which
is mirror-symmetric in time.

Our principal findings are

i) Stochastic noise has non-trivial effects on ELM dy-
namics, altering the amplitude and period of oscil-
lations and thereby leading to different evolutions.

ii) Time-dependent model parameter (input power Φ)
has a non-trivial effect: Compared with back pro-
cess, forward processes involve larger fluctuations
and are further from equilibrium, with widely dis-
tributed PDFs possibly with multiple peaks; alter-
natively, back processes involve stronger correlation
between x and y.

iii) As consequences of ii), standard deviation, entropy,
entropy production tend to be larger in the forward
than back processes while Tx→y and Ty→x (measur-
ing the interaction) tend to be larger in back than
forward processes.

iv) A temporal change in Φ tentatively drives a sys-
tem further into non-equilibrium and causes large
fluctuations and entropy production, leading to in-
termittency and the amplification of oscillation am-
plitude.

v) The impact of iv) disappears after a sufficiently
long time due to the adjustment of the system via

the dissipation, nonlinear interactions, etc. in the
system.

vi) The severity of iv) is determined by how quickly
Φ changes in time, with the most (instantaneous)
dramatic effect expected from JU1/JD1, then
JU2/JD2, RU2/RD2, and RU1/RD1.

vii) Among all different diagnostics, it is information
rate (Γx, Γy) that detects Φ change earliest. This
is a reflection of the fact that the information rate
is very sensitive to the temporal change of a PDF
caused by Φ change.

viii) Information phase-portrait (Γx and Γy) reveals
that a strong coupling between x and y can be
measured by the oscillation of Γx and Γy around
Γx = Γy, suggesting the time competition in statis-
tical space.

ix) The coupling (correlation) between x and y and
their self-regulation can be well captured by infor-
mation geometry, that is, by the number of different
statistical states that each variable passes through
despite the differences in the details of the time-
evolutions of the two variables [56].

Some of the important experimental implications of
our findings are as follows:

First, the different evolution of ELMs depending on
stochastic noises, together with the effect of stochastic
noises on the L-H transition in [45, 46], implies the pos-
sibility that stochasticity might be one of the important
factors (hidden variables) that cause scatters in experi-
mental data. Specifically, the stochastic noise caused by
different sources (e.g., due to fluctuating energy flux of
unresolved scales, intermittency such as the outward en-
ergy flux at the edge or mini-avalanches, stochastic mag-
netic fields induced by internal disruption, kinetic insta-
bilities or external magnetic coils, etc.) will differ among
experiments because of different configurations (e.g., di-
vertor, q-profile, etc.). To understand those scatters, it
would be valuable to perform (time-dependent) statisti-
cal analysis of experimental data.

Second, non-trivial effects of the temporal form of the
input power call for attention on the importance of time
scheduling of an input power, e.g., to minimize irre-
versible heat generation/loss or hysteresis.

Third, high-resolution experimental data would be
valuable for statistical analysis as time-dependent PDFs
and information geometric diagnostics can be calcu-
lated by sampling different (temporal and/or spatial)
selections of data, e.g., by moving-time windows, kernel
density estimation, etc. [55, 57, 59, 60].

It would be of interest to extend the work further to
investigate if similar conclusions can be drawn in other
models, e.g. by including a poloidal flow contribution
to E × B flows, coherent magnetic structure [6], or by
considering different models with non-zero turbulence
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in the H-mode [77]. This will require the investigation
of higher-dimensional models including three or more
stochastic variables, which will need much more expen-
sive computational resources and time. For instance,
the Langevin equation for three stochastic variables
can be simulated by solving the 3+1 partial differential
equation (Fokker-Planck equation). An alternative
method of direct stochastic simulations (e.g. in [65])
will be further developed to investigate these higher-
dimensional models. It will also be interesting to explore
other information theoretical tools such as transfer
entropy (e.g. see [3] and references therein) or else apply
our methods to analyze experimental data [59, 60] or
computational data from fluid turbulence models [55, 57].

In conclusion, we provided a theoretical framework
to understand the effects of uncertainty in ODE mod-
els while demonstrating non-trivial effects of stochastic
noise and time-varying model parameter and potential
utility of the path-dependent information geometry in
understanding ELM dynamics in fusion plasmas. As is
often the case, it seems ironic that while a desirable,
H-mode for fusion plasma is a quiet state (low turbu-
lence), it comes with the cost of setting off instabilities
which possibly cause significant damage. The mitiga-
tion/suppression of such instabilities via stochastic per-
turbations and consequent increase in turbulence sug-
gests that an ideal fusion operation might not be a too
quiet state, but instead a moderately turbulent state
which compromises between instabilities (developed in
a quiet state) and turbulence activity, with a subtle bal-
ance between the two. The latter might be described as
self-organised state which evolves dynamically maintain-
ing such a subtle balance.

Appendix A: K-L divergence

The Kullback-Leibler (K-L) divergence – relative en-
tropy – has proven to be useful in understanding irre-
versibility and non-equilibrium thermodynamic inequal-
ity relations (e.g, see [68] and references therein). K-L
divergence between the two PDFs [66] is defined by

K(p1|p2) =

∫

dx p1 ln

(

p1

p2

)

. (A1)

A symmetric version of K-L divergence is
1
2 [K(p1|p2) + K(p2|p1)] . When a parameter (say,
Φ(t)) of a system changes in time, at any instant
of time t1, a time-dependent PDF p(x, y, t = t1) is
not necessarily the same as what is expected from a
stationary solution (say, p(x, y, t → ∞) obtained by
using the fixed value of Φ(t1) in the long time limit).
This non-equilibrium characteristics contributes to
irreversibility and hysteresis.

Furthermore, for a time-varying parameter which is
mirror-symmetric in time, with the forward and back

PDFs, pF (t) and pR(t)), respectively, the dissipated work
was shown to be related to the relative entropy

WD = DK[pF (t)|pR(tm))]. (A2)

(e.g., see [76]), where tm is the mirror image time
such that Φ(t) for the forward process is the same as
Φ(tm). This manifests that the disparity between pR(t)
and pR(tm) is linked to irreversibility (dissipation) and
hysteresis.

Appendix B: Γ for Gaussian PDFs

Γ can be related to Fisher information [66] for a Gaus-
sian PDF which is fixed by the two parameters, the mean
value µ and standard deviation σ. In terms of these pa-
rameters λi = (µ, σ), Γ can be shown to be

Γ2 = gij∂tλi∂tλj . (B1)

Here, gij is the metric tensor defined in the statistical
space defined by λi

gij(t) =

∫

dxp(x, t)∂λi
(ln p) ∂λj

(ln p) =
1

σ2

(

1 0

0 2

)

.

(B2)
The non-zero components of gij are inversely propor-
tional to the variance σ2. That is, a broad PDF with
large σ leads to smaller Γ(t) (and L(t)).

Appendix C: ODE model of ELMs

The ODE ELM model in [26] far above the threshold
power consists of the evolution of the pressure gradient
P = x and magnetic fluctuation amplitude EM :

dP

∂t
= Φ − D̃(P )P − EMP, (C1)

dEM

∂t
= λ(P − 1)EM , (C2)

D̃ = d0 + d(P − c2P 4)Θ(P̃ − P ). (C3)

Here c = P̃− 3

2 is constant; Θ(x) is the Heaviside func-
tion with Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0; Φ
is the control parameter representing the input power; λ
and d0 ≪ d are non-negative constants. P̃ is the critical
pressure gradient for a complete suppression of turbu-
lence due to shear. We note that no chaotic solutions
were found in the original ODE ELM model in [26] un-
like in [6].

Fig. 13 shows the time-evolution of x and y from
Eqs. (C1)-(C3) using larger x ranges for Φ because the
period of ELMs decreases with Φ. Φ/d = 0.4 supports
giant ELMs with a long period and a short duration of
magnetic activity. They become more grassy for larger
Φ/d with a shorter period and a longer duration of mag-
netic activity. The period of oscillation and the duration
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FIG. 13. Deterministic solution for Φ/d = 0.4, 0.8, 1.2, from
left to right. x is red, y is blue.

of magnetic activity become similar for Φ/d = 0.12. Al-
ternatively, for Φ/d = 0.4, y stays nearer the unstable
L-mode solution (y = 0), followed by large deviation in
a large burst.

The three different types of the fixed points were
reported in [26] depending on the value of P̃ as the
control parameter Φ changes.

i) Case 1: When P̃ >
(

5
2

)1/3
, there are two stable states:

a) the L-mode with EM = 0 if Φ < d0 + d(1 − P̃−3),

b) the L-mode with EM 6= 0 if Φ > d0 + d(1 − P̃−3).
This corresponds to Φ/d > 0.146d for our parameter

values P̃ = 1.05, d0 = 0.001, d = 0.1. [At Φmax and

EM = 0, Φ = D̃p0 = (d0 + d(P0 − c2P 4
0 )). For P0 = 1,

Φmax = d0 + d(1 − c2) = d0 + d(1 − P̃−3).]

ii) Case 2: a) For 1 < P̃ ≤
(

5
2

)1/3
, stable L-mode

state with EM = 0 if Φ < [d0 +
(

2
5

)4/3
P̃ d]

(

2
5

)1/3
P̃ .

However, this criterion seems approximate. For in-
stance, for the parameter values to be used in this paper
P̃ = 1.05, d0 = 0.001d = 0.1, this gives Φ/d = 0.247
for the L-mode exists while the L-mode persisted
up to at least Φ/d = 0.33d from our simulations.
b) the H-mode state with p0 = 1 and EM 6= 0 if

Φ > [d0 +
(

2
5

)4/3
P̃ d]

(

2
5

)1/3
P̃ . When d0 ≪ d, the

H-mode has MHD activity.

iii) Case P̃ ≤ 1, no ELMs; the L-mode, marginally stable
H-mode with EM 6= 0, and the stable H-mode without
MHD acitivity for d0 > Φ > d0P̃ .

We will focus on the Case 2 with EM 6= 0 in this paper.
These three different cases above are based on how the

nonlinear flux/diffusion (D̃ − d0)P ≡ F (P ) in Eq. (C4)
behaves as

• F (P ) = d(P − c2P 3)P = 0 when P = P̃ = c−2/3

• F (P ) 6= 0 between 0 < P < c−2/3

• The maximum of F occurs when dF
dP |P=P∗ = 0. If

P∗ > 1, as P increases from P = 1 (one of the
equilibrium point for EM 6= 0), a larger damping
F (p) brings P back to P ∼ 1. Since dF

dP = d(2P −
5c2P 4) = 0 occurs at P 3

∗ = 2
5c2 = 2

5 P̃ 3, P̃ >
(

5
2

)1/3
.

• If dF
dP = d(2P − 5c2P 4) = 0 occurs for P 3

∗ = 2
5c2 =

2
5 P̃ 3 < 1. Thus, P̃ <

(

5
2

)1/3
. In addition, a non-

zero Θ(P̃ − P ) for P = 1 requires P̃ ≥ 1. Thus,

1 ≤ P̃ <
(

5
2

)1/3
.

• If the equilibrium point P = 1 is larger than P̃
(P̃ < 1), no nonlinear diffusion at P = 1.

• When D̃ = d0, the fixed points satisfy

Φ = (d0 + EM )P, (P − 1)EM = 0 (C4)

Thus, P = 1 or EM = 0. When P = 1, EM =
Φ− d0. When EM = 0, P = Φ

d0

(which may not be

stable).

Appendix D: CT1-3 with constant Φ/d = 0.4, 0.8, 1.2

Figures 14-16 show the three cases of constant Φ/d =
0.4, 0.8, 1.2, respectively.
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FIG. 14. Constant Φ = 0.04, and plotted up to t = 100.

From Figures 14-16, we can see 〈y〉, σx, σy, Sx, Sy,

Ṡmx, Ṡmy, ṠTx, ṠTy are all in phase, etc.
The mutual information I = Sx + Sy − S > 0 when

these quantities are maximum with the strongest mag-
netic activity while I < 0 when magnetic activity is min-
imum. That is, magnetic activity promotes the informa-
tion change between x and y. When I is maximum, the
information flow Tx→y and Ty→x exhibit rapid temporal
changes. Their signs tend to be opposite. Note that a
negative sign of Tx→y means the information flows from
y to x, which is equivalent to a positive sign of Ty→x. By
definition, Tx→y and Ty→x sensitively depend on entropy
with no dependence on 〈x〉, 〈y〉. Both Tx→y and Ty→x

take zero values at t = 0 due to the lack of correlation.
ṠTx and ṠTy represent how far the system is from equi-

librium. The larger their values, further from the equi-
librium. Ṡmx > 0 and Ṡmy > 0 the entropy flow always
from the system (x and y) to its environment (due to ξ
and η).
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FIG. 15. Constant Φ = 0.08, and plotted up to t = 100.
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FIG. 16. Constant Φ = 0.12, and plotted up to t = 100.

Appendix E: RD2 and RD2

We now look at the case of the linear ramping cases
RD2 and RD2 in a shorter time interval t = [0, 50] (than
RD2 and RD2). That is, the ramping up/down rates
are faster than the cases shown in Figures 9-10. Figures
17-18 show the time-series of various diagnostics in the
same format as in Figures 17-18. Figure 17 is the case
of RD1 where Φ = 0.12 + 0.08t/100, so decreasing from
0.12 to 0.04 over t = [0, 50]; Figure 18 is the case of RD2
where Φ = 0.12 − 0.08t/100, so decreasing from 0.12 to
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FIG. 17. RU2: Φ = 0.04 + 0.08t/50, so increasing from 0.04
to 0.12 over t = [0, 50]
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FIG. 18. RD2: Φ = 0.12− 0.08t/50, so decreasing from 0.12
to 0.04 over t = [0, 50]

0.04 over t = [0, 50].



16

CONFLICT OF INTEREST: The authors have no
conflicts to disclose.
ACKNOWLEDGEMENTS: We thank Dr Yasmin
Andrews for helpful discussions.

DATA AVAILABILITY STATEMENTS: The data
that support the findings of this study are available from
the corresponding author upon reasonable request.

[1] B. Kadomtsev and E.W. Laing, Tokamak Plasma: A

Complex Physical System (IOP Publishing Ltd., 1992).
[2] C. Hildago, M.A. Pedrosa, and B. Goncalves, Fluctua-

tions, sheared radial electric fields and transport inter-
play in fusion plasmas, New J. Phys. 4, 51 (2002).

[3] B. P. van Milligen, B. A. Carreras, I. Voldiner, U. Losada,
C. Hidalgo, and TJ-II Team, Causality, intermittence,
and crossphase evolution during confinement transitions
in the TJ-II stellarator, Phys. Plasmas 28, 092302 (2021).

[4] K. Itoh, Y. Nagashima, S.-I. Itoh, P. H. Diamond, A.
Fujisawa, M. Yagi, and A. Fukuyama, On the bicoherence
analysis of plasma turbulence, Phys. Plasmas 2, 102301
(2005).

[5] B.Ph. van Milligen, C. Hidalgo, E. Sánchez, M. A. Pe-
drosa, R. Balb́ın, and I. Garćıa-Cortés, Statistically ro-
bust linear and non-linear wavelet analysis applied to
plasma edge turbulence, Rev. Sci. Instrum. 68, 967
(1997).

[6] A. Thyagaraja, F. A. Haas, and D. J. Harvey, A nonlin-
ear dynamic model of relaxation oscillations in tokamaks
Phys. Plasmas 6, 2380 (1999).

[7] L. Schmitz, The role of turbulence-flow interactions in L-
to H-mode transition dynamics: recent progress, Nuclear
Fusion 57, 025003 (2017).

[8] Y. Sarazin and P. Ghendrih, Intermittent particle trans-
port in two-dimensional edge turbulence, Phys. Plasmas
5, 4214 (1998).

[9] K. Itoh, S.-I. Itoh, A. Fukuyama, and M. Yagi, Theory of
plasma turbulence and structural formation – nonlinear-
ity and statistical view, J. Plasma Fusion Res. 79, 608
(2003).

[10] J. Wang, G.R. Tyne, R. Hong, L. Nie, Y. Chen, R. Ke, T.
Wu, T. Long, P. Zheng, M. Xu, and HL-2A Team, Edge
turbulence evolution and intermittency development near
the density limit on the HL-2A tokamak, Phys. Plasmas
26, 092303 (2019).

[11] S. J. Zweben, J. A. Boedo, O. Grulke, C. Hidalgo, B.
LaBombard, R. J. Maqueda, P. Scarin, and J. L. Terry,
Edge turbulence measurements in toroidal fusion devices,
Plasma Phys. Contr. Fusion 49, S1-23 (2007).

[12] P. A. Politzer, Observation of avalanche-like phenomena
in a magnetically confined plasma, Phys. Rev. Lett. 84,
1192-1195 (2000).

[13] P. Beyer, S. Benkadda, X. Garbet, and P. H. Diamond,
Nondiffusive transport in tokamaks: Three-dimensional
structure of bursts and the role of zonal flows, Phys. Rev.
Lett. 85, 4892-4895 (2000).

[14] J. F. Drake, P. N. Guzdar, and A. B. Hassam, Streamer
formation in plasma with a temperature gradient, Phys.
Rev. Lett. 61, 2205-2208 (1988).

[15] G. Y. Antar, S. I. Krasheninnikov, P. Devynck, R. P.
Doerner, E. M. Hollmann, J. A. Boedo, S. C. Luckhardt,
and R. W. Conn, Experimental evidence of intermittent
convection in the edge of magnetic confinement devices,
Phys. Rev. Lett. 87, 065001 (2001).

[16] B. A. Carreras, C. Hidalgo, E. Sanchez, M. A. Pedrosa,
R. Balbin, I. Garcia-Cortes, B. van Milligen. D. E. New-
man, and V. E. Lynch, Fluctuation-induced flux at the
plasma edge in toroidal devices, Phys. Plasmas 3, 2664-
2672 (1996).

[17] J. Anderson and P. Xanthopoulos, Signature of a uni-
versal statistical description for drift-wave plasma turbu-
lence, Phys. Plasmas 17, 110702 (2010).

[18] E. Kim and J. Anderson, Structure based statistical the-
ory of intermittency, Phys. Plasmas 15, 114506 (2008).

[19] E. Kim and P. H. Diamond, Intermittency in drift-wave
turbulence: Structure of the momentum flux probability
distribution function, Phys. Rev. Lett. 88, 225002 (2002).

[20] E. Kim, P. H. Diamond, M. Malkov, T. S. Hahm, K.
Itoh, S.-I. Itoh, S. Champeaux, I. Gruzinov, O. Gurcan,
C. Holland et al., Non-perturbative models of intermit-
tency in drift-wave turbulence: towards a probabilistic
theory of anomalous transport, Nuclear Fusion 43, 961-
968 (2003).

[21] J. Anderson and E. Kim, The momentum flux proba-
bility distribution function for ion-temperature-gradient
turbulence, Phys. Plasmas 15, 052306 (2008).

[22] J. Anderson and E. Kim, Nonperturbative models of
intermittency in edge turbulence, Phys. Plasmas, 15,
122303 (2008).

[23] A. M. Kowalski, M. T. Martin, A. Plastino, O. A. Rosso,
and M. Casas, Distances in probability space and the
statistical complexity setup, Entropy 13, 1055 (2011).

[24] M. Oizumi, N. Tsuchiya, and S. Amari, Unified frame-
work for information integration based on information
geometry, Proc. Nat. Acad. Sci. 113, 14817 (2016).

[25] E. Kim, Information geometry, fluctuations, non-
equilibrium thermodynamics, and geodesics in complex
systems, Entropy 23, 1393 (2021).

[26] V. B. Lebedev, P. H. Diamond, I. Gruzinov, and B. A.
Carreras, A minimal dynamical model of edge localized
mode phenomena, Phys. Plasmas 2, 3345 (1995).

[27] H. K. Park, J. Lee, G. S. Yun, X. Q. Xu, and M. Bécoulet,
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