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ABSTRACT
Turbulent flow has been known to contain coherent flow structures. The size, shape, timescale and dynamics of these coherent structures are important
in understanding turbulent flow processes such as pollutant mixing and particle transport. A range of methods exist for the detection of coherent
structures in 2D or 3D data, but there are limited objective methods available for 1D data. Existing 1D techniques are subjective, require calibration
with manual visualizations, or are based only on detecting velocity extremes and thus only detect structures according to a limited definition. A
technique is presented here for objectively detecting structures using a phase-space method modified from a previously described despiking method.
This method requires no calibration or subjective input, and identifies structures based on extremes in velocity, acceleration and jerk. This method
gives turbulence statistics comparable with previous methods while recognizing a broader and more realistic definition of the physical properties of
coherent structures by considering also the first and second derivative of velocity.

Keywords: ADV; coherent structures; flows in pipes; phase-space; U-level

1 Introduction

The study of turbulent flows is important in many fields of
engineering and earth sciences. Turbulence in natural water
flows controls many important physical processes, from the
entrainment and transport of sediments to the mixing and
advection of pollutants and the development of macrophyte
populations. Originally, turbulence was considered as a statisti-
cally random process characterized by chaotic and unpredictable
fluctuations, which were described via a turbulence spectrum
(Zakharov et al., 1992). Leonardo Da Vinci was perhaps the
first to propose that turbulent flows contain a series of discrete
events that resemble eddies (Lozano-Durán & Jiménez, 2014)
or whirls (Sarpkaya et al., 1994). More recently these have been

termed coherent flow structures (Ho & Huerre, 1984; Holmes
et al., 1996; Hussain, 1986). Since coherent structures exist
within the continuum of a flow field, there are conflicting defi-
nitions of what constitutes a structure and where the edge of a
structure should be defined. Structures are generally considered
to be vortex-like motions that can be oriented in any direction,
and are characterized by extreme velocity, acceleration, and jerk
(Eager et al., 2016; Schot, 1978).

The length, duration, occurrence frequency and advection
velocity of coherent structures are key parameters to define
when relating coherent structures to their effects on hydro-
dynamic processes such as mixing and sediment transport.
Three dimensional velocity datasets (streamwise, lateral and
vertical velocities) are usually measured in one, two or three
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dimensional spatial locations. In this study, 1D, 2D, 3D refer
to the number of dimensions in space and 1C, 2C, 3C refer to
the number of velocity components measured. Thus, acoustic
Doppler velocimetry (ADV) data are referred to as 1D 3C mea-
surements. In the laboratory environment, 2D and 3D methods
for measuring fluctuations in flow velocity or free surface ele-
vation are becoming more commonplace, such as particle image
velocimetry (PIV), laser-induced fluorescence (LIF), and par-
ticle tracking velocimetry (PTV). However, many studies still
make use of 1D methods such as ADV (Caroppi et al., 2020),
laser Doppler velocimetry (LDV) (Mohr et al., 2019), ultrasonic
velocity profilometry (UVP) (Vargas et al., 2020) and conduc-
tive wave probes (Nichols, 2014). Further, 2D and 3D methods
are usually considered too costly and complex for field applica-
tions such as in situ monitoring of river flows, with most studies
opting for 1D methods such as ADV, acoustic Doppler current
profilers (ADCP) (Guerra & Thomson, 2017) or electromag-
netic current meters (ECM) (Creëlle et al., 2018). To extract the
key parameters of coherent structures from 1D velocity data,
a robust and objective detection technique is required. Exist-
ing techniques are subjective, require calibration with manual
visualizations, or are based only on detecting velocity extremes
and thus only detect structures according to a limited definition.
This paper presents a new method, referred to here as the
“phase-space method”, to provide robust and objective coherent
structure detection in 1D data. This can be used as an objective
1D detection method with similar statistics to the well-accepted
U-level method, but with a more justifiable physical definition
of a coherent structure.

This paper is organized as follows: Section 2 presents a sum-
mary of existing 1D techniques for coherent structure detection.
Section 3 describes the experimental set-up and the measure-
ment technique used in this study. Section 4 describes the
phase-space algorithm developed for objective structure detec-
tion. Section 5 compares the result of the phase-space algorithm
with the most established alternative. Finally, in Section 6,
conclusions are presented.

2 Existing techniques

2.1 Flow visualization

Flow visualization is a straightforward method for investigat-
ing and understanding the physics of three-dimensional tur-
bulence and dynamic fluid phenomena. Various visualization
methods (e.g. dye injection or hydrogen bubbles) have been
employed in numerous studies (Bogardt & Tiederman, 1986;
Roy et al., 2004; Shvidchenko & Pender, 2001). Flow visual-
ization has been proven to be useful for the identification of
turbulent events and can provide a general description of the
coherent flow structures (Head & Bandyopadhyay, 1981). How-
ever, since the method is based on a manual visual estimation,
the output is highly subjective, and can only provide limited
quantitative information on the characteristics of the turbulent

event (Boppe & Neu, 1995). The reliability of this technique
reduces substantially when the Reynolds number is sufficiently
large (Bogardt & Tiederman, 1986). In some studies, 1D detec-
tion techniques were calibrated against flow visualizations at
relatively low Reynolds numbers, but the detection criteria can-
not be reliably extrapolated to higher Reynolds numbers (Shah
& Antonia, 1989). Besides, this technique can be laborious to
employ in practice, as it requires a high degree of trial and error
to effectively employ it (Smits, 2012) and it provides limited
capability for quantitative measurements.

2.2 Probe measurement with 1D techniques

Considering the limitations of flow visualization, recent stud-
ies have been performed using probes to measure the velocity
or pressure fields. With a reliable detection algorithm, probe
measurements can be used to identify coherent structures in
flows at much higher Reynolds number than is possible with
flow visualization. Several measurement techniques have been
used in laboratory and field studies, such as hot wire anemome-
try (HWA), laser Doppler anemometry (LDA), ECM and ADV.
These probe measurements can provide a very good temporal
resolution of 3D velocity fluctuations at a single position. Tay-
lor’s hypothesis can be invoked to turn time-resolved data to
spatial data. This has been employed by many researchers in
turbulent structure analysis, such as Boppe et al. (1999), Guerra
and Thomson (2017), Ferraro et al. (2019), and Ng et al. (2021).
The turbulence velocity fluctuation is assumed to be an ergodic
process so that it is possible to use a sufficiently long time
observation to reduce its statistical properties which are usually
measured through a set of sufficiently large number of random
realizations in multiple spatial locations.

To extract useful information from these velocity data, con-
siderable effort has been given to the study of coherent structure
detection techniques. 1D detection techniques (using time series
of velocity or pressure recorded at a single spatial location) are
the most straightforward, and are relatively simple to apply.
They can also be applied not only to 1D data but also to 2D
and 3D data by repeating the algorithm at different single points
in the 2D plane or 3D volume. The most common 1D tech-
niques for coherent structure detection are U-level (Bogardt
& Tiederman, 1986), window average gradient (WAG) (Anto-
nia & Bisset, 1990; Krogstad et al., 1998), VITA (Bogardt
& Tiederman, 1986), Quadrant (Lu & Willmarth, 1973; Wal-
lace, 2016) and TPAV (Wallace et al., 1977). These detection
algorithms were found to be highly dependent on a user-defined
threshold level and window size, which are often determined by
a subjective comparison with flow visualization at low Reynolds
number. The U-level algorithm (Lu & Willmarth, 1973) does
not require a manually-defined threshold, and is therefore the
only existing objective 1D detection method, but it only defines
coherent structures according to a limited definition of extreme
high or low velocity compared to the mean. The aim of this
study is to propose a new objective method that more accurately
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captures the physical nature of coherent structures, and com-
pare this new method with U-level. The following sub-section
describes the development of the U-level algorithm by several
authors.

2.3 U-level

U-level is a relatively simple to implement technique for coher-
ent structure detection, and the amount of data required for its
use is minimal. It has been used in various previous studies
such as Antonia and Bisset (1990), Baron and Quadrio (1997),
Metzger et al. (2010), Nichols (2014), Vinuesa et al. (2015)
and Tang et al. (2016). This technique looks at deficits from
the mean streamwise velocity component and identifies extreme
events as coherent structures. The U-level technique was first
proposed by Lu and Willmarth (1973) for detection of burst-
related events. An ejection event was assumed to occur when-
ever the velocity magnitude was below a certain threshold
level:

u′ < −kUSu (1)

where u′ is the instantaneous streamwise velocity fluctuation,
kU is the threshold value and Su is the root mean square of
instantaneous streamwise velocity fluctuation over the measure-
ment time period. Bogardt and Tiederman (1986) evaluated the
effectiveness of this technique by comparing with dye flow visu-
alization in a 60 mm by 575 mm rectangular channel at average
velocity 0.129 m s−1, depth 60 mm and Reynolds number 8200.
When the threshold kU = 1, the U-level technique gives 76%
probability of detecting an ejection and 26% probability of a
false detection. The threshold value kU was then adjusted so
that the number of events detected by U-level corresponded to
the number of ejections identified by flow visualization, giv-
ing kU = 1.3. This resulted in a U-level technique that appears
to have a reasonably high probability of correctly detecting an
ejection (63%) and a low probability of false detections (23%).
Luchiktand et al. (1987) also analysed the effectiveness of the
U-level technique with flow visualization. They confirmed that
a higher threshold level leads to a lower probability of false
detection, but also a lower probability of correct detection.
Luchiktand et al. (1987) modified the U-level technique with
an additional lower threshold to eliminate multiple detections
of a single ejection or sweep and a sign to distinguish between
ejections (α = −1) and sweeps (α = 1). The detector function
was turned on and output D was set to 1 when:

u′α < −kUSu (2)

and was turned off (output D was set to 0) when:

u′α ≥ −0.25kUSu (3)

With the modification, Luchiktand et al. (1987) showed that the
modified U-level technique had a substantial improvement in

the probability of detecting an ejection while the probability of
false detection only increased slightly. Besides, it gave a reason-
able estimate of the average duration of an ejection at a point in
the flow. It is necessary to determine the appropriate threshold
for the detection technique. Luchiktand et al. (1987) suggested
that the threshold levels should be taken as the ratio between
the absolute value of the long time average in the second quad-
rant |u2| (where streamwise velocity fluctuation u′ is negative
and vertical velocity fluctuation v′ is positive) and the standard
deviation of velocity fluctuations Su, thus:

kU =
|u2|
Su

(4)

Roy et al. (2004) and Nichols (2014) took the absolute value
of velocity fluctuation instead of using the sign for detection of
large-scale flow structures. The detection function was turned
on when

|u′| > kUSu (5)

and off when

|u′| < 0.25kUSu (6)

Taking the absolute value will give similar statistics but can-
not distinguish between sweep and ejection events. The U-level
method is not applied to each time step individually; the value
(on/off) of each time step depends upon the value of the previ-
ous time step. Moving through from t = 0, the detector function
is turned on when Eq. (9b) condition is met, and remains on for
subsequent time steps until Eq. (9c) condition is met, at which
point the detector function is turned off and remains so until
Eq. (9b) condition is met again.

Despite the development of the U-level technique as an
objective 1D method, it is still based upon the fundamental
assumption that a coherent structure consists only of extreme
velocity fluctuations. Coherent structures embody more than
just extreme instantaneous velocities, and it can be argued
they should be identified by also considering areas of high
acceleration and jerk.

3 Proposed phase-space algorithm

Phase-space is a filtering technique commonly used in removing
spikes from 1D data, proposed by Goring and Nikora (2002).
This method plots the fluctuating component of velocity, its
first order derivative with respect to time (acceleration) and its
second order derivative (jerk) with respect to time in three-
dimensional so-called phase-space axes. It assumes that all
points lying outside an ellipsoid in the phase-space outliers
(spikes), while points within the ellipsoid are valid data points.
The size of the ellipsoid is determined by the universal threshold
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l:

l =
√

2 ln N (7)

where N is the number of data points. This method was shown
to have better performance than various other methods and it
has the advantage that it requires no external parameters which
could otherwise introduce subjectivity.

As the phase-space method has no ambiguity in what thresh-
old to choose, the present work has modified the method to
enable detection of turbulent (extreme) events, events with
extreme velocity, acceleration and/or jerk, rather than outliers.
The steps of this new proposed technique, based on a measured
steamwise velocity time series, u′, are:

Step 1: Perform the standard phase-space despiking proposed
by Goring and Nikora (2002) to remove erroneous data.

Step 2: Calculate the acceleration ai and jerk ji using the central
difference method (Wu et al., 2005):

�t = 1/fs (8a)

ai =
ui+1 − ui−1

2�t
, i = 2, 3, . . . N − 1 (8b)

ji =
ui+1 − 2ui + ui−1

�t2
, i = 2, 3, . . . N − 1 (8c)

Step 3: Calculate the standard deviations of all three variables
σu, σa and σj .

Step 4: Calculate the universal threshold according to Eq. (7).
Step 5: Transform the point cloud to be centred at the origin

with no trend in any direction.
Step 6: Calculate the major, median and minor axes for the

detection ellipsoid as:

eu = klσu (9a)

ea = klσa (9b)

ej = klσj (9c)

where k is the phase-space scaling factor.
Step 7: Define the detection ellipsoid based on Eq. (10):

u′2

eu
2

+
a′2

ea
2

+
j ′2

ej
2

= 1 (10)

Step 8: Construct a binary series to signify the detection (or
not) of turbulent events. Data points outside the defined
ellipsoid (that satisfy Eq. 11) are recognized as 1 (detec-
tion of extreme event, termed as a “coherent structure data
point” in this study), in the binary time series and data

points inside the ellipsoid (that satisfy Eq. 12) are 0:

u′2

eu
2

+
a′2

ea
2

+
j ′2

ej
2

≥ 1 (11)

u′2

eu
2

+
a′2

ea
2

+
j ′2

ej
2

< 1 (12)

A sustained value of 1 in the binary series is defined as
an individual turbulent event (coherent structure). Deter-
mine the number of individual turbulent events from the
binary series. Roy et al. (2004) only considered events last-
ing more than 1 s from a modified U-level method while
Nichols (2014) considered events of any time duration.
Luchiktand et al. (1987) grouped two adjacent ejections,
where the time between them was less than a threshold
time value, into a single event. Shah and Antonia (1989)
noted that the determination of the threshold time value is
not totally free of ambiguity. To reduce the ambiguity of
the proposed objective method, detected events of any time
duration are all considered in this study. This also applies
to modified U-level detected events to ensure consistency
when comparing two methods.

Step 9: Use a value of scaling factor k ranging from 0 to 1 for
step 6 to adjust the size of the ellipsoid.

Step 10: The value of k is chosen which gives the maximum
number of turbulent events.

An example of these steps being applied to real laboratory
data is given in Section 5.

4 Experimental measurement

The experiments were carried out in a 20 m long smooth cir-
cular pipe with 290 mm internal diameter and slope of 1/1000
(see Fig. 1 for the dimensions of experimental rig). Control of
the discharge from the pump was achieved with an adjustable
butterfly valve (a Fisher type 8580 [United States] butterfly
valve with a type 2052 actuator) upstream of the inlet tank. The
magnitude of the discharge was determined using an electro-
magnetic flow meter (Arkon MAG 910, Brno, Czech Republic).
The depth of the flow was controlled with an adjustable gate
at the downstream end of the pipe to ensure uniform flow con-
ditions throughout the measurement section. The uniform flow
depth d was measured with a point gauge at seven stream-
wise locations with average spacing 1.14 m. In this study, the
flow depths ranged between 45.5 mm and 192.4 mm with bulk
flow velocity Ub from 0.30 m s−1 to 0.60 m s−1. The Reynolds
number (computed by Re = (ρUbRh)/µf , where ρ is the water
density, Rh is the hydraulic radius and µf is the dynamic vis-
cosity of water) was between 0.84 × 104 and 5.05 × 104 as
summarized in Table 1. The average depth is calculated as the
mean of the water depth measured by point gauge at seven
streamwise locations with average spacing 1.14 m before and
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Figure 1 (a) A photograph of the pipe, and (b) sketch of the experimental set-up in this pipe showing the relative position of the measurement
section with respect to upstream and downstream sections of the pipe

Table 1 Flow conditions

Flow
condition

Flow rate, Q

(l s−1)
Average depth,

d (mm)
Bulk flow velocity,

Ub (m s−1)
Reynolds number,

Re × 104 (–)

1 2 45.5 0.30 0.84
2 4 63.9 0.37 1.41
3 6 77.7 0.42 1.89
4 8 91.0 0.45 2.31
5 10 103.2 0.47 2.69
6 12 113.4 0.50 3.05
7 14 124.8 0.52 3.36
8 16 132.5 0.54 3.70
9 18 142.9 0.56 3.97
10 20 150.6 0.58 4.27
11 22 160.9 0.58 4.50
12 24 171.4 0.59 4.70
13 26 182.8 0.59 4.87
14 28 192.4 0.60 5.05

after the measurement area, and the bulk flow velocity is cal-
culated by Ub = Q/A, where Q is the flow rate and A is the
flow cross-sectional area. A side-looking ADV manufactured
by Nortek (Norway) was used to measure the 3D instantaneous
velocity time series at a given spatial point under uniform flow.
It was mounted to a modified point gauge frame fixed at 9.1 m
away from the inlet tank. The modified point gauge is able to
adjust the depthwise position accurate to 0.1 mm. This type of
instrument is frequently used in field and laboratory study (Cea

et al., 2007; Clark & Kehler, 2011; Novo & Kyozuka, 2019)
because of its reliability and robustness. In this study, ADV
was sampled at 100 Hz and recorded by the software Vectrino
Plus (https://www.nortekgroup.com/software) for a 300 s mea-
surement duration. All measurements were made at least an hour
after the flow was established to ensure the steady state of the
flow. The background particles gave correlation over 80% on the
ADV data, but 0.06% mass concentration of TiO2 was added to
further improve reliability.
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5 Results and discussion

5.1 Phase-space detection

ADV data are often contaminated by spikes (erroneous data
points) as shown in Fig. 2a and it is essential to despike ADV
data. All the ADV data in this study are despiked by the
phase-space method proposed by Goring and Nikora (2002)
first as mentioned in step 1 in Section 3. As is shown in
Fig. 2, spikes are efficiently removed and replaced by cubic
interpolation without altering the clean data. The velocity fluc-
tuation was calculated from the velocity data measured by the
ADV by subtracting the time-averaged value. It is known from
Nichols (2014) that the frequency content of velocity time
series in this type of flow is well below 10 Hz. For this data,
the power spectrum calculated in MATLAB version R2019a
(https://uk.mathworks.com/products/matlab.html) with function
“fft” showed that the dominant components of the signal are well
below 10 Hz. Therefore, the despiked velocity fluctuation data
was low-pass filtered using a third order Butterworth filter with
a cut-off frequency at 10 Hz to remove any risk of remaining
high frequency noise. The filter would not affect the results apart
from removing erroneous data points.

The data points for (ui, ai, ji) were placed in the phase-space
axes for values of i (i = 3 to N − 2). In order to fit the detection
ellipsoid to a cloud of points with no bulk trend in any direction,
the data points were first reduced to the j = 0 plane by sub-
tracting the best fit plane from the jerk values and then reduced
to the j = 0, a = 0 line by subtracting the best fit line from the
acceleration. The equation of the best fit plane is obtained by the
MATLAB “mldivide” function and the equation of the best fit
line is obtained by the MATLAB “polyfit” function. Since the
velocity values are already fluctuations about the mean, the cen-
tre of mass of the point cloud is now at (0, 0, 0) with no trend in
any direction. After this detrend procedure, a detection ellipsoid
centered at (0, 0, 0) without rotation can be defined. The sizes
of principle axes of the detection ellipsoid were calculated from
Eq. (9a) and the ellipsoid constructed using Eq. (10). Then the
data points outside the ellipsoid were thus identified as coherent
structure data points.

Next, the phase-space scaling parameter, k, was varied from
0 to 1 as described in Section 3, enlarging the ellipsoid from a
single point to encompassing the full point cloud. As shown in
Fig. 3a, the number of coherent structure data points detected
as being turbulent begins with all data points when k = 0, and
reduces to zero data points when k = 1. But the number of dis-
crete events (continuous periods of positive detection) increases
from 1 when k = 0 (one continuous event consisting of the
entire time series), reaches a peak at some k value, and then
decrease to zero when k = 1 (all data points within the ellipsoid,
so no events detected). Similar plots are obtained for the other
flow conditions and measurement positions. For the U-level
method, the number of events detected increases with increasing
threshold. U-level has a low probability of making a false detec-
tion as well as a low probability of a true detection when high

thresholds are used (Bogardt & Tiederman, 1986). Therefore,
a compromise needed to be made in between the probability
of making a false detection and the probability that an event
will be detected, and an empirical threshold was settled upon
subjectively. In case of the phase-space method, an appropriate
threshold must also be determined. For this purpose, the value
of the phase-space scale parameter k is chosen when it gives the
maximum number of events (see Fig. 3b where the maximum
number of events is indicated with the red marker). This repre-
sents the optimal sensitivity to detect extreme behaviour without
merging discrete events. This provides an objective method for
selecting the threshold, which yields turbulence statistics com-
parable with the accepted U-level method. This method was
chosen because it provides a completely objective way of set-
ting the threshold, which can be easily automated, and provides
turbulence statistics comparable with U-level results.

The resulting phase-space detection using the optimal scaling
parameter then enables construction of the optimal ellipsoid so
that each point on the time series can be binarized as either (i)
a coherent structure is present or (ii) a coherent structure is not
present. The average value and standard deviation of the optimal
scaling parameter for different flow conditions are calculated at
all depthwise positions. The average scaling factor ranges from
0.294 to 0.308 for all flow conditions and the standard deviation
is within 0.016. This small variation suggests a fixed value of
the scaling factor (k = 0.3) may be appropriate for this particu-
lar flow system, but it is expected that different flow systems
and application areas will exhibit different optimized scaling
factors.

5.2 Time series visualization

Figure 4 shows the streamwise velocity, acceleration and jerk
time series for a random 8 s segment of data. The red mark-
ers show where the U-level method detects an event and blue
markers show where the phase-space method detected an event.
Both methods can detect extreme velocity fluctuations (with U-
level being more sensitive) while only phase-space can detect
the extreme acceleration and jerk. At some time intervals, such
as 5.83–5.93 s and 8.16–8.29 s, U-level does not detect an event
because the velocity is not particularly extreme, but the phase-
space method detects a high acceleration and/or jerk and identi-
fies this as an event. Conversely, at some time intervals, such as
5–5.57 s and 10.27–10.37 s, U-level detects an event because the
velocity magnitude is moderately high, but phase-space deter-
mines that the combined conditions of velocity, acceleration
and jerk are not sufficiently unusual to be deemed a coher-
ent structure event. In general, these two methods detect many
of the same periods of events (for example 6–7 s, 7.5–9.8 s
and 10.5–12.2 s) while the individual event durations differ.
This is also observed by Krogstad and Kaspersen (1992) and
Boppe and Neu (1995) when comparing different detection tech-
niques. Similar plots are obtained for the other flow conditions,
measurement positions and time sections. This occurs because
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Figure 2 Time series for raw and despiked vertical velocity for flow condition 10 at depthwise position y/d = 0.64 (a) full 300 s (b) portion of 5 s

Figure 3 (a) Number of detected coherent structure data points versus the scaling factor; (b) number of detected discrete events versus the
phase-space threshold, the red dot represents the maximum number of event. Time series analysis for flow condition 4 at depthwise position
y/d = 0.62

U-level is more sensitive in order to produce event statistics sim-
ilar to manual visualization, while phase-space can be more
refined, reflecting the physical reality that a coherent structure
does not embody just extreme velocities.

5.3 Phase-space axes analysis

Figure 5 shows all the data points (ui, ai, ji) on the phase-space
axes. The data points not detected as part of coherent structure
events are in black and the data points recognized as events are
highlighted in colour (blue for U-level and red for phase-space).
It is evident that the black points cluster in the centre of all data
points for both methods. The points detected by the U-level
algorithm are clearly delineated from the black points at two
planes along the u-axis, while the points detected by the phase-
space algorithm are outside the centre ellipsoid. Similar plots
are obtained for the other flow conditions and measurement

positions. The abrupt threshold imposed by U-level appears
rather aggressive and indiscriminate.

Figure 6 presents the phase-space projections of the data
points detected by the U-level and phase-space algorithms (the
point cloud viewed from three orthogonal directions). Data
points highlighted in blue are points detected by U-level and
points outside the ellipsoid (whose largest dimension is indi-
cated by the ellipse) are points detected by phase-space. In
the plot of number of coherent structure data points versus
velocity u′ distribution plot in Fig. 6a, the two algorithms
aligns well in the extreme velocity region. However, no event
data points are detected by the U-level algorithm when the
velocity fluctuation is small in magnitude. In the plot of num-
ber of coherent structure data points versus a and j (Fig. 6d,
e, f and h), the U-level algorithm shows a spike when the
acceleration and jerk is small. Phase-space gives a more uni-
form detection towards the middle of the ellipsoid in all three
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Figure 4 Time series of (a) velocity fluctuations; (b) acceleration fluctuations; (c) jerk fluctuations for flow condition 5 at depthwise position
y/d = 0.71 (black lines represent velocity, acceleration and jerk time series respectively, blue markers are data points detected by U-level and red
markers are data points detected by phase-space)

Figure 5 Data cluster in phase-space axes, coherent structure data points are in red/blue for flow condition 8 at depthwise position y/d = 0.74

directions, with detection appropriately reducing towards the
edges. Similar plots are obtained for the other flow conditions
and measurement positions.

5.4 Evaluation in terms of turbulence parameters

Figure 7 shows the histogram of the individual event duration
�T and individual event period Te from U-level and phase-
space. Event duration is defined as the time between the leading
and trailing edges of any continuous event, and event period is
defined as the time interval of successive leading edges (Met-
zger et al., 2010; Tang et al., 2016). The two algorithms result
in comparable histograms for both quantities. Exponential decay
curves are fitted to the individual event duration plot as is shown
in Fig. 7a since Bogardt and Tiederman (1986) showed that
a histogram of time between ejections from flow visualization

analysis fits an exponential distribution. The probability density
function of exponential fit is:

ye = f (�T|µ) =
1
µ

e
−�T

µ (13)

where µ is the fitting parameter for exponential distribution.
Gamma distribution curves are fitted to the individual event
period plot as this more closely represents the histogram shape
as is shown in Fig. 7b. The probability density function of
gamma distribution is:

yg = f (Te|a, b) =
1

baŴ(a)
Te

a−1e
−Te

b (14)

where a and b are fitting parameters for gamma distribution. The
exponential and gamma fit is calculated using the MATLAB
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Figure 6 Coherent structure data point distribution for flow condition 5 at depthwise position y/d = 0.66

function “fitdist” with distribution name “Exponential” and
“Normal” respectively. The average values of goodness of fit
calculated by MATLAB function “goodnessOfFit” with cost
function “NMSE” (normalized mean squared error) for all flow
conditions and depthwise positions are approximately 0.93 for
individual event duration and approximately 0.81 for individ-
ual event period, which means good fittings of histograms.
The percentage difference of best fit probability density func-
tion parameters from U-level and phase-space is calculated by
the value obtained from phase-space minus the value obtained
from U-level and then divided by the value obtained from U-
level. The difference in the best fit probability density function
parameters µ, a and b from U-level and phase-space are gener-
ally less than 20% and phase-space shows lower values for all
distribution parameters. The phase-space method histogram for
individual event duration �T shows a skewness towards smaller
values of �T, which is also observed by Bogardt and Tie-
derman (1986) and Metzger et al. (2010), who found that the
histogram of individual event period Te follows a Poisson- like
distribution at any fixed normal location in the boundary layer,
which demonstrates similarities with the histogram presented
here. Similar plots are obtained for the other flow conditions
and measurement positions.

Event duration and event period are significant in fluid
dynamics analysis as event duration is associated with the
structure length and the event period is associated with the fre-
quency of turbulent occurrence. The agreement between the two
methods shows that phase-space is able to accurately detect the

Figure 7 Normalized histograms of (a) individual event duration (b)
individual event period for flow condition 10 at depthwise position
y/d = 0.64

statistics of coherent events while being physically more jus-
tifiable in the detection criteria. The percentage difference in
the number of events, event duration, mean individual event
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Figure 8 Detected coherent structure data points quadrant distribution for flow condition 6 at depthwise position y/d = 0.339 (a) U-level detection,
(b) phase-space detection and (c) number of detected data points over vertical velocity direction

duration and mean individual event period are calculated by the
value obtained from phase-space minus the value obtained from
U-level and then divided by the value obtained from U-level.
The number of events, e.g. the number of periods of succes-
sive values of 1 in the binary time series, from phase-space
are usually more than from U-level by 39.66% on average. The
percentage of total event duration is the ratio of the total num-
ber of 1 values in the binary time series and the length of the
binary time series. On average, the percentage difference in total
event duration is less than 1.03%. In terms of the time scale of
events, both mean individual event duration and mean individ-
ual event period are lower from phase-space and the differences
are 20.50% and 21.54% respectively. This corresponds to more
structures being detected by the phase-space method, which are
smaller in size than those detected by U-level.

5.5 Quadrant axis analysis

Figure 8 shows a quadrant plot (streamwise velocity fluctuation
vs vertical velocity fluctuation). As shown in Fig. 8, it is evi-
dent that there are no coherent structure data points detected by
U-level in the middle of the quadrant plot while phase-space
detected points are more uniformly distributed, representing the
physical reality that a coherent structure does not just depend on
velocity in one direction. Similar plots are obtained for the other
flow conditions and measurement positions. The distribution
of coherent structure data points detected by the two meth-
ods over vertical velocity direction show comparable results.
The percentage difference of the proportion of detected coher-
ent structure data points in each quadrant is calculated by the
value obtained from phase-space minus the value obtained from
U-level and then divided by the value obtained from U-level.
In general, phase-space shows 8.50% and 11.56% higher per-
centage of points in quadrants 2 and 3 while U-level shows
5.52% and 10.04% higher percentage of points in quadrants 1
and 4. That means more ejection (Q2) and inward interaction
(Q3) events are detected by phase-space while more outward
interaction (Q1) and sweep (Q4) events are detected by U-level.

Table 2 Percentage of a coherent structure data points being
detected for all flow conditions

Average (%) Standard deviation (%)

U-level only (%) 15.92 0.65
Phase-space only (%) 16.49 0.50
Both methods (%) 40.85 0.91
Neither methods (%) 26.74 0.93
Agreement (%) 67.59 0.57
Disagreement (%) 32.41 0.57

5.6 Binary series analysis

Table 2 shows the percentage of coherent structure data points
being detected by each method, by both methods, and by nei-
ther method. It also shows the agreement of the two algorithms
(sum of points detected by both methods or neither) and the
disagreement of the two algorithms (sum of points detected
exclusively by each method only). The percentages are averaged
over all the depthwise positions and the average and standard
deviation for all flow conditions are summarized in Table 2.
All standard deviation values are less than 0.93%, which means
the performance of these two methods are consistent for all
flow conditions. There are 15.92% and 16.49% data points that
are only detected by U-level and phase-space respectively. The
points detected by one algorithm but not the other are not sur-
prising, since the proposed method uses an entirely different
detection criterion to the established U-level method. There
are 40.85% of coherent structure data points detected by both
algorithms and 26.74% of data points are not detected as coher-
ent structures by either algorithm. That together means these
two algorithms show 67.59% agreement and 32.41% disagree-
ment. Again, this is not surprising, since the phase-space method
employs a more physically realistic definition of a coherent
structure, whereas the U-level method only detects based upon
extremes in velocity.
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Figure 9 Size of turbulent structures profile by (a) U-level, (b) phase-space

Figure 10 Number of structures per metre by (a) U-level, (b) phase-space

5.7 Turbulent event profile analysis

The proposed phase-space method is applied to the ADV data
for all depthwise positions and flow conditions. The relation
between properties of coherent structures measured via the pro-
posed method and the bulk flow conditions and measurement
depthwise positions are presented in this section. Two turbulent
event profiles are analysed: size of turbulent structure vs depth-
wise position (Fig. 9) and number of turbulent structures per
metre (Fig. 10). The size of turbulent structure is the product
of mean event duration and mean depthwise streamwise veloc-
ity. The number of turbulent structures per metre is calculated
from the reciprocal of the product of the mean event period and
mean depthwise streamwise velocity. As shown in Fig. 9, both
methods show larger turbulent structures with the increase of

flow, which agrees with observations of Nichols (2014). This
also accords with observations from Roy et al. (2004), which
showed that the size of large-scale turbulent flow structure scale
with depth of flow. Figure 10 shows that with the increasing of
flow, fewer turbulent structures are apparent per metre, with a
slight increase in number of turbulent structures per metre near
the bed for high flows. This is in agreement with the findings
of Ng et al. (2021), which observe more large scale motions
and very large scale motions at the bottom of the pipe. Profiles
by the two detection methods show similar trends while phase-
space shows generally smaller size of turbulent structures and a
larger number of structures per metre. This can be explained by
the mean event duration and event period by phase-space being
lower than U-level, as discussed in Section 5.4.
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Figure 11 The performance of U-level and phase-space with different SNR (a) Number of detected events (b) Number of detected coherent structure
data points

5.8 Limitations

The proposed phase-space method can be applied to any 1D
velocity fluctuation data. The main weakness of the proposed
phase-space method is that it is relatively more sensitive to
noise. Different levels of artificial noise were added to ADV
velocity data measured at flow condition 4 at depthwise position
y/d = 0.51, with signal to noise ratio (SNR) ranging from 0 to
100. Figure 11 shows the performance of U-level method and
phase-space method with different SNR in terms of number of
detected events and number of detected coherent structure data
points. U-level method results start to converge at 20 dB SNR
while phase-space converge at 50 dB SNR. The phase-space
method requires calculation of acceleration and jerk as indicated
in Eq. (8a), which are easily affected by noise in velocity. Hence,
the calculation of ellipsoid axes (Eq. 9a) and detection ellipsoid
function (Eq. 10) are also affected. Therefore, use of the phase-
space detection method is recommend for data with SNR greater
than 50 dB.

6 Conclusion

This study proposed the use of a phase-space algorithm for tur-
bulent event detection. This algorithm was compared with the
U-level algorithm and evaluated in terms of the time series,
phase-space axes, individual event duration, individual event
period, quadrant contribution, binary series statistical simi-
larities and turbulent event profiles. Results obtained can be
summarized as follows:

• Phase-space coherent structure detection is an objective
way to detect structures with no ambiguity in choosing the
threshold value.

• The phase-space detected binary series is statistically com-
parable with U-level detected result. These two methods
usually detect events in the same groups, but do differ
slightly. Over 67% of data points can be detected by both
methods or not detected by both methods.

• Turbulent event parameters can be obtained through the
phase-space detected binary series and are comparable
with U-level results.

• The relation between turbulent event parameters (the size
of turbulent structures as well as number of structures
per metre) and flow conditions can be observed by the
proposed method.

• The phase-space method accounts for the physical reality
that a coherent structure consists of extremes in velocity,
acceleration and jerk, and that these properties should be
considered together when identifying extreme behaviour.

These results confirm that the phase-space algorithm can be
applied to 1D velocity data for detection of turbulent events. The
employment of this algorithm will not only consider extreme
velocity fluctuations but also extreme acceleration and jerk.
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Notation

y = depthwise position (mm)
k = phase-space scaling factor (–)
d = water depth (mm)
u2 = second quadrant velocity (m s−1)
A = flow cross-sectional area (m2)
yg = probability density function of gamma fit (–)
ye = probability density function of exponential fit (–)
b = fitting parameter (scale) for gamma distribution (–)
a = fitting parameter (shape) for gamma distribution (–)
µ = fitting parameter for exponential distribution (–)
Te = individual event period (s)
�T = individual event duration (s)
Q = flow rate (l s−1)
µf = dynamic viscosity of fluid (kg m−1 s−1)
Rh = hydraulic radius (m)
ρ = density of fluid (kg m−3)
Re = Reynold number (–)
Ub = bulk flow velocity (m s−1)
ej = minor axis of the ellipsoid (–)
ea = median axis of the ellipsoid (–)
eu = major axis of the ellipsoid (–)
l = universal threshold (–)
N = number of data points (–)
fs = sampling frequency (Hz)
�t = time interval (s)
ui = streamwise velocity at ith step (m s−1)
σu = standard deviation of streamwise velocity (m s−1)
σa = standard deviation of streamwise acceleration (m s−2)
σj = standard deviation of streamwise jerk (m s−3)
ji = streamwise jerk at i-th step (m s−3)
ai = streamwise acceleration at ith step (m s−2)
l = universal threshold (–)
v′ = instantaneous vertical velocity fluctuation (m s−1)
u′ = instantaneous streamwise velocity fluctuation (m s−1)
Su = root mean square of instantaneous streamwise veloc-

ity fluctuation (m s−1)

kU = U-level threshold (–)
α = sign of U-level (–)
D = U-level detection result (–)
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