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We give a complete characterization of the (non)classicality of all stabilizer subtheories. First, we
prove that there is a unique nonnegative and diagram-preserving quasiprobability representation
of the stabilizer subtheory in all odd dimensions, namely Gross’s discrete Wigner function. This
representation is equivalent to Spekkens’ epistemically restricted toy theory, which is consequently
singled out as the unique noncontextual ontological model for the stabilizer subtheory. Strikingly, the
principle of noncontextuality is powerful enough (at least in this setting) to single out one particular

classical realist interpretation. Our result explains the practical utility of Gross’s representation by
showing that (in the setting of the stabilizer subtheory) negativity in this particular representation
implies generalized contextuality. Since negativity of this particular representation is a necessary
resource for universal quantum computation in the state injection model, it follows that generalized
contextuality is also a necessary resource for universal quantum computation in this model. In
all even dimensions, we prove that there does not exist any nonnegative and diagram-preserving
quasiprobability representation of the stabilizer subtheory, and, hence, that the stabilizer subtheory
is contextual in all even dimensions.

Quantum computers have the potential to outperform
classical computers at many tasks. One of the major
outstanding problems in quantum computing is to
understand what physical resources are necessary and
sufficient for universal quantum computation. These
resources may depend on one’s model of computation [1–
3], and in some cases it seems that neither entanglement
nor even coherence is required in significant quantities [2].

The primary obstacle to building a quantum computer
is that implementing low-noise gates is difficult in practice.
While there are no gate sets which are easy to implement
and also universal [4], the entire stabilizer subtheory [5, 6]
can in fact be implemented in a fault-tolerant manner
relatively easily. To promote the stabilizer subtheory to
universal quantum computation, one must supplement
it with additional nonstabilizer (or ‘magic’) processes.
Because these nonstabilizer resources do not have a
straightforward fault-tolerant implementation, they are
typically noisy. To get around this problem, Bravyi
and Kitaev [7] introduced the magic state distillation
scheme, whereby fault-tolerant stabilizer operations are
used to distill pure resource states out of the initially
noisy resources. However, not every nonstabilizer resource
can be distilled in this fashion to generate a state which
promotes the stabilizer subtheory to universal quantum
computation. It is a major open question to determine
which states are in fact sufficient for this purpose.

Quasiprobability representations are a central tool
for making progress on these and related problems.
For finite-dimensional quantum systems, a number of
quasiprobability representations have been studied. For
example, Gibbons, Hoffman, and Wootters (GHW)
identified a family of representations on a discrete phase
space [8], and Gross then singled out one of these with

a higher degree of symmetry [9], by virtue of satisfying
a property known as “Clifford covariance”. All of these
have been used to study quantum computation [10–17].

Gross’s representation in particular has been the
most useful in understanding the resources required
for computation. For instance, Ref. [12] extended the
Gottesman-Knill theorem [6] by devising an explicit
simulation protocol for quantum circuits composed
of Clifford gates supplemented with arbitrary states
and measurements that have nonnegative Gross’s
representation. Ref. [12] also proved that every state
which is useful for magic state distillation necessarily
has negativity in its Gross’s representation. In Ref. [14],
this result was leveraged to prove that every state that
promotes the stabilizer subtheory to universal quantum
computation via magic state distillation must also exhibit
Kochen-Specker contextuality [18]. In recognition that
negativity in Gross’s representation is a resource for
quantum computation in this sense, Ref. [13] introduced
an entire resource theory [19] of Gross’s negativity.

From a foundational perspective, it is surprising that
any particular quasiprobability representation plays such
a central role. As argued in Ref. [20], negativity of any
one quasiprobability representation is not sufficient to
establish nonclassicality in general scenarios. So how
can it be that Gross’s representation plays such an
important role, e.g. that negativity in it is associated to
a strong form of nonclassicality, namely computational
speedups? Early clues were provided by Gross [9]
and by Zhu [21], each of whom proved that Gross’s
representation was the unique representation with some
natural symmetry properties. However, it has previously
been unclear what these properties have to do with
nonclassicality, and both Gross’s and Zhu’s arguments
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relied on auxiliary mathematical assumptions that were
not physically motivated (as we discuss below).
In this paper, we resolve this mystery by showing

that the only nonnegative and diagram-preserving [22]
quasiprobability representation of the stabilizer subtheory
in any odd dimension is Gross’s. We also prove that in
all even dimensions (where Gross’s representation is not
defined), there is no nonnegative and diagram-preserving
quasiprobability representation of the stabilizer subtheory.
This implies that the stabilizer subtheory exhibits
generalized contextuality in all even dimensions.
In the setting of the full stabilizer subtheory, our

result for odd dimensions proves that negativity of this
particular quasiprobability representation is a rigorous
signature of nonclassicality, i.e., the failure of generalized
noncontextuality. Generalized noncontextuality is a
principled [23–25], useful [26–38], and operational [39–44]
notion of classicality. If one’s process has negativity
in Gross’s representation, then our result establishes
that there is no nonnegative representation of the
full stabilizer subtheory together with that process.
Since nonnegative quasiprobability representations are in
one-to-one correspondence with generalized noncontextual
ontological models [20, 22, 24], this means that there is no
noncontextual representation for the scenario, and hence
no classical explanation of it [45].

Our work also extends the body of known connections
between contextuality, negativity, and computation [13–
16, 46–51]. Using known links between resources
for quantum computation and negativity in Gross’s
representation, together with our result connecting such
negativity to the failure of generalized noncontextuality,
one can derive connections between resources for quantum
computation and generalized noncontextuality.
We illustrate this by giving an analogue of the

celebrated result in Ref. [14]: namely, we prove that
generalized contextuality is necessary for universal
quantum computation in the state injection model.
Finally, we note that our main result demonstrates

that the principle of generalized noncontextuality is a
much stronger principle than was previously recognized,
at least in some settings. This is exemplified by the fact
that for stabilizer theories in odd dimensions, it does not
merely provide constraints on ontological representations,
it completely fixes the ontological representation. This
offers some hope that if the notion of a generalized
noncontextual model can be relaxed in such a way [52]
that lifts the obstructions to modelling the entirety of
quantum theory, such a model of the full theory might
also be unique. In our view such a uniqueness result would
offer a compelling reason to take the identified ontology
seriously.
The stabilizer subtheory— The stabilizer subtheory

is one of the most important subtheories of quantum
theory in the field of quantum information, playing an
important role in quantum computing [5–7, 14, 53, 54],

quantum error correction [5, 6, 55–57], and quantum
foundations [58–63]. We introduce it [64] briefly here,
with more details in the Supplemental Material (which
contains also Refs. [65–70]).
The stabilizer subtheory is built around the Clifford

unitaries. To define these, we first introduce
the Weyl operators (also called generalized Pauli
operators). Consider a d-dimensional quantum system
with computational basis {|0〉 , . . . , |d− 1〉}. Writing
ω = exp( 2πi

d
), we define the translation operator X and

boost operator Z via

X |x〉 = |x+ 1〉 Z |x〉 = ωx |x〉 . (1)

Note that here and throughout, all arithmetic is within Zd,
the integers modulo d. The single-system Weyl operators
are then defined as Wp,q = ZpXq, where p, q ∈ Zd. Note
that these are often defined with an additional phase
factor ωγp,q ; however, the resulting operational theory is
the same for any valid [49] phase choice, so we will set γp,q
to zero. The Clifford unitaries are defined as unitaries
which—up to a phase—map Weyl operators to other Weyl
operators under conjugation.
The stabilizer subtheory for a single system in

dimension d is defined as the set of processes which
can be generated by sequential composition of: i) pure
states uniquely identified by being the simultaneous
eigenstates of a given set of Weyl operators, ii) projective
measurements in the spectral decomposition of the Weyl
operators [71], and iii) Clifford unitary superoperators on
the associated Hilbert space, as well as convex mixtures
of such processes.
This construction is easily generalized to allow for

parallel composition, that is, for systems made up of n
qudits [72], by defining the multiparticle Weyl operators
as tensor products of those defined above, and defining the
multiparticle Clifford operators as unitary superoperators
that preserve the multiparticle Weyl operators under
conjugation; see Ref. [9] for more details. An important
feature is that in general the stabilizer subtheory defined
by parallel composition of n qudits is not the same as the
stabilizer subtheory defined by a single dn dimensional
system—for instance, the latter generally has far fewer
states [9]. Therefore, for a given dimension D there
may be multiple different stabilizer theories which could
be associated to it, depending on whether one views it
as a single monolithic system of dimension D (which
Gross calls the single-particle view), or views it as some
tensor product of multiple qudits (which Gross calls a
multi-particle view).
Quasiprobability representations— A quasiprobability

representation [22, 73, 74] is akin to a mathematical
representation of quantum processes as stochastic
processes on a sample space, except that the
representation may take negative values. For the
reasons laid out in Refs. [22, 52], we are only interested
in quasiprobability representations that satisfy the
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assumption of diagram preservation [22, 52]—namely, that
the representation commutes with sequential and parallel
composition of processes. This assumption is satisfied
by most of the useful quasiprobability representations
considered in the literature, including the standard
(continuous-dimensional) Wigner function and Gross’s
representation.
The arguments of Ref. [22] imply that every

diagram-preserving quasiprobability representation of a
full dimensional subtheory [75] of quantum theory can be
written as a minimal frame representation [73], i.e. one
whose frame elements form a basis, as follows. One first
associates to each system a basis {Fλ}λ for the real vector
space of Hermitian operators, where

tr[Fλ] = 1. (2)

Every basis has a unique dual basis, {Dλ}λ, as proved in
the Supplemental Material, where

∑

λ

Dλ = 1, tr[Dλ′Fλ] = δλλ′ . (3)

In this representation, a completely-positive
trace-preserving map [76, 77] E is represented by
a quasistochastic map defined by

ξE(λ
′|λ) = tr[Dλ′E(Fλ)]. (4)

As special cases, the representations of a state ρ and an
effect E are given by

ξρ(λ) = tr[Dλρ], ξE(λ) = tr[FλE], (5)

and the quantum probabilities are recovered as

tr[EE(ρ)] =
∑

λ′,λ

ξE(λ
′)ξE(λ

′|λ)ξρ(λ). (6)

A quasiprobability representation is said to be
nonnegative if for every process E , 0 ≤ ξE(λ

′|λ) ≤
1 for every λ, λ′. In this case, the representation
is in one-to-one correspondence with a noncontextual
ontological model [23, 52].
Gross’s representation— The particular

quasiprobability representation introduced by Gross [9]
is for odd dimensional quantum systems and takes the
sample space to be a phase space V = Zd × Zd, and so
its elements will be labelled by a := (p, q), rather than λ.
Hence, the basis operators in Gross’s representation are
indexed by a ∈ V , and we will denote them by Aa.
The basis operators in Gross’s representation can be

written in terms of the Weyl operators as follows:

{Aa}a :=

{

1

d

∑

b

ω−[a,b]WG
b

†

}

a

, (7)

where Gross’s Weyl operators WG
p,q are related to ours via

WG
p,q := ω2−1pqWp,q. These operators form an orthogonal

basis, and so the basis is essentially self-dual, so that both
{Fλ} and {Dλ} are proportional to {Aa}, with Dλ = 1

d
Fλ.

They moreover satisfy a number of useful properties (see,
e.g., Lemma 29 of Ref. [9]) including a key feature of
translational covariance [9] where:

Wp′,q′Ap,qW
†
p′,q′ = Ap+p′,q+q′ ∀p, q, p′, q′. (8)

Main result— Our main result is a complete
characterization of the (non)classicality of the stabilizer
subtheory in every finite dimension.

Theorem 1.

(a) For any stabilizer subtheory (single- or
multi-particle) in odd dimensions, the unique
nonnegative and diagram-preserving quasiprobability
representation for it is Gross’s representation.

(b) For any stabilizer subtheory (single- or
multi-particle) in even dimensions, there is no
nonnegative and diagram-preserving quasiprobability
representation.

The proof is given in the Supplemental Material.
As shown in Ref. [58, 60], Gross’s representation

is identical to Spekkens’ epistemically restricted toy
theory [78] for odd dimensions [58]. Through the
equivalences between various notions of classicality [22],
our result can be stated in a number of ways. Perhaps the
most natural equivalent statement of Theorem 1 is the
following: For odd dimensions, the unique noncontextual
representation of the stabilizer subtheory is Spekkens’
epistemically restricted toy theory. For even dimensions,
the stabilizer subtheory is contextual.
There are several senses in which our uniqueness

result, Theorem 1(a), is stronger than that proven by
Gross [9] or that proven by Zhu [21]. Most importantly,
the principle of generalized noncontextuality is a
well-established notion of classicality, while Gross’s notion
of Clifford covariance and Zhu’s (weaker) notion of Clifford
covariance are not. Additionally, our result starts from
the very weak assumption of classical realism [52]—that
is, the ontological models framework—while Gross’s and
Zhu’s results rely on additional assumptions which have
not been given physical motivation. In particular, both
Gross’s and Zhu’s arguments only single out Gross’s
representation if one assumes that one’s representation
is on a d × d phase space, and that it gives the correct
marginal probabilities [79]. In our approach, both of these
are derived. Finally, our uniqueness result holds in all odd
dimensions, while Gross’s uniqueness result was proven
only for odd prime dimensions, and Zhu’s only for prime
power dimensions.
Theorem 1(b) establishes that every stabilizer

subtheory of even dimension exhibits contextuality. While
this result has previously been claimed to be true, it
had not in fact been proven (to our knowledge). For
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d = 2, there are well-known proofs of contextuality, e.g.
in Ref. [62]. It follows that every subtheory which contains
all the processes in the qubit stabilizer subtheory is also
contextual. However, it is not known whether every
even-dimensional stabilizer subtheory contains the qubit
stabilizer as a subtheory (see Ref. [9]), and so the claim
of Theorem 1(b) does not trivially follow in this manner.

Generalized contextuality as a resource for quantum
computation— The stabilizer subtheory is efficiently
simulable [6]. However, if one supplements it with
appropriate nonstabilizer states, one can achieve universal
quantum computation through magic state distillation [7].

Any state which promotes the stabilizer subtheory to
universal quantum computation must have negativity
in its Gross’s representation [12]. Ref. [14] further
showed that Kochen-Specker contextuality is necessary
for universality in this model of quantum computation.

The key argument of Ref. [14] was a graph-theoretic
proof that if a state is negative in Gross’s representation,
then it admits a (state-dependent) proof of
Kochen-Specker contextuality using only stabilizer
measurements. Our main theorem, Theorem 1, is
analogous, establishing that if a state is negative
in Gross’s representation, then it admits a proof of
generalized contextuality.

Hence, we immediately arrive at a result akin to that
of Ref. [14]: generalized contextuality is necessary for
universality in the state injection model of quantum
computation.

Theorem 2. Consider any state ρ which promotes the
stabilizer subtheory to universal quantum computation.
There is no generalized noncontextual model for the
stabilizer subtheory together with ρ.

We comment in the Supplemental Material on two other
routes to proving this theorem.

On the sufficiency of generalized contextuality for
universal quantum computation— Thus far we have
focused on the necessity of contextuality for quantum
computation. However, the fact that Gross’s
representation provides the unique noncontextual
representation of the stabilizer subtheory may also be
useful for discovering in what sense (if any) generalized
contextuality is sufficient for quantum computation.

Without any caveats, generalized contextuality is
clearly not sufficient for universal quantum computation.
This can be seen by the example of the stabilizer subtheory
in dimension 2, which admits proofs of contextuality [62]
and yet is efficiently simulable [6].

Still, it is conceivable that there is a more nuanced
sufficiency result relating contextuality and computation,
e.g. by leveraging quantitative measures of generalized
contextuality [80] or by focusing on particular dimensions
and models of quantum computation. We now prove a
related result (without explicit reliance on Theorem 1).

From Ref. [12, 81], we know that access to enough copies
of any nonstabilizer pure state promotes the stabilizer
subtheory to universal quantum computation. Similarly,
access to enough copies of any nonstabilizer unitary
promotes the stabilizer subtheory to universal quantum
computation, since the Clifford unitaries together with
any other unitary gate forms a universal gate set [82, 83].
It is well known that every pure nonstabilizer state

is negatively represented in Gross’s representation [9].
Additionally, it is not hard to see that every nonstabilizer
unitary gate is negatively represented in Gross’s
representation. By the universal gate set property [82, 83],
combining the positively represented Clifford gates with
any given nonstabilizer unitary allows the approximation
of any other unitary—including one that maps some
pure stabilizer state to some pure nonstabilizer state.
Since the stabilizer state is represented positively and
the nonstabilizer state must be represented negatively
in Gross’s representation, the unitary mapping between
them must have negativity in its Gross’s representation,
and hence so must the given nonstabilizer unitary used
to construct it. Hence we obtain the following theorem:

Theorem 3. A (necessary and) sufficient condition
for any unitary or pure state to promote the stabilizer
subtheory to universal quantum computation is that it be
negatively represented in Gross’s representation.

For the case of pure states, this result was pointed out in
Refs. [12, 81]. Perhaps the most important open question
that remains is whether an analogous sufficiency result
holds for mixed states and generic quantum channels.
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