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Abstract 
Background: Despite extensive work on macrophage heterogeneity, 
the mechanisms driving activation induced heterogeneity (AIH) in 
macrophages remain poorly understood. Here, we aimed to develop 
mathematical models to explore theoretical cellular states 
underpinning the empirically observed responses of macrophages 
following lipopolysaccharide (LPS) challenge. 
Methods: We obtained empirical data following primary and 
secondary responses to LPS in two in vitro cellular models (bone 
marrow-derived macrophages or BMDMs, and RAW 264.7 cells) and 
single-cell protein measurements for four key inflammatory 
mediators: TNF, IL-6, pro-IL-1β, and NOS2, and used mathematical 
modelling to understand heterogeneity. 
Results: For these four factors, we showed that macrophage 
community AIH is dependent on LPS dose and that altered AIH 
kinetics in macrophages responding to a second LPS challenge 
underpin hypo-responsiveness to LPS. These empirical data can be 
explained by a mathematical three-state model including negative, 
positive, and non-responsive states (NRS), but they are also 
compatible with a four-state model that includes distinct reversibly 
NRS and non-responsive permanently states (NRPS). Our 
mathematical model, termed NoRM (Non-Responsive Macrophage) 
model identifies similarities and differences between BMDM and RAW 
264.7 cell responses. In both cell types, transition rates between states 
in the NoRM model are distinct for each of the tested proteins and, 
crucially, macrophage hypo-responsiveness is underpinned by 
changes in transition rates to and from NRS. 
Conclusions: Overall, we provide a mathematical model for studying 
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macrophage ecology and community dynamics that can be used to 
elucidate the role of phenotypically negative macrophage populations 
in AIH and, primary and secondary responses to LPS.
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Introduction
Variability in gene expression in eukaryotic cells is required 

to allow communities of cells to switch from homeostatic to 

inducible states while responding to external cues (Blake et al.,  

2006; Eldar & Elowitz, 2010). Genetically identical popula-

tions show considerable cell-to-cell variability, particularly of 

proteins that are stress induced (Bar-Even et al., 2006; Newman  

et al., 2006). Studies on heterogeneity have found that expression 

of housekeeping genes tends to be normally (or log normally) 

distributed in apparently homogeneous populations (Klein  

et al., 2015; Kumar et al., 2014) while a subset of genes displays 

increased cell-to-cell variability with a bi-modal distribution  

(Shalek et al., 2013). Population heterogeneity plays a critical  

role in shaping immune responses. For example, seemingly  

clonal populations of myeloid cells can produce effector cytokines 

heterogeneously. Several models of myeloid heterogeneity 

have been described, including bi-phasic transcription factor  

activation such as that of NF-kB and autocrine/paracrine 

effects of TNF or IL-1β in response to TLR stimulation (Burns  

et al., 1998; Caldwell et al., 2014; Han et al., 2002; Hayden  

& Ghosh, 2014) and recently shown to be partly dependent 

on intercellular desynchronization of molecular clock (Allen  

et al., 2019). Interestingly, macrophage hypo-responsiveness 

to secondary stimulation has been associated with a switch in 

phenotype wherein, by a combination of TLR4 attenuation, 

microRNA (miRNA)-mediated silencing expression, and chro-

matin modifications, macrophages lose their ability to make  

inflammatory proteins (Biswas & Lopez-Collazo, 2009; Netea  

et al., 2015; Seeley & Ghosh, 2017) with alterations in chromatin 

accessibility being a more permanent cause for this phenom-

enon. In addition, macrophage hypo-responsiveness is driven  

by effects only on some genes while expression of others remains 

unaffected (Foster et al., 2007). Despite the above insight,  

the effect of primary or repeated stimulation on macrophage 

population heterogeneity, termed here as activation-induced  

heterogeneity (AIH) and the underpinning molecular mechanisms  

remain elusive.

Here, we aimed to develop a mathematical model capturing 

AIH within macrophage communities to propose and explore  

theoretical cellular states underpinning the empirically observed 

consistency of these communities. We used empirical data from 

two simple cellular systems of primary and secondary LPS 

challenge and measuring expression of four pro-inflammatory 

proteins. Our mathematical models of TNF, IL-6, pro-IL-1β,  

and NOS2 states reveal that transitions to and from phenotypi-

cally negative or non-responding macrophage populations are 

critical determinants of macrophage AIH and responses to  

primary and secondary LPS challenge.

Methods
Ethics statement
Mouse breeding was performed under a UK Home Office 

License (project license number PPL 60/4377). Experiments 

were conducted with approval from the University of York  

Animal Welfare and Ethical Review Body. Mice were euthanised 

by CO
2 

inhalation. Animal handling was conducted with care to  

reduce animal suffering.

Animals
Female C57BL/6 CD45.2 mice were obtained from Charles 

River (UK). Animal care was regulated under the Animals  

(Scientific Procedures) Act 1986 (revised under European Direc-

tive 2010/63/EU). Animals were used as a source of tissue only  

and no procedures were conducted on the animals themselves.

Study design
In this study, six-eight-week-old female wildtype C57BL/6  

CD45.2 mice were used as a source of bone marrow-derived 

cells. No animal groupings were created prior to bone marrow 

cell isolation. All animals used in the study were healthy, show-

ing no signs of distress and none were excluded from the  

study. Animals were kept under specific pathogen-free condi-

tions. Isolated cells from a single animal were differentiated 

and divided into groups for each independent experimental 

replicate. The number of animals used in the study was deter-

mined based on pilot experiments, and a priori sample size  

calculation was not performed. Results from the study are based 

on at least three independent experiments and the individual  

repeat is indicated in figure legends as ‘n’.

Cell culture
Bone marrow-derived macrophages (BMDMs) were isolated 

from female C57BL/6 mice and differentiated in the presence 

of MCSF1 (50ng/ml) for six days and then frozen at -70°C.  

Frozen BMDM from half a mouse (one tibia and one femur) 

were plated and cultured in 10mL of macrophage media in 

100cm petri dishes for 2–3 days in the presence of MCSF1 before  

plating them on 24 well plates for experiments.

Both RAW264.7 cells and BMDMs were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM) supplemented with 1% strep-

tomycin-penicillin mixture, 1% L-glutamine and 10% fetal 

calf serum (Hyclone). For experiments using BMDM, MCSF1 

was added in the cell culture media and kept for the duration  

of the experiment.

RAW 264.7 cells, are a monocyte/macrophage-like cell line, 

originating from Abelson leukemia virus transformed cell 

line derived from BALB/c mice, were detached for passaging 

using 1x Trypsin-EDTA (Invitrogen) by incubating at 37°C for  

10 minutes. Cells were detached completely by gently scrap-

ing with cell scraper with a cross-ribbed handle (VWR). Upon 

reaching 70–80% confluency, cells were harvested and plated 

          Amendments from Version 1

In this version, we have added sensitivity analysis as a part of 
Figure 6E to show each parameter affects the outputs of our 
mathematical model. We show here that rate parameters that 
govern transitions to/from non-responsive states affect the 
model output variability the most. In addition, we have described 
our parameter estimation methodology clearly in methods and 
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in Figure 8 and Figure 9 which have been described in results, 
however, qualitatively our result remain similar suggesting that 
3-state models with negative, positive and non-responsive states 
are sufficient to describe macrophage hyporesponsiveness. The 
composition of these states vary for individual proteins.

Any further responses from the reviewers can be found at 
the end of the article

REVISED

Page 3 of 27

Wellcome Open Research 2022, 7:29 Last updated: 25 AUG 2022



in 24 well plates. BMDMs were detached by gentle pipetting 

up and down using ice cold 1X PBS (Gibco). Cells were centri-

fuged (1500RPM for RAW264.7 and 1300RPM for BMDMs) at 

room temperature for five minutes for the purposes of washing or  

re-suspending.

LPS challenge
LPS from Escherichia coli serotype 055:B5 (Sigma-Aldrich, 

L2880) was used. This is a phenol extracted LPS with <3%  

protein impurity. Approximately 125-150,000 RAW264.7 cells 

or BMDMs were plated overnight before experiments. All cells  

were plated in a Corning 24 well plate in 500ul of DMEM. For 

LPS titration experiments, cells were either stimulated with LPS  

or were left in media (untreated) on day 1. Cells were chal-

lenged with 1, 10, 100 or 1000 ng/ml of LPS. Supernatant was 

collected at 24 hours and stored at -20oC. Cells were harvested  

for flow cytometry at 16 or 24 hours from LPS stimulus.

For inducing hypo-responsiveness, cells were either stimulated 

with 10 or 1000 ng/ml of LPS or left untreated in media on day 

0. After 24 hours (day 1), cells were washed twice with PBS and 

replaced with media (Media/Media) or with media containing  

1000 ng/ml of LPS (10/1000; 1000/1000 or Media/1000).

Flow cytometry
RAW264.7 cells of BMDMs were collected after washing 

in ice-cold PBS and then detaching the cells with Accutase  

(BioLegend). Prior to collection, cells were incubated in  

10ug/ml of Brefeldin A (BFA, Sigma). BFA was added to the  

culture four hours prior to harvest for staining.

Cells and all reagents were maintained at 4°C throughout the 

intra-cellular staining protocol. Harvested cells were washed 

twice in PBS and re-suspended in approximately 50ul of PBS. 

Cells were stained with 100ul of 1:1000 Zombie Aqua live/dead  

stain (BioLegend) in PBS on ice for 8–10 minutes in the dark.  

F
c
 receptors were blocked with 5ul of 2mg/ml rat IgG for five 

minutes. Cells were fixed with BD Cytofix and permeabi-

lized with BD Cytoperm. Intracellular staining was performed 

with the cocktail of antibodies made in permeability buffer.  

BV421-TNF (MP6-XT22; BioLegend), APC-IL6 (MP5-

20F3; BioLegend, eFluor 610-NOS2 (CXNFT; ThermoFisher  

Scientific), PE-pro-IL-1β (NJTEN3, ThermoFisher Scientific),  

FITC-F4/80 (BM8, BioLegend) and PE-Cy7 CD11b (M1/70, 

BioLegend) were used for staining RAW264.7 cells. BMDMs 

and RAW264.7 cells were pre-gated on live cells, singlets, 

forward scatter, and side scatter (for gating intact cells),  

F4/80+ and/or CD11b. Flow cytometry was performed on a BD 

Fortessa and the analysis done using FlowJo (v10.7.2).

ELISA and Greiss assays
IL-6, TNF and IL-1β concentrations in the cell culture super-

natant were measured by enzyme-linked immunosorbent assay  

(ELISA) using BioLegend’s ELISA MAX Standard. Manufac-

turer’s recommended protocol was followed. Absorbance was 

read at 450nm with a wavelength correction at 570nm using a 

VersaMax Microplate Reader (Molecular Devices). Standard  

curves were generated using four-parameter non-linear fitting 

to known standard concentrations using SoftMax Pro software  

(v5.4). Optical density of the unknowns that fit within the  

linear range of the standard curve was used to calculate the  

concentration of the sample.

Greiss assay was used to measure nitrite concentrations in 

the supernatants. Diazotization reaction in Greiss assay was  

carried out as per manufacturer’s instructions (Promega). Plates 

were read on VersaMax microplate reader capturing absorbance  

between 520 and 550nm.

Mathematical modelling
Bespoke MATLAB code, NoRM, was written to implement sto-

chastic simulations using the Doob-Gillespie algorithm. The 

key transition rates (α, β, β
2
, γ, γ

2
) were estimated using rejec-

tion sampling according to the following algorithm: the NoRM 

model was run with 106 independently generated parameter 

sets. Within each parameter set, each parameter (α, β, β
2
, γ, γ

2
)  

was independently sampled from a uniform (U[0.01,1]) distri-

bution. The unitless coefficient µ (co-efficient for modelling  

LPS dynamics) was fixed at 10. The LPS decay rate, δ, was  

fixed at 0.5 d-1 to represent an LPS decay rate of approximately 

1 day at the highest in silico dose (1000ng/ml). To check that 

the chosen distribution did not influence the results, the proc-

ess of random parameterisation was repeated with 106 inde-

pendent samples of (α, β, β
2
, γ, γ

2
) from normal (N[0.03, 0.01)]  

and gamma (G[0.68,0.2]) distributions; similarly, alternative 

choices for the LPS coefficient µ were explored, but no quali-

tative change in model endpoints was observed. Selection of 

parameter sets that best explained empirical datasets was per-

formed by rejection sampling based on the Akaike Information  

Criterion (AIC). Finally, to check the sensitivity of the model 

outcomes (i.e. number of positive, negative, non-responsive or 

non-responsive permanent cells) to parameterisation, an extended 

Fourier Amplitude Sampling Test (Saltelli & Bollardo, 1998) was 

used to check output variance between input parameters using  

the R based SPARTAN tool (Alden et al., 2013): briefly, param-

eter sets were sampled from the parameter space using sinusoidal  

functions in a way that the frequency of the parameter of inter-

est is varied more than the others. A total of 3 resample curves  

were used to select 65 parameter sets chosen along the curve 

for each of the 7 parameters (NoRM model) plus one dummy 

parameter resulting in a total of 1560 parameter sets. Each 

parameter set was then used to run the model a further 30 times 

to account for the noise associated with the Doob-Gillespie  

implementation.

Modelling process. The following section describes the mod-

elling process in detail. In particular, it describes simpler 

models that were tested to arrive at our proposed model for  

macrophage activation.

Positive-state model definition. The response to LPS in the  

in silico cell environment was modelled as a direct positive 

effect on the forward rate that describes the transition of a cell to  

the P state such that

                           (1 )LPS Lα α µ= +                            –  equation S1

where α
LPS

 is the overall forward rate which takes into account 

the LPS in the environment, α is the forward rate in the absence 

of LPS, L is the concentration of LPS in the environment and µ 
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is a constant that describes the magnitude of the response to LPS 

concentration. The linear assumption in equation S1 is used for 

simplicity to induce plausible local LPS dynamics at the cost of  

introducing a single unknown, µ.

Upon describing the above model as an ODE, we have

                       (1 )
dP

N L P
dt

α µ β= + −                       –  equation S2

where 
dP

dt
 represents rate of change in the number of cells in 

the positive state with respect to time, P, N are the number of 

in silico cells in the positive and negative state respectively,  

β is the rate at which cells in the positive state change to negative 

state.

We model the decay of LPS concentration, L as a simple  

first-order exponential decay in continuous time. This can then  

be expressed as

                               0( ) tL t L e δ−=                               –  equation S3

where L
0
 and L(t) represent the concentration of LPS at time  

zero and t respectively, and δ is the constant LPS decay rate.

At a time, dependent quasi-equilibrium, where the dynam-

ics of L are assumed to occur on a slower time scale than those  

of P and N, equation S2 can be used to write

                       
* 0(1 )t

quasi

N L e
P

δα
β

−+
=                       –  equation S4

where rate of change of P, 
dP

dt
 = 0 and 

*

quasiP  represents the  

number of in silico cells in the positive state at quasi-equilibrium.

It can be inferred from equation S4 that in the absence of LPS  

in the environment,

                                  
* N
P

α
β

=                                  –  equation S5

which is the equilibrium (P*) dynamics for the simple case 

where two species switch between each other with rates α and  

β respectively.

Further, equation S2 can be re-written as

                   ( ) (1 )
dP

T P L P
dt

α µ β= − + −                   –  equation S6

where T is total number of cells since T = N + P at any given time.

Equation S6 can be solved exactly to the following closed  

form equation given the initial condition P
(0)

 = 0.

 0
0

( ) ( )/ 1
0( ) 0

( )

tL e
tt t t t L e t

t
P e T e L e dt

δαµ δα β α β αµ δ δδ α µ
−

−− + + − − += ∫
 –  equation S7

While equation S7 can model the fraction of macrophages 

responding to a primary LPS stimulation, it fails to explain 

the effect of second dose of LPS wherein a smaller fraction  

of the population responds unless the value of α is modified  

for the population. This implies that the LPS response of the 

whole population changes upon secondary stimulus and is 

incompatible with experimental results, at the transcript level,  

cytokines are expressed bi-modally (Shalek et al., 2013).

Non-responsive state model (“three-state model”). We then 

explored whether the inclusion of an additional state (pheno-

type) could explain macrophage hypo-responsiveness with 

respect to any one protein. To this effect, we first excluded the  

LPS-induced effect on α and explored simpler linear explanations  

of what we observe by considering the following equations

                   
2LPS

dN
N P NR

dt
α β β= − + +                    –  equation S8

                      1LPS

dP
N P P

dt
α β γ= − −                       –  equation S9

                         1 2

dNR
P NR

dt
γ β= −                         –  equation S10

where NR represents the non-responsive state and 𝛾
1
 repre-

sents the rate at which positive cells change to a non-responsive 

state (NR, equation S10) while β
2
 rate at which non-responsive 

cells become negative cells (N, equation.S8) and α
LPS

 is LPS  

dependent (equation S1).

Non-responsive state model (“four-state model”). We 

then asked whether the inclusion of a fourth state (a  

non-responsive permanent state or NRPS) can resolve empirical  

hypo-responsiveness better. NRPS state is modelled as an  

end-point state in the model with the rate of change equation  

for NRPS state and modifying equation S10 as follow:

                            2

dNRPS
NR

dt
γ=                            –  equation S11

                   1 2 2

dNR
P NR NR

dt
γ β γ= − −                   –  equation S10

where 𝛾
2
 is the rate at which cells become permanently  

non-responsive.

Statistics
All experiments were performed in at least three biologi-

cal replicates. BMDM experiments were performed with  

macrophages from at least three mice. Statistical and numeri-

cal analysis was done using Graphpad Prism (version 9.3.1) and  

Matlab (R2019a). Treatment groups were compared by multi-

ple comparisons one-way ANOVA. The level of significance was  

set at 0.05.

Results
Macrophage community AIH is dependent on LPS dose
To obtain empirical data for our mathematical model and to  

capture distinct macrophage subpopulations upon activation 

with LPS we measured protein expression of three cytokines, 

TNF, pro-IL-1β and IL-6, and one intracellular pro-inflammatory  

protein NOS2, an enzyme that catalyzes nitric oxide formation.  

We selected these factors as they are all inducible upon LPS 

challenge. Furthermore, heterogeneity in TNF and IL-1β secre-

tion in populations can be a result of bi-phasic NF-kB activation 

(Tay et al., 2010). IL-6 and NOS2 are also up-regulated  
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due to LPS (Farlik et al., 2010; Tanabe et al., 2010). In addi-

tion, all these proteins have been implicated in LPS-induced 

macrophage hypo-responsiveness. To study AIH, we focused 

on the early stages (within the first 24h) post-primary or second-

ary stimulation with LPS to minimise confounding effects of  

secondary and tertiary cytokine-mediated effects.

First, we selected RAW264.7 cells as a cellular model. These 

cells are thought to be a model of primary bone-marrow derived 

macrophages with regards to expression of surface recep-

tors and the response to microbial ligands (Berghaus et al.,  

2010). We reasoned that using a macrophage cell line to study 

AIH also reduced the level of starting population heteroge-

neity in comparison to that we would observe using primary  

macrophages. The community composition of LPS-stimulated  

RAW264.7 cells was represented graphically by charting  

the 16 possible sub-populations by adapting the Simplified  

Presentation of Incredibly Complex Evaluations (SPICE) 

method (Roederer et al., 2011), with each slice representing a  

subpopulation (Figure 1A, B) with positive fractions selected 

based on appropriate isotype controls (supplementary Figure 1C).  

Consistent with the concept of AIH, we found that the dose 

of LPS can have qualitative effects on the diversity of the 

response; quadruple positive and TNF negative triple positive  

(TNF-proIL1β+IL6+NOS2+) cells appear prominently at higher 

doses of LPS (100, 1000ng/ml; Figure 1B), while quadru-

ple negative (TNF-pro-IL1β-IL6-NOS2-) sub-populations and  

single positive cells for TNF (TNF+pro-IL1β-IL6-NOS2-) appear 

at lower doses (1, 10ng/ml; Figure 1B). Despite heterogene-

ous compositions of low and high dose of LPS, double-positive  

TNF-proIL1β+IL6-NOS2+ cells were a part of all LPS doses 

with little variability (1, 10, 100, 1000ng/ml; Figure 1B) suggest-

ing the presence of sub-populations with differential dependence  

on the magnitude of LPS dose.

Next, we explored AIH in BMDMs, a cell model more faith-

fully capturing heterogeneity of primary macrophages. As in 

the case of RAW264.7 cells, exposure to LPS induced popu-

lation heterogeneity in BMDMs albeit with different kinetics 

to that observed in RAW264.7 cells (compare Figure 2 with  

Figure 1B). Whereas all populations were observed at 16h (12h 

stimulation followed by 4h of BFA treatment) post-stimula-

tion in RAW264.7 cells, in BMDMs this was the case at earlier 

timepoints but not at 16h. Notably, the percentage of TNF-

positive BMDMs peaked at 4h post stimulation, demon-

strating a faster TNF response in BMDMs in comparison to 

RAW264.7 cells. In BMDMs, single positive cells for NOS2+  

cells (TNF-pro-IL1β-IL6-NOS2+) increased while sin-

gle positive cells for pro-IL1β (TNF-pro-IL1β+IL6-NOS2-) 

decreased with increasing magnitude of LPS dose at all time 

points (Figure 2). Further, quadruple negative sub-population  

(TNF-pro-IL1β-IL6-NOS2-) did not show a clear increase 

with a lower LPS dose as in RAW264.7 cells suggesting that 

the appearance of these sub-populations is more nuanced in 

BMDMs. While higher frequency of quadruple negative cells 

in 1ng/ml versus 10ng/ml could reflect differences in responses 

to increasing amounts of LPS the increased quadruple negative 

sub-population frequency in 100 and 1000ng/ml concentration 

may be due to a fast response accompanied by an immediate  

switch to a non-responding phenotype.

Overall, our findings indicated that exposure to LPS induced 

population heterogeneity in macrophage communities for both 

a macrophage cell line (RAW264.7 cells) and primary BMDMs. 

As expected, cell-type specific differences were observed with 

BMDM responses occurring and peaking faster and reaching 

a plateau at lower LPS concentrations. These could be linked to 

differential sensitivity to LPS, but also differential pre-existing  

population heterogeneity between BMDMs and RAW264.7 

cells. Regardless of these differences in kinetics our findings 

demonstrated that upon primary LPS challenge, AIH occurs  

in macrophages in an LPS-dependent manner. 

Altered AIH kinetics in response to a second LPS 
challenge underpin macrophage hypo-responsiveness
Next, we tested how changes in macrophage community  

compositions in RAW264.7 cells compared between macrophages  

challenged with LPS for a second time and macrophages  

responding to a first LPS stimulus. We obtained temporal snap-

shots of RAW264.7 cell communities responding to LPS along-

side LPS responses of communities that were pre-exposed to 

varying LPS doses (Figure 3A). At the population level, cumu-

lative secreted levels of TNF, IL-6, and NO were reduced for  

RAW264.7 cells (Figure 3B), supporting that the LPS pre-treat-

ment compromised the ability of cells to respond to a second 

LPS challenge. At the community level, single-cell measurements 

revealed that pre-treated macrophage community consistency 

(10/1000 and 1000/1000) differed to that seen during primary  

challenge (Media/1000) at 8h and 12h post stimulation but not at 

16h (Figure 4). For example, pre-treated macrophages were char-

acterised by a prominent TNF-pro-IL1β+IL6-NOS2+ population  

but reduced TNF+ populations at the earlier stages of the 

response. This suggested that LPS-induced hypo-responsiveness  

is underpinned by different starting community compositions 

and altered community evolution trajectories, but not a different  

endpoint community composition.

In BMDMs, LPS-induced hypo-responsiveness was observed 

for cells pre-treated with 1000ng LPS for cumulative secreted 

levels of TNF, IL6, NO, and IL1β (Figure 5A). IL1β secre-

tion was only observed in BMDMs pre-treated with 10ng 

LPS, in agreement with the known requirement of a priming 

step for pro-IL1β processing and IL1β secretion (Eder, 2009;  

Lopez-Castejon & Brough, 2011). BMDMs pre-treated with 

1000ng LPS failed to produce secreted IL1β (Figure 5A), further 

supporting their hypo-responsive phenotype. At the single-cell  

level, despite increased levels at early timepoints (0–4hr) for  

NOS2 and pro-IL1β, we observed reduced expression of all 

measured proteins at 12 hours post stimulation of BMDMs  

pre-treated with 1000ng LPS (Figure 5B, C) and increased quad-

ruple negative population at all timepoints (Figure 4B). Having 

observed the kinetic differences between RAW264.7 cells 

and BMDMs upon primary LPS challenge (Figure 1B and  

Figure 2), we explored an earlier time point in BMDM response 

(0–4hr in BFA, Figure 4B). Indeed, 90% of all BMDMs also 

undergo an TNF+ state after which a fraction continues to 

be in the TNF+ sub-populations and a fraction that switches 

off (0–4hr BFA versus 4hr +4hr BFA in Media/1000 group).  

This finding is also in line with TNF being an early response 

protein (Bradley, 2008) and shaping macrophage community 

structure (Caldwell et al., 2014). As in the case of RAW264.7  
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Figure 1. Macrophage community AIH is dependent on LPS dose. A. Flow cytometry gating to show 16 sub-populations determined 
based on TNF, IL-6, pro-IL-1b and NOS2. B. Pie charts represent the community composition at 16 hours post stimulus with the indicated 
doses of LPS for RAW264.7. Data representative of three independent experiments. C. Bi-plots describing strategy for gating for positive and 
negative fractions for TNF, pro-IL1β, IL-6 and NOS2 positive cells throughout the experiments shown here for BMDMs as a representation. 
Gating was adjusted based on pooled isotype and re-confirmed using fluorescent minus one controls (FMOs for PE and PE-eFluor 610) with 
controls for media only treatment. Finally, a representative graph showing cells treated with 10ng/ml LPS to show staining example and 
positive fractions.
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Figure 2. Macrophage community AIH kinetics for BMDMs. Pie charts represent the community composition at 8, 12 and 16 hours 
post stimulus with the indicated doses of LPS for BMDMs. BMDMs are pre-gated on Live/Singlets/FSC-SSC/CD11b+F4/80+ population. Data 
representative of three independent experiments.

cells, we observed more striking community differences dur-

ing the early timepoints of the response (4hr+4hr BFA and  

8h+4hr BFA) between pre-treated and control BMDMs. The  

end-point compositions (8h+4hr BFA) were less distinct, 

although we note that in BMDMs, LPS pre-treatment resulted in 

an increase in quadruple negative cell populations and a reduc-

tion in TNF+ populations in LPS-pretreated cells at 12h post  

challenge (Figure 4B).

In the 10/1000 community 76% RAW264.7 cells (4hr+4hr BFA,  

Figure 4A; 75% BMDMs at 0–4hr, Figure 4B) were positive 

for TNF and hypo-responsiveness was most pronounced in the  

1000/1000 community with just 16.9% BMDMs and 18% 

RAW264.7 cells being TNF+ in the first four and eight hours 

of the response respectively (Figure 4). Furthermore, in both 

BMDMs and RAW264.7 cells and at the earliest timepoints, the  

10/1000 community showed a higher percentage of TNF+ 

cells than the 1000/1000 community that switch off rapidly to  

45% for RAW264.7 cells and 26% for BMDMs at 12 and 8 

hours respectively, suggesting that a lower dose pre-stimulus  

decreases the capability of a population of cells to switch on 

TNF in response to a higher dose pre-stimulus. Furthermore,  

RAW264.7 communities of 10/1000 and 1000/1000 comprised 

of 5% and 2% negative sub-population respectively, confirm-

ing again that a small percentage of cells do not respond to the 

second dose of LPS. In addition, while overall TNF+ cells  

decrease over eight, 12 and 16 hours post LPS stimulus, the 

numbers of overall TNF+ cells first decrease (between eight 

and 12 hours) then increase (between 12 and 16 hours) in  

RAW264.7 1000/1000 communities (Figure 4A). This sug-

gested that a subset of cells can become positive for TNF later  

in response to the secondary stimulus.

Interestingly, in BMDMs it was the quadruple negative (TNF-pro-

IL1β-IL6-NOS2-), single positive NOS2 sub-population (TNF-

pro-IL1β-IL6-NOS2+) and the double positive sub-population 
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Figure  3.  Altered  cytokine  production  kinetics  in  RAW264.7  macrophages  responding  to  a  second  LPS  challenge. Bar plots 
indicating mean and error bars show standard deviation of A) Percentages for TNF, pro-IL1β, IL-6 and NOS2 positive cells at the indicated 
timepoints post LPS challenge (1000ng/ml) in macrophages pre-treated for 24 hours with either media (Media/1000), or 10ng/ml LPS 
(10/1000), or 1000ng/ml LPS (1000/1000) for RAW264.7 cells. B) TNF, IL-6, IL-1β and Nitric Oxide (NO) cumulative secreted levels at 24 hours 
post-secondary stimulation with 1000ng/ml LPS in macrophages pre-treated for 24 hours with either media (Media/1000), or 10ng/ml LPS 
(10/1000), or 1000ng/ml LPS (1000/1000). n=6 per treatment group.
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Figure  4.  Altered  AIH  kinetics  in  macrophages  responding  to  a  second  LPS  challenge  correlate  with  hypo-responsiveness.  
A. Averaged pie charts representing n=3 independent experiments at the indicated timepoints post LPS challenge (1000ng/ml) of  
RAW264.7 macrophages pre-treated for 24 hours with either media (Media/1000), or 10ng/ml LPS (10/1000), or 1000ng/ml LPS  
(1000/1000). Legend indicates expression status for TNF, IL-6, pro-IL-1b and NOS2 subset. B. Same as above but for BMDMs. n=3 for  
0-4hr BFA, n=4 for 4+4hr BFA and n=2 for 8+4hr BFA
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Figure 5. BMDMs show a clear hyporesponsive phenotype by flow. Bar plots indicating mean and error bars show standard deviation 
of A. TNF, IL-6, IL-1β and Nitric Oxide (NO) cumulative secreted levels at 24 hours post-secondary stimulation with 1000ng/ml LPS in 
macrophages pre-treated for 24 hours with either media (Media/1000), or 10ng/ml LPS (10/1000), or 1000ng/ml LPS (1000/1000). n=4 per 
treatment group B. Percentages for TNF, pro-IL1β, IL-6 and NOS2 positive cells at the indicated timepoints post LPS challenge (1000ng/ml)  
in BMDMs pre-treated for 24 hours with either media (Media/1000), or 10ng/ml LPS (10/1000), or 1000ng/ml LPS (1000/1000) and  
C. Bi-plots showing TNF, pro-IL-1β and IL-6, NOS2 expression at indicated timepoints post LPS challenge (1000ng/ml) in BMDMs  
pre-treated for 24 hours with either media (Media/1000), or 10ng/ml LPS (10/1000), or 1000ng/ml LPS (1000/1000). Cells were pre-gated  
on Live/Singlets/FSC-SSC-A/CD11b+F4/80+. Plots representative of 3 independent experiments
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TNF-pro-IL1β+IL6-NOS2+ that dominated (27.3%, 21.4% and 

21% respectively, Figure 4B 0–4hr) the first 4 hours of response 

in the 1000/1000 community compared with the Media/1000 

community (Figure 4B 4hr). Similar to BMDMs, in RAW264.7 

cells, the 1000/1000 community response in the first 8 hours 

also comprised of single positive NOS2 (20%, 4+4hr BFA 

Figure 4A) and double positive TNF-pro-IL1β+IL6-NOS2+  

(57%, 4+4hr BFA Figure 4A). IL-6+ sub-populations were con-

sistently reduced at all timepoints when compared between 

the Media/1000 and the 1000/1000 communities (Figure 4B,  

Figure 5B, C).

Overall, these results demonstrated that for both RAW264.7 cells 

and BMDMs, pre-exposure of macrophages to low or high LPS 

doses resulted in altered AIH kinetics during a secondary LPS 

challenge in comparison to macrophages receiving a primary 

LPS challenge. Endpoint community compositions showed 

modest differences between cells responding to one or two LPS  

challenges. The observed secreted protein hypo-responsiveness  

phenotype was predominantly reflected in the altered kinetics 

of changes in community composition upon LPS stimulation. 

Our data indicated that a critical part of the community response 

to LPS occurred in the first 8–12 hours for RAW264.7 cells  

and 4–8 hours for BMDMs of the primary challenge, sug-

gesting that at later time points a proportion of cells might be  

non-responsive in a reversible or permanent manner. We note 

that the effects were different for each of the measured pro-

teins (Figure 4), suggesting that protein-specific mechanisms  

were involved in LPS-induced hypo-responsiveness.

Transitions between distinct non-responding 
macrophage subsets underpin responses to LPS
The above empirical studies formed the foundation for  

constructing conceptual mathematical models to understand how 

AIH contributes towards macrophage responses to LPS. At the 

heart of these models is the idea that any individual cell may 

make a transition from a non-protein producing state to a protein  

producing state (termed “negative” and “positive” states here-

after). These transitions occur at random in continuous time, 

and the probability (per unit time) of transition depends on the 

current environment of a cell such as the presence or absence 

of antigen (Figure 6A and Methods: Modelling process). The  

simplest models restricted each cell to be in a negative or a  

positive state only. While these models were found to be use-

ful to understand antigen (LPS)-dependent switching on and off 

for each individual protein independently (Equation 7, Methods:  

Modelling process), they failed to describe the ability of a sub-

set of cells to become hypo-responsive that was suggested by 

our empirical studies without explicitly changing the rate at 

which a negative population switched to positive (Methods:  

Modelling process). Therefore, we refined the model by allow-

ing two further cell states which reflect the empirical observa-

tions. Explicitly, we allowed the possibility that a positive cell 

could switch to a third non-responsive state (NRS, Figure 6B),  

generating a three-state model. In addition, we also explored 

the possibility that cells in the NRS may make one of two tran-

sitions, either to a fourth, non-responsive permanently state 

(NRPS, Figure 6C) or back to the negative cell state, generating 

a four-state model. Due to variability in experimental data (see  

Figure 2 versus 4 for M/1000 at 4hr+4hr BFA) we further 

modelled the above ODE model using the Doob-Gillespie  

algorithm to account for interpreting variability as stochastic  

noise (NoRM model). We first checked if the NoRM model 

and ODE model agree in terms of the latter representing a  

mean-field for the stochastic model (Figure 6D). Next, we cal-

culated the eFAST sensitivity each of our model outputs (i.e. 

number of positive, negative, NRS and NRPS population)  

by perturbing one parameter at a time (Saltelli & Bollardo, 

1998). We find that variability of the model is affected mostly 

by the rate parameters (Figure 6E). We find that the number of 

‘positive’ and ‘NRPS’ cells is mostly affected by β
2
 while ‘NRS’ 

cells were most affected by γ (Figure 6E). We summarise the 

best fitting parameter sets identified by our rejection sampling 

method, and justify the choice of 106 independent samples, in  

Figure 6F; the consistency with our experimental data is dis-

played in Figure 6G. As an example, the parameter sets 

which best explain the empirical endpoints for TNF are  

summarised in Figure 6H.

We termed our overall modelling approach the “non-responsive  

macrophage” (NoRM) model (Figure 6). We stress that the pur-

pose of these models was not to predict detailed physiologi-

cal transitions or identify mechanisms. Rather, they offered a 

framework within which to interpret our empirical datasets and 

alluded to simple explanations for observed phenomena across 

a range of experimental conditions. In this context, we note that 

in the NoRM model, all cells were expected to respond to LPS 

treatment. This assumption also captured cells that might never 

respond to LPS by transitioning from positive to non-responsive  

states almost immediately upon stimulus.

A three-state NoRM model is sufficient to explain 
macrophage hypo-responsiveness
Using rejection sampling, we tested whether the three- or four-

state NoRM models could independently capture our empirical 

data for each of the measured proteins. Based on the AIC values 

comparing model fit to estimated parameters, a three-state NoRM 

model is sufficient to explain our empirical data (Figure 6E). 

We next compared model outputs for proportion of cells in the 

positive state over time for the three-state and four-state NoRM 

model both of which predict hypo-responsiveness of the popu-

lation (Figure 7). The output from the models was used to pre-

dict the composition of positive, negative, NRS and/or, in the 

case of the four-state model, NRPS for each of the four pro-

teins. Based on the estimated parameters, our model predicted 

that the total proportion of non-responsive cell-states (NRS 

and/or NRPS) increased post primary LPS stimulus (Figure 8,  

Figure 9) and therefore contributed to the diminished response 

by the population in the second challenge of LPS for all pro-

teins (Figure 7) except NOS2 in both cellular models (Figure 7B  

and as seen in the empirical data shown in Figure 4A).

Upon comparing the in-silico three-cell-state composition for 

each of the inflammatory protein, differences, and similarities 

between BMDM and RAW264.7 cells were visible at 12 and 

16 hours of primary in-silico stimulus between TNF, IL-6,  

pro-IL1β and NOS2 (Figure 8, Figure 9, 3-state). The stimulus 

length was interpreted based on the empirical results in Figure 1, 

Figure 2 and Figure 4. For TNF (3-state, Figure 8A), BMDMs 

had a higher frequency of cells in the NRS than RAW264.7 cells  

(56% versus 48%) but despite this both maintained a propor-

tion of cells in the negative state (24% versus 15%). This was  
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Figure 6. Mathematical modelling with 3 or 4 non-responsive states (NoRM) can describe hypo-responsiveness. A. Schematic 
representation of states and constants used in a 2-state model. Macrophage can be in a negative or positive state of making an inflammatory 
response protein. B. Schematic representation of states and constants used in the NoRM mathematical model. Macrophage can be in a 
negative, positive, non-responsive (NRS). C. Same as B but with inclusion of a 4th non-responsive permanent (NRPS) state. D. Examples of 
the bespoke Doob-Gillespie algorithm for NoRM model simulations (n=3) overlaid on the mean-field ODE based non-responsive model 
with 3-states to show consistency between deterministic and stochastic approaches. Time=0hr represents first in silico LPS stimulation and 
time=24hr represents second LPS stimulation. E. Partitioning of Variance in Simulation Results using eFAST: Barplots showing first order 
(Si) and higher order (STi) sensitivity representing model effects due to the parameter or non-linear effects of the parameter (ie interaction 
with other parameters are depicted) for 4 different simulation outputs, namely, positive, negative, non-responsive (NRS) and non-responsive 
permanent (NRPS) states. F. Dot plot depicting the reduction of average RMDS for all four proteins as higher number of parameter sets 
were sampled. G. Table depicting average Akaike Information Criterion (AIC) values obtained for top 50 estimated parameter sets 3 versus 
4 state NoRM model per protein. AIC was not estimated for 2-state model. H. Box and whiskers plots representing the top 50 parameter 
sets and their corresponding values that fits empirical data for TNF in BMDMs in a 3/4-state model. 
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Figure 7. Estimated trajectories of 3 and 4-state NoRM model. A. Two LPS stimulations are simulated using the NoRM models3-
state left, 4-state right) using top 50 estimated parameter sets (lowest AIC)) based on experimental timepoints marked in red. Time=0hr 
represents first in silico LPS stimulation and time=24hr represents second LPS stimulation for BMDMs B. Same as above but for RAW264.7 
cells
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Figure  8.  Transitions  between  distinct  non-responding  macrophage  subsets  underpin  responses  to  LPS. A. Overall cell-state 
compositions for TNF based on the NoRM model prediction when 3-states (ie γ

2
=0) or 4-states are modelled post in silico stimulation with 

a single dose of LPS of 1000ng/ml, 12 hours BMDM or 16 hours RAW264.7) and two doses of LPS (1000ng/ml 0-24 hours + 1000ng/ml,  
12 hours BMDM or 16 hours RAW264.7). B. Same as above but for pro-IL-1b.
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Figure  9.  Transitions  between  distinct  non-responding  macrophage  subsets  underpin  responses  to  LPS. A. Overall cell-state 
compositions for TNF based on the NoRM model prediction when 3-states (ie γ

2
=0) or 4-states are modelled post in silico stimulation with 

a single dose of LPS of 1000ng/ml, 12 hours BMDM or 16 hours RAW264.7) and two doses of LPS (1000ng/ml 0-24 hours + 1000ng/ml,  
12 hours BMDM or 16 hours RAW264.7). B. Same as above but for pro-IL-1b.
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compatible with the possibility of a fraction of cells remain-

ing negative but capable of responding at later timepoints. In 

the case of TNF, when the negative state to NRS ratio is calcu-

lated in BMDMs, about 40% of phenotypically negative cells 

can respond to LPS while in RAW264.7 cells this decreases  

to 30% suggesting that RAW264.7 cells may show greater  

sensitivity to becoming TNF+ later into the stimulus. In an oppo-

site manner, pro-IL-1β RAW264.7 cells have negative to NRS 

ratio less than 10% at 16 hours (three-state, Figure 8B) while 

the same ratio is 25% in BMDMs. While this could be due to 

the large difference in positive pro-IL-1β cells in RAW264.7  

versus BMDM, the model suggested that up to 10% BMDMs 

remained antigen (LPS)-responsive. Interestingly, the three-state 

NoRM model suggested similar IL-6 dynamics (Figure 9A).  

3-state model predictions for NOS2 suggested that both BMDMs 

and RAW cells maintain only about 2% of cells in a negative 

state post primary or secondary stimulus post-secondary stimulus  

(Figure 9B). The above observations demonstrated differences  

between the two cellular models and their responsiveness  

to LPS.

While the three-state model was sufficient to explain our experi-

mental data points, it did not differentiate between tempo-

rary non-responsiveness and permanent epigenetic cessation 

of activity (Seeley & Ghosh, 2017). To explore how these states 

might vary between proteins and cell types, we also analysed 

the four-state representation of the NoRM model (Figure 8,  

Figure 9, three-state). The NRS to NRPS ratio varied greatly 

between different proteins after the primary (12hr for BMDM 

and 16hr for RAW264.7) and secondary (24hr primary+12hr/16hr  

secondary for BMDM and RAW264.7 respectively) dose  

of LPS (in silico). TNF NRPS frequencies were almost three 

times higher than pro-IL-1β in both cellular models. On the 

other hand, IL-6 NRPS frequency was comparable to TNF  

NRPS frequency in RAW264.7 (Figure 8). Further, in RAW264.7 

cells, NOS2 NRPS frequency was less than 1% even after sec-

ondary stimulus while in BMDMs this was 5% (Figure 9). 

The increase in NRPS for any single protein over a subsequent 

stimulation, however, was consistent for all proteins. This sug-

gested that while some proteins switched off faster in sin-

gle cells over a course of stimulation, if stimulation remained  

(i.e., until LPS>0 in the model) the system would progress to 

all cells becoming non-responsive permanently (NRPS) given 

γ
2
≠0. Furthermore, over the course primary/secondary stimulus  

(within our modelling timeframe), BMDMs were consistently  

comprised of similar frequencies in the NRPS community 

with respect to RAW264.7 cells for TNF, pro-IL-1β and IL-6,  

with the exception of NOS2 where BMDM communities had  

higher NRPS frequency.

Taken together, analysis of the NoRM model demonstrated that 

the existence of one non-responsive macrophage cell state is 

necessary to explain the observed empirical data. However, a 

four-state model including distinct reversible and permanently 

non-responsive macrophage cell states was also compatible  

with the empirical data and captured differences between a 

model macrophage cell line (RAW264.7 cells) and primary  

macrophages (BMDMs).

Discussion
Heterogeneity is a hallmark of immune cell populations 

(Guilliams et al., 2018; Papalexi & Satija, 2018; Sallusto &  

Lanzavecchia, 2009; Satija & Shalek, 2014). Understanding 

the mechanisms driving this heterogeneity can reveal how it can 

be modulated to prevent immunopathology or boost immunity 

when necessary (Davenport et al., 2016; Gogos et al., 2000;  

Hotchkiss et al., 2013; Rittirsch et al., 2008). In this context, 

we developed a mathematical model to explore heterogeneity  

in TNF, IL-6, pro-IL-1β, and NOS2 expression during primary 

and secondary macrophage responses to LPS. LPS-induced  

hypo-responsiveness is a physiologically relevant effect in in 

sepsis and is associated with increased mortality (Biswas &  

Lopez-Collazo, 2009). Measuring protein levels of selected key 

inflammatory mediators using BFA is a limitation of our study. 

Further studies using the NoRM mathematical model frame-

work and single cell proteomics and transcriptomics can be 

used to define the key molecular features of non-responsive 

macrophage subsets within a population responding to antigen 

in vitro and in vivo and the molecular regulators driving tran-

sitions between responding and non-responding macrophage  

communities.

We show that single cells show considerable heterogeneity in 

production and co-expression of TNF, IL-1β, IL-6, or NOS2,  

underpinned by functionally distinct non-responsive states. It is 

of note that although both AIH and non-responsiveness are con-

cepts that have been long used in T cell responses (Schwartz,  

2003; Zhu & Paul, 2010), their application and understanding  

in macrophage responses is profoundly lacking. Our results 

suggest that, at least with regards to TNF, IL-6, pro-IL-1β,  

and NOS2 protein expression, heterogeneity in terms of  

community composition is maintained in hypo-responsive mac-

rophage communities despite the overall lower response. Of note, 

our model indicates that, at least for a subpopulation of cells, 

the apparent lack of response is reversible. We note that while  

generating accurate predictions of temporal evolution of  

protein positivity was not a primary purpose of the NoRM  

model, it provides a framework to which linear or non-linear  

constraints to µ (LPS co-efficient) and δ (LPS decay) can be 

added to model generalised protein positivity at phenomeno-

logical levels. This would allow to model primary and secondary  

effects at objective level generating simple parameters to test  

in laboratory experiments.

Identifying molecular mechanisms that favor or repress the 

generation of permanently non-responsive macrophage popu-

lation can have far-reaching implications for treatment and 

understanding of infectious, inflammatory, and autoimmune  

diseases.

Both our empirical and theoretical analysis of macrophage 

AIH highlighted differences between RAW264.7 cells and pri-

mary BMDMs, in agreement with proteomics and transcrip-

tomics studies comparing BMDMs with macrophage-like cell 

lines (Guo et al., 2015; Levenson et al., 2018). Differences in  

pre-existing genetic heterogeneity and signaling and transcrip-

tional networks between the two cell types are likely sources 
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for these differences. However, there also are notable similari-

ties between the two cellular models. For example, macrophages  

that are challenged with LPS for a second time respond through 

distinctly different community composition trajectories than 

those observed in cells that respond to LPS for the first time. 

Similarly, in the four-state NoRM model, for both cell types  

LPS-induced hypo-responsiveness is associated with an 

increase in NRPS. This concurs with reports highlighting that  

non-reversible mechanisms leading to permanent changes 

within the cell, such as chromatin remodeling, are critical for 

induction of endotoxin tolerance (Seeley & Ghosh, 2017). In 

a biological context, the NRS can be considered as arising from  

sufficient but temporary effects such as post-transcriptional  

attenuation of the TLR4 pathway and/or miRNA induced,  

while the NRPS might represent longer heritable epigenetic 

modifications (Chan et al., 2005; Nomura et al., 2000; Quinn 

et al., 2012; Seeley & Ghosh, 2017; Vergadi et al., 2018). Fur-

ther studies on molecular mechanisms that favor or repress the 

generation of permanently non-responsive macrophage popu-

lation can have far-reaching implications for treatment and 

understanding of infectious, inflammatory, and autoimmune  

diseases.

Innate immune responses are underpinned by heterogeneity 

(Satija & Shalek, 2014; Shalek et al., 2013). This is most nota-

ble in the high transcriptional variability of cytokines, such 

as TNF, IL-1β, and IL-6, and their receptors upon stimulus in  

LPS-stimulated phagocytes (Hagai et al., 2018). In vivo, the 

source of macrophage population heterogeneity could be driven 

by developmental, tissue or niche, and activation-associated  

factors. Furthermore, it can be amplified or suppressed through 

interaction with other immune or non-immune cells (Yao et al.,  

2018). As the main aim of our work was to develop a math-

ematical model capturing this heterogeneity, our empirical study 

explored macrophage AIH exclusively in vitro using relatively  

homogeneous starting cell populations. Despite this, we pro-

pose that our mathematical model can be used to capture popu-

lation heterogeneity occurring in more complex macrophage 

populations or in vivo. We speculate that the key concepts 

revealed by our findings, including AIH-dose dependence, exist-

ence of reversible and permanently non-responsive states, and 

a critical role for transitions between these states as determi-

nants of macrophage function will be relevant to a broad range of  

pathophysiological contexts in the immune system.

Data availability
Underlying data
Figshare: Figure 1: Macrophage community AIH is dependent 

on LPS dose, https://doi.org/10.6084/m9.figshare.17304641.v3  

(Dey, 2021a)

This project contains the following underlying data:

-    FlowJo workspace (WSP) files showing gating strategy 

along with individual FCS files.

Figshare: Figure 2: Macrophage community AIH kinetics for 

BMDMs, https://doi.org/10.6084/m9.figshare.17305202.v2 (Dey, 

2021b)

This project contains the following underlying data:

-    FlowJo workspace (WSP) files showing gating strategy 

along with individual FCS files.

Figshare: Figure 3: Altered cytokine production kinetics in 

RAW264.7 macrophages responding to a second LPS challenge, 

https://doi.org/10.6084/m9.figshare.17305448.v1 (Dey, 2021c)

This project contains the following underlying data:

-    Raw CSV files containing individual experimental  

repeat data.

Figshare: Figure 4: Altered AIH kinetics in macrophages  

responding to a second LPS challenge correlate with hypo- 

responsiveness, https://doi.org/10.6084/m9.figshare.17305847.v1 

(Dey, 2021d)

This project contains the following underlying data:

-    Raw CSV files containing individual experimental repeat 

data for RAW264.7 and BMDM pies. Also contains 

FlowJo workspace (WSP) files showing gating strategy  

along with individual FCS files.

Figshare: Figure 5: BMDMs show a clear hyporesponsive phe-

notype by flow. Figshare, https://doi.org/10.6084/m9.figshare. 

18319859.v1 (Dey, 2022a)

This project contains the following underlying data:

-    Raw CSV files containing individual experimental repeat 

data.

Data are available under the terms of the Creative Commons  

Attribution 4.0 International license (CC-BY 4.0).

Extended data
Analysis code available from: https://github.com/jipsi/NoRM

Archived analysis code as at time of publication: https://doi.

org/10.5281/zenodo.5851294

License: MIT

Reporting guidelines
Figshare: Arrive Essential 10 checklist for “Mathematical mod-

elling of activation-induced heterogeneity in TNF, IL6, NOS2, 

and IL1β expression reveals cell state transitions underpinning  

macrophage responses to LPS”, https://doi.org/10.6084/m9. 

figshare.18403988 (Dey, 2022b)

Data are available under the terms of the Creative Commons 

Zero “No rights reserved” data waiver (CC0 1.0 Public domain  

dedication).
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(bonemarrow-derived macrophages or BMDMs, and RAW 264.7 cells). They showed that 
macrophage community AIH (activation-induced heterogeneity) depends on LPS dose and that 
altered AIH kinetics in macrophages responding to a second LPS challenge underpin hypo-
responsiveness to LPS. The observation can be explained by a mathematical three-state model or 
four-state model. The topic is exciting and important, which could lead to a deep understanding of 
innate immune responses. I only have several suggestions:

I wonder how the single-cell polyfunctionality is distributed within macrophage cells under 
different treatment conditions, which can be reanalyzed using the data shown in Figures 1B, 
2&4. 
 

1. 

How to identify and verify the existence of NRPS using current experiment data is not clear. 
 

2. 

The comparisons were made between different cell samples in this study, which lost the 
dynamic information from the same single-cells at different times and under different 
treatments. In the future, it would be very interesting to track the single-cell secretion 
information longitudinally to reveal the changes and connections between different 
immune cell phenotypes. 
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Summary: The authors generate 3 candidate biological systems models and use LPS challenge 
data to determine the most appropriate. They conclude that either their 3-state or 4-state model 
can explain the observed hypo-responsiveness effect, but note that the 3-state model is potentially 
more appropriate since it is more parsimonious.  
 
Specifically, the authors might consider:

The system of ODEs (Equation S8 – S10) is incorrect and needs amending. 
 

1. 

There is a reference to a Supplementary Information section (e.g. supplementary Figure 1C) 
but I cannot see this attached to the paper or on figure share. 
 

2. 

The detail provided on the mathematical modelling was insufficient for the reader to 
reproduce this research for themselves, specifically:

3. 
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a. Parameter choices and distributions were not well-justified. This is important for 
model confidence. 
 

○

b. The choice of parameter delta (=0.5) is claimed to not affect the results. This may 
be the case but is not immediately intuitive. Evidence for this should be provided, 
probably in the supplementary information. eFAST sensitivity indices might be a 
sensible choice. The authors might consider using SPARTAN. 
 

○

c. The NoRM model was run using 10^5 – 10^6 sets of parameters. It should be made 
clear why this is a sufficient number of samples to estimate the parameter 
distributions. 
 

○

d. Some/all of the best-fit parameter values for the calculation of the AIC values in the 
table from Figure 6E should be provided. I would be particularly interested to see the 
magnitude of the gamma2 parameter as the 3- and 4-state models are identical when 
this is 0. 
 

○

The model seems to peak many hours before the experimental data peaks in Figure 7. This 
is particularly pronounced for NOS2. Could this observation guide the development of a 
further model? For instance, one in which there is a delay between the level of LPS and the 
upregulation of positive cells. 
 

4. 

The MATLAB code in the repository does not run. I believe that this is because the raw data 
required for the fitting are not supplied. It is important that the code runs to permit full 
exploration.

5. 
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Reviewer Expertise: Cellular, Systems and Mathematical Immunology

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 05 Jul 2022
Shoumit Dey, University of York, York, UK 

We thank our reviewers for their comments which have really helped us to streamline our 
model and, as a result, interpret model outputs better. Please see our replies (in italics) to 
the reviewers questions (in bold). 
 
1. The system of ODEs (Equation S8 – S10) is incorrect and needs amending. 
We apologise. We agree that the equations S8 and S9 were incorrect with a wrong minus sign 
and missing a term. The ODEs used in the numerics are correct (lps_dynamics_3state2.m) called 
within execute_ode_ssa_check.m to generate Figure 6D; Equations S8 and S9 have now been 
updated in the revised manuscript. Please note that some mistakes arose in the translation of our 
submitted manuscript into the reviewed form; it appears that some erroneous mathematical 
notation was introduced after the document left our control. 
  
2. There is a reference to a Supplementary Information section (e.g. supplementary 
Figure 1C) but I cannot see this attached to the paper or on figure share. 
Thank you for noticing this, ‘supplementary Figure 1C’ should be ‘Figure 1C’. In addition, there is 
another mention of the ‘supplementary section’ within the Modelling Process. These have both 
been corrected. 
  
3. The detail provided on the mathematical modelling was insufficient for the reader 
to reproduce this research for themselves, specifically: 
 
a. Parameter choices and distributions were not well-justified. This is important for 
model confidence. 
Parameter sets were randomly generated, where each of the parameter (α, β, β2, ��, ��2) was 
assumed to be sampled independently from a uniform U[0.01,1] distribution. Further, parameter 
sets were also sampled from a normal and gamma distribution N(0.03, 0.01) and G(0.68,0.2). 
Please note we have replaced sampling from the negative binomial distribution to gamma to 
include overdispersed but non-integer values. The parameterisation of the gamma distribution 
was chosen to remain faithful to the distribution shape of the negative binomial sampling 
previously used in version 1 of the manuscript. The same changes have been made in the code file 
fit_2_challenge_time_points_param_pies_test.m 
 
In the latest version of the manuscript, the above has been re-written under Methods, sub-
section Mathematical Modelling. 
  
b. The choice of parameter delta (=0.5) is claimed to not affect the results. This may be 
the case but is not immediately intuitive. Evidence for this should be provided, 
probably in the supplementary information. eFAST sensitivity indices might be a 
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sensible choice. The authors might consider using SPARTAN. 
The parameter delta represents a decay rate, and our initial choice of delta = 0.5 d-1 represents a 
half-life of LPS of around one day, which is consistent with the experimental protocols and the 
observed effects of LPS manipulations. Further refinement of the choices of mu and delta would 
require finer temporal resolution in the empirical work. In addition, the parameter mu only 
appears in the combination (mu L) and scales the effect of LPS on the transition from N to P; the 
models were initially run with mu chosen (arbitrarily) to be 10 for the randomly generated 
parameter sets for (Q1) detailed above. The results were checked qualitatively by then allowing 
mu = 0.1, 1, 10 and 100; in all cases the qualitative results were unchanged, but we acknowledge 
that the exact protein-specific value of mu is a factor that may merit further investigation at 
higher temporal resolution. As such, in the revised version we have now used only a fixed value of 
mu (=10) to run the model for both the 3-state and 4-state models. This has resulted in small 
changes in the output of the above models and we have edited this in the text and included 
updated Figures 7, 8 and 9. 
 
As per the reviewer’s suggestion, we then used SPARTAN’s eFAST approach to generate summary 
statistics for each parameter at a time to generate first order and higher order sensitivity indices 
for our model outputs, positive, negative, non-responsive and non-responsive permanent species. 
All 4 states were considered for sensitivity analysis for the inclusion of all model parameters. In 
summary, our analysis showed that the appearance of each of the four species was indeed 
dependent on the rate parameters and less so on mu or delta. The additional analysis is now 
included as Figure 6 panel E. The parameters mu and delta taken together can indeed be used to 
fine-tune the kinetics of each of the proteins modelled here. While this was not the primary 
objective of this NoRM model but as the reviewer has correctly pointed out in Q4 that these 
parameters can be used to develop the model further. 
 
c. The NoRM model was run using 10^5 – 10^6 sets of parameters. It should be made 
clear why this is a sufficient number of samples to estimate the parameter 
distributions. 
We have added Figure 6 panel F to show the rationale for selecting a sufficient number of 
parameter sets to show how choosing the number of parameter sets affects the average rmsd of 
the fit to empirical data. 
  
d. Some/all of the best-fit parameter values for the calculation of the AIC values in the 
table from Figure 6E should be provided. I would be particularly interested to see the 
magnitude of the gamma2 parameter as the 3- and 4-state models are identical when 
this is 0. 
We have added in Figure 6 panel H, best-fit parameter values for TNF both for the 3 and 4 state 
models as an example. All the best fit parameter values are now included with the code in the 
Github repository (https://github.com/jipsi/NoRM/tree/master/results) 
  
4. The model seems to peak many hours before the experimental data peaks in Figure 
7. This is particularly pronounced for NOS2. Could this observation guide the 
development of a further model? For instance, one in which there is a delay between 
the level of LPS and the upregulation of positive cells. 
Please see our answer to Q3b and in particular the need for finer temporal resolution in future 
empirical work. Indeed, a protein-specific mu with the inclusion of delay may be used to develop 
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a model that can explain protein-specific kinetics. However, in this work, our main aim was to 
check if non-responsive states could indeed model the hyporesponsiveness of a cell’s ability to 
make protein, and if such a phenomenon is best explained by a transitional non-responsive state 
and/or by a permanently non-responsive state. 
  
5. The MATLAB code in the repository does not run. I believe that this is because the 
raw data required for the fitting are not supplied. It is important that the code runs to 
permit full exploration. 
We apologise. The raw data for the fitting was provided in the repository but the best fit 
parameter sets were not. We have now added these. It is possible that the code did not run due to 
this reason. Please start at execute.m and set the value of the parameter ‘search’ to 0. The code 
should navigate to NoRM/results/’cytokine’/ (please see here - 
https://github.com/jipsi/NoRM/tree/master/results) and pick up the best fit parameters to print 
the graphs. 
 
In an event when the above does not work, please re-run execute.m after resetting the parameter 
‘search’ as 1. This will force the code to search for best fitting parameters from a list of randomly 
generated parameter sets as described in the Methods.  
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