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Summary

Approaches to evaluate comments based on whether they increase code comprehensi-

bility for software maintenance tasks are important, but largely missing. We propose

CommentProbe for automated classification and quality evaluation of code comments of C

codebases based on how they can help to understand existing code. We conduct surveys

and document developers’ perceptions on the type of comments that prove useful to main-

taining software in the form of comment categories. A total of 20,206 comments have been

collected from open source Github projects and annotated with assistance from industry

experts. We develop features to semantically analyse comments to locate concepts related

to categories of usefulness. Additionally, features based on code and comment correlation

are designed to infer whether the comment is also consistent and not superfluous. Using

Neural Networks, comments are classified as Useful, Partially Useful and Not Useful with

Precision and Recall scores of 86.27% and 86.42% respectively. The proposed framework

for comment quality evaluation incorporates industry practices and adds significant value

to companies wanting to formulate better code commenting strategies. Furthermore, large

codebases can be de-cluttered by removing comments not helpful in maintaining code.

KEYWORDS:

Comment Quality, Machine Learning, Code Comprehension, Knowledge Graph, Ontology

1 INTRODUCTION

To solve any maintenance task, developers spend the majority of their allocated time reading and understanding the source code before performing

any modifications or enhancements.1 Even though this process is tedious and worsens in the case of unreadable code, developers often prefer it

over consulting documents and trackers which are often inconsistent.2

Reading comments along with associated source code can significantly help to comprehend the design of the code and subsequently locate

relevant dependencies or change propagations.3,4 Although comments can be noisy, inconsistent, and may not evolve with the source code,5 they

are still semantically rich and easier to follow and hence the secondmost-used documentation for software maintenance tasks.3 Comment analysis

approaches have mainly focussed on detecting inconsistent comments6,7, but not appreciably on the quality and relevance of the information

contained in a comment. A poorly written or a superfluous comment duplicating the information evident from source code identifiers can hinder

the readability of code, even though it may be consistent.4 Furthermore, comment quality assessment can also help to develop guidelines for the

do’s and don’ts of writing comments.

Assessing quality in terms of the ‘usefulness’ of the information contained in comments can be relative and perceived differently based on the

context. 8 Several metrics and features have been proposed to classify comments based on explicit syntactic information, such as the presence

of specific tags (e.g., @param, @deprecated, etc.), words and symbols; or implicit details, such as the type of associated code construct, comment
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length, parts-of-speech of comment words or the cosine similarity of words in code-comment pairs.9,10,11 However, these approaches do not assess

the quality of the information contained in the comment in terms of its importance in facilitating code comprehensibility. Bosu et al.12 attempted

to extract such parameters for assessing code review comments only (logged in a separate tool) in terms of how it helped developers write better

code through a detailed survey at Microsoft. They also proposed textual features to classify the review comments as Useful and Not Useful based

on the parameters. A similar quality assessment framework is essential to understand the type of source code comments that can help for standard

maintenance tasks, but is largely missing and thus forms the main scope of this paper.

In an attempt to understand an unknown segment of code whilst maintaining it, developers attempt to interrelate the programming-related

concepts (algorithms, data structures, exceptions, etc.) with software (application) specific entities and operations to build a mental model of the

software. 13,14,15 For example, to understand a change request to add a new payment method in a banking module, developers first attempt to

locate code that implements the functionalities related to payment (software specific) and then understand how it has been implemented, e.g.,

the algorithm used, or the data-structures updated. These concepts are characterised and grouped as Knowledge Domains. Prior authors 15,13,16

have proposed that the software development / general technical (software design, programming, algorithms, processes, etc.) and the software

/ application specific knowledge domains are relevant for comprehending the application during software maintenance. Many of the concepts

related to the knowledge domains and their interrelations oftenmanifest in comments. A commentmay contain information related to the temporal

state of events, indicators for possible defects, such as overflow, type cast errors, application specific entities, algorithm specific details, and data-

structure descriptions. In this paper, we study comments of open source projects from Github and explore the software development processes

followed in companies and extend the proposed domains15,13,16 with software evolution and project management related knowledge domains

(representative code comments from Github in Table 1). A single comment can contain concepts from multiple knowledge domains which can help

the developers to understand the design of the surrounding code. Hence, we conduct semi-structured and structured surveys with developers of

software companies to understand the nature of the comments in terms of comment categories based on knowledge domains. Furthermore, we

investigate which of the categories are useful for the execution of present-day maintenance tasks in the software industry. The comment categories

form the basis for comment classification and quality assessment.

We introduce CommentProbe, an approach for the automated detection of quality of code comments based on the comment categories relevant

for code comprehension during software maintenance. Textual features have been developed to identify concepts pertaining to relevant categories

in comments as obtained from the surveys with developers. To devise features to estimate the repetitiveness, and inconsistencies of the identified

concepts, they have been semantically correlated to the code constructs and their structure and attributes in the form of a knowledge graph. This is

a representation of code construct names (functions, variables, macros, etc.), concepts (from comments and construct), and their interrelationships

(using a set of semantic relations). For example, a function (node) and a variable (node) linked with the relation arguments / parameters (edge), or

an application-specific concept (node) linked with a function (node) with edges modelled in. We use a corpus of 20,206 comments collected from

5 open source Github projects and annotated using a semi-supervised setup coupled with reviews from developers from software companies. We

combine Long Short Term Memory17 and Neural Networks 18 to train a supervised model and achieve Precision, Recall and F1 scores of 86.27%,

86.42%, and 86.34% respectively to predict comments in a three-grade normative model for quality - as Useful, Partially Useful or Not Useful.

We focus mostly on C codebases as these languages are mainly used for system-level programming targeted towards efficiency,19 have lower

abstractions1, and more freedom of semantic expression compared to languages, such as Java and Python. Comprehension tasks in C are more

difficult and have a deeper dependence on how well they are commented due to weaker self code readability.20 Therefore, being able to provide

better support through comment quality assessment is relevant.

TABLE 1 Example comments from Github 21

No. Code Snippet with Comments Knowledge Domains

1 /* Array contains protease patterns for amino acid analysis */
static prot_struct_p patrn[LEN];

Genome, etc. are Application (Molecular Biology)

domain

2 /* uses 2D data matrix (size 8) for light rider bot module @Input: position, visited - matrix

@Working: minimum spanning tree @Output: broadcast_matrix */

void flood_fill(ptr, position, visited){ }

// Check overflow issues on count for caller on png_malloc_array with boundary calculations

Software Development – data structure descrip-

tion, algorithm summary, data dependency, possible

exceptions

3 // Barriers by Sandra Suarez for CR#147, production live in CVS# commit#103-9/02
int calculatePOS(_OBJ){ }

version (software evolution), developer details

(project management)

1As an example of abstraction level, Thread is a class in Java but a function call in C.
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The overall aim of this work is to develop an approach to estimate the quality of code comments for softwaremaintenance purposes. In summary,

the main contributions of this paper are:

• An exploratory study with the developer community working in companies of various product areas to analyse and formulate a set of

comment categories that are useful for understanding new and previously unseen C code.

• A semantic analysis framework for comments using textual features and code-comment correlation features using a knowledge graph

• An automated robust quality assessment model for code comments based on a machine learning approach.

Furthermore, we have provided a set of comment categories based on knowledge domains, an exhaustive enumeration of the knowledge

domains using ontologies, a ground truth generation approach, and an annotated collection of 20,206 comments extracted from Github. Each of

these can be used more widely to help investigate other tasks involving comments, beyond maintenance. The source code for feature generation,

final feature sheet, saved models and the pre-trained word embeddings are available in Github (22, 23).

This paper is organized as follows. In Sections 2 and 3 we discuss related work and important terminologies and concepts. The survey conducted

with developers is outlined in Section 4. Feature Extraction, semi-supervised ground truth generation and the automated inference process using

the CommentProbe machine learning approach is discussed in Sections 5, 6 and 7 respectively. The strengths and weaknesses of CommentProbe

are analysed in Section 8 and the paper concludes in Section 9 with directions for future work.

2 RELATED WORK

We discuss some of the approaches that have been proposed to analyse and assess the quality of comments through detecting inconsistencies

and classifying comments.

Detecting inconsistencies within source code: Tan et al. 6,24 use the occurrence and sequence of words (from an enumerated list) in a comment and

associated code to develop rules for detecting inconsistent comments related to memory access and synchronisation. For example, checking for

the occurrence of lock before function foo() in tokenised code if the associated comment says that lock is used. Similarly, Ratol et al.7 perform

lexical matching between code and comment to detect redundancy of information. The above approaches analyse code and comment using a set

of indicator words or the structure to detect irregularities, and do not specifically focus on the various semantic interpretations of the words.

Comment classification: Comments have been studied to identify categories based on the placement of the comment in code or related to the

presence of a set of words, a pattern, or special symbols. Ying et al.25 conduct an empirical study to derive the attributes of the various categories

of task comments used by developers working with Java. The authors presented a series of keywords (like todo, fixme) and their likely structure

(mention of the bug id, developer details, url, date, etc.) that are used to write comments related to subtasks, short term tasks, problem indicators,

concern tags, bookmarks, communication or edge cases. Storey et al.26 extended the work by Ying et al. 25 with a detailed study to understand

how the task comments are interpreted across projects and in the different phases of the software lifecycle. Padioleau et al.27 manually analyse

1,050 comments that are randomly sampled from 3 open source C projects – Linux, FreeBSD, and Open Solaris to study their general character-

istics and categorise them based on memory, locks, data-structure related, errors, control flow, todo or fixme and the like. Aman et al.28 analyse

documentation and inner comments of Java open source projects and enumerate a set of words that mostly manifest in these comments.

Although these approaches attempt to categorise comments, they do not extract attributes to assess the importance of these categories in

terms of their use and relevance in the software development process. They target specific types of comments andmostly usemanual annotation to

categorise comments. Also, small corpora of comments have been used, which may not be representative of all aspects of commenting behaviours

and not suited to setting up a robust automated quality assessment framework.

Comment quality evaluation: Steidl et al. 11 use textual features, comment length, line distances between code-comment pair for automated clas-

sification of comments (using statistical learning algorithms of Weka29) into seven categories – application task, inline, member, header, copyright,

code comment, and section / block. Furthermore, they also provide a quality model based on comparing the similarity of words in code-comment

pairs using the Levenshtein distance and length of comments to filter out trivial and non-informative comments. Haouari et al.10 analysed 30 Java

code fragments including comments with a survey involving 49 developers where they provided an example comment type or explanation and a

comment quality score, such as fair or poor. Rahman et al.30 propose a framework to detect useful and non-useful code review comments (logged

in review portals) based on attributes identified from a survey conducted with developers of Microsoft12. They use textual features (Table 2) over

an annotated dataset of 1,200 review comments for automated quality assessment using classification and regression tree algorithms. Recent work

in the Declutter Challenge of DocGen2 by Liu et al.31 identifies ‘useless’ comments using textual and structural features (Table 2) in a machine

learning framework.

These past approaches are mostly relevant for comments in Java programs where commenting and source code naming follow a standard

protocol. The proposed features in these approaches interpret comments in terms of how the various programming level concepts are encoded and
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their significance to developers. However, the dataset used for learning is limited andmay not detect all outliers. Even though Rahman et al.30 assess

comments based on attributes derived from industry practices, they are limited to code review comments only. Finally, none of these approaches

semantically correlate code with comments to analyse the consistency and redundancy of concepts in a comment, which is also important before

deducing the overall quality of the comment. The approaches mostly use the next line to fix scope or check if there is a method nearby (see Table 2).

In CommentProbe we attempt to address these concerns and provide a taxonomy of comments useful for maintenance based on the various

concepts which developers inherently rely upon when coding in C. We study a large dataset of 20,206 comments from open source C projects and

question developers working in various product areas to develop a comprehensive set of categories. We propose textual and structural features

to detect comment categories and semantically correlate code with comments, based on a vector space augmented code knowledge graph and a

robust assessment of comment quality.

TABLE 2 Characteristics of the important quality assessment approaches

Parameters Steidl et al. 11 Rahman et al. 30 Liu et al. 31

Features for

quality detec-

tion

1. c_coeff: Similar words

between code and comment

based on levenshtein dis-

tance < 2

2. Length of comments

1. Numerical estimation of reading ease

2. Stop word ratio

3. Proportion of interrogative sentences

4. Percentage of code constructs in review comments

5. Lexical similarity between words of code and review

comments using cosine distances

6. Number of commits on a file authored by a developer

7. Number of commits on a file reviewed by a developer

8. Percentage of external libraries in review comments

1. Similarity between words of code

and review comments using cosine dis-

tances

2. Percentage of exact match of words

between code and comment

3. Number of lines between comment

and nearest associated code

4. Comment Length

5. Type of Comment - Document level,

Block and Line

Code in Scope comment before or after

method → method name;
inline comment → con-

structs in the same line,

code constructs mentioned in review comments code constructs in next line of comment

Dataset 1,330 comments (C++ and

Java)

1,200 review comments logged in Codeflow 1,194 annotated comments from

JabRef project 32

Quality classes Not Useful Useful and Not–Useful Informative and Non-Informative

3 DESIGN AND ARCHITECTURE OF COMMENTPROBE

CommentProbe attempts to learn a robust quality model for C code comments based on attributes that can aid in software maintenance as validated

by developers. The major components of CommentProbe (Figure 1) are C1: a survey with developers to identify categories based on knowledge

domains, C2: feature design and extraction, C3: ground truth generation, and C4: machine learning architecture. The inputs for feature design and

extraction (C2) are i) comment categories from the developer study, ii) enumerated concepts and ontologies, iii) pre-trained embeddings, iv) the

extracted set of comments, and v) corresponding source code. Based on the inputs and using various natural language methods and front-end

language parser tools (clang 33), we formulate textual and code comment correlation features (details in Section 5). The pre-trained embeddings

are based on software development texts (component C2.a) to generate vector representations for concepts in comments and code. The ground

truth generation has been done through manual annotation and expert review to generate the labelled data (C3) from 20,206 comments. Finally,

the neural network architecture trains on the labelled data set to learn a model to classify comments as useful, partially useful, and not useful (C4).

Features are extracted from test data (comments and code) and using the saved learned model, CommentProbe predicts comment quality as useful,

partially useful or not useful (refer Figure 1).

3.1 Knowledge Domains

Previous authors 15,13,16 have proposed that concepts required to comprehend code during software maintenance can be grouped into three

knowledge domains – a) General technical / Software Development concepts about software design (algorithms, control flow, heuristics, patterns,

strategies, metrics), programming (languages, data structures, memory, exceptions), software processes (life cycle, testing, review, debugging), b)

Application / Software specific knowledge related to the real-world task the software aims to solve and its operations and entities, and c) Business

knowledge related to client requirements, client practices, etc. A comprehension process requires programmers to map and interrelate these

concepts to construct a mental model of how the software works.16,34
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FIGURE 1 Architecture – CommentProbe

From developer requirements (analysed in the surveys reported by authors in35,36,2) we learn that often software evolution related knowledge

(e.g., commits, issues and changelogs) is relevant for maintenance tasks, as they track changes from the inception of software to its present-day

state. Also, developer details help to track who modified the software. Hence, we extend the knowledge domain taxonomy presented in existing

approaches 15,13,16 with software evolution and project management related knowledge domains. The concepts from the domains are mostly found

embedded in source code and various metadata, such as comments and issue trackers (Table 3). It is observed that concepts from most of the

domains manifest in comments (examples in Table 3).

TABLE 3 Knowledge domains: manifestation in various metadata of a software repository16,34

Knowledge Domains Project Sources Code Examples

Domains related to application Design and Development

Software Development (SD) or Program
Domain 37 : domain of programming like

algorithm, memory, data structure, con-

currency, software processes and design,

debugging, testing, builds and installations

Source Code, Runtime Traces, Code Com-
ments, Bug trackers (Bugzilla, ClearQuest,

JIRA), Version Trackers (github, SVN), KT

Sessions, Documents

AD concepts (cookies, incognito window) with

SD concepts (Reverse-delete)

Source: Chromium Project 38

// Ensure cookies gets wiped after last incognito
window closes; uses Reverse-Delete algorithm
on node

CloseBrowser(chr_ptr){}

Application Specific / Domain (AD) or
Problem Domain 37: entities and operations

of the specific application

Code Comments, Bug & Version trackers,

KT Sessions, Documents

Domains Related to Application Evolution

Version Changes: changes and commits for

an application

Version Trackers, Code Comments, KT ses-

sions

// fixed Bugzilla:7456− > Bugzilla::

Web::Uitimestamp, in commit

CVS#82_15/07/2017
thisFrame = Timing::get().frameNumber;

Bug Fixes: reported bugs, fix summaries

along with root cause analysis

Bug trackers, Code Comments, KT sessions

Domains Related to Project Management

Developer Information: mapping of devel-

oper details to bugs, commits, source code

elements

Code Comments, Bug trackers (Bugzilla,

ClearQuest, JIRA), Version Trackers (github,

SVN), Documents

Source: cURL 39

// Copyright (C) 1998 - 2019, Daniel Stenberg,
<xyz@abc.com>, et al.

#include "tool_cfgable.h"Business Specs.: company and client details Induction manuals, emails, KT sessions

Tacit: personal experiences, like Client A is

tough to handle, System B frequently crashes

KT sessions & personal interaction

4 SURVEYING CODE COMMENTING PRACTICES

We carried out surveys with participants (developers) from the software industry. These had the main objective of formulating a set of relevant

comment categories frequently used by developers during maintenance tasks. We manually analysed comments and conducted a pilot study with

industry experts to arrive at an initial set of categories. These were subsequently validated through 1-1 interviews with developers and directed

examples based on the survey (workflow in Figure 2). Finally, we attempt to define comment quality using survey outcomes.

4.1 Pilot Study with Key Informants

Weadopt the process by RobertWeiss in40 to first conduct an exploratory pilot surveywith experts to design a structured questionnaire that would

generate less subjective responses. Companies known to the authors, working in various product areas and using C for software development,
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FIGURE 2 Survey Workflow

were approached and invited to participate in the survey. We created a team of 8 Key Informants (experts), consisting of technical and module leads

who had worked and managed C projects in industry for more than 15 years and were well acquainted with the source code of the products.

Initial Manual Analysis: To use example comments during the interviews (inputs to pilot survey, Figure 2) and gain greater insight, we use

Purposive sampling 41 to collect comments (samples) from a diverse range of open source Github C projects (our population) to gain maximum

variation with a smaller set of samples41. For this, we conduct – a) web search for C projects in Github belonging to various application domain

areas, such as image processing, command line tools and scientific computation; b) search projects based on C compilation strategies, such as Cmake

and GNU make (e.g., Wikipedia history - pages of Cmake contain a list of Github projects), and c) C Github projects used in various research papers

we studied. The effort of manual analysis was subdivided into two teams (each team – 2 graduate students) for execution and corresponding peer

review. In the process we manually examine around 1,600 comments and identify around 7 distinct clusters related to data structure operations,

working summary, description of function parameters, possible exceptions, mapping to application interface details, macro descriptions and library

includes. We select 20 comments from each cluster as candidate comments (CandidateComments.csv and 1600_comments.xlsx in42), to provide an

approximate representation of the various types in a cluster (exception type comments may contain only boundary conditions, or handlers called

on detection, etc.). We follow the survey process proposed by Kvale et al.43 based on interviewing, thematising, and validating.

TABLE 4 Question sets for Interviews in Pilot Study

General commenting behaviours

Do you comment code? Do you update comments when you change code?

Type of comments developers refer to whilst reading and comprehending existing code

Which type of comments do you refer while reading existing code?

Which comments you refer to understand the design of existing code? or to fix bugs in existing code?

Concepts fromwhich Knowledge Domains developers typically record in comments. How are they grouped? How are comments placed in code?

Do you write comments for specific constructs? Any specific information, which you record in comments?

Do youwrite comments globally for a file? or inline comments? at the start of every block, method or class?What type of information do you record?

Do you use comments to communicate with other developers? Do you write any project management details in comments?

Do you write your personal experiences while fixing a bug or enhancing code in the comments?

Perceptions of noisy and inconsistent comments

Do you update comments written by others? Do you remove junk or irrelevant comments?

Do you mention your contact details in comments associated with code developed by you?

• Step 1: Interviews and study of comment examples: We ask queries related to the use of comments in code comprehension, redundant com-

ments based on themes emerging from the available literature related to commenting practices, enumerated in Table 4. To reduce the

subjectivity of their responses, the Key Informants showed us sample comments they refer to or write from company source code which

we noted using the relevant words and structure (this could not be shared due to corporate confidentiality). They also helped us to map

responses to the candidate comments wherever applicable. Each interview lasted for around 45 minutes.

• Step 2: Thematic Analysis: We aim to deduce comment categories based on the combination of the concepts (belonging to the various knowl-

edge domains) from the qualitative responses (interview notes and marked candidate comments) of the Key Informants. Thematic Analysis

helps to locate themes or patterns in qualitative data44, which we employ to decide on the list of patterns / codes to differentiate com-

ment categories. Concepts related to software development or software evolution knowledge domains are generic in nature, and hence

we use an enumerated list to decide on the codes (deductive coding). Codes such as ‘array’, ‘matrix’, ‘mega’, ‘hex’ are mostly used in

comments to describe dataset or data-structure. However, for application-specific and project management domains, we analyse interview

responses for themes (inductive coding45).

According to the inputs from the survey, we observe that a certain type of comment can occur at the block level, as well as inline. Hence

we analyse for three placement positions – a) Inline: comments added beside code in the same line, b) Function / Block: comments placed

before the start of a function, class, if-else or loop block, user defined namespaces or any bounded scope (code inside ‘{’, ‘}’) and c) File:
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start of the file before any includes statement. Comments before the start of any class are classified as block level, even though they

may be the first comment (block level has higher precedence than file). Codes varied according to comment placements. For example, the

codes ‘size’ and ‘bit’ were mostly suited for inline comments related to type – dataset / data-structure description. Hence, we employ a

hierarchical coding frame45 for file level, method / block, and inline level and try to infer and collect comment clusters (categories) at each

level using the extracted set of codes. Within the collected set, if a cluster (identified by a specific set of codes) is present in the responses

of at least 5 informants, we tag it as a valid category; otherwise as ‘others’. Comments related to the summary of functions or dataset

description were found in the responses of most informants. However, codes, such as ‘gpu number’, ‘hyperthreading’ or ‘policies’,

‘sigma’, ‘service’ probably signify hardware characteristics or business policies of clients (these could only be found in the responses

of 2 informants). In some cases, the code list of a type of comment was extended, such as terms related to algorithmic complexities were

added for the category – working summary / working principle (outline of how the function is designed, input / outputs, etc.).

We conduct three rounds of interviews and thematic analysis for deducing, or merging or deleting categories, until we do not find any distinct

categories. We perform a group interview only after the end of the rounds, to reduce the influence of informant opinions.

Validation - Group interview: To validate the categories (themes) and subcategories, we conduct the group interview as a brainstorming session

and share the coding frames, candidate comments and the sample comments provided by the informants for finalising categories. The categories

and their mapping to the knowledge domains as analysed from the pilot survey are enumerated in Table 7.

4.2 Study I: 1-1 Developer Interviews

1-1 developer interviews were conducted to refine the initial categories as obtained from the pilot study and also to identify any additional ones.

Sampling Procedure: Deciding on suitable developers to interview was crucial to our study. The Key Informants supervised the process and we

use heterogeneous purposive sampling 41 on the following aspects to gain maximum insights and reduce bias: a) developers working in software

companies of different product areas and working with C, b) developers with various roles – maintenance, development, management, and c) devel-

opers working with different code bases. The employers of the developers participating in the study are characterised in Table 5. The participants

(developers) and their roles and years of experience are shown in Table 6.

TABLE 5 Details of software companies involved in the study

Company Product Programming Developer # Parti-
Area Languages Tools cipants

Mentor Graphics (I) Pvt.

Ltd., Kolkata, India (MG)

EDA C, C++ vim 6

Tata Consultancy Ser-

vices, UK (TCS)

IT and Con-

sulting

C, SQL,

Perl

Sublime,

SAP BI

3

Peak Indicators,

Chesterfield, UK (PK)

Analytics Java, SQL,

C

Eclipse,

JDeveloper

4

National Digital Library,

India (NDL)

Content

Mgmt.

Python, C vim, Sub-

lime

2

HappyWired, Chester-

field, UK (HW)

Office 365,

SharePoint

Java, C, C# Eclipse,

JDeveloper

1

TABLE 6 Survey participants (developers)

#Part. Role Company Experience
(Years)

P1 Software Programmer MG 3

P2 Software Programmer MG 9

P3 Software Programmer Lead MG 12

P4 Technical Lead & Programmer MG 15

P5 Architect, Manager MG 16

P6 Architect, Manager MG 16

P7 SQL Developer TCS 10

P8 SQL Developer TCS 8

P9 Technical Lead TCS 8

P10 Front end web developer PK 1.5

P11 Analytics Specialist PK 6.5

P12 Analytics Specialist PK 1

P13 Analytics Specialist PK 3.2

P14 Project Manager NDL 13

P15 Research Manager NDL 15

P16 Office 365 Developer HW 1.5

Survey Design : We conduct two rounds of interviewing and thematising43 (similar to the Pilot Study, Section 4.1) based on the initial categories

extracted from the pilot study and the candidate comments from the initial manual analysis (inputs to the developer survey, Figure 2).

a) Interviewing: The objective was to record their perceptions about each category, to analyse and refine the categories further with additions,

deletions and modifications. Apart from these, the developers were asked to showwhich type of comments they use to understand code and solve

maintenance tasks (any two change requests or bug fix) using the actual source code and other resources. The comment structure and concepts

were noted for further analysis. We interviewed 16 developers at their workplace for around 45 minutes per interview.

b) Thematising: We extend the codes created as part of the pilot survey in Section 4.1 and use the similar hierarchical coding frame45 to cluster

the comments for further interviewing.
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We arrive at a set of 21 comment categories (Table 8) and the developers were then asked to select the comment categories they mostly refer

to whilst understanding code for bug fixing, or adding or modifying the code (marked as × in Table 9). Some categories are rarely used or written

by developers. We rank the categories based on the count of developers who find it relevant (count of × in Table 9) and further segregate the

count based on the maintenance tasks (bug fixing, adding, modifying code) in Figure 4.

TABLE 7 Comment categories – identified from Pilot Study

File Comments Function / Block Comments Inline Comments
a - Summary of the functions defined (rel-

evant mostly for header files)

b - Mapping to developer details

c - Control flow for the file

d - Installation requirements

e - Build instructions

a - Working summary (algorithm outline)

b - Mapping to application specific entities

c - Description of the data being used

d - Links to project management details

e - Descriptions of external library functions used

f - Possible exceptions

g - Start and EndMarker comments for namespace (user

defined), macros, class, function

a - Mapping to application specific entities

b - Usage of every import

c - Working summary (role in the

algorithm)

d - Allowed values, possible exceptions

TABLE 8 Comment categories – identified from 1-1 Developer Interviews. Mappings to Knowledge Domains - Software Development (SD),

Application Domain (AD), Software Evolution (SE), Project Management (PM)

File Comments Function / Block Comments Inline Comments
Gc1 - Summary of the functions defined (rel-

evant mostly for header files) [SD]

Gc2 - External links to documents [AD, SD,

PM]

Gc3 - Mapping to developer details [PM, SD]

Gc4 - Mapping to Application Specific Enti-

ties [AD, SD]

Gc5 - Basic summary / interaction summary

/ control flow for the file [SD]

Gc6 - Installation requirements / build

instructions / system requirements [SD]

Fc1 - Data dependency [SD, AD]

Fc2 - Call order of routines [SD]

Fc3 - Working Summary (Algorithm Outline) [SD]

Fc4 - Mapping to Application Specific Entities [SD, AD]

Fc5 - Description of the dataset or global data stores

being used [SD, AD, SE]

Fc6 - Links to Commits / Issues [SD, SE]

Fc7 - Descriptions of parameters / return type [SD, AD]

Fc8- Possible exceptions [SD, SE]

Fc9 - Description of external libraries used [SD, AD]

Fc10 - Markers - namespace, macros, class, function [SD]

Ic1 - Mapping to Application Spe-

cific Entities [SD, AD]

Ic2 - Usage of every import [SD, AD]

Ic3 - Description of external libraries

used [SD, AD]

Ic4 - Working Summary (role in the

algorithm) [SD]

Ic5 - Allowed values, possible excep-

tions [SD, AD, SE]

Examples for some categories, more examples in 42

Gc1: - file contains stub functions for mem-

ory allocation of libpng – raster-graphics file-

format

Fc5: - /* works on a two dimensional data matrix (each

of size 8) generated from light rider bot module */ void

flood_fill(ptr, position, visited) { }

Ic1: - static const char *_rl_term_kD; /*

Delete key in the webpage - Terminal */

TABLE 9 Comment categories (Refer Table 8) used by participants

(developers) for Software Maintenance

Survey Participants

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 #

Gc1 × × × × × × × × × × × × × × × 15

Gc2 × × × × × × × × 8

Gc3 × × × × × × × × × 9

Gc4 × × × × × × × × × × 10

Gc5 × × 2

Gc6 × 1

Fc1 × × × 3

Fc2 × 1

Fc3 × × × × × × × × × × × × × × × 15

Fc4 × × × × × × × × × × × × × × × × 16

Fc5 × × × × × × 6

Fc6 × × × × 4

Fc7 × × × × × 5

Fc8 × × × × × 5

Fc9 × 1

Fc10 × × × × × × 6

Ic1 × × × × × × × × × × × × × 13

Ic2 × × × × 4

Ic3 × × × 3

Ic4 × × × × × × × × × × 10

Ic5 × × × × × × × × × 9

# 11 11 11 13 10 9 8 10 8 10 5 16 7 6 8 5

× – Participants use this category, # – denotes count

FIGURE 3 Top 8 relevant categories and how they are used in Software

Maintenance

.
Top 8 Categories: Fc4 - Mapping to Application Specific Entities,Fc3 -Working Summary (AlgorithmOutline),Gc1 - Summary of the functions defined

in the file, Ic1 -Mapping to Application Specific Entities,Gc4 -Mapping to Application Specific Entities, Ic4 -Working Summary (Role in the Algorithm),

Ic5 - Allowed values, possible exceptions, Gc3 - Mapping to developer details
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4.3 Study II: Structured Survey based on Directed Examples

To validate the dominant categories identified from the developer interviews (input of 21 categories, Figure 2), we record the perception of a larger

group of developers 40 for code comment snippets representing comment categories.

Survey Design: We formulate Directed Examples to represent comment categories using the sample comments shared by Key Informants and

developers during the interviews. As the sample examples could not be shared, similar examples were picked from open-source Github C projects,

such as cURL 39 and LibPng 46. Initially 74 code comment examples were collected. However, after removal of duplicates and irrelevant examples

we ended up with 42 examples. The set of 42 comments had 2 examples from each category. The comments and associated source code, together

with the query boxes, were set up using the typeform 47 crowdsourcing platform and github.io 21. For every code and comment pair, the following

queries were asked – a) Do you think the comment is Useful, Not Useful or Partially Useful?, response via a radio button; b) Why do you think so?,

subjective response through a textbox; and c) How would you have written a comment to describe the code? subjective response through a textbox

(screenshot of an example comment in Figure 15 in Appendix). For three comments (in the set of 42), the concepts were repeated in associated

code, or could be easily derived from structure ormetadata to depict the various types of redundancy (similar to the ones in Table 11), to understand

the developer’s perception of not useful comments.

Analysis of Survey Results: A total of 72 participants responded to the survey for all the 42 code examples (for 21 categories). Every category

has 2 examples, hence a total of 144 responses ( 72× 2) were obtained for the same (refer Table 10). The participants were (a) software developers

working in companies, such as WANdisco, Synopses and Interra Ltd (32 responses), (b) graduate students (23 responses), and (c) contributors to

developer forums (17 responses). Based on the count of the label – Useful provided by the participants, the categories are ranked (top 15 shown

in Table 10) and analysed further based on their use in bug fixing, or adding or modifying code from responses for better approximation (Figure 4).

Comparing with the top ranked categories derived from the developer survey (Tables 9), there are around 6 to 7 common categories – Gc1, Gc4,

Fc3,Fc4,Fc5,Fc8, Ic4, Ic5 (Tables 9 and 10) in the top 8, which are considered as dominant categories. Comments that outline the algorithmic details

of a function (working summary), map to application specific entities or indicates possible exceptions are perceived most relevant. Furthermore,

these categories were relevant for all maintenance tasks (similar counts for bug fixing, adding code or modifying code (refer Figures 3 and 4).

The redundant comments were labelled as Not Useful in 96% of the responses and Partially Useful in the remaining responses. This validates the

characteristics of a Not Useful comment, which we use to define the parameters of comment quality and design features.

TABLE 10 The categories from Study II (ranked on count of useful

responses)

Categories Responses citing usefulness for
code understanding

Gc1 - Summary of the functions defined 132/144 (91.6 %)

Gc5 - basic summary / interaction summary / algorithm

outline / data-flow

122/144 (84.7 %)

Gc4 - Mapping to Application Specific concepts 122/144 (84.7 %)

Fc3 - Algorithm outline / working summary 120/144 (83.3 %)

Fc5 - Description of the dataset or global data stores being

used

112/144 (77.7 %)

Fc4 - Mapping to Application Specific Entities 108/144 (75 %)

Ic4 - Basic working / role in the design 106/144 (73.6 %)

Gc3 - Mapping to developer details 99/144 (68.7 %)

Ic1 - Mapping to Application Specific Entities 98/144 (68 %)

Ic5 - Allowed values, exceptions 97/144 (67.3 %)

Fc8 - Possible exceptions 91/144 (63.1 %)

Ic2 - Usage of every import 84/144 (58.3 %)

Fc6 - Links to project management details 75/144 (52 %)

Ic3 - Description of external libraries used 63/144 (43.7 %)

FIGURE4Top 8 categories - a) bug fixing, b) modifying, c) adding code

Parameters for Quality: Our aim is to develop an overall quality model. Even though a comment may belong to a dominant category, it may be

inconsistent or redundant when correlated and analysed with the associated code. Hence, we introduce comments representing redundancies or

inconsistencies as part of the structured survey in Study II (examples in Table 11) to understand developers’ perceptions.

TABLE 11 Redundant and Inconsistent Comments (part of Study II)

Comment Explanation

// PHP Shutdown method to destroy the global php hash map, using zend hash api’s

PHP_MSHUTDOWN_FUNCTION(hash) { ... zend_hash_destroy(&php_hashtable); . }

Redundant: concepts (of knowledge domains) in comments

already encoded in code constructs

T funct(T x, T y) { // find maximum of two numbers

if (x > y) return x; else return y;}

Redundant: Concepts of comments, easily derivable by read-

ing code (structure)

int i; . . . . ( 2 to 3 lines)... i = len; // i is integer Redundant: Concepts match the datatype of construct

/* serial bus is locked before use

static int bus_reset ( . . . ) { .. update_serial_bus (bus * busR); }

Inconsistent: No use of lock in associated code
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From the survey we gather that developers perceive a comment as useful if it contains concepts: a) related to the dominant categories, b) that

do not manifest in associated code constructs, c) cannot be easily derived from reading the associated code, and d) that are consistent. A comment

is Partially useful if they are consistent, contain concepts from less referred categories or some of the concepts manifest in code also. Not useful

comments are completely redundant or inconsistent. These parameters provide the basis for feature design in CommentProbe.

5 FEATURE DESIGN

The main objective for feature design was to identify the concepts related to comment categories and evaluate whether these were already

encoded in associated code (redundant), or are inconsistent with the code (examples of redundant and inconsistent comments in Table 11).We

develop textual features to locate comment categories and code correlation features to detect redundancy or inconsistency with the associated

code based on syntactic and semantic techniques.

5.1 Feature Set I – Textual Features for Comment Categories

Textual features have been proposed to capture comment structure and locate concepts related to comment categories.

Features based on comment structure: Features, such as comment length or stop word ratio, have been proposed in comment analysis

approaches 11,30 to capture comment structure. We extend the idea and use natural language parsing (part-of-speech tagging, universal dependen-

cies using a standard parser like Stanford48) to calculate the total number of significant words (not prepositions or conjunctions), and the number

of chunks related to verbs or nouns (complete details in Table 12).

TABLE 12 Feature Set I - Features based on Syntax

No. Feature Definition

1 Comment Length - Count of comment tokens CountofWords(C)

2 Significant Words Ratio - % of words ̸= stop

words, conjunctions, prepositions etc.

∑n
i=1(Wpos(Ci))

CountofWords(C)
where n→ total number of comment tokens,Ci → ithword of comment

C. Wpos reduced or set to null for POS tags for conjunctions, prepositions, etc.

3 Operational / Conditional - Checks whether a

comment signifies an operation or condition

(n∗Wpos==V B)

CountofWords(C)
+

(k∗Wpos==ADV B)

CountofWords(C)
, ’n’, ’k’ → total no. of verb or adverb chunks using

NLTK chunkers 49.

4 Descriptive - Checks whether a comment

signifies a description or state

(n∗Wpos==NN )

CountofWords(C)
+

(k∗Wpos==ADJ )

CountofWords(C)
, n’, ’k’→ total no. of noun or adjective chunks using

NLTK chunkers 49.

POS: parts of speech tagger 48, Wpos: weight for a POS, C: a comment

Features related to concepts belonging to comment categories: Features have been developed to identify dominant comment categories (based on

Tables 9 and 10) by retrieving constituent concepts from comments (these can belong to one or more knowledge domains, Table 8). For retrieval,

we need to enumerate the constituent knowledge domains in terms of a list of indicator words or phrases. This is similar to the approaches adopted

by Aman et al. 28 and Ying et al. 25 to identify documentation and task comments respectively. We employ syntactic (direct, stemmed, lemmatised)

matches or conceptual similarities (synonym table, top 10 similar words constructed from pre-trained embeddings) with the enumerated lists.

Matches with concepts for a certain category are multiplied with the weight assigned to the category (based on rank), to get the feature value for

that category. This process is applied to concepts from all categories, that are retrieved from a comment. The enumerated list of indicator words

and phrases for categories, that are used to calculate the corresponding feature values are outlined in Table 16.

Enumeration of Knowledge Domains: As the concepts belonging to the software development knowledge domain are generic and finite50,

we enumerate them and develop an ontology (SD Ontology) using the methodology discussed by Noy et al.51. We explore a variety of open-

source projects and the standard curricula related to software engineering to enumerate the concepts relevant to developing software in C. To

formulate the various clusters/classes, we start with the major concepts of C programming language and then try to find sub categories52. For

example, operation is a superclass with comparison, decision-making, arithmetic, aggregate or data structure related operations as subclasses (Table 13).

Obviously there are concepts which belong to multiple parent classes like array is a built-in and linear data-structure (Table 13). The plural forms,

short forms, and tense representation for every word have also been enumerated. We construct a reasonably sized and logical ontology of 4756

instances grouped into a set of 20 classes (representative examples in Table 13, complete list and logical relations between classes (uploaded

in 53). The instances have been distributed amongst the 16 developers (participants of 1-1 interviews, Section 4) for a round of manual review and

feedback. Application domain concepts are unstructured and open-ended, and hence are enumerated using business requirement documents for

an application. Software evolution details are based on tracker systems used in projects (e.g. bug and version trackers), which we also represent in

the form of an ontology.
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TABLE 13 Software Development concepts – SD Ontology (examples)

Some of the concepts related to algorithm

Sorting / Searching Backtracking Divide & Conquer Dynamic Programming Greedy

Selection Sort N Queen Binary Search knapsack Map colouring

MergeSort M colouring Quick Sort Subset Sum Minimal Spanning

Some of the concepts related to datastructure

Abstract Data Type Built-in Type Linear Non Linear Non Homogeneous

List Array Array Tree Structure

Stack Structure List Graph Struct

Some of the concepts related to operations

Datastructure related Comparison Decision making / loop Aggregate Arithmetic

Iterate Greater If Delete Maximum

pop Greater than Switch Power Summation

Other Concepts

Scope State Output Exception Memory

Global Sorted Output Bad file number Contiguous

Static Encrypted Outcome Catch Buffer

Relationships between classes: Operations based on datastructure, decision and loop making – specialised version of base class oper-

ations (is-A), Data-structure (HAS-A) state, Algorithm (USE) Data-structure

Vector Representations of Concepts: Finding similar words helps us to locate concepts in semantically related comments (examples from sur-

vey in Table 15) that cannot be captured through enumeration alone.54 Pre-trained word embeddings for only software engineering related

texts extracted from Stack Overflow posts have been reported in work by Efstathiou et al.55. We train our own embeddings (SWVec) using

data from multiple sources related to software development: (i) 19GB of posts from Stack Overflow; and (ii) 11GB of computing and books

and papers from our institutional library, related to programming, algorithms, architecture, memory, metrics, etc. We experiment with CBOW56

(static, context independent) and ELMo (dynamic, context-dependant)57 algorithms. CBOW 56 uses a log-linear classifier to predict the central

word given the prefix and suffix words using a sliding window. ELMo is based on two layer bi-directional language models (BiLM) cou-

pled with character convolutions. Out of the models trained (optimal ones are available in23), ELMo performs better for ambiguous words

which have dual meaning in English and computer science (results in Table 14). A total of 11 models have been trained using CBOW and

ELMo by changing hyperparameters related to dimension sizes, iterations and activation functions. The hyperparameters corresponding to

the best model trained using ELMo are dimension=200, minimum frequency of words=50, activation=relu, model=bilstm, char_cnn, iteration=20,

68 hours on two Tesla P100-PCIE-16GB GPU, 128GB RAM. The best model for CBOW had hyperparamaters – dimension=200, sub sampling rate=5,

minimum frequency of words=50, activation=relu, and runtime of 21.5 hours.

TABLE 14 Analysis of pre-trained embeddings

word1:word2 SD2Veccbow SD2Vecelmo Work 55

Ambiguous Words

Cookies:Java 0.1 0.44 -0.06

Dirty:Concurrency 0.17 0.67 0.19

Code:Smell 0.35 0.63 -0.03

Smell:Debt 0.29 0.67 0.21

Non-ambiguous Words

Knapsack:Polynomial 0.35 0.49 0.49

Neighbour:Search 0.23 0.4 0.24

TABLE 15 Semantically Equivalent Comments

C1: bitonic sort to generate a digitalized image in form

of raster graphics. Multi-threaded with busy waiting

C2: merge sort to generate a digitalized image in the

form of bitmap image. Multi-threaded with busy looping

The concepts bitonic sort merge sort; raster graphics
and bitmap image; busy looping and busy waiting all
have a similar semantics

5.2 Feature Set II – Code Correlation Features

Existing approaches mostly follow syntactic techniques for code and comment correlation based on comment placement (e.g., before or after the

method) or comment construct distance9,10,11. Hence, the code constructs in scope for a comment are mostly the method name or variable name.

To develop features to detect redundancies and inconsistencies of conceptsmined from comments, we correlate them to the code knowledge graph

corresponding to the code constructs in the comment scope. The code knowledge graph is representative of structural aspects of the constructs

(e.g., variable type, storage class, and linkage; or variables defined in a function) and the concepts mined from construct names. In Figure 5, concepts

from the comments match the semantic type (Colour) of the construct used in the in-scope function, thus rendering the comment as redundant.

Linking the comment concepts with only the method name or variable names would not detect this redundancy.
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TABLE 16 Feature Set I: Features based Knowledge Domains for relevant comment categories (enumerated SD Ontology full version in

7 Dominant categories, junk and copyright comment

No. Feature Enumerated List

1 Working Summary concepts under classes – ’Algorithms’, ’Operations as part of Algorithms’, ’Operations as part of Data

structure’, ’Properties of Datastructure’, ’Time Complexity / Space Complexity’, ’Memory operations’,

’Exceptions’, ’Threads’ and the like, of the SD Ontology (Table 13)

2 Dataset Description a) ’Operations as part of Algorithms’, ’Operations as part of Data structure’ of the SD Ontology

(Table 13), b) Data type and alloc keywords such as - ["string", "list", "array", "matrix", "memory", "alloc",

"malloc", "static", "calloc", "dynamic", "pointer", "binary", "hex", "logs", "buffer", "static", "space", "disk"],

c) Dimensions - ["size", "shape", "dimension", "byte", "kilo", "mega", "giga", "tera", "kb", "mb", "gb", "tb"]

3 Allowed Values, Possible Exceptions a) ’Time Complexity / Space Complexity / Memory / Exception’ of the SD Ontology (Table 13), b)

standard error list of C language

4 Mapping to Application Specific Enti-

ties

Enumerated list based on project non-functional requirements and user interface details

5 Build Instructions / System Require-

ments / External Libraries

["gcc", "g++", "make", "config", "build", "install", "mkdir", "cd", "cmake", "git", ".tar", ".gz", ".zip", "cxx",

"clang",".dll"], [".h", ".cc", ".hxx", ".hpp", ".cxx",".so"]

6 Project Management (issues and com-

mits)

["issue", "commit", "svn", "bug", "jira", "git"], Regular expression based on the issue and version man-

agement portal used for a specific issue / commit

7 Developer Details weighted count of matches with developer names using standard libraries for detecting named enti-

ties belonging to the cluster person (named entity recognition technique 58), matching with regular

expression for contact numbers and emails

8 Junk, Copyright ["copyright", "license", "rights", "reserved"], comments with no text

Miscellaneous

No. Feature Value

9 Number of Software Development

Concepts

Total count of matches with concepts of SD Ontology

10 Number of Application Specific Entities Total Count of matches with the enumerated application specific concepts

weighted counts normalised using mean (µ) and standard deviation (σ). The formula used is (datapoint − µ)/σ, It is then transformed to a range of [-1,1] using a hyperbolic tangent function tanh

Colour x; . . .

//defines type colour for pixel

void PLTE_func(ptr) {

.....

x->rgb = PALETTE;

pixel.def = x->id;

}

Match between concepts from comments with construct name and type. Construct is global and used in function PLTE_func

FIGURE 5 Detecting redundant comments using the Knowledge Graph

**File: png.h$

1. // reference colour types for PNG (chunks)

....

14. typedef struct png_color_struct {

15. png_byte red; png_byte blue;

16. ...

17. } png_color;

**File: pngwutil.c$**

1. #include ’png.h’ . . .

6. png_ptr->num_palette = PNG_PAL;....

9. /* palette chunk is used to write .. uses lossless data compression..

14. * Output: png_sPLT_struct[bit_depth]*/

15. void png_write_PLTE(png_struct p, uint n) {

16. png_color pal_ptr; ......

21. png_uint_16 num_pal = png_ptr->num_palette;....

30. // pass color pointer

FIGURE 6 PS : Edited code snippet based on Libpng46

Building the Knowledge Graph: The knowledge graph comprises three major components: (a) Primitive Extraction, (b) Concept Analysis and

Match, and (c) Scoping and Correlation. We discuss each of the components below with the aid of a code sample PS (Figure 6) – a modified code

snippet for writing images in the form of chunks from Libpng 46 – open source support for Portable Network Graphics (PNG).

a) Primitive Extraction: Primitives refer to the comment tokens, or code constructs and their attributes. We re-target the static instrumentation

framework of Low Level Virtual Machine (LLVM)33 to create a customised and traversable Abstract Syntax Tree (AST) representation of the code,

from which we extract code constructs and their attributes. For example, in code PS (Figure 6) the information extracted for num_palette- are

– Attribute − V alue: ⟨def_line((definition line)) = pngwutil.c#6⟩, ⟨acc_line(use line = pngwutil.c#21⟩, ⟨datatype = png_uint_16 ⟩,

⟨semanticparent = png_ptr⟩, ⟨storageclass = static⟩, ⟨linkage = Internal⟩. The structural attributes and relationships of some constructs
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FIGURE 7 Comment Knowledge Graph

FIGURE 8 Code Knowledge Graph

of the function png_write_PLTE of file pngwutil.c (PS ) are represented in Figure 8. Similarly, Natural Language (NL) parsing is used to pre-process

and tokenise comments and extract attributes like line number and POS tags (comment id#2 of pngwutil.c, lines#9-14 with attributes in Figure 7).

b) Concept Analysis and Match: We preprocess comment text, tokenised code and attribute value strings (metadata) of the constructs by

removing punctuation and converting to lower case. Concepts from the enumerated ontologies are matchedwith the pre-processed artefacts using

various NLP-based retrieval techniques59, such as direct or stemmed match, 2 gram matching, synonym table based lookup, etc. Any specific bug

or commit number arematched using regular expressions, such as (#[0−9a−f ]+)|(([0−9a−zA−Z]+ :)+[0−9a−zA−Z]+)|(([0−9].)+[0−9]).

Some of the matched concepts in comment and code shown with shaded nodes are shown in Figures 7, 8.

c) Scoping and Correlation: The scope of a comment is determined using a correlation algorithm based on the nearest available character – }, { as

they signify the start and end of any bounded scope), the distance between consecutive comments, and the presence of source code identifiers in

the comments. For example, a block / method level comment before the start of any scope {, will have in its scope all the constructs till the next } or

the next comment is encountered (whichever is nearest). Similarly, for inline comments, the scope is set to all constructs present in the same line. The

concepts retrieved from comment tokens aremapped to the code constructs, attributes, and conceptsmined from constructs using a set of semantic

relations. The comment id#2 of file pngwutil.c (lines#9-14, PS ) occurs just before the start of the method, the scope is set till the next comment.

Semantic correlations (eg. associated, type of) of constructs and comment concepts for some constructs within function (png_write_PLTE) shown

in Figure 9 (details of the visualisation tool, source codes, corresponding readme documents and examples for customisable visualization in60).

Code Correlation Features: These are designed by traversing the graph based on semantic relations to find concept matches and inconsistencies

(schematic logic in Table 18).

FIGURE 9 Comment id#2 of pngwutil.c (lines#9-14, PS ) correlated with

constructs (not all shown). implements, executes, associated with – seman-

tic correlations

.

TABLE 17 p-values for features using Mann Whitney Wilcoxon

Test 61

Feature Useful – Not
Useful

Useful – Par-
tially Useful

Partially
Useful - Not
useful

Comment Length 0.02 0.01 0.00

Significant Words Ratio 0.01 0.02 0.00

Operational / Conditional 0.08 0.02 0.02

Descriptive 0.00 0.02 0.00

Working Summary 0.00 0.02 0.00

Dataset Description 0.00 0.00 0.01

Allowed Values, Possible Exceptions 0.04 0.01 0.00

Mapping to Application Specific Entities 0.00 0.00 0.00

Build Instructions / System Requirements /

External Libraries

0.01 0.00 0.00

Project Management (issues and commits) 0.07 0.02 0.00

Developer Details 0.05 0.02 0.02

No. of Software Development Concepts 0.02 0.05 0.02

No. of Application Specific Entities 0.01 0.03 0.00

Junk, Copyright 0.06 0.00 0.01

Code Construct Ratio 0.06 0.00 0.00

Comment Placements 0.03 0.00 0.00

Scope Score 0.00 0.00 0.00

Coherence - Redundant 0.00 0.00 0.00

Coherence - Unrelated 0.00 0.00 0.00

Coherence – Structure 0.03 0.02 0.02

Analysis of Features: We conduct Mann Whitney Wilcoxon Test61 over the 20 pre-computed features to calculate p-values (refer Table 17) for

analysing the distribution of the values to predict between any two classes, such as useful - not useful, useful - partially useful and partially useful-not

useful classes. This test has been carried out on the feature values of the complete dataset of 20,206 labelled comments.

Some features, like the ones related to code correlation (Coherence – redundant and Coherence – unrelated) and dominant categories (Mapping

to Application Specific Entities, Data Set Description, Working Summary), have p-values less than 0.05 and significant effect sizes (Cohen’s d62),

hence are able to distinguish effectively between all comment class groups (useful - not useful, useful - partially useful and partially useful-not useful).

We show the distribution for the feature –Mapping to Application Specific Entities in Table 19.
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TABLE 18 Feature Set II - Code Correlation Features: Structural and Textual

No. Feature Extraction Logic

1 Construct Names in Comment
∑n

i=1(IsConstruct(Ci)==true)

CountofWords(C)
, where n is the total number of words in comment C and Ci

is a comment token which matches a construct name

2 Comment Placements Traverse edges related line number to find the nearest construct, if same line number and

variable type construct returned then inline (a weighted value), if at least a method or a for,

if, while or ’{’ returned then method else file level.

3 Scope Score 1

1+log(
∑k

i=1
xi∗distance(xi,cid))

, where k is the total number of constructs in scope for a

comment, xi is the ith construct, distance signifies line number distance (extracted using line

relations in graph)

4 &

5

Coherence - Redundant & Coherence - Unre-

lated

∀commenttokens, syntactic and semantic matches with relations (edges) for specific

attributes for constructs returned from Scope(C). High score signifies redundancy, very low

score signifies unrelated comment

6 Coherence - Structure ∀commenttokens, check for syntactic and semantic matches with the data-type, type of the

constructs (variable, parameter, methods, etc), type of operators, etc. for constructs returned

from Scope(C). Traverses graph using semantic relations like "type", "data type".

KG → knowledge graph, Scope(C): returns a list of code constructs in scope for a comment C

TABLE 19 Analysis of Features (Representative Examples)

Distribution of feature values 61 → distinguishes useful, not useful and partially useful comments, smaller effect sizes

Application Specific Entities if manifested in comments, mostly renders the comment useful

Distribution of feature values does not distinguish between partially useful and useful, effect sizes significantly small

Count of concepts does not differ much in case of useful and partially useful comments

Some features have almost similar distribution of values whilst predicting any of the class groups, e.g., the textual feature - count of software

development concepts has p = (0.051>0.05) to predict classes - useful - partially useful (Table 19). However the distributions of the values are different

and hence can distinguish between classes – useful - not useful and partially useful-not useful. In CommentProbe, we did not retain any feature for

training, which has similar distributions of values for predicting all classes - useful - not useful, useful - partially useful and partially useful-not useful.

6 GROUND TRUTH GENERATION AND VALIDATION

As we could not access the source code of companies involved in our study, we used open source projects from Github which supports industry,

such as Big Code 63 architecture.

Dataset Selection: The mean comment density for C projects in Github is 0.18, which would represent a wide range of comments.64 The

comment density signifies the number of lines containing comments divided by the total lines of code for a source file. Selecting the top 10 trending

repositories in C was not an option as we wanted specific attributes - a) varied application domains, such as command line tools, visualisation,

cloud supported databases, images, b) large number of recent commits, high downloads and active contributors (Github features), c) projects with

at least 30% of comments (C code parser (clang tools)33 to find comments ratio), and d) reasonably well maintained codebases. To characterise a

well maintained project, comments part of commit logs are scraped (added comments in Github commit denoted by ‘+’, deleted ones by ‘-‘) and

projects where at least 80% of commits include comment edits are selected. For example, MariaDB 65 has 9,524 commits containing comment

changes out of the total 10,041 commits).
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FIGURE 10 Distribution for overall quality scores FIGURE 11Distribution for important comment categories

Based on the above factors, we select 12 projects and sample the comments to check if they contain different concept types. From these we

further reduce to 5 projects as characterised in Table 20. From each project, we selected source files using themodified random sampling approach of

Cochran 66: n =
N.pq(Zα

2
)2

(N−1)E2+N.pq(Zα
2
)2
, where N is the total number of C / C++ files present in an open source project (Lines of Code (LOC) range:

350 - 5000). The random modified (stratified) sampling approach selects source files from the selected 5 projects with equal probability and hence

provides an unbiased representation of the population (C code files with comments). As the comment density is reasonable and comment styles

are followed uniformly across files (based on manual inspection), a high confidence of around 97% to 98% (Z) is used with a margin of sampling

error between 6% and 8%. The parameters were changed for every project and the samples manually re-inspected. We gather a total of 318 files

with 20,206 comments.

TABLE 20 Characterisation of DataSet

Project Application # Files # % of
Description Domain (.c,.cc,.cpp,.h) Cmt Cmt

cURL 39: Command line tool for data transfer with URL Data Transfer 92 3,781 52.51%

Github Features: Releases - 191, Commits - 25,199, Contributors - 570

Libpng 46: Portable Network Graphics, official repository Image 32 5,875 73.4%

Github Features: Releases - 1615, Commits - 4074, Contributors - 34

PLplot 67: Cross-platform, scientific graphics plotting library Scientific Drawing 27 2559 46%

Github Features: Releases - 147, Commits - 14,011, Contributors - 10

MariaDB 65: licensed open SQL server Database 44 4,060 59.40%

Github Features: Releases - 891, Commits - 189,101 Contributors - 226

Dealii 68: Computational solution of partial differential equations Computing 123 3,901 37%

Github Features: Releases - 31, Commits - 47,959, Contributors - 179

# → count. cmt → comments. Projects are multi-threaded except Libpng

Ideally we would have engaged industry professionals to annotate the labels in their entirety; however, this was not possible. Therefore, we

designed a three-step approach for generating and validating the ground truth by extending the approach by Pascarella et al.9 with industry

validation: a) annotation by students with high levels of coding skill, b) manual analysis and review, and c) validation by experienced industry

developers.

a) Annotation: We advertised the annotation task with remuneration at the Indian Institute of Technology, Kharagpur, India. Out of 37 applica-

tions, we shortlisted 14 students based on their previous participation in top coding competitions, such as ICPC 69 (one of the students was ICPC

2020 world finalist), and various hackathons, including CodeChef and TopCoder. 70 We design a set of 27 annotation labels (Table 30 in Appendix)

which helped to characterise a comment based on the parameters of comment quality. We record the human interpretations of attributes for com-

ment quality detection through the labels, such as comment categories (annotation labels L3: L15), information density (L1:L2), comment structure

and scope (L16:L19), and redundancy or inconsistency characteristics (L20:L24). Students were asked to annotate 27 labels (1 or 0) along with a

quality score (Useful, Partially Useful, or Not Useful) to reduce subjectivity and also to analyse the human-interpreted relationship between the

parameters of comment quality and the assessed labels. Labels, such as information density (L1:L2), can be computed using the ontologies, but in

some cases might not be able to interpret an acronym or a concept understandable through human interpretation and hence lead to sound ground

truth generation. Each student was asked to annotate 2,887 comments, extracted evenly from the 5 datasets. Every comment was annotated by

two students. A total of 156 man-hours were required to complete the annotation process.
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TABLE 21 Inspecting Annotation Bias

# Case Pattern (%)

Case

1

Overall quality score similar, annotation

labels mostly differ for code-comment

coherence

18.21

Case

2

Overall quality score similar, annotation

labels almost similar

43.77

Case

3

Overall quality score different, annota-

tion labels almost similar

31.03

Case

4

Overall quality score different, annota-

tion labels differ

7.23

Interrater Agreement (κ 71) between 2 annotators:- 3 quality, 27

annotation labels: 0.734, Interrater Agreement (κ 71) between 2
annotators:- 27 annotation labels: 0.89

TABLE 22 Analysis of few of the scenarios of Case 3 and Case 4 (Table 21)

Manual Analysis matches annotated labels

Comment Comment Annotated Quality Manual Manual
File Text Labels Score Analysis

Score
Analysis

curl/tests/

server/sws.c/

sws.c

var which if set indicates that the pro-

gram should finish execution

L2, L11, L16,

L19, L20

U NU (labels

deduce NU)

completely redundant;

short; low no. of concepts

curl/lib/curl_

path.c

Ignore leading whitespace L2, L16, L19,

L20

PU NU (labels

deduce NU)

completely redundant;

short; low no. of concepts

Manual Analysis does not match annotated labels but score

repos/libpng-

code/pngpread.c

/* And check for the end of the stream.

*/

L3, L9, L11,

L14, L17,

L18, L21

NU NU (labels

deduce PU)

labels incorrectly
recorded as partially

redundant; high no. of

concepts;

U: Useful, NU: Not Useful, PU: Partially Useful, L2: Low Software development concepts, L3: High number of Application Specific Entities,

L9: Concepts∈ Dataset Description, L11: Concepts∈ Working Summary, L14: Concepts∈, L16 and L17: Contains more (high) and less

(low) source code identifiers in scope, L18 and L19: Long and Short Comment, L20 and L21: Complete and Partial conceptual matches in

code-comment pair (details of 27 annotation labels in Table 30 in Appendix), instance from one annotator shown

b) Manual Analysis and Review: A team of 2 research scholars (including the first author) randomly selected and analysed 1,000 annotated

comments to discuss any disagreements in a weekly meeting with the annotators to help improve annotation consistency. The weekly meetings

and brainstorming sessions were conducted until all 20,206 comments were annotated, with re-annotation or edits needed for many. On the final

set, considering only the quality scores, we obtain a kappa (κ) of 0.62 (Cohen’s metric71). For the 27 annotation labels only, κ=0.89 (almost perfect

agreement). Considering the 3 quality scores and the 27 annotation labels, we got a κ=0.734 (substantial). The annotation bias is characterised in

Table 21, wherein for Case 3 (31.03%) and Case 4 (7.23%), there are differences in quality score or annotation and quality score both. For these

cases, we manually analyse and group the findings into three types – (a) annotation labels and overall quality scores agree with manual analysis,

(b) only annotation labels agree with manual analysis, and (c) only overall quality score agrees with manual analysis (examples in Table 22). In most

cases the annotation labels matched manual analysis but the quality scores were incorrectly provided by the annotators.

c) Validation by Experts: We set up a review team of 6 software developers, who participated in our company-based surveys. We sampled

comments to represent the findings from the manual analysis (like the ones in Table 22) to obtain feedback from the review team and arrange for

re-annotation wherever necessary. In the end, we developed a set of 25 rules based on annotation labels (almost perfect inter-rater agreement of

0.89, Table 21) to derive a final quality score (Useful, Partially useful, Not Useful). We present an example rule below based on the labels in Table 30

(Appendix): (L2 ∨L1) ∧ (L9 ∨L10 ∨L11 ∨L12) ∧L17 ∧L19 ∧L21 → U . Semantic interpretation would be that a comment having – High ∨ low density

of information ∧ contains information related to important company categories ∧ low scope ∧ long ∧ not available in associated code → (is) Useful(U ). Based on

the calculated score, we obtained a 70.6% match with the manually annotated quality scores for the 20,206 comments.

The proportion of Useful comments are higher for all projects and hence may have a wider interpretation and can be sub-classified further in

future (distribution of comment classes for 20,206 after ground truth analysis, Figure 10). The distribution of the important categories in Figure 11

can be used for future automated classification tasks.

7 AUTOMATED CLASSIFICATION OF COMMENT QUALITY

We experiment with multiple classifiers (Decision Tree, Support Vector Machine (SVM), Random Forest, Artificial Neural Networks (ANN), vanilla

Recurrent Neural Networks (RNN), and Long Short Term Memory (LSTM)) to understand how our data behaves and also to understand which

architecture learns the quality classes most effectively. We conduct a total of 37 experiments2 in total (hyperparameters and metrics for some rep-

resentative ones in Tables 23, 24, 25).We observe that an architecture combining LSTM andANNprovides the best predictionmetrics (experiments

6, 7, 8 in Table 23 and experiments L-N1 - L-N4 in Table 24).

Design of the LSTM / ANNArchitecture: Liu et al. 31 analyse comment classification by either using pre-computed features or a supervised learning

setup using vector representation of comment text as features. We extend this to design an architecture combining features based only on pre-

trained embeddings (using SWvec, Section 5) along with pre-computed 20 features (comment categories and code-comment correlation, Section 5).

This architecture has better precision and recall over any other classifier we experimented with. Each LSTM cell i, 72 has two inputs: the output

from the previous cell ci−1, which is called the short term state and hi−1, which is the long term state (the output of each of the previous cells).

The gates in a cell are denoted as gr , gm, gn, gp and the sigmoid and tanh activation functions as σ and tan respectively. We save hi, the long term

state, and concatenate this with the other 20 pre-computed numerical features. The final set of features then serve as input to a two layer ANN

network. The output of one of the classes (classi) is calculated as output(classi) = go.
∑

n∈N

(gn.
∑

j∈J

Ij ∗Wj + 1) ∗Wn + 1, where J denotes

total number of input,N denotes total number of neurons, go and gn denotes activation function of every neuron of the output layer and hidden

2Compute power: 2 GPU cores: Tesla P100-PCIE-16GB (UUID: GPU-3b616060-59ef-dc83-8aea-667ca0bba599), average runtime - 16 hrs
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layer respectively,Wn denotes weight matrix for class i for every neuron andWj denotes weight matrix for neuron i for every input (Architecture

in Figure 12).

FIGURE 12 LSTM and ANN Combined Architecture

Results and Analysis: For every classifier, we experimented with various loss and optimisation functions, attention models and learning rates

to select optimal hyperparameters (a manual grid search). The data distribution among classes is Useful (approx. 10,500), Partially Useful (approx.

4,500) andNotUseful (approx. 5,500). The total dataset is split 80%:20% for training and testing respectively, and validation (5 fold cross-validation),

train, and test metrics (precision, recall, F1 score) are reported. For example, for a useful comment label, precision is the total number of predicted

useful comments in the total predicted set of comments. Similarly, recall specifies how many of the useful labels have been correctly predicted

from the total set of useful comments (ground truth).

Experiments have been conducted with hand-coded decision rules to derive the labels. However, it was difficult to manually build rules based

on the range of values of the features to obtain correct inferences for a large set, and this led to significant overfitting (Experiment 1 in Table 23).

Using decision tree classifiers (Gini Index and ID3,73) improved the overfitting with pruning. We experimented with various splitting strategies and

tree depths to improve the results (top result in Experiment 2 in Table 23). We also employ non-linear kernels for the SVM74 and tune margins

to control overfitting by varying the regularisation cost C, from 1 to 101, 102, and γ from 0.3 to 0.9 (rbf kernel performs better than polynomial,

experiment 3 and 4, Table 23). We observe that class separability increases with rbf kernel and retrieves more correct comment labels as the

precision is significantly higher for projects compared to earlier results. For ANNs we tested with different sizes of hidden layers, neuron count and

activation functions. Combining leaky relu with 3 layers dense network predicts the labels optimally (Experiment 6 in Table 23).

Analysing results of the LSTM-ANN combined architecture: Adding a pre-trained embedding layer to the pre-computed features helps capture the

semantics of the concepts better in cases where the enumerated ontology is not sufficient. We experiment with various different loss functions,

attention models, learning rates over all the features. The experiments (top 4 prediction wise) are summarised in Table 24 and the best one (overall

precision and recall of 86.27% and 8.42%) is analysed further with confusion matrix in Table 25, Figure 13 and Figure 14. The Area Under the

Curve (AUC)(Figure 14) is high as a result of the Precision-Recall curve (Figure 13) being high. False Positives could be due to incorrect correlation

between the code and comments, or incorrect interpretation of concepts (see examples in Table 26). False Negatives could be due to a failure to

identify relevant concepts in CommentProbe. Metrics improve slightly by applying feature optimisation techniques such as Principle Component

Analysis (PCA) ( Table 25). We show the separability of data based on the first four principal components in Figure 14.

Role of Features: We have designed two distinctive feature sets – textual features based on knowledge domains (Set I) and code correlation

features (Set II) to predict the usefulness of comments. LSTM investigation – ANN architecture (Experiment 8 in Table 23) show that features related

to code comment correlation are a better predictor. However, prediction using only code comment correlation will be limited as it detects only

redundant and inconsistent comments based on the conceptual similarities of the comment tokens and code with metadata. However, analysing

the usefulness of comments based on the relevant categories can be enforced using the textual features, but results in poorer metrics. Hence,

adding the two sets of features helps to predict usefulness based on all the proposed quality parameters, provides improved results, and possibly

justifies our feature design.

8 DISCUSSION

To the best of our knowledge, CommentProbe is the first attempt to implement an automated comment quality assessment framework based on

the semantic analysis of code-comment pairs in context of their usefulness for software maintenance. We collected a dataset of over 20,000

comments and obtained prediction accuracy of greater than 80% to distinguish useful, not useful or partially useful comments. This could assist

companies with de-cluttering source code, we all as develop guidelines for future commenting practices. Furthermore, although CommentProbe

has been developed for C, it can be easily extended for C-family programming languages, such as C++, C#, Lite-C and Rust.
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TABLE 23 Results (on Test Set) from various experiments (actual

experiment numbers not shown)

Dataset Test Precision (%) Test Recall (%) Test F1 Score %

Data Dimension: 20 precomputed features (Feature Set 1 + Feature Set 2), Total set: 20,206
comments, train set: 16, 1642, test set: 4,042, 5 fold cross validation

Experiment 1: Rule based manually coded decision trees

cURL 39 72.24 68.19 70.16

Libpng 46 70.15 67.03 68.55

PLplot 67 61.03 63.45 62.22

MariaDB 65 59.15 59.47 59.31

Dealii 68 57.21 55.55 56.37

overall 63.956 62.738 63.32

Experiment 2: Decision trees - Gini Index with pruning, splitter = best, depth = 26

cURL 39 76.12 78.99 77.52

Libpng 46 78.89 75.03 76.91

PLplot 67 67.88 62.33 64.98

MariaDB 65 68.45 67.71 68.07

Dealii 68 66.01 66.69 66.34

overall 71.47 70.15 70.77

Experiment 3: Support Vector Machine, rbf kernel, C = 100, gamma = 0.5, hinge loss, 5-fold

cross validation

cURL 39 76.01 74.54 75.27

Libpng 46 69.1 70.13 69.61

PLplot 67 70.11 71.36 70.73

MariaDB 65 78.2 73.21 75.62

Dealii 68 72.1 73.02 72.56

overall 73.10 72.45 72.78

Experiment 4: Support Vector Machine, poly kernel, C = 100, gamma = 0.1, hinge loss, 5-fold

cross validation

cURL 39 61.9 61.78 61.84

Libpng 46 59.12 58.34 58.73

PLplot 67 64.45 65.08 64.76

MariaDB 65 67.13 66.98 67.05

Dealii 68 68.02 66.27 67.13

overall 64.12 63.69 63.91

Experiment 5: 2 layer neural network (ANN), loss = logistic, optimiser = rmsprop, activation

= tanh, leaky Relu with softmax, 5-fold cross validation

cURL 39 70.13 72.34 71.24

Libpng 46 69.56 70.31 69.94

PLplot 67 72.11 72.08 72.10

MariaDB 65 70.18 70.76 70.47

Dealii 68 71.78 70.00 70.89

overall 70.752 71.098 70.93

Experiment 6: 3 layer neural network (ANN), loss = categorical cross entropy, optimiser =

adam, activation = tanh, leaky Relu with softmax, 5-fold cross validation

cURL 39 78.14 79.03 78.58

Libpng 46 81.12 80.15 80.63

PLplot 67 79.27 78.33 78.80

MariaDB 65 80.02 79.43 79.72

Dealii 68 78.98 78.00 78.49

overall 79.50 78.98 79.25

Experiments with ANN and LSTM architecture, using either Feature Set I or Feature Set II
with 200 sized embeddings

Experiment 7: LSTM embedding layer of size 200, 2 layer neural network, loss = categorical

cross entropy, optimiser = rmsprop, activation = tanh with softmax, 5-fold cross validation,

only textual features on comment categories

cURL 39 69.67 69.99 69.83

Libpng 46 77.12 75.25 76.17

PLplot 67 76.14 79.15 77.62

MariaDB 65 70.24 69.14 69.69

Dealii 68 71.35 72.48 71.91

overall 72.90 73.20 73.05

Experiment 8: LSTM embedding layer (size 200), 3 layer neural network, loss = categorical

cross entropy, optimiser = adam, activation = tanh with softmax, 5-fold cross validation, only
code correlation features

cURL 39 76.54 78.76 77.63

Libpng 46 79.13 79.58 79.35

PLplot 67 77.79 80.12 78.93

MariaDB 65 74.42 68.11 71.12

Dealii 68 70.02 68.65 69.32

overall 75.58 75.04 75.31

TABLE24Top 4 results using the LSTM-Neural Network Architecture

(Figure 12)

Common Parameters: Dataset: 20,206 comments, 20 features (textual + correlation), LSTM embedding

layer (size 200), HyperParameters: Batch Size - 100, Num Epochs - 600, Loss - Categorical Cross-Entropy,

Output Layer of size 3 with Softmax activation, 5-fold Cross Validation

Experiment L-N1

2Hidden Layers(size, activation) - [(64, LeakyReLU), (64, relu), Dropout: 0.4, Learning Rate: 0.0001, Opti-
miser: adam

Metric Useless Partially - Useful Useful Avg = macro

Validation Precision 82.86 80.83 91.79 85.16

Validation Recall 84.26 87.21 87.52 86.33

Validation F1-score 83.55 83.90 89.60 85.69

Test Precision 84.94 80.70 91.59 85.74

Test Recall 84.56 84.98 89.21 86.25

Test F1-score 84.75 82.78 90.39 85.97

Experiment L-N2

2 Hidden Layers(size, activation) - [(64, LeakyReLU), (128, tanh), Dropout: 0.5, Learning Rate: 0.0005,
Optimiser: adam

Metric Useless Partially - Useful Useful Avg = macro

Validation Precision 81.57 82.30 90.83 84.90

Validation Recall 84.16 84.39 88.51 85.69

Validation F1-score 82.84 83.33 89.66 85.28

Test Precision 82.44 84.29 90.69 85.81

Test Recall 85.56 83.65 89.57 86.26

Test F1-score 83.97 83.97 90.13 86.02

Experiment L-N3 – Best Results (obtained empirically)

2 Hidden Layers(size, activation) - [(64, LeakyReLU), (64, LeakyRelu), Dropout: 0.5, Learning Rate:
0.00005, Optimiser: rmsprop

Metric Useless Partially - Useful Useful Avg = macro

Validation Precision 85.03 85.14 89.47 86.54

Validation Recall 82.30 85.40 90.64 86.11

Validation F1-score 83.65 85.27 90.05 86.32

Test Precision 84.40 83.46 90.94 86.27

Test Recall 83.69 85.24 90.33 86.42

Test F1-score 84.04 84.34 90.63 86.34

Experiment L-N4

3 Hidden Layers of (size, activation) as - [(128, LeakyReLU), (64, tanh), (16, LeakyReLU)],
Dropout: 0.5, Learning Rate: 0.00005, Optimiser: rmsprop

Metric Useless Partially - Useful Useful Avg = macro

Validation Precision 84.31 83.78 90.38 86.16

Validation Recall 86.52 84.22 89.14 86.63

Validation F1-score 85.40 84.00 89.76 86.39

Test Precision 84.27 80.57 89.96 84.93

Test Recall 79.79 85.40 89.54 84.91

Test F1-score 81.97 82.91 89.75 84.88

TABLE 25 Analysis of the best obtained metrics – from Experiment

L-N3 Total data Dimension: 20167 X 221, 3 classes (embedding dimension), result for

Test Data

Dataset (%) Precision (%) Recall (%) F1 Score % MCC Score %

cURL 39 85.12 83.21 84.15 76.54

Libpng 46 91.46 92.67 92.06 81.82

PLplot 67 92.88 92.14 92.51 82.31

MariaDB 65 80.72 81.23 80.97 79.19

Dealii 68 80.96 83.24 82.08 74.2

overall 86.22 86.49 86.36 78.81

overallPCA 87.06 86.99 87.02 79.02

Confusion Matrix

Not Useful Partially Useful Useful

Not Useful 395 32 45

Partially
Useful

27 439 49

Useful 46 55 943

TABLE 26 Analysis of False Positives in CommentProbe, Examples taken from Libpng46

Example Human CommentProbe

Interpretation Interpretation

/* Check the buffer size (file signature / header / data / crc) is as

expected */

switch(io_state & PNG_IO_MASK_LOC) {case PNG_IO_SIGNATURE:

if (data_length > 8 && err != 0) ... png_error(png_ptr);}

Constructs in Scope for

the comment = {io_state,

PNG_IO_MASK_LOC,

data_length, err }

All constructs till next comment, but png_error→

global catch function; extern png_ptr, not related

to checking buffer size. Different scope → differ-

ent semantic analysis → different quality score

/* Calculate a reciprocal - used for gamma values. This returns * 0

in order to maintain an undefined value; * there are no warnings. */

PNG_INTERNAL_FUNCTION (png_fx_pt, png_reci);

order is not picked up as a

concept (which is correct)

order is picked as the 8th most similar word to

sort (4th most similar) using the embeddings from

Sd2Vec, Section 5.
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FIGURE13Test Data |Best Configuration |Precision Recall

Curve | ROC AUC Curve

FIGURE 14 Class Separability Plots

TABLE 27 Comparison of CommentProbe with existing comment classification and quality assessment approaches

Parameters CommentProbe Steidl et al. 11 Pascarella et al. 9 Liu et al. 31 Padioleau et al. 27 Rahman et al. 30

Comment Classification 21 categories on knowledge

domains

16 categories – task,

purpose, metadata

Documentation and

Inner comments

× 15 categories for linux

OS’s – memory, con-

trol flow, todo, etc

×

Quality Analysis Useful, Partially Useful, Not Useful non-informative com-

ments

× Informative and Non-

Informative

× Useful, Not Useful

Aspects for Quality

Detection, features

detailed in Table 2

Knowledge Domains of Software

Maintenance + redundancy, incon-

sistency with code

redundancy with code,

comment structure

× comment placement in

code, redundancy with

code

× comment authorship, comment

evolution, redundancy with code

Comment Analysis

Approach

Syntactic, Semantic, code and com-

ment knowledge graph

Syntactic, Semantic Syntactic Syntactic, Semantic Syntactic Syntactic, Semantic

Automated Analysis Neural Networks Decision Trees Manual Analysis Bert, FastText, CNN Manual Analysis Random Forest, Naive Bayes

Developers Involved for

Quality Aspects

Interviews: 16 Developers, 5 Com-

panies; Crowdsourcing: 72 develop-

ers, students, 4 companies

Interviews: 16 develop-

ers, 2 research labs

× × × interviewer: 7 developers, 1

company

Language [No. of Com-

ments]

C, [20,600] C++, Java, [1330] Java [2000] Java [1194] C [1050] Review Comments of Codeflow,

Microsoft[1200]

TABLE 28 Evaluation and comparison of classification results using CommentProbe, work by Rahman et al.30, Steidl et al. 11 and work by Liu et al. 31

The features proposed by Rahman et al. 30, Steidl et al. 11 and Liu et al. 31 are used to classify Useful and Not Useful comments of

CommentProbe, Partially Useful comments are not used

(F1 Score %) Rahman et al. 30 (F1 Score %) - Steidl et al. 11 (F1 Score %) - Liu et al. 31 (F1 Score %) - CommentProbe

72.19 66.21 70.21 89.10

Comparing CommentProbe with existing approaches (Table 27), we highlight some of the main differences. Steidl et al.11 define 7 comment

categories mostly based on syntax and placement of comments, such as header, method level, inline, copyright, section, code, and task. Pascarella

et al. 9 define a taxonomy of 16 categories that are related to purpose, IDE style and syntax, metadata (e.g., ownership and license), task-based,

exception, or alert based on the analysis of comments from 56 Java open source projects. Some of the categories are logically similar to the ones

proposed in CommentProbe, but the parameters to categorise them are different. For example, for the exception category, Pascarella et al.9 use

explicit tags (e.g., @exception and @throws) as identifying features, However, we use conceptual similarities with various exceptions in C (such

as bad allocation, memory corruption and buffer overflow), along with syntax (throws or catch). Furthermore, CommentProbe contains different

categories related to application specific entities, or descriptions of the library includes and dataset description, which are based on the concepts

and types that developers actively refer to whilst understanding existing code. On the other hand, Pascarella et al.9 provide an exhaustive view of

the various types of comments based on their general structure as followed by Java programmers, irrespective of their utility in understanding the

design and development aspects of a codebase. Padioleau et al.27 highlight categories, such as memory and data structure specific to C projects,

and hence there are few categories in common with CommentProbe.

Empirical Evaluation: The features proposed Steidl et al.11, Liu et al. 31 and Rahman et al. 30 (Table 2) for comment quality detection have been

developed, and evaluated on our datasets to classify useful and not useful comments in Table 28. Some of the features proposed by Rahman et al.30

are applicable to code review comments, such as the count of commits and authorship by developers, which we have omitted. We observe that the

structural features based on comment text or similarity of concepts between code and comments in the existing comment quality approaches31,11,30

do not perform well to interpret the semantics of the comments in the context of their relevance in software maintenance. Hence the features in

CommentProbe has been designed to interpret the concepts related to relevant knowledge domains which can aid in software maintenance coupled

with the semantic and structural aspects.

In the subsequent text we further assess and compare the existing approaches using scenarios and examples various examples. Broadly, the

approaches attempt to infer quality using a limited set of features, over a smaller dataset that cannot be scaled for real life applications.
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a) Comment quality assessment by Steidl et al. 11 : The quality parameters to detect redundant comments defined by Steidl et al.11 have been

extended in CommentProbe with more parameters related to inconsistencies and type of concepts based on developer study. For example, the

comments below are labeled as not useful due to redundant concepts in 11 and also in CommentProbe.

/** removes all defined markers **/
public void remove All Markers ( ) {...}

// merge
CloneGroup merged = new CloneGroup ( ) ;

However, ontologies and vector representations used to develop features in CommentProbe enable the semantic and conceptual analysis of

code and comment concepts. Words like “buffer” and “memory” are conceptually similar, “union" and “structure" are related (the same type of

datastructure), but are not detected in the work by Steidl et al.11 which uses the Levenshtein distance (less than 2) to find similarity. Hence in

the following comment, the approach in Steidl et al.11 would detect no similarity between the comment and method name and report that the

comment is useful and the method name can be improved to reflect some of the facts in the comments. However CommentProbe will be able

to detect the similarity between the words “buffer" and “memory" or “assign" and “allocate" using the ontology and vector representations, and

classify the comment as Not-Useful.

/** allocating buffer **/
void memory_assign ( ) {...}

Further, CommentProbe also defines a new taxonomy and quality parameters based on the relevance of information. Hence a comment containing

details of an algorithm or data structure is considered more useful than comments mentioning hardware details, which are not considered in the

quality model of Steidl et al.11

b) Detecting informative and non-informative comments (Liu et al. 31): Liu et al. 31 mostly focus on themodular programming style of Java (dataset

of 1,311 comments) to define parameters for quality based on only a project jabref 32 and hence cannot be applied effectively to various other Java

codes. In the code snippet below, the comment create buttons is considered informative as these are indicators for mapping application-specific

operations. The comment does not explain how the operation is modeled into the code structure, as it can be understood well from the object

oriented programming style of calling relevant classes and API’s.

// create buttons
ButtonType replaceEntries = new ButtonType(Localization.lang("Merge entry"), ButtonBar.ButtonData.DONE);

CommentProbe would label this comment as partially useful, as it maps one application entity, but does not specify how. Considering the varied

semantic expressions of C code, comments with more insight into mapping details or data structure state and algorithm help to comprehend code.

In terms of features, the set defined by Liu et al. in31 to represent comment structure and code correlation, are also part of the set of 21 features

in CommentProbe. However, Liu et al. 31 use cosine similarity between comment tokens and construct names and do not consider code metadata

which we do in CommentProbe (correlated code knowledge graph). The pre-trained embeddings used in the work by Liu et al.31 are also not

trained on software development words and hence are not able to effectively find conceptual similarities between words.

c) Quality assessment of CodeReview comments (Rahman et al. 30): In thiswork, the authors automate quality analysis for code review comments

in the context of howmuch code change is triggered for a comment and hence the notion of usefulness differ. Some features developed by Rahman

et al. 30 and in CommentProbe are similar in function, but their interpretations are different. For example, if the code element in review comments

is higher, then it is considered useful as it triggers more change in developed code. Comments such as I don’t think we need 2 ways to

call get_partner_whitelabel_config as market_id is None by default is tagged as useful and only check postable services? as Not

useful in the work by Rahman et al.30 (examples from 30). However, in CommentProbe, we focus on assessing how a comment provides extraneous

information which is not relevant from the associated code snippet. If a comment contains code constructs that are also in its scope, CommentProbe

renders it redundant, and based on other parameters, the comment is labeled as either partially useful or not useful.

Limitations: In any scientific study, dataset validity is always a concern. In this work we have created a dataset of 20,206 comments from open

source C applications (extracted from Github) belonging to multiple domains that are widely used and are actively maintained. However, it would

have been good to use code bases from industry , along with open source projects, to gain a more comprehensive picture of commenting practices

and enable the training of more robust models. We also faced various issues with distinctness and detected overlaps in case of comment categories

whilst conducting the online survey. In the following code and comment extract some developers preferred to merge, Fc3 - Algorithm Outline /

Working Summary and Fc5 - Description of the Dataset→ into a single Working Summary category:

/* function returns a pointer to STATIC memory, converts the binary dump to hex format string for logs
using lookup tables */ char * data_to_hex(char *data, size_t len){..}

In this study we also work at the level of a single comment. However, often developers span their commenting process over multiple individual

comments that are contextually interrelated. These interrelationships between the precede and following comments have not been analysed.
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For the example below, comments C1 belong to categories Fc3 (Working Summary) and Fc4 (Mapping to Application Entities); C2 belongs to Fc5

(Description of Dataset); and C3 belongs to Fc8 (Exceptions). However C1, C2, C3 together are connected semantically and provide a complete

working summary of the if block. Being able to group comments based on their context and make inferences for usefulness of contextually

grouped comments would significantly add value to this work.

// C1; converting graphics matrix to EPS formats using row major transformations
if ( lax ) {

//C2; y0 is a 2 dimensional array, converted to vector
yp0 = plP_wcpcy(y0); plP_movphy(vppxmi, (PLINT) yp0); plP_draphy(vppxma, (PLINT) yp0);
if ( ltx && !lxx ) {

// C3; value of ltx should be greater than 20
tp = xtick1 * floor( vpwxmi / xtick1 ); for (;; ){tn = tp + xtick1; { .. }}}}

Apart from relating the information from various comments in a source file to source code and metadata, it is necessary to relate them to

knowledge assimilated from analysing runtime traces. We propose Smart-KT, a knowledge assimilation and transfer framework based on multiple

sources of a software project in the work50,75 and we plan to integrate with CommentProbe to help build up the complete functional requirement

of a project from comments.

9 CONCLUSIONS AND FUTURE WORK

In this paper we propose CommentProbe, an automated comment quality classification framework for C codebases, based on using static instru-

mentation, natural language processing andmachine learning techniques.We conduct a detailed study with software developers to identify a set of

21 categories based on the common concepts which manifest in comments and are relevant for software maintenance. We develop a comprehen-

sive set of features based on code comment correlation and the comment categories. We generate a ground truth based on validation by industry

experts for 20,206 comments collected from 5 Github open source projects. We develop an architecture combining LSTM and ANN resulting in

a precision score of 86.27% and recall of 86.42% for classifying the overall quality score of a comment (Useful, Partially Useful, Not Useful). The

relevance, repetitiveness and inconsistency of the information content in a comment have been semantically analysed, in an attempt to define a

robust and effective comment quality model. The source code, dataset of 20,206 annotated comments and other related documents and responses

are available at 22. The semantic analysis framework in CommentProbe can be used in other comment analysis tasks (Table 29), and also improves

on existing approaches to analysing comments that are predominately based on syntactic methods (e.g.6).

TABLE 29 CommentProbe – improving inferences in existing work on comment analysis

Example from Tan et al. 6 and modified Available Approaches CommentProbe

drivers/scsi/in2000.c:

/* Caller holds instance lock!

static int in2000_bus_reset (barrier_wait(& var); ... reset_hardware ( . . .); }

Tan et al. 6: Cannot locate lock phrases

before reset_hardware; declares mis-

match between code and comment

SD2Vec embeddings and

SD ontology relate bar-

rier with lock.

The industry survey conducted to set the context to assess the quality of code comments in software maintenance can also be re-used in further

research to analyse and classify comments. There is still much work to be done to analyse comment quality and develop methods to assist with

software tasks that could utilise automated techniques, such as code maintenance. In future work we plan to carry out the following. Firstly, we

plan to enrich the vector space model using transformer based models, such as BERT57. Secondly, we plan to extend the annotation set with more

comments for better classification performance. Finally, we plan to extend CommentProbe with newer categories, knowledge domains and also

features, such as interpreting correlation to runtime behaviour, to analyse the usefulness of groups of related comments.
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10 APPENDIX

FIGURE 15 Example survey page on github.io

TABLE 30 Annotation labels

Labels Motivation

A count has been decided though based on feedback from industry surveys

L1: High SD Concepts

L2: Low SD Concepts

high would represent SD (Software Development) Concepts with a count> 5 in a comment

Labels to capture important comment categories – Inference from Survey with Developers (Section 4)

L3: Mapping to AD Concepts (High)

L4: Mapping to AD Concepts (Low)

high would represent AD (Application Domain . Sepcific) Concepts with a count> 3 in a comment

L5: Developer Details Name, email or contact details of developers involved in developing or enhancing the code

L6: Build Pre-requisites and installation instructions

L7: System Specifications Server specs, RAM size, OS requirements, compilers, big endian or small endian requirements, etc.

L8: External Libraries / Imports Standard library header files like ctime.h, or library functions or links to external documents.

L9: Data Dataset description – type, size, value, allocation type etc.

L10: Working Summary (Design) Algorithm details

L11: Working Summary (Interactions) Control flow, or data flow or operation

L12: Parameters / Return Type Descriptions of inputs and outputs for a method

L13: Performance Application running time, complexity of algorithm

L14: Possible Exceptions Application running time, complexity of algorithms

L15: Project Management Details Bug id, Fix descriptions, commit references

Labels to capture comment scope and length

L16: High Scope, L17: Low Scope High scope (sparsely spaced comment) (construct count> 6 and construct distance > 10 lines)

L18: Long, L19: Short (half line to one line comments) with words (with POS tags in (NN∗, V B∗, JJ∗)) < 10

Labels to capture Code-Comment Coherence

L20: Semantic Matches of Code-

Comment (All)

Complete Conceptual equivalence with in-scope program construct & easy to understand from struc-

ture of constructs

L21: Semantic Matches of Code-

Comment (Partial)

Partial Conceptual equivalence with in-scope program construct & easy to understand from structure

of constructs

L22: Semantic Matches of Code-

Comment (None)

No Conceptual equivalence with in-scope program construct & cannot be understood from structure

of constructs

L23: Concepts Match Type / Datatype Semantic equivalence to type / data type of in-scope program constructs

L24: Concepts Match Structure Concepts from comments can be easily understood from the program structure

Labels to capture Additional Information

L25: Code Comment codes which are commented out

L26: Copyright copyright / ownership details

L27: Junk only symbols


	Automated Evaluation of Comments to aid Software Maintenance
	Abstract
	Introduction
	Related Work
	Design and Architecture of CommentProbe
	Knowledge Domains

	Surveying Code Commenting Practices
	Pilot Study with Key Informants
	Study I: 1-1 Developer Interviews
	Study II: Structured Survey based on Directed Examples

	Feature Design
	Feature Set I – Textual Features for Comment Categories
	Feature Set II – Code Correlation Features

	Ground Truth Generation and Validation
	Automated Classification of Comment Quality
	Discussion
	Conclusions and Future Work
	References
	Appendix


