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Abstract. Guided waves are gaining increased interest in SHM, thanks to some
distinct advantages. For guided-wave-based localisation strategies, information on
the group velocity is required; therefore, determination of accurate dispersion curves
is invaluable. However, for complex materials, the wave speed is dependent on the
propagation angle. From experimental observations of dispersion curves, measured
using a two-dimensional Fourier transform, a system identification procedure can be
used to determine the estimated value and distribution for the governing material
properties. Markov-chain Monte Carlo (MCMC) sampling can provide a way of simu-
lating samples from these distributions, which would require solving dispersion curves
many times. By using a novel Legendre polynomial expansion approach, the com-
putational cost of dispersion curve solutions is greatly reduced, making the MCMC
procedure a more practical approach In this work, a scanning laser Doppler vibrom-
eter is used to record the propagation of Lamb waves in a carbon-fibre-composite
plates, and points on the dispersion curve are extracted. These observations are then
fed into the MCMC material identification procedure to provide a Bayesian approach
to determining properties governing Lamb wave propagation at various angles in the
plate. The distribution of parameters at each angle is discussed, including the inferred
confidence in the predicted parameters.
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1 Introduction

The use of ultrasonic guided waves (UGWs) for structural health monitoring (SHM)
strategies [1] can offer a number of distinct advantages, such as range and sizing
potential, greater sensitivity and cost effectiveness. UGWs commonly consist of two
types of high-frequency stress waves: Rayleigh waves, which propagate on a surface,
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or Lamb waves, which propagate in ‘thin’ plates. Explanations of Rayleigh and Lamb
waves are given by Worden [2] and Rose [3], however a particular characteristic of
Lamb waves is their separation into symmetric and antisymmetric modes. The num-
ber of each type of wave mode present increases with increasing frequency-thickness;
these are termed higher-order modes. A wave-packet is a single burst containing
multiple wave modes of different frequency and shape; for Lamb waves, these will
contain both types of modes. The propagation velocity of Lamb waves depends on
the central frequency of the wave and will vary between the modes present; therefore
a wave-packet of mixed wavelengths will spread out in space, i.e. it will disperse.

The dispersion relationship is more completely described by defining a map be-
tween the frequency and the wavenumber, which can be plotted as dispersion curves.
Use of dispersion curve information is essential in guided wave-based SHM strate-
gies, one example being to use known group velocities for damage localisation [4, 5].
In practice, the governing elastodynamic equations are numerically solved to deter-
mine these curves. For isotropic materials this can be done using a simple iterative
procedure to find the phase velocity at a given frequency [3]. However, modelling
guided-wave phenomena in complex materials is much more difficult, because the
anisotropy results in more complicated behaviour, as well as requiring knowledge of
the full stiffness tensor. For complex materials, there is no standard method of solv-
ing dispersion curves, although many are available which have distinct advantages
for different uses. An approach by Solie and Auld [6] attempts to derive the equations
using the partial wave technique. Traditionally, matrix formulations are also used to
retrieve wave propagation characteristics for a given frequency [7].

The curves are defined by a list of material properties, the number of which can
become extensive for anisotropic and/or inhomogeneous materials. It follows then,
that information on the curves may allow for determination of the material properties.
Previously, a method involving the use of a genetic algorithm has been presented
which estimated the elastic constants of a fibre-composite plate using dispersion
curves [8]; the approach generates feasible elastic constants and a distribution based
on an assumed Gaussian posterior. However, there is a shortcoming in the assumption
of the posterior shape, as well as the absence of cross-correlation between elastic
constants. Furthermore, the genetic algorithm approach is highly computationally
expensive [9].

Here, an alternative approach to dispersion curve-based material identification
is presented, which utilises a probabilistic approach to simulate samples from the
posterior using a Markov-Chain Monte Carlo [10] procedure. This approach allows
for simulation of the true shape of the posterior, as well as to provide information on
the multivariate distributions of the parameters. Previously, such an approach may
not have been feasible as the solutions via dispersion curves of complex materials
are computationally expensive; however, via the use of the Legendre polynomial
expansion approach first shown by Lefebvre [11], it is more feasible. In this work,
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several numerical tricks have been implemented to speed up the Markov-Chain Monte
Carlo sampling procedure, further reducing computational expense.

2 Methods

2.1 Dispersion Curve Solutions for Orthotropic Media

As mentioned earlier, the work of Lefebvre [11] is used here for determining dispersion
curves in anisotropic media. For this case, an orthotropic model is used, which is
described in detail by Cunfu [12] and Othmani [13], although a brief overview will be
given here. In this paper, the decoupled equations which govern the shear-horizontal
modes are omitted for brevity. For orthotropic materials, the generalised Hooke’s law
is used to generate the governing Lamb wave equations,
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where q3 = kx3 is the dimensionless wavenumber, the superscript (′) refers to the
partial derivative with respect to q3, and δ is the Dirac delta function.

In order to solve the decoupled wave equations, the Legendre polynomial method
expands Ui(x3) into an orthonormal polynomial basis [11, 13],

Ui(q3) =

∞
∑

m=0

pimQm(q3), i = 1, 2, 3 Qm(q3) =

√

2m+ 1

kh
Pm

( q3
kh

− 1
)

(2)

where pim is the expansion coefficient and Pm(x) is the Legendre polynomial ex-
pansion of order m. Theoretically, m runs from 0 to ∞; however, in practice, the
summation over polynomials in Equation (2) can be halted at some finite value of
m = M , when higher-order terms become negligible. Following [13], a value of M = 4
is used here.

To retrieve the final equations for solution, one substitutes Equation (2) into
Equation (1), multiplies by Q∗

j (q3) and integrates over q3 from 0 to kh, giving,
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with j and m running from 0 to M , and ‘∗’ means the complex conjugate. The
definition of the matrix elements are shown in [13].

By separating out Equation (3) into only the coupled Lamb wave modes and
decoupled SH wave mode, the final solution can be arranged as an eigenvalue problem,

[

Ajm
11

Ajm
13

Ajm
31

Ajm
33

] [

p1m
p3m

]

= −ω2

k2
Mjm

[

p1m
p3m

]

(4a)

with eigenvalues λ = -c2p and corresponding eigenvectors {p1m, p3m}⊤. The solutions
to be accepted are only those eigenmodes for which convergence is obtained as M is
increased [11, 13].

2.2 Measuring {ω̂, k̂}

The first stage of the process here is to determine a set of measured values on the
dispersion curve {ω̂, k̂} of the plate in question. Experimentally, this can be obtained
by first measuring the surface displacement of a wave at regularly-spaced intervals is
measured to form time-distance [t-x ] data. The signals at each spatial location are
then normalised and the matrix passed through a two-dimensional Fourier transform
(2DFT) to retrieve frequency-wavenumber [ω-k ] data [14].

Lamb waves were initiated in a carbon-fibre reinforced polymer plate by excitation
of a 20mm diameter piezo-electric transducer (PZT), at the centre of the plate, as
shown in Figure 1a. The CFRP plate consisted of a [90/0/90]s layup, and measured
300mm× 300mm× 1mm. The PZT was actuated with a 300kHz, 5-cycle, Hanning-
windowed sine wave, allowing multiple wave modes to be excited. A Polytec scanning-
laser vibrometer was used to measure the out-of-plane surface displacement of the
induced wave-packets on the opposite side of the plate to the PZT, with recording
length 4ms and at a sampling rate of 1.024MHz. One-dimensional wave propagation
data were then extracted at two different propagation angles; 0➦ and 90➦. The [t-x ]
data were then passed through a 2DFT to form dispersion curve images at each
angle; the results for 90➦ are shown in Figure 1b.

At a propagation angle of 90➦, the dispersion curve shows strongly the A0 mode,
and has a noisy representation of the S0 mode visible. The [ω-k ] image data are then
passed through a simple ridge-picking algorithm to select points which are on the
curve; in this case, only the A0 mode is considered.

2.3 Estimating Elastic Constants

Using known points on the dispersion curve a maximum-likelihood estimate can be
formulated, which returns the most likely parameters, given point data [15]. In this
case, the model is assumed be of the form,

ω = f(k,Θ) + ε (5)
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(a)

(b)

Fig. 1: (a) Diagram showing a top-down view of the experimental setup with location
of PZT on the 300mm x 300mm CFRP plate and (b) the dispersion curve image data
for a propagation angle of 90➦.

where Θ is a set of parameters which govern the solutions of the dispersion equation
and ε is white Gaussian noise. The function f(k,Θ) is formed using the method
presented above, the parameters are Θ = {C11, C13, C33, C55, ρ}. Given a set of ob-

servations y = {ω̂, k̂}, the likelihood is defined as,

L(y|Θ) =

n
∏

i=1

1√
2πσ2

exp






−

(

ω̂i − f(k̂i, Θ)
)2

2σ2






(6)

where n is the number of observations of the dispersion curve. Maximising L(y|Θ)
provides an estimate of the most likely elastic constants; however, it is also possible
to retrieve information on their distribution.

2.4 Sampling Over the Posterior Distribution

Markov chain Monte-Carlo (MCMC) sampling is a computational sampling method
[10, 16] which allows one to characterise the distribution of a set of parameters with-
out knowing the parameter properties. In traditional Monte-Carlo sampling, a dis-
tribution is formed by random sampling from the posterior distribution. As no basis
is provided for the next sample made, extensive sampling is required to form an
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accurate model of the posterior distribution. In MCMC sampling, the next sample
is chosen based on the posterior probability, so the chain will converge towards its
stationary distribution.

A detailed description is given by Barber [17], although a brief overview will be
given here. MCMC is an iterative sampling procedure where the subsequent samples
depend on assessing their probability with respect to the previous sample. As the
likelihood includes the noise variance term σ, the parameter vector is extended to
include this, θ = {Θ, σ}. The aim is to find a distribution over the parameters θ by
sampling them based on their likelihood given a set of observations y. At each step
of the iteration an acceptance ratio is defined as,

α̂ =
p(y|θ′)p(θ′)
p(y|θk)p(θk)

(7)

where θ′ is the current estimate and θk is the previous estimate, p(θ) is the prior
distribution of θ, and p(y|θ) is the likelihood as defined in Equation (6). The current
estimate is accepted if α̂ > 1.

In addition to the likelihood, the priors must be defined to embed any prior belief
of the distribution of the parameters. This definition can be done using any previous
knowledge of the system; in this case, the density of the plate was provided but no
other material properties. Thus, a tight prior can be given on ρ, and then priors on
other values are defined based on reasonable values for the material.

3 Results

The results of 5000 iterations of the sampling procedure for propagation angles of 0➦
and 90➦ are shown in Figures 2 and 3 respectively. From the figures, the posterior
distributions of the parameters can be seen as both univariate and bivariate distribu-
tions. In both propagation angles, there is evidence of correlation between material
parameters, whereas the distribution of the noise parameter appears to converge to
a univariate distribution. This result is anticipated, as the elastic properties which
form the stiffness matrix are described by a series of inseparable equations. For 0➦,
there appears to be a strong correlation between C33 and both C13 and C11, as well
as a very strong correlation between the values of C55 and ρ.

Another observation from these plots is the pronounced ‘edge’ on the scatter
correlation plots between C11 and C33 with both C55 and ρ. As a condition of the
solution to the dispersion curve equations is that λ < 0, any solutions where this
is the case are rejected. The edge may indicate a region of forbidden parameter
combinations which cannot exist given a real elastic material.

In comparison to the results for the 0➦ propagation angle, there are some notable
differences in the posterior distributions for the propagation angle of 90➦. Firstly, the
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Fig. 2: Results of the parameter identification procedure for the propagation angle of
0➦. Figures along the diagonal show the histogram of the samples for each parameter.
Figures in the upper right triangle show a scatter plot of correlation between two
parameters. Figures in the lower left triangle show a bivariate kernel density estimate
of the cross-correlation between parameters, where lighter colours represent a larger
value of the density.

distribution of C11 converges to a statistical mode of lower value and C55 converges
to that of a higher value – indicating the elastic constants are lower and higher
respectively. This would indicate that, even with the carbon-fibre weave material,
the energy of the antisymmetric mode is dominated by a particular fibre orientation;
otherwise it would be expected that for both fibre orientations the posteriors would
remain similar. Furthermore, the correlation between C55 and ρ appears to be much
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Fig. 3: Results of the parameter identification procedure for the propagation angle of
90➦. Figures along the diagonal show the histogram of the samples for each parameter.
Figures in the upper right triangle show a scatter plot of cross-correlation between
two parameters. Figures in the lower left triangle show a bivariate kernel density
estimate of the cross-correlation between parameters, where lighter colours represent
a larger value of the density.

weaker than at a propagation angle of 0➦, and instead there is a strong correlation
between C11 and ρ.

For each of the parameters, a kernel density estimate of the posterior distribution
was applied to the samples from the posterior distributions for each parameter and
for both angles, the results of which are shown in Table 1. The mean values of C33,
ρ and σ are similar for both propagation angles, whereas the mean values for C11,
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C13 and C55 appear to change depending on the propagation angle. The largest of
these changes is that of the value of C55, however, this could be explained by looking
at the distribution of curves in Figure 4. As there are additional points returned
from the ridge-picking algorithm in the results for the propagation angle of 0➦, the
likelihood calculation is at a maximum when the S0 curve has a shape which covers
these points. The C55 elastic constant effects the S0 curve past the ‘elbow’ [18] and
so these additional measured points will tighten the posterior distribution for C55.

Angle
C11 C13 C33 C55 ρ σ

Value STD Value STD Value STD Value STD Value STD Value STD

0 ➦ 46.12 11.56 2.826 2.032 1.029 0.382 3.747 0.745 1619 308.5 65,940 2,461

90 ➦ 25.90 4.607 1.260 0.361 1.027 0.422 27.30 15.21 1624 283.3 64,519 2,416

Table 1: Calculated mean (first statistical mode) and standard deviation (STD) taken
from fitting a kernel density estimate to the samples from the posterior for each
parameter.

Using the parameters at each sample point, a distribution of the dispersion curves
was also produced, and is shown in Figure 4, along with the observation points taken
from the [ω-k ] image data. An initial observation is of the dissimilarity of the S0

mode curves and their representation in the image data. In both cases, wavenumber
is calculated to be higher for all samples drawn. For dispersion curves of unidirectional
fibre-composite materials, the A0 mode is mostly sensitive to the C11, C55 at 0➦, and
additionally the C13 and C33 parameters at 90➦ [18]. As the distributions are only
sampled based on observations of the A0 mode, it will only be influenced by those to
which the curves are sensitive.

For all samples drawn, the model for the dispersion curve of theA0 is very accurate
and lies well within the measured observation points. An interesting note relates to
the additional observation points at ω > 2.5Mrad/s for the propagation angle of 0➦.
These additional points are likely the cause of the tighter distribution of curves for
this propagation angles, and is likely to be a result of a clearer dispersion curve on
the image data.

In this work, the dispersion curves are solved using an orthotropic model. For the
objectives of the work here, the model provides accurate results based on comparison
to the image data provided. It is important to note the restriction of the curves to
the bandwidth available in the observations.



10 M. Haywood-Alexander et al.

(a) (b)

Fig. 4: Distribution of generated curves for each sample taken for propagation angles
of (a) 0➦ and (b) 90➦. The blue curves show the distribution of the A0 mode and red
curves show the distribution of the S0 mode. The curves are overlaid on the image
data taken from the 2DFT and the red dots indicate the points taken from the ridge
selection algorithm which were used in the procedure as {ω̂, k̂}.

4 Conclusions and Further Work

A method has been presented here for determining the posterior distributions of
elastic properties which govern dispersion curves for complex materials. The samples
drawn from the procedure also give an indication of the joint distributions of the
parameters and how they are correlated. The posterior distribution of the disper-
sion curves also shows that the method provides accurate modelling in the context
of key properties for SHM strategies – such as group velocity. With implementation
of the method, consideration of the bandwidth of the observed values is important.
Although shown here in the context of determining dispersion curves for the fun-
damental Lamb wave modes, the method is readily expandable to become a full
system-identification procedure. Further work will be done to expand this, by inclu-
sion of the S0 mode as well as SH modes.

Acknowledgements

The authors gratefully acknowledge the support of the UK Engineering and Physical
Sciences Research Council (EPSRC) [grant numbers EP/R004900/1, EP/R003645/1,
EP/J013714/1 and EP/N010884/1].



Bayesian Lamb-Wave Material Identification 11

References

1. J. Rose, “Ultrasonic guided waves in structural health monitoring,” Key Engineering
Materials, vol. 270-273, pp. 14–21, 2004.

2. K. Worden, “Rayleigh and Lamb Waves - Basic Principles,” Strain, vol. 37, pp. 167–172,
2001.

3. J. Rose, Ultrasonic Waves in Solid Media. Cambridge University Press, 2014.
4. M. Haywood-Alexander, N. Dervilis, K. Worden, G. Dobie, and T. J. Rogers, “Infor-

mative bayesian tools for damage localisation by decomposition of lamb wave signals,”
Journal of Sound and Vibration, 2021. (under review).

5. T. Kundu, “Acoustic source localization,” Ultrasonics, vol. 54, pp. 25–38, 2014.
6. L. Solie and B. Auld, “Elastic waves in free anisotropic plates,” The Journal of the

Acoustical Society of America, vol. 54, no. 1, pp. 50–65, 1973.
7. T. Kundu, Mechanics of Elastic Waves and Ultrasonic Nondestructive Evaluation. CRC

Press, 2019.
8. P. Kudela, M. Radzienski, P. Fiborek, and T. Wandowski, “Elastic constants identifica-

tion of woven fabric reinforced composites by using guided wave dispersion curves and
genetic algorithm,” Composite Structures, vol. 249, p. 112569, 2020.

9. B. I. Rylander, Computational Complexity and the Genetic Algorithm. University of
Idaho, 2001.

10. D. Gamerman and H. F. Lopes, Markov chain Monte Carlo: stochastic simulation for
Bayesian inference. CRC Press, 2006.

11. J. Lefebvre, V. Zhang, J. Gazalet, T. Gryba, and V. Sadaune, “Acoustic wave propaga-
tion in continuous functionally graded plates: an extension of the legendre polynomial
approach,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 48, no. 5, pp. 1332–1340, 2001.

12. H. Cunfu, L. Hongye, L. Zenghua, and W. Bin, “The propagation of coupled lamb
waves in multilayered arbitrary anisotropic composite laminates,” Journal of Sound
and Vibration, vol. 332, no. 26, pp. 7243–7256, 2013.

13. C. Othmani, S. Dahmen, A. Njeh, and M. H. B. Ghozlen, “Investigation of guided
waves propagation in orthotropic viscoelastic carbon–epoxy plate by legendre polyno-
mial method,” Mechanics Research Communications, vol. 74, pp. 27–33, 2016.

14. D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for the mea-
surement of propagating multimode signals,” The Journal of the Acoustical society of
America, vol. 89, pp. 1159–1168, 1991.

15. L. Le Cam, “Maximum likelihood: an introduction,” International Statistical Re-
view/Revue Internationale de Statistique, pp. 153–171, 1990.

16. W. R. Gilks, S. Richardson, and D. Spiegelhalter,Markov chain Monte Carlo in practice.
CRC press, 1995.

17. D. Barber, Bayesian Reasoning and Machine Learning. Cambridge University Press,
2012.

18. C. Othmani, A. Njeh, and M. H. B. Ghozlen, “Influences of anisotropic fiber-reinforced
composite media properties on fundamental guided wave mode behavior: A legendre
polynomial approach,” Aerospace Science and Technology, vol. 78, pp. 377–386, 2018.


