
This is a repository copy of Magnetohydrodynamic waves in an asymmetric magnetic slab 
with different external flows.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191344/

Version: Published Version

Article:

Zsámberger, N.K., Sánchez Montoya, C.M. and Erdélyi, R. (2022) Magnetohydrodynamic 
waves in an asymmetric magnetic slab with different external flows. The Astrophysical 
Journal, 937 (1). p. 23. ISSN 0004-637X 

https://doi.org/10.3847/1538-4357/ac8427

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Magnetohydrodynamic Waves in an Asymmetric Magnetic Slab with Different External
Flows

Noémi Kinga Zsámberger
1,2,3

, Carmen M. Sánchez Montoya
1,4
, and Róbert Erdélyi

1,5,6

1
Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3

7RH, UK; robertus@sheffield.ac.uk
2
Department of Physics, University of Debrecen, 1. Egyetem tér, H-4010 Debrecen, Hungary

3
Doctoral School of Physics, University of Debrecen, Egyetem tér 1., H-4010 Debrecen, Hungary

4
Faculty of Experimental Science, University of Almería, S/N Carretera Sacramento, E-04120 Almería, Spain

5
Department of Astronomy, Eötvös Loránd University, 1/A Pázmány Péter sétány, H-1117 Budapest, Hungary

6
Gyula Bay Zoltán Solar Observatory (GSO), Hungarian Solar Physics Foundation (HSPF), Petőfi tér 3., H-5700 Gyula, Hungary

Received 2022 January 24; revised 2022 July 7; accepted 2022 July 14; published 2022 September 19

Abstract

Building on recent studies of the Kelvin–Helmholtz instability (KHI) in the solar atmosphere, we investigate a
simple analytical model that can further our understanding of how the presence of bulk flows influences the
propagation of magnetohydrodynamic (MHD) waves. Our model builds on a series of recent works on stationary
MHD waveguides and looks at a magnetic slab with a density asymmetry, as well as asymmetric background
steady flows present in its environment. We obtained approximate solutions to the dispersion relation for the
important and applicable limiting cases of a thin or a wide slab, as well as low- and high-β plasmas. We also
explored the relation between the angular frequency of trapped MHD waves, the limit for the onset of the KHI, and
small parameters describing the flow and density asymmetries. Our analytical investigation is complemented by a
numerical analysis for various bulk flow speeds and slab widths. Both these avenues of study reveal that the flow
field asymmetry has an important effect on both the cutoff frequencies and the stability of trapped MHD waves in
the slab configuration.

Unified Astronomy Thesaurus concepts: The Sun (1693); Magnetic fields (994); Magnetohydrodynamics (1964);
Solar atmosphere (1477); Solar magnetic fields (1503); Solar magnetic bright points (1984); Solar
oscillations (1515)

Supporting material: animations

1. Introduction

Magnetic fields dominate the solar atmosphere, creating a
dynamic and inhomogeneous medium that enables the
propagation of a wide range of magnetohydrodynamic
(MHD) waves. MHD waves have been predicted to be present
in the solar atmosphere since the late 1960s (Uchida 1968;
Habbal et al. 1979; Roberts 1981b). They were first imaged in
1998 by TRACE, and since then, both their theoretical and
observational studies have entered a new “golden age.”

Within the family of studies employing simple geometries to
construct a physical model of certain solar atmospheric
features, the configuration of a magnetic slab employs
Cartesian geometry. In the long history of constructing and
improving this model, a first step was investigating one
interface in a uniform medium—a good summary of which is
given by Roberts (1981a). After that, two interfaces (forming a
symmetric slab) with magnetic field only on the inside were
studied by Roberts (1981b). Adding magnetic fields outside
was the following step, proposed by Edwin & Roberts (1982).

Expanding the scope of traditionally symmetric slab models
can be accomplished in several ways. One line of investigation
has been keeping each of the regions of the slab system uniform
and focusing on waves propagating along the slabs, but
introducing various sources of asymmetry into the model. A slab

placed in a nonmagnetic, asymmetric environment was studied
recently by Allcock & Erdélyi (2017). One avenue for further
generalizing slab models is to investigate what happens in an
asymmetric magnetic slab, which has been done by Zsámberger
et al. (2018, 2021a, 2021). Finally, the model may be further
expanded to incorporate multilayered slabs, as Shukhobodskaia &
Erdélyi (2018) and Allcock et al. (2019) have described.
When it comes to steady as opposed to static models, there are

new physical effects to investigate. First, if we add a steady flow
to the equilibrium state of a slab (even a symmetric slab),
shearing motions may be caused in the flow, which eventually
may lead to the appearance of the Kelvin–Helmholtz instability
(KHI). Second, the presence of a bulk background flow shifts the
phase speeds and the cutoff speeds of waves that can propagate
in a specific waveguide (see, e.g., Nakariakov & Roberts 1995;
Terra-Homem et al. 2003). Further consequences of the addition
of flows, such as negative-energy wave instabilities or resonant
flow instabilities, have also been the subject of extensive study
(see, e.g., Taroyan & Ruderman 2011; Ryutova 2015).
The influence of steady flows on wave behavior has been

studied in multiple geometries. For a description of these
effects in a cylindrical flux tube, see, e.g., Somasundaram et al.
(1999) and Terra-Homem et al. (2003). The consequences of
the presence of a bulk background flow in a symmetric slab
geometry were explored by Nakariakov & Roberts (1995).
Further, the study of Barbulescu & Erdélyi (2018) can be
considered a natural extension of this, as they focused on the
effects of adding a steady background flow to the slab in an
asymmetric slab system. A different type of extension is
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provided by Zaqarashvili et al. (2021), who analyzed the

stability of solar jets in slab geometries subject to a kink

oscillation. This last example ties into another important line of

investigation when it comes to generalizing slab models,

especially the ones under the effect of background flows,

namely, that of introducing nonuniformity in some parameters.

For example, a single interface was expanded into a transitional

region by Tirry et al. (1998), who used the cold plasma

approximation to study the threshold for the onset of the KHI,

negative-energy waves, and resonant absorption in this

nonuniform system. The effects of different velocity profiles

on the KHI threshold have been investigated in slab-like layers

and cylindrical geometries as well (see, e.g., Michalke 1964;

Blumen 1970; Ray 1982; Wu & Wang 1991).
The problem of instabilities in a slab or flux tube mode, as

illustrated above, can be approached from various directions,

depending on which consequence of the presence of flows is to

be studied. With the current work, our focus is on one specific

aspect of the problem, namely, the consequence of flow

asymmetries. To facilitate the understanding of this step of

expanding slab system descriptions, we return to the type of

piecewise uniform model generalized for kinetic asymmetry by

Allcock & Erdélyi (2017) and for magnetic asymmetry by

Zsámberger et al. (2018). Therefore, here we study MHD

waves in an asymmetric slab configuration with no external

magnetic fields, but with asymmetric background flows added

to the external regions. Such a configuration may serve as a

model of waves in, e.g., magnetic bright points (MBPs) in the

solar photosphere, as they often show an elongated shape and

can therefore be approximated by the model of an asymmetric

slab to account for the different densities on their sides in the

granular cells, or prominences sitting between two different

regions of the solar corona. The model may also be applicable

to spicule formation in the lower solar atmosphere, just at or

above the photosphere.

2. The Dispersion Relation

We introduce a slab of plasma bounded by two interfaces at

±x0 of density ρ0, pressure p0, temperature T0, and magnetic

field B0= (0, 0, B0). The slab is embedded in an asymmetric

environment, defined as having density, pressure, and temper-

ature ρ1, p1, and T1 on the left side and ρ2, p2, and T2 on the

right side, which are subject to steady flows, U1= (0, 0, U1) on

the left and U2= (0, 0, U2) on the right, as illustrated in

Figure 1. The exterior is not subject to magnetic fields.

The governing equation for the disturbance within the
magnetic slab can be obtained from the ideal MHD equations:

v
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d

dt
p

1
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where the variables v= (vx, vy, vz), B, p, and ρ are the velocity,

magnetic field, pressure, and density, respectively, at time t,

and d/dt= ∂/∂t+ (v∇).
Since we are only concerned with magnetoacoustic waves

propagating along the slab, parallel to the background magnetic
fields we restrict ourselves to the choice of ky= 0 and make the
choice of vy= 0, refraining from the study of, e.g., y-dependent
Alfvén waves. In addition to purely magnetosonic waves
propagating along the slab, a future extension of this study to
ky≠ 0 (i.e., nonparallel propagation to the magnetic field but
still parallel with respect to the magnetic isosurfaces) can allow
for the description of waves with mixed properties and further
physical effects that influence the stability of the slab system.
For example, Andries et al. (2000) studied the environment of
coronal plumes including a nonuniform transitional layer in a
slab and a flux tube model while allowing for the ky≠ 0 case.
They found that the resonant flow instability can occur at a
lower velocity threshold than the KHI, which is a phenomenon
that the current model cannot reproduce owing to the chosen
restrictions and focus. After linearizing about a static basic
state, we Fourier-decompose the equations to seek plane wave
solutions propagating along the slab by assuming that

rf t f x e, i kz t( ) ˆ ( ) ( )= w- , where f stands for any of the small
perturbations (pressure, density, velocity, and magnetic field)

and f̂ is the amplitude of each perturbation. Here ω is the
angular frequency and k is the wavenumber in the z-direction.
We can combine these equations to give an ordinary
differential equation for, e.g., vx, namely,

v m v 0, 5x x0
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Here c pj j j
2 g r= ( j= 0, 1, 2) is the sound speed, and

v BA
2

0 0r m= denotes the Alfvén speed of a given region.

This expression describes the inside of the slab, and it is

identical to the corresponding equation for a symmetric slab

derived by Roberts (1981b). The same method may be applied

to the exterior layers, with the consideration that in both

semifinite regions there are no magnetic fields, but there are

flows present. Therefore, the form of the mj coefficients (for

j= 1, 2) will be slightly different:

m k
c

. 7j
j

j

2 2

2

2
( )= -

W

Figure 1. Equilibrium configuration of the slab. Red arrows indicate the
external flows, while blue arrows show the internal magnetic field.
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Here the exterior sound speeds are defined as c pj j j
2 g r= and

Ωj= ω− kUj for j= 1, 2 is the Doppler-shifted frequency.
We aim to find trapped wave modes that are evanescent

outside the slab (i.e., all perturbations must vanish at±∞),
meaning that m 0j

2 > is required for j= 1, 2. This gives us the
general solution of Equation (5) as

v x

A m x m x x x

B m x C m x x x

D m x m x x x
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8xj
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( ) =
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- >

where A, B, C, and D are arbitrary constants. By inspection, we

establish that two wave modes are allowed to propagate under

the given constraints: one that is evanescent toward the center

of the slab (for m 00
2 > ), and one that is spatially oscillatory

throughout the slab (for m 00
2 < ). These modes of propagation

are the so-called surface and body modes, respectively (see,

e.g., Roberts 1981b).
Equation (8) is subject to boundary conditions at the

interfaces, namely, the continuity of the Lagrangian displace-
ment and the continuity of total pressure:
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By substituting Equation (8) into the boundary conditions
(9), we obtain a system of four coupled homogeneous algebraic
equations:
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where, for brevity, we introduce Cj= m x Scosh ,j j0( ) =
m xsinh j 0( ) for j= 0, 1, 2, and
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For Equation (10) to have nontrivial solutions, we require the
determinant of the matrix on the left-hand side to be equal to
zero. Evaluating this condition, we obtain
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Using the notation introduced by Equation (11), we arrive at
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This is the general dispersion relation describing waves
propagating along the magnetic field in a slab embedded in an
asymmetric environment, in the presence of an asymmetric flow
field. Similarly to the cases of the asymmetric slab system with
(Barbulescu & Erdélyi 2018) or without (Allcock & Erdélyi
2017) an internal flow in a nonmagnetic environment, as well as
to that of the slab in an asymmetric magnetic environment
(Zsámberger et al. 2018), the dispersion relation is a single
equation describing both main types of eigenmodes, which are
called quasi-kink and quasi-sausage modes, following the
naming convention established in Allcock & Erdélyi (2017).
The fact that the general dispersion relation cannot be

decoupled into two separate equations for “traditional” sausage
and kink eigenmodes is a mathematical consequence of the
background asymmetry present in the slab system, which
makes it so that the waves propagating in the slab interact with
somewhat different environments on its two boundaries. This
leads to changes in the well-known characteristics of sausage
and kink modes in a symmetric slab system. A more detailed
exploration of these changes and their dependence on the
magnitude of the external asymmetry was provided, e.g., by
Allcock & Erdélyi (2017), Zsámberger et al. (2018), Allcock &
Erdélyi (2018), and Allcock et al. (2019).
The main differences between symmetric and asymmetric

eigenmodes can be summarized as follows. For both types of
solutions, the unsigned amplitudes of perturbations in the
transverse velocity (vxi , for i= 0, 1, 2) will be the same at the
two boundaries of a symmetric slab, while in general they will
be different in the asymmetric slab systems similar to the current
model studied so far (see, e.g., Allcock & Erdélyi 2017;
Barbulescu & Erdélyi 2018; Zsámberger et al. 2018). Further-
more, sausage modes in a symmetric slab show an unperturbed
magnetic surface at the center of the slab. However, depending
on the density and magnetic asymmetries, in an asymmetric slab
system, this surface with zero perturbation is shifted toward one
or the other slab boundary. Therefore, the central axis of the slab
is not left unperturbed by quasi-sausage modes. In addition,
asymmetric kink modes will be different from their symmetric
counterparts too. Kink waves in a symmetric slab leave the
slab’s cross-sectional width unchanged, while quasi-kink modes
in an asymmetric slab can generally change it. The lack of the
purely sausage or purely kink character of oscillations raises new
challenges in the identification of observed waves in an
asymmetric system, which, e.g., Allcock & Erdélyi (2017) and
Allcock et al. (2019) illustrate.
This constitutes a fundamental difference from symmetric

slabs, which we look at in more detail in the next section.

2.1. Comparison with a Symmetric Slab

There is an intrinsic difference between perturbations along
symmetric and asymmetric magnetic slabs. The dispersion
relation governing an asymmetric slab is a single equation,
describing waves of a mixed character, whereas the dispersion
governing a symmetric slab (Roberts 1981b) consists of two

3
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independent equations, corresponding to the sausage and kink
eigenmodes.

A closer comparison to symmetric slab systems can be made
if we require that the densities, pressures, and flow speeds on
the two sides of the asymmetric slab should be of the same
order, so that λ2=Λ2Ω2 is of the same order as λ1=Λ1Ω1.
Then, λ2= λ1+ ò, and the following connection between these
quantities may be made:

1
1

4
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4
.

14
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1 1 2 2

2 1 1 2 2
2

1 1 2 2

( )
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Substituting this into Equation (12), the full dispersion
relation, multiplying by 2Λ1Ω1Λ2Ω2 (which is a nonzero
quantity) and factorizing, then yields
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Setting either factor of this product as zero leads to an
approximate dispersion relation for sausage- and kink-type
modes separately under this so-called weak asymmetry
approximation, which can be summarized as

x m2
tanh

coth
0. 160 1 1 2 2 1 2 1 2 0 0⎛⎝ ⎞⎠( ) ( ) ( )wL LW + L W + LL W W =

The expressions for the variables Λi for i= 0, 1, 2 in
Equations (11) can be substituted into this decoupled
dispersion relation in order to express it in terms of the

characteristic speeds, densities, and wavenumber coefficients.
After some rearranging, this leads to the following equation:
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This is the decoupled dispersion relation for waves
propagating in a weakly asymmetric magnetic slab system
containing asymmetric background flows, expressed in terms
of the characteristic speeds and densities of each region.
Equation (17) is now in an analogous form to the dispersion
relation corresponding to MHD waves along a symmetric
magnetic slab (Roberts 1981b), namely,

k v m m m x
tanh

coth
, 18A

e

e
2 2 2 0 2

0 0 0⎛⎝ ⎞⎠( ) ( ) ( )w
r
r

w- =

where external parameters are denoted by subscript e. Indeed, if

the differences in external densities and flow speeds are

reduced to zero, the symmetric dispersion relation may be

recovered from Equation (17).

3. Analytical Solutions

In this section, simplifications are made to the dispersion
relation, Equation (13), and approximate dispersion relation,
Equation (17), in order to provide tractable analytical solutions.
First, the simplifications by fixing the slab width are examined,
and then approximate solutions based on fixing the plasma-β in
the three regions are presented.

3.1. The Effects of the Slab Width

3.1.1. Thin-slab Approximation

Consider the case where the wavelength of waves propagat-
ing in the system is much greater than the width of the slab,
2x0, and therefore kx0= 1.
Surface waves: Let us investigate surface waves, which are

characterized by m 00
2 > . First, consider the quasi-sausage

surface mode, which is governed by the tanh version of
Equation (17), for m 00

2 > . In the thin-slab limit, this equation
reduces to

k v m m m m x2 . 19A
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There is a solution for this equation where ω2 behaves like
k cT

2 2 2w  as kx0→ 0. To first order in kx0, this solution
describing a slow sausage surface mode is given by

which is less than k cT
2 2 and exists only when c1> cT−U1 and

c2> cT−U2.
Next, consider quasi-kink surface mode solutions in the

thin-slab limit, which are governed by the coth version of
Equation (17), for m 00

2 > . As kx0→ 0, we have m0x0→ 0, so
m x m xcoth 10 0 0 0( )  . This leads to another solution of the

dispersion relation, which describes a quasi-kink surface
mode:
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Body waves: For body waves, m 00
2 < , and solutions are

spatially oscillatory inside the slab. In order to highlight the
relation between the angular frequencies of body modes
and the flow speeds, it is possible to change the coordinate
system into one moving with the flow speed on one side of the
slab, say, U1. Then, the new flow speeds are defined as
U1,new= 0, U0,new=−U1, and U2,new=U2−U1, leading to
the following new form of the angular frequencies: Ω1,new= ω,
Ω0,new= ω− kU0,new, and Ω2,new= ω−U2,new. With these
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definitions, the decoupled dispersion relation for body waves
becomes

N M
k v k c
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For quasi-sausage body modes, in order for the N N xtan0 0 0( )
term in the dispersion relations to remain finite as kx0→ 0, it is
required that N0x0 tend to the roots of N xtan 00 0( ) = , so
N0x0→ jπ for integer values of j. Slow body mode solutions can
be described as k c kx1T0,new

2 2 2
0

2( ( ) )nW = + . By substituting
this form of Ω0,new into the abovementioned condition on N0x0,
an approximate analytical description of the slow body quasi-
sausage modes can be obtained. Quasi-kink mode solutions can
be approximated in a similar manner, only, in their case, N0x0
must tend to the roots of N xcot 00 0( ) = , so N0x0→ ( j− 1/2)π.
Using the conditions described here, the slow quasi-sausage and
quasi-kink body modes can be described as

kU kc
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c v q
1 , 23T
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where q= j for quasi-sausage modes and q= j− 1/2 for quasi-
kink modes ( j= 1, 2, K). Equation (23) shows us that to

quadratic order in kx0, the quasi-sausage and quasi-kink body

modes do not depend on the external environmental parameters

(as in Allcock & Erdélyi 2017).

3.1.2. Wide-slab Approximation

As opposed to the previous case, it is also possible that the
wavelength of propagating waves is much shorter than the width
of the slab, and so kx0? 1. In the wide-slab approximation,
both n xtanh 0 0( ) and n xcoth 0 0( ) in Equation (17) have large
arguments and become approximately one. Therefore, the
approximate dispersion relation for surface waves in a wide
slab is
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Similarly to the behavior described in Allcock & Erdélyi

(2017) and Zsámberger & Erdélyi (2020), quasi-sausage and

quasi-kink surface waves in a wide asymmetric slab system

including external flows tend to different phase speed limits,

which depend on the magnitude of the external asymmetry.

Slow and fast body modes in a wide slab can be described

together. It depends on the ordering of the internal and external

characteristic speeds whether they can be present and, if they

are, which value their phase speed approaches. Using the

shifted coordinate system from before and defining vmax =
v cmax ,A 0( ) and v v cmin ,Amin 0( )= , slow body waves can be

described as k v kx10,new
2 2

min
2

0
2( ( ) )nW = - . By a reasoning

similar to the case of the thin slab, in the case of quasi-sausage

modes, for the N N xtan0 0 0( ) term to remain nonzero and finite,

N0x0= ( j− 1/2)π ( j= 1, 2,...) is required. For quasi-kink modes,

N0x0= jπ, so that N N xcot0 0 0( ) will remain finite and nonzero.

Combining these requirements, slow body modes in a wide slab

can be described as
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where q= j− 1/2 for quasi-sausage modes and q= j for quasi-

kink modes. Following the same notation and arguments, fast

body modes, if they exist, can be approximated in a wide slab as
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3.2. The Effects of the Choice of Plasma-β

The plasma-β parameter is a simple way to characterize and
measure the relative magnitude of magnetic and pressure
gradient forces, defined as p p v c2 smag A

2 2( )b g= = . The

effect of various choices of plasma-β throughout the asym-
metric magnetic slab system without flows has been investi-
gated in Zsámberger & Erdélyi (2020). Here we provide
several useful analytical approximations of the dispersion
relation and its solutions for different practical ranges of the
plasma-β parameter popular in solar physics applications in the
absence of external magnetic fields, but in the presence of
asymmetric external flows.

3.2.1. High-β Approximation

Generally, a slab system in which all three regions have a
high plasma-β can be a good approximation of a photospheric
environment in the solar atmosphere or in subsurface regions.
In the simplest and analytically most tractable case of the
β→∞ approximation, the Alfvén speed is negligible com-
pared to the sound speed (vA→ 0). Then, the coefficients
related to wavenumbers become
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In the high-β slab placed in an asymmetric environment, fast

body modes exist, which are described by the following

dispersion relation:
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Setting the flow speeds to zero and eliminating the external

asymmetry reduces this equation to the expression valid in the

symmetric case, described in Equations (24) and (25) in Edwin

& Roberts (1982).

3.2.2. Low-β Approximation

If the plasma-β inside the slab is very low, then the internal
sound speed becomes negligible compared to the Alfvén speed.
In the simplest case of the zero-β approximation, the

5

The Astrophysical Journal, 937:23 (12pp), 2022 September 20 Zsámberger, Sánchez Montoya, & Erdélyi



wavenumbers become
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In the zero-β slab placed in an asymmetric, nonmagnetic

environment, fast body modes can exist, described by the

following dispersion relation:
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3.3. Dependence on Density and Flow Asymmetry

3.3.1. Quasi-sausage Modes

In order to better understand how the degree of external
density asymmetry, as well as the direction of and difference
between the magnitudes of external flow speeds, affects which
waves a weakly asymmetric magnetic slab supports, it is
possible to provide expansions of the solutions to the
dispersion relation in terms of two small parameters. Namely,
these are the density asymmetry, defined as

, 312 1

1

( )d
r r

r
=

-

and the flow asymmetry,

U U

U
. 32
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Using these small parameters, we can expand the expressions

for the slow surface wave solutions in the limit of a thin slab, in

order to study the effect of different kinds of asymmetry on the

phase speed of waves, as well as on the onset of the KHI.

Keeping terms to first order in ò and δ, the angular frequency of

the slow sausage surface mode in the thin-slab limit is then
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From this solution, a limiting density parameter can be

expressed, meaning that if the density asymmetry is larger

than a certain value (given by the background parameters and

the flow asymmetry), the KHI can appear in the slab system.

This limit is given as

D A
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1 1
, 38

s s
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1
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cT> u1.
Alternately, for a given flow asymmetry, a critical density

asymmetry value can also be found that takes ω2 below zero
and gives rise to the KHI:
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3.3.2. Quasi-kink Modes

Similarly, for slow quasi-kink surface waves, the angular
frequency depends on the density and flow asymmetries as
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The KHI sets in when
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As before, a critical value of density asymmetry giving rise
to the KHI can also be found:
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4. Numerical Results

We now proceed to find the general solutions to the
dispersion relation, Equation (13). Since, to the best of our
knowledge, these cannot be obtained analytically, we employ a
numerical scheme. We first nondimensionalize all quantities
with respect to the Alfvén speed and introduce the Alfvén
Mach numbers MAj=Uj/vA ( j= 0, 1, 2), the dimensionless

sound speeds c c vj j
2 2

A
2= ( j= 0, 1, 2), tube speed c c vT T

2 2
A
2= ,

and phase speed c c v kvph ph A Aw= = .
Dispersion diagrams displaying general solutions to

Equation (13) may be found in Figure 2. These graphs
immediately show that the asymmetric background flows have
broken the symmetry between forward- and backward-propaga-
tion solutions in both cases, regardless of whether those flows
point in opposite directions (Figure 2(a)) or in the same
direction (Figure 2(b)). To generate these figures, we have
chosen photospheric values for the parameters, say, c0=
11 km s−1 and vA= 12 km s−1 (Keys et al. 2013), c1= 8 km s−1

and c2= 7 km s−1
(Hurlburt et al. 2002), and vA1= vA2=

0 km s−1
(Felipe et al. 2016; Jiang et al. 2011). Estimates for
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downflow speeds in the immediate surroundings of small

magnetic elements range from as low as 1 km s−1 to even

10 km s−1
(Briand & Solanki 1998; Socas-Navarro et al.

2004; Danilovic et al. 2010). Choosing values within these

ranges for our numerical investigation allows us to see how

the different flows affect the phase speeds and stability of

MHD waves present in the system.
Effects of upflows characterized by MA0= 0, MA1= 0.15,

and MA2= 0.65 are depicted in the left panel. Surface waves
can be found between −c2+U2 and cT0, whereas body waves

can be found between cT0 and c1+U1 (for better visibility, we

have only plotted two body waves as an example, out of the

infinitely many harmonics possible). We also observe that, in
the thin-slab limit, the surface waves are Kelvin–Helmholtz

unstable, as seen by the growing imaginary part of the solutions

(signified by the red curve).
Effects of downward flows with typical values of, e.g.,

MA0= 0, MA1=− 0.1, and MA2=−0.35 can be seen in the

right panel. Surface waves can be found between −cT0 and
c2+U2, whereas body waves can be found between −c1+U1

and −cT0. Although the figures look qualitatively different, as the

new choice of flows has changed the phase speeds of the trapped

oscillations a lot, it is still the thin slabs that are subject to the
KHI, as before. This second figure could model the case of an

MBP. MBPs are small concentrations of intense magnetic field in

the photosphere, enclosed in between two segments of inter-

granular lane with similar characteristics to the ones presented
above. They often display an elongated shape, which makes it

possible to treat them as asymmetric magnetic slabs (for more

details, see Zsámberger et al. 2018; Zsámberger & Erdélyi 2021).
Expanding the results for a certain choice of flow asymmetry

and slab width depicted in Figure 3, as well as the similar series

of figures in the supplementary material related to Figures 4
and 5, a number of interesting observations can be made about

the behavior of waves in the presence of asymmetric flows in

the slab system.
If we start analyzing the diagram in Figure 3 from the origin,

the first region of interest appears in the shape of a “central oval.”

In this region (for the given set of background parameters), a

slow kink mode and sausage mode are both present and stable.

The blue lines here show the real part of the phase speeds of

these oscillations, while the red line, which remains at a constant

value of zero for this region, depicts the imaginary part of the

phase speeds. Additionally, at higher phase speed values in both

the forward- and backward-propagating areas of the diagram,

some body modes are also present. These are stable in this range

of MA2, and they even remain stable for higher and lower flow

speeds on the right-hand side of the slab system.
It is noteworthy that this “central region” of stability is not

centered at the origin, but it is shifted instead—in this case,

toward negative Alfvén Mach number and phase speed values.

As will be shown later, the shift depends on the choice of flow

speeds and their asymmetry.
Outside this first region, for relatively small positive MA2

values, the surface waves become Kelvin–Helmholtz unstable,
and the imaginary part of the phase speeds grows rapidly, as

shown by the red lines in Figure 5. The increasing flow speed in

the right-hand region of the slab’s environment also affects the

phase speeds of the supported modes, which leads to the body

modes with negative phase speeds becoming leaky in this region.
On the negative (i.e., counter bulk motion) side of the MA2

axis, we find ever-larger external downflows, which leads to

similar effects. Once |MA2| is larger than the threshold value,

the surface modes become subject to the KHI. Additionally, the
backward-propagating body modes are present and stable in the

whole domain of negative MA2 values, while the forward-

propagating ones already become leaky for relatively small

downflows.

Figure 2. Dispersion diagrams, where green (blue) lines show the real part of the quasi-kink (quasi-sausage) mode phase speeds, and red lines display their imaginary
parts. The slab and its environment have background flows of Alfvén Mach numbers (a) MA0 = 0, MA1 = 0.15, and MA2 = 0.65 and (b) MA0 = 0, MA1 = −0.1, and
MA2 = −0.35. The hatched areas represent regions where there are no trapped solutions.
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There are two fundamental parameter changes that call for

further examination. First, the selection of which eigenmodes

are stable is also affected by the width of the slab. This can

easily be seen from Figure 2, which depicts trapped solutions

as a function of the nondimensional slab width, for a fixed

value of the external Alfvén Mach numbers. Figure 3, on the

other hand, shows stable and unstable trapped oscillations

for a slab of intermediate width (kx0= 1), as well as how

these solutions depend on the magnitudes of the flows

outside the slab. The supplementary animation of Figure 5

illustrates this effect further: as kx0 is gradually increased,

the “central region” of stability also grows in its extent, and

ever-higher |MA2| values are required for the onset of

instability.
The trend we can see from both these comparisons is that the

narrower our slab is, the smaller the second external flow speed

can be for the surface modes to become subject to the KHI. This

connection between the slab width and the limiting flow speed

for the onset of the KHI is also reflected in our approximate

solution in Equation (40).

Figure 3. Changes in the phase speed of trapped oscillations in a slab of intermediate width (kx0 = 1) caused by changing the flow speed on one side of the slab
(MA2 = u2/vA) while keeping the flow speed on the other side fixed. The real part of the phase speed values is displayed in blue, while the imaginary part is shown in
red. The Alfvén Mach numbers used to obtain these solutions wereMA0 = 0,MA1 = −0.1, whileMA2 changed from −1.5 to 1.5, representing both up- and downflows
on the right-hand side of the slab.

Figure 4. Dispersion diagrams of trapped oscillations in a magnetic slab, where the asymmetric environment has a fixed flow to the left and a gradually changing flow
to the right of the slab. The real (imaginary) parts of the solutions are plotted in blue (red). In panel (a) the speed of the left-hand-side flow is MA1 = −0.2, while in
panel (b) it is MA1 = −0.1 and in panel (c) it is MA1 = 0.1. All diagrams were prepared using the background parameters vA0 = 12 km s−1, c0 = 11 km s−1, c1 =
8 km s−1, c2 = 7 km s−1, normalized by the internal Alfvén speed, and ρ1/ρ0 = 2.41, ρ2/ρ0 = 2.98. An interactive version of each figure is available, in which the
Alfvén Mach number on the right-hand side of the slab is changing between frames from MA2 = −1.5 to MA2 = 1.5 by steps of 0.1, while every other background
parameter remains the same, illustrating how increasing or decreasing the flow asymmetry leads to the presence of different trapped, stable and unstable solutions.

(An animation of this figure is available.)
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The second important parameter is the magnitude and
direction of the fixed flow on the left-hand side. All our
analytical solutions show a definite dependence on this flow
speed, and the expansions with respect to small parameters also
reveal a connection with the flow asymmetry.

Our series of figures and videos in Figure 4 show the phase
speeds of trapped oscillations as a function of the slab width at
various values of MA2 and therefore flow asymmetry. In the
animation of Figure 4, we have prepared a series of solutions for
very small (MA1=−0.1) and somewhat larger (MA1=−0.2)
downflows and a small upflow on one side (MA1= 0.1). These
series of solutions show that the KHI occurs more easily in thin
slabs in general, and larger flow speeds are needed to make
wider slabs KHI unstable too. This process is further amplified
by a contribution from flow asymmetry: as the difference
between the magnitude of the flows on the two sides of the slab
grows, instability sets in for an ever-wider range of slab widths
(wavelengths). Because by themselves the flows in our example
are relatively weak (characterized by Alfvén Mach numbers
between −0.2 and 0.1) when they are symmetric, the slab can
even remain stable for all wavenumbers in such a situation.

As mentioned above, choosing a different fixed flow resulted
in various trapped modes and instability limits for the solutions
plotted in Figure 2. The series of solutions shown in Figure 4
and the supplementary material attached further illustrate the
connection between phase speeds, instability limits, and the
asymmetry present in the external background flows. A simple,
visual way to qualitatively describe this effect is to say that the
choice of flow speeds and asymmetry will essentially shift the
position of the “central oval” of stability. This shift can be seen

Figure 5. Phase speeds of trapped oscillations in a magnetic slab as a function of the external Alfvén Mach number on the right-hand side, for various slab widths, kx0.
As in Figure 4, the asymmetric environment has a fixed flow to the left of the slab. The real (imaginary) parts of the solutions are plotted in blue (red). In panel (a), the
left-hand-side flow is MA1 = −0.2; in panel (b), it is MA1 = −0.1; in panel (c), it is MA1 = 0.1; and in panel (d), it is MA1 = 0.2. An animated version of all three
figures is available, where the slab width changes in every frame, growing from kx0 = 0.05 to kx0 = 0.95 with a step size of 0.05, while all the background speeds and
flows remain the same, showing how the relative sizes of the stable and unstable regimes of trapped waves change.

(An animation of this figure is available.)

Figure 6. Phase speed of waves in a symmetric magnetic slab with no flows in
any region, prepared using background parameter values of c0 = 11 km s−1,
vA = 12 km s−1, ce = 8 km s−1, ρe/ρ0 = 2.41. The real (imaginary) parts of the
solutions are plotted in blue (red).
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Figure 7. Phase speeds of trapped oscillations as a function of (a, c, e) slab width and (b, d, f) right-hand-side flow speed. Panels (a) and (b) display solutions for a
magnetic slab embedded in a symmetric environment, where the environmental regions have symmetric flows. In order to preserve the flow symmetry, the left-hand-
side Alfvén Mach number changes along with MA2 from left to right in panel (b). Panels (c) and (d) show solutions in a magnetic slab embedded in a symmetric
environment, where the environmental regions have asymmetric flows. Panels (e) and (f) show the phase speeds of trapped oscillations in a magnetic slab embedded in
an asymmetric environment. In panel (f), to preserve the flow symmetry,MA1 andMA2 change together, like in panel (a). The real (imaginary) parts of the solutions are
plotted in blue (red). Animated versions of all six panels are available. The animations based on panels (a), (c), and (d) change the right-hand-side Alfvén Mach
number between frames from MA2 = −1.5 to MA2 = 1.5 with a step size of 0.1. Animations based on panels (a) and (e) change MA1 along with MA2 in each step to
keep the flow symmetry intact, while the animation based on panel (c) keeps MA1 fixed along with all other background parameters. They show how the possible
modes and stability limits shift for various slab widths between systems subject to different external flows. Animations based on panels (b), (d), and (f) change the slab
width frame by frame from kx0 = 0.05 to kx0 = 0.95 by steps of 0.05, while keeping all other background parameters intact. These animations illustrate how various
systems subject to external flows of the same strength will support different trapped modes and have different stability limits depending on how wide the central slab
is.

(An animation of this figure is available.)
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by comparing the results for various fixed flows and slab
widths in Figure 5.

Furthermore, it is interesting to trace how introducing
various kinds of asymmetries into the model influences the
phase speeds of trapped waves and the instability thresholds. In
Figure 6, we plotted solutions for the case of a symmetric slab
with no flows present, when c0= 11 km s−1, vA= 12 km s−1,
ce= c1= c2= 8km s−1, ρe/ρ0= ρ1/ρ0= ρ2/ρ0= 2.41, MA0= 0,
MA1=−0.1, and MA2=−0.35.

This is comparable to Roberts (1981b), where we have a
(low-β) magnetic slab embedded between two regions of
nonmagnetized plasma. In this figure, we kept the notation c1
and c2 for the sound speeds of the external regions for the sake
of consistency, but in fact they are both equal (denoted as ce in
Roberts II), as are the external densities: ρ1= ρ2= ρe. In this
case, there are no external asymmetries present to break the
phase speed symmetry between backward- and forward-
propagating modes: in both directions, a pair of slow surface
waves and a band of body wave harmonics can be found as
trapped modes.

In Figures 7(a) and (b), we implemented symmetric down-
flows (MA1=MA2=MAe) into the previous model. This
resulted in a change of the phase speed limits posed by the
external sound speeds (ci+ ui, where i= 1, 2), as well as the
phase speed of the previously identified trapped waves
themselves. However, because of the symmetric flows, all of
the modes found in the static case still existed, and the slab
remained stable against the KHI. Such a steady slab system
corresponds to the cases investigated by Nakariakov &
Roberts (1995).

In Figures 7(a) and (b), we show the consequences of
changing this symmetric flow speed. In general, trapped modes
can still only exist between −ce+ ue and ce+ ue. However,
they get swept backward or forward by different amounts
against a static background as the flow speeds keep changing.
Between MAe=−1 and MAe= 1, the slab remains stable, but
for higher flow magnitudes, various regions of instability
appear, first in thinner slabs and then at all slab widths.

In Figures 7 and (d), while keeping the other background
parameters symmetric, we turned the external flows asym-
metric, thus changing the phase speed limits posed by the
external sound speeds by a different amount. This new
asymmetry and the presence of a stronger downflow on the
right-hand side led to a substantial change: forward-propagat-
ing body modes can no longer exist as trapped oscillations in
this slab system, as their phase speed would exceed the external
sound speed modified with the right-hand-side flow speed.

Since there is now a flow asymmetry in the system,
Figure 7(d) shows similar properties to the results obtained in
a fully asymmetric system (e.g., Figure 3). We prepared this
figure for a fixed small slab width value, so that a wider range
of KHI-unstable solutions could be showcased. The Alfvén
Mach number on the left-hand side is still fixed as MA1=−0.1,
while it changes on the right-hand side as we move along
the horizontal axis. As MA2 decreases from −0.1, first the
forward-propagating body modes vanish, and then, at around
MA2=−0.5, the surface modes become unstable. Moving in
the other direction, with increasing upflows on the right-hand
side, it is backward-propagating body modes that vanish first,
and then, at around MA2= 0.3, the surface modes become
unstable again. Comparing these instability limits, we might
notice that the asymmetry in external Alfvén Mach numbers

|MA1−MA2|≈ 0.4 in both cases. This, however, also means
that when we have an upflow and a downflow in the system, a
smaller flow speed for both is enough to cause the appearance
of an instability.
This effect of flow asymmetry is moderated by increasing the

slab width, as Figures 7(c) and (d) show. While the process of
having certain modes become leaky and others going unstable
is qualitatively similar to the case we described in detail above,
quantitatively, the wider our slab is, the greater the magnitude
of the right-hand-side flow speed required for these changes
becomes.
A different possibility for adding asymmetries to the

symmetric slab system of Roberts II is to start by constructing
a model for a static asymmetric slab, where c1≠ c2 and ρ1≠ ρ2.
This type of slab geometry was investigated in detail by
Allcock & Erdélyi (2017). Our Figure 7(e) depicts a series of
solutions in this case, where each still image shows the phase
speeds of trapped oscillations as a function of the slab width for
a fixed value of symmetric flows (MA1=MA2=MAe).
Depending on what this fixed flow speed is, as before, different
modes are allowed, but the slab remains stable when
−1<MAe< 1. Complementing this figure, Figure 7(f) shows
how the limits of instability change with each new fixed value
of slab width.
Finally, we can add asymmetric external flows to an

asymmetric static background, which is the case we discussed
in detail throughout this paper and presented numerical results
for in Figures 2 and 3, as well as Figures 4 and 5.

5. Conclusion

We constructed and studied a mathematical model of an
isolated magnetic slab in an asymmetric environment with
asymmetric external flows, generalizing the asymmetric
magnetic slab model as initially described by Allcock &
Erdélyi (2017) for the stationary case and by Barbulescu &
Erdélyi (2018) for the steady case.
We have derived a dispersion relation for this model and

provided an approximate (decoupled) version of it for small
asymmetries. We found approximate solutions for the angular
frequencies of the quasi-sausage and quasi-kink eigenmodes in
thin and wide slabs, as well as hot and cold plasmas. To
examine all possibilities, and to take a closer look at how exact
the solutions are, we have also provided additional expressions
derived from the full dispersion relation and compared our
findings with numerical results.
Some of the most significant findings are that in every case

the presence of bulk background flows broke the symmetry
between the phase speeds of forward- and backward-propagat-
ing modes. The choice of external flow speed and asymmetry
has also proven to have a marked influence on the phase speed
of eigenmodes and thus changed the slab width and phase
speed values for which trapped oscillations can be present. We
have found that both the density asymmetry and flow
asymmetry have a strong (first-order) effect on the angular
frequencies of surface waves, and thus they also significantly
change the limiting slab widths at which they would become
leaky.
Furthermore, just like in a steady symmetric slab (Nakariakov

& Roberts 1995) or in a steady asymmetric slab with an internal
flow (Barbulescu & Erdélyi 2018), the KHI can be present in our
asymmetric slab system too. We have conducted both an
analytical and a numerical investigation of when this asymmetry

11

The Astrophysical Journal, 937:23 (12pp), 2022 September 20 Zsámberger, Sánchez Montoya, & Erdélyi



may set in for various choices of plasma and geometric

parameters, as well as how the flow speeds and their asymmetry

change this limit. We explored the possibilities of changing the

slab width and the magnitude of the fixed left-hand-side flow

while increasing or decreasing the right-hand-side flow (MA2).

Through this, we have found that, irrespective of the flow

asymmetry, as a general tendency, thinner slabs tend to be

unstable for a wider range of right-hand-side flow speeds. An

additional future avenue of investigation could further expand

this research and explore the connection of these parameters and

results with changing the density asymmetry between the

external regions, in addition to the shifting flow asymmetry.
For most of our numerical investigation, we used character-

istic speed values that correspond to what we know so far about

the photosphere—more specifically, about intergranular lanes

and MBPs, as the latter are a prime candidate for applying the

asymmetric slab model. Just as the KHI has been recently

observed in the flank region of a CME by Foullon et al. (2011),

it is our hope that new, high-resolution observations might

soon be able to detect it in the region of small-scale phenomena

such as MBPs as well, providing further opportunities for the

study of MHD waves in slab-like configurations of the solar

atmosphere.
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