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Abstract

Disorder is a key factor influencing the behavior of condensed states of matter, however the true
extent of its impact is generally difficult to determine due to the prominent roles played by
quantum interference, entanglement between spin and orbital degrees of freedom and proximity to
quantum critical points. Here we show that the one-particle disorder self-energy—a direct probe of
the renormalization of low-energy excitations due to defects and impurities distributed randomly
in a crystal—can be obtained by means of unbiased spectral expansions of lattice Green’s functions
in a computationally expedient manner. Our scheme provides a powerful framework to map out
the frequency and wavevector dependence of electronic excitations in unprecedented large
tight-binding systems, up to 10° orbitals, with energy resolution only limited by the mean level
spacing. We demonstrate the versatility of our approach in three distinct problems: (i) the Gade
singularity in honeycomb layers with dilute topological defects; (ii) the rich landscape of impurity
resonances in a spin—orbit-coupled ferromagnet; and (iii) the tailoring of emergent s-wave and
p-wave superconducting phases in graphene via atomic defects. These examples reveal rich features
in the disorder self-energy X 4;s(k,w) that are absent from the self-consistent T-matrix approach
and other common approximation schemes, which include regimes of nontrivial wavevector
dependence and anomalous dependence upon the impurity concentration. Our study unravels
puzzling, and so far largely inaccessible, manifestations of strong nonperturbative quantum
interference effects in quantum materials and disordered phases of matter.

1. Introduction

Disorder plays an essential role in the wealth of phenomena observed in condensed matter. On the one hand,
disorder influences the structural, optical and transport properties of metals and semiconductors, as

well as the phase stability of unconventional states of matter, such as chiral supercondutors [1] and
symmetry-protected topological insulators [2]. On the other hand, certain types of disorder can induce
interesting behavior unseen in clean systems, ranging from the breakdown of the Fermi liquid description
and quantum interference effects in mesoscopic conductors to the Kondo effect and novel quantum phases
in strongly correlated systems [3—8].

Green’s functions provide a powerful mathematical device to study the impact of disorder and
correlations in many-body quantum systems. Of paramount importance in this context is the single-particle
irreducible self-energy which, in effect, dresses bare Green’s functions with the cooperative effects
experienced by quasiparticles, and therefore determines the key features of the spectral function measured in
angle-resolved photoemission experiments [9, 10]. The disorder contribution to the self-energy in a

© 2022 The Author(s). Published by IOP Publishing Ltd
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homogeneous disordered system is defined in terms of disorder-free, Gy (k,w), and full, G(k,w),
single-particle Green’s functions as g, (k,w) = Gy ! (k,w) — (G(k,w)) ™" (here (...) indicates
configurational ensemble average) and contains detailed information on the effects of quenched disorder,
such as the existence of impurity bound states, as well as the precise extent of quasiparticle renormalization
induced by single impurity scattering events and quantum interference effects. Because the self-energy is
intimately connected to vertex functions in diagrammatic theory [11], it is also an indispensable tool in the
study of quantum transport phenomena; most notably as a means to obtain conserving approximations in
self-consistent field-theoretical calculations [12].

The self-energy from electron—-impurity interactions, as is presented in textbooks, is usually described in
terms of a complex scalar, Sgis (k,w) = A(k,w) F i/[27(k,w)], where the real part is responsible for the
effective-mass renormalization and 7(k,w) is the quasiparticle elastic scattering lifetime (here the signs
hold for retarded/advanced Green’s functions as required by analyticity). Closed analytical expressions for
the single-particle self-energy can be obtained by means of the diagrammatic technique based on
perturbative expansions in the semiclassical parameter g o< (w7) ™! [13]. The classical example is a Fermi gas
with a dilute concentration of impurities, for which a lowest-order ‘rainbow’ diagram calculation yields the
relaxation time 7(w) o< [nudv(w)] ™", with n the impurity density, u the potential strength and v(w) the
bare density of states. The weak-disorder approximation can be improved systematically by partial
resummation of infinite series of diagrams (e.g. by means of the T-matrix or coherent potential
approximations (CPAs)) and extended to multi-orbital Hamiltonians for both noninteracting and
interacting cases; for a recent review see [14].

Despite its notable successes, the diagrammatic approach suffers from a major drawback: the topological
complexity of scattering diagrams increases quickly with the perturbation order, which presents a formidable
barrier to our understanding of nontrivial manifestations of disorder beyond the weak-coupling regime.
Indeed, a range of intriguing phenomena triggered by strong (nonperturbative) disorder effects are currently
the focus of intense investigation. Some examples include strong Anderson localization [15-19], rare region
effects in three-dimensional topological semimetals [20-23] and frozen multifractality in chiral-symmmetric
lattices [24-28], whose analysis has defied even the most advanced field-theoretic approaches. At the heart of
such unusual phenomena is the nonperturbative accumulation of quantum coherent scattering processes,
whose satisfactory description calls for the use of large-scale numerical approaches.

Here, we report a comprehensive numerical study of strong-coupling effects on the disorder self-energy
in several electronic phases of matter. Our study is based on a new high-resolution real-space spectral
method that gives access to previously unexplored features of the disorder self-energy, unveiling its rich
internal matrix structure and full k- and w- dependences. Our calculations, performed on very large systems,
disclose several important features of the quasiparticle self-energy that are absent in the standard
perturbative treatments, including surprisingly strong k-dependence generated by nonlocal correlations
(quantum interference) and the emergence of off-diagonal self-energy elements near quantum criticality.

In what follows, we introduce the new disorder self-energy framework, outline its favorable scaling
properties and present its application to three distinct problems: (i) quantum criticality induced by chiral
disorder in the BDI symmetry class; (ii) scattering resonances in a spin—orbit coupled ferromagnet; and (iii)
disorder-enhanced p-wave superconductivity in graphene.

2. Spectral approach

2.1. Chebyshev expansion of the spectral function

To set the stage, let us briefly review the polynomial expansion of the one-particle spectral function.
Consider a general fermionic system on a d-dimensional lattice described by a Hamiltonian with a bounded
spectrum, H. To enable a decomposition of the spectral function in terms of orthogonal polynomials, we first
perform the following linear transformation

h=(H-E.1)/E_, Ep=(E,£E)/2, (1)

where 1 is the identity operator defined on the Hilbert space of the lattice and E,(;) indicates the largest
(smallest) eigenvalue of H. Note that this procedure maps the eigenvalues of the Hamiltonian onto the
canonical interval Z = [—1,1]. Here, we employ Chebyshev polynomials of the first kind which are
particularly well-suited to approximate nonperiodic functions over a finite interval on the real axis [29].
The spectral operator A(e) = d(e — h) associated with the rescaled Hamiltonian in equation (1) can be
decomposed into a Chebyshev series according to

A(5> = an(g) Tn(g) Tn(h)v (2)

2
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where w,(g) = 2/[m(1+6,,0)(1 —£?)!/?] is the weight function entering in the orthogonality relations
and € = (E— E4)/E_ is the rescaled energy variable, with E the energy spectrum of the original
Hamiltonian [30].

The favorable convergence properties of the general-purpose Chebyshev expansion in equation (2)
reflects its close relation to the Fourier series made manifest by the identity T, (¢) = cos(narccose). We do
not provide details on the underlying spectral theory but instead refer the reader to Boyd’s book [29]. By
virtue of the Chebyshev recurrence relations,

To(h) =1, Ty(h)=h, (3)

Tpir(h) = 20T, (h) — T,_1 (h), (4)

the matrix coefficients in equation (2) can be obtained iteratively to any desired order. In a practical
implementation, it suffices to evaluate the scalar Chebyshev expansion coefficients of the overlap

Apy(€) = <¢|fl(6) |1). The choice of basis functions ¢, 1 defines the target function of energy (see below).
Because the recursive procedure (equations (3) and (4)) is highly stable, the reconstruction of the spectral
function can be carried out in principle with very high energy resolution v ~ 1/M (in rescaled units), where
M is the truncation order. Such features will be of key practical importance in the evaluation of the
self-energy operator, as we shall see briefly.

To illustrate the effectiveness of the spectral approach, we first consider the local density of states (LDOS)
at a site i, defined as v;(¢) = (i|.A(¢)). The LDOS is the simplest spectral target function of energy derived
from the spectral operator (note that it corresponds to a diagonal element v;(¢) = A;;(¢) in the lattice basis),
yet it contains rich information on electronic state hybridization and scattering processes. From equation (2),
the M-order Chebyshev approximation to the LDOS is easily constructed as

M—1
VzM(E): Zﬂinwn(a) Tn(s)a (5)
n=0

with iy = (i T, ()i} [31].

To retrieve the Chebyshev coefficients {1, }, the equations (3) and (4) are iterated on the fly by
exploiting the sparseness of minimal-basis (real-space) representations. The problem is thus solved efficiently
by repeating the following steps. (i) Starting with the initial vectors |¢)}) := |i) and |1} := h|1f), act
iteratively with the rescaled Hamiltonian using the Chebyshev rule [}, ;) = 2h|iY — | |); and (ii) at
each step compute the overlaps p,,; = (|1 ). From the knowledge of the Chebyshev moments {1, }, the
LDOS in any desired energy range can be easily retrieved using equation (5). The overall computational cost
is determined by the energy resolution desired for the spectral reconstruction of the LDOS. For typical sparse
Hamiltonian matrices, the number of operations scales linearly with respect to both the number of sites and
number of moments M, which makes the method particularly advantageous for single-electron problems
[32]. The spectral approach has been successfully employed to reveal the electronic structure of a wide range
of systems, including Anderson disorder models [33], graphene with atomic defects [34—36] and disordered
superconductor-normal metal interfaces [37]. Other recent applications include the calculation of
time-dependent equilibrium Green’s functions of superconductors [38] and dynamical structure factors in
quantum spin chains [39]. (For a review of early work, see [30].)

2.2. High-resolution self-energy calculation

Having laid out the basic principles underlying the efficient reconstruction of the spectral function using
Chebyshev polynomials, we now move on to tackle the nontrivial problem of determining the self-energy
operator. The central objects of interest in this discussion are the retarded lattice Green’s functions and
disorder self-energy

>
—
>
—_

Gl(w) = m» Gy (W) = ———— (6)

(@) = [G@)) " = (6"(w)) 7, 7)
where Hy is the clean Hamiltonian and 7 plays the role of an energy resolution (see below). As customary, the
real-space disorder is added to the Hamiltonian, H = Hy + V4, via random modifications of hopping

amplitudes and on-site energies. Of particular interest is the wavevector (k) dependence and internal (orbital
and spin) structure of 37 (w). It is natural to ask whether the accurate LDOS polynomial scheme can be
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extended to the matrix inverse problem posed by equation (7). An immediate stumbling block is simply that
the inversion procedure is prone to loss of accuracy, particularly for weak disorder, due to the parametrically
small difference between the clean and disordered Green’s functions. As shown below, such a hurdle can be
overcome by devising a spectral algorithm that accurately reconstructs the Green’s function projected onto
the local basis elements, thereby effectively mapping the problem into an N x N matrix inversion, where N is
the number of bands. A more subtle issue concerns the stability of the self-energy with respect to the
broadening scheme of the Green’s function of finite systems [40, 41]. For many problems of interest, one
must be able resolve the fine structure of the disordered Green’s function and thus n must be comparable or
smaller than the self-energy itself. In practical terms, 7 is bounded from below by the mean level spacing and
a careful convergence analysis is required to obtain sensible thermodynamic results.

We posit that the Chebyshev polynomial-based spectral approach is well suited to overcome the above
obstacles, since it allows for real-space calculations with high accuracy and well-defined energy resolution.
The standard strategy to mimic the broadening in equation (6) is to formally expand the Green’s function
G(w) = lim,,_,¢+ G" (w) in Chebyshev polynomials and regularize the resulting spectral series through
convolution with a Lorentzian kernel [42, 43]. Here we propose an alternative approach based on the direct
expansion of the broadened Green’s function G"(w) into Chebyshev polynomials of the first kind.

Let us start by defining the rescaled Green’s function operator

G(2)=E_G"w)=(z—h)"", z=c+iy (8)

where we have used equation (1) and defined v = 7/E_. This rescaled Green’s function then admits the
following exact decomposition

2= fla)]"

o ¥

G(2) = @) Tu(h), cul2)=ay

where a, =2/(1+ d,0) and f(z) = iv/1 — z? [44, 45]. The main advantage of this variant of the familiar
kernel polynomial method is that the energy levels are probed with known uniform resolution over the entire
spectral range £ € [—1, 1]. The energy resolution can be made as high as desired by a judicious truncation of
equation (9); as a rule of thumb, the required number of Chebyshev iterations is M, = [1/-]. This spectral
scheme, combined with an efficient real-space implementation, will allow us to resolve the fine structure of
the quasiparticle self-energy in large systems containing multi billions of orbitals, a task that has remained
elusive thus far. Such a capability is key to exploring topological transitions and disordered systems at
quantum criticality, where spectral convergence is already challenging at the level of considerably simpler
average density of states [22, 27, 45].

With regards to the disorder averaging procedure (equation (7)), a brief discussion is in order. For the
cases of interest here, the k-space Green’s function is found to exhibit self-averaging behavior. Thus, the
disorder self-energy of a single large sample is representative of the whole ensemble, greatly reducing the
computational cost related to configurational averaging. In practical terms, the self-averaging property of the
disorder self-energy is demonstrated numerically by analyzing the scaling of self-energy fluctuations with the
system size. For the interested reader, we provide analytical proofs for two common classes of problems in
appendix A. Our findings suggest that self-averaging is a universal property of the k-space disorder
self-energy, which will be explored in future work.

To facilitate the evaluation of the disorder self-energy, let us introduce the orthogonal basis set of
plane-wave states of wavevector k, { |k, «) }, where & = 1,. .., N labels the internal quantum numbers of the
electronic system. We first evaluate the Green’s function matrix elements, Go 3 (k,z) = (k, |G (2) |k, B), with
the desired spectral resolution. The projected Green’s function Chebyshev moments,
tin 5 (k) = (k, |T,(h)|k, B), are then computed with the recursive scheme described in section 2.1.
Specifically, we compute the N x N overlap matrix

pos(k) = (ko) ) (n=0,...M, —1) (10)

along the desired k paths, with [t3, ) the nth Chebyshev vector obtained by successive applications of
equations (3) and (4) with the initial vector \1/;%1() = |k, 8). This will afford us with several computational
advantages, in particular, the possibility to tackle very large systems (note that only three vectors of the
Hilbert space dimension need to be stored for each k point). Next, the N x N k-space Green’s function is
reconstructed using the truncated expansion

M, —1

Gop (k,2) = > ca(2)plp(k). (11)

n=0
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Figure 1. Bird’s-eye view of the spectral evaluation of the k-space resolved disorder self-energy matrix. The workflow consists of
three steps: (i) derivation of a minimal-basis Hamiltonian that captures the relevant features of the disordered compound;

(ii) large-scale evaluation of Chebyshev moments of the Hamiltonian matrix; and (iii) high-resolution spectral reconstruction of
self-energy operator using an exact Chebyshev decomposition of the lattice Green’s function. For problems that require a
self-consistent mean-field approach, the procedure is repeated until convergence to the desired accuracy is achieved.

With a suitable choice of M, equation (11) yields numerically exact results for the broadened lattice Green’s
function within machine precision. Furthermore, the dependence of the Green’s function with the resolution
parameter (up to y &~ 1 /M) can be retrieved without having to recalculate the moments 17, ;5 (k), which
allows for assessing convergence on the fly. The momentum-space Green’s function of the clean system can
be calculated along the same lines (or simply through direct diagonalization of the corresponding Bloch
Hamiltonian). The final step is a simple inversion of two N x N matrices,

Siis (kw) =[Gy (k,w)] ™" = [G7 (k,w)] 7, (12)

which reconstructs the momentum-space self-energy in a fully non-perturbative manner. This simple
inversion of the lattice Green’s function G” is justified because, for self-averaging systems, it is diagonal in
k-space (see appendix A for a detailed discussion). The procedure may, of course, be repeated for any
number of samples in order to recover the disorder-averaged Green’s function in the traditional sense if
self-averaging is not obvious (note that, in general, 3" and G" in equation (12) should be understood as the
disorder-averaged operators X7 = (X7) and G"” = (G")). Our self-energy spectral framework is summarized
in figure 1.

Before closing this subsection, we briefly comment on the computational cost associated with the
calculation of the self-energy. Because the recursive algorithm exhibits polynomial complexity (see
equation (10) and text therein), one can extract the self-energy operator of considerably large systems with a
small computational cost. For example, a single-orbital tight-binding model on a square-lattice with real
first-neighbor hoping, 10° x 10° sites and uncorrelated on-site disorder, requires I GB RAM and 1 core
hours to reconstruct the self-energy operator at a fixed k point and disorder realization with 2000 Chebyshev
iterations ()~ 0.001 in units of bandwidth). Significantly more complex problems can be tackled by
optimizing the parallelization efficiency of matrix-vector multiplications using an adaptive real-space
domain decomposition algorithm as implemented in the KITE package [32] (see appendix B for more
details). Such a strategy was adopted in recent works reporting accurate studies of the effect of short-range
disorder on the nodal density of states of topological semimetals [22, 46].

3. Results

3.1. Gade singularity of graphene: k-dependence

We now turn to the presentation of the results obtained with the spectral method introduced above. As a first
case study, we consider graphene with vacancy defects [47—-49]. Site dilution in a honeycomb layer provides
an intriguing example of a random-hopping system which exhibits anomalous quantum critical behavior
stemming from sublattice (chiral) symmetry [50, 51]. Chiral-symmetric disorder induces critically
delocalized states at the band center (so-called zero energy modes (ZEMs)) characterized by a Gade
singularity in the density of states [24—28]. Moreover, quantum transport simulations indicate that dilute
ZEMs can overcome Anderson localization in an infinite system, with conductivity pinned to the T=0
ballistic value oy = (4/7)e? /h irrespective of the vacancy concentration [45]. The puzzling behavior of ZEMs
has been attributed to unusually strong nonperturbative quantum interference effects (beyond standard
field-theoretic treatments), but direct evidence in k-space has remained elusive. In order to model the
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electronic structure of graphene with randomly distributed vacancies, we resort to a minimal tight-binding
model for spinless fermions on the honeycomb lattice

H:_Ztijc:'rcjv (13)
<i7j>

where cj (¢;) adds (removes) an electron to the ith site and (i, ) denotes nearest-neighbor pairs of sites.
Furthermore, #; = tif i and j are both undiluted sites, otherwise ;; = 0. The model in equation (13) possesses
both time-reversal (72 = +1) and particle-hole (C*> = +1) symmetries, placing it in the chiral orthogonal
(BDI) class of the topological classification [52]. Thus, random vacancies can be viewed as topological point
defects which preserve the underlying non-spatial symmetries of the host crystal, most notably its
chiral-sublattice symmetry, i.e. SHS = —H. Here, S=TC = 0, with o, the diagonal Pauli matrix defined
in the A-B sublattice space.

Previous work has calculated the vacancy-induced self-energy in the continuum limit of equation (13) by
means of the self-consistent T-matrix (SCTM) approximation [53]. The SCTM can be evaluated analytically
both near the band center and far from it, yielding a scalar self-energy of the form Im ¥ (w) o I for |w| < T
(Im ¥(w) x —c¢/|w|log(|w|) for |w| > T'), where I' = Ay/—c/log (c) with ¢ the vacancy concentration and
A a suitable ultraviolet cutoff [53]. Although the SCTM provides a faithful description of the problem in the
semiclassical regime (w > I), it cannot reproduce neither the Gade singularity in the density of states [27],
nor the anomalous behavior in the conductivity of ZEMs [45], because it neglects quantum coherent
multiple scattering. Moreover, the continuum model treats vacancies as d-peak potentials centered at
random positions, which results in a structureless (i.e. k-independent) self-energy operator at all energies. To
overcome these limitations, we use our high-resolution spectral approach to map out the momentum-space
self-energy of the lattice model. For definiteness, we focus on the case of compensated vacancies equally
distributed on both sublattices. The Chebyshev-polynomial-based reconstruction of the self-energy is carried
out on very large systems with up to 10” sites and M = 2!'® = 65536 moments, giving us unprecedented
access to sub-meV resolution over the entire (w,k)-parameter space. The disorder self-energy is projected
onto the sublattice space according to %27 5 (k,w) = (k, a|27(w)|k, B), with a, 5 = A, B. Homogeneity
implies ¥44 = Xpp and X4 = Xpa. Thus it suffices to find the AA and AB elements. Furthermore,
particle-hole symmetry implies Yg4(w) = —X%, (—w) and Zap(w) = X% 5(—w). The self-averaging property
combined with the very large lattice sizes provides the additional advantage that a single disorder landscape is
required for our purposes (see appendices A and C for additional details on the self-averaging property and
spectral convergence, respectively).

We focus the subsequent discussions on the imaginary part of the self-energy operator, which encodes
the quasiparticle lifetime. As a reference point, we calculate the T-matrix and SCTM self-energies using the
lattice Green’s function of the clean model. The fully converged results, summarized in figure 2, contain a
number of surprising findings. First, the disorder self-energy shows a strong k-dependence in the vicinity of
the band center, where the Gade singularity is located. Moreover, the point defects endow the self-energy
with a nonzero off-diagonal component in that same region. Second, the concentration dependence of the
self-energy exhibits anomalous scaling at the lowest energies, where a rich crossover between the quantum
critical regime near w = 0 and the pure semiclassical regime at high energies can be seen. All these features
are missing from the SCTM approximation and, as argued below, provide fingerprints of the conjectured
strong nonperturbative quantum interference effects induced by ZEMs in graphene.

A close up of the self-energy matrix elements around the Gade singularity are shown in figures 2(a)—(d).
The observed fine structure is confined to a narrow window of width ¢ ~ 2tc°°. The twin peaks in the
diagonal elements 344 (pp) borne out by our high-resolution data become visibly sharper as one moves away
from the K point along the path indicated in figure 2(e), with other paths showing similar behavior. Let us
note that the distance between these peaks decreases, while their height increases, as we move away from the
K point, such that the curves approach that of the T-matrix approximation. However, whereas the latter is
structureless and diverges as Im¥ 44 ~ —1/|w|log|w/|, the numerically exact self-energy is strongly
k-dependent and bounded in the vicinity of the Dirac (K) point. The SCTM approximation effectively
smears the bare T-matrix result (thus removing the divergence at w = 0), however, neither approach captures
the nonperturbative behavior seen at low energy. Strikingly, the w = 0 self-energy at the Dirac point
approaches zero as 7 — 0 at all concentrations, which implies a divergent elastic scattering time at the K
point (see appendix C for a scaling analysis). We speculate that the exceedingly large quasiparticle lifetime
protects ZEMs against backscattering, thus providing a new insight into the ‘mysterious’ ZEM resilience
observed in large-scale simulations of the dc conductivity [45]. We stress that the favorable scaling of our
method is crucial to uncover the fine features of the self-energy, a task which requires both very large samples
and fine resolution n < §.
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Figure 2. Momentum-resolved disorder self-energy operator of graphene. (a) Imaginary part of the diagonal component

2 aa(k,w) as a function of energy for vacancy concentration of 0.3% calculated for several k points with a resolution

1n=3 x 107*t (~0.8 meV). The dashed (solid) black curve represents the T-matrix (SCTM) approximation. (b) Same as

(a) but for a concentration of 1%. (c) and (d) Same as (a) and (b) but for the off-diagonal component of the self-energy matrix
3as(k,w). Both the T-matrix and the SCTM are zero in these graphs. (e) k-path corresponding to the color scale in (a)—(d).

(f) Diagonal component of the self-energy matrix at the Dirac point (k = 0) at selected concentrations and small energies. (g)
Collapsing of data using the proposed ansatz Im 3 (w) = ¢*f(wc®) with a = 0.56 + 0.02. (h) same as (f) but normalized to ¢ and
for the spectral region from zero to the band edge.

We now briefly discuss the sublattice-coherence effects encoded in the off-diagonal elements of the
k-space self-energy, ¥ ,p(pa). Figure 2(d) shows that the off-diagonal component acquires the form of a
symmetric Fano resonance with sizeable amplitude away from the Dirac point (e.g. Im¥ 45 ~ 0.3t for
¢=0.003 and k = k* ~ 0.76|K|; see figure 2(e)). Within the T-matrix or SCTM approach, the off-diagonal
self-energy is identically zero, which shows that the AB-sublattice coherence captured by our real-space
spectral method is inherently a nonperturbative effect resulting from coherent multi-impurity scattering
events.

In order to unveil the extent of quantum coherent scattering effects, we extracted the vacancy
concentration dependence of the self-energy over the entire spectrum. First, we note that the self-energy
converges to its bare T-matrix form in the high electronic density regime, where chiral symmetry is absent
and the system falls under the standard orthogonal Wigner—Dyson class; see figure 2(h). Now, there are two
relevant (concentration dependent) energy scales in this problem: (i) the energy at which the results start to
diverege significantly from the T-matrix result, I'r o< ¢®2, and; (ii) the energy I'y < I'r at which the
k-dependency becomes very strong, which scales roughly as . For energies |w| > Ty, the self-energy is
k-independent and, for larger energies still, when |w| > I'r, it matches the simple T-matrix expression
¥ (w) &~ —ic/ |w|log|w]|. The linear dependence upon the concentration is the signature of the semiclassical
regime, where single-impurity scattering events dominate. However, much more interesting is the vicinity of
the BDI quantum critical point, where the perturbative picture breaks down [24-28, 45]. Near the Dirac
nodes (w — 0), the self-energy becomes independent of the concentration. A close up of the concentration
dependence at the Dirac point is shown in figure 2(f). This anomalous behavior is found to occur for
energies that are within the energy window where the k dependence is the strongest, which indicates that
both effects have origin in high order (multiple impurity) scattering processes. We note that the onset energy
of this anomalous behavior increases with the increase of vacancy concentration. This means that the
manifestations of quantum criticality highlighted here can be pushed toward experimentally accessible
energy scales in sufficiently disordered samples. Of equal interest is the intermediate energy regime
(figure 2(g)), where considerable deviations from the semiclassical picture are also apparent. Here, the
K-point self-energy is found to follow the scaling law Im 344 (0,w) = c*f(wc®), see figure 2(d), where f(x) is
a function which does not depend on the concentration and o« = 0.56 4 0.02.

3.2. Spin—orbit effects in ferromagnets:SrRuO;

Next, we illustrate the versatility of our approach by computing the disorder self-energy matrix of a
spin—orbit-coupled ferromagnetic metal. The model system chosen for this study is the itinerant
ferromagnet SrRuO; (SRO) [54], a well-studied oxide material that features, among other things,
momentum-space monopoles of Berry curvature and interface-driven chiral spin textures [55-59]. Our
focus here is on the spin-polarized two-dimensional electron gases that are formed in SrRuO; embedded in a
SrTiO; matrix [60]. Complex-oxide superlattices have attracted widespread interest because they provide a
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Figure 3. (a) Average density of states of the interfacial layers of a SRO superlattice. (b) Band structure (colors represent the spin
expectation value (s;) with blue/red for negative/positive values). The red arrows indicate the presence of nodal loops in the
spectrum. (c) Imaginary part of three components of the self-energy matrix. The red arrows point to the regions of largest
discrepancy between SCBA and the exact self-energy. (d) Vacancy-induced self-energy normalized to the concentration and
comparison with the T-matrix result for c = 0.1% and ¢ = 6%. (e) Imaginary d., 1, dx, T-components of the self-energy at fixed
energy (blue dashed lines in (d)) for several concentrations of vacancies. These simulations were carried out using computational
domains with a total of 2.5 X 107 sites.

platform to engineer metallic states with unusual ferroelectric properties [61-64]. However, the effect of
disorder upon their complex interfacial behavior remains largely unexplored.

To model an emergent spin-polarized electron gas in a SrRuOs5/SrTiOs superlattice (which is known to
be confined to the 4d orbitals of the Ru atoms in the SRO layers [65]), we employ a first-principles
parameterized multi-orbital TB model as developed in [58]. The details of the TB model, which accurately
describes the predominant Ru ,,-bands near the Fermi level and also includes spin—orbit coupling (SOC),
are provided in appendix D.1. Our primary aim is to understand whether the self-energy operator acquires a
nontrivial matrix structure. To this end, we investigate the quasiparticle self-energy generated by on-site
disorder and point-like defects (vacancies). In the former, the random on-site energies within each unit cell
in real space {¢;} are taken from a box distribution

/W, el < W/2

. (14)
0, otherwise

plei) =

where W defines the disorder strength. With this choice, the on-site disorder is locally correlated since all the
4d-orbitals inside a unit cell experience the same potential. Different choices are possible, but this simple
prescription will be sufficient to illustrate the nontrivial role of disorder in this class of oxide materials.

We first briefly describe the electronic structure of the spin-polarized gas formed at the interfacial layers
of SRO superlattices. Figure 3(a) shows the average density of states and figure 3(b) shows the band structure
along the path '’XMT". In the absence of SOC, nodal loops are formed when the minority and majority bands
intersect (see arrows). The majority and minority spin bands are hybridized when SOC is included, leading
to a modulation of the equilibrium k-space spin-polarization density and an enhanced Berry curvature near
the avoided anticrossings [55].

We now discuss the quasiparticle self-energy at the I' point, ¥ (w) = %" (k = I',w)—other k points
behave similarly and hence are not further discussed here. The energy resolution in the Chebyshev
polynomial expansion (equation (9)) is set to 7 =1 meV. As it turns out, excellent spectral convergence is
achieved after N ~ 16384 iterations. Our results summarized in figures 3(c) and (d) disclose a rich
self-energy structure. For conciseness, only the dominant matrix elements are shown (there are 18 nonzero
matrix elements in total; see appendix D.2). These results counter conventional wisdom, which posits that
the self-energy has essentially a scalar structure $7=0" — _iT. The scalar component of the self-energy is
dominant in relatively simple systems, such as graphene with point defects as discussed earlier (section 2.1),
which, appropriately far from the Gade singularity, displays an essentially scalar structure. However, the
current example clearly illustrates that all symmetry-allowed matrix elements of the self-energy are generally
nonzero, provided the existence of one-body interactions coupling different degrees of freedom in Hy. In
fact, the disorder self-energy shares its matrix structure with the clean Hamiltonian. In particular, the SOC
term in Hj is responsible for the nonzero spin-flip components of the self-energy discussed below. The types
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of impurity potential and disorder statistics also play a crucial role in determining the self-energy matrix
structure. Because we have considered a uniform on-site potential across all 4d-orbitals on a given impurity
site (equation (14)), the impurity scattering effectively acts as a source of correlation between every orbital.
The disorder correlation is thus responsible for the emergence of off-diagonal matrix elements at the lowest
Born order in the diagrammatic expansion (such as ¥4 ), which would otherwise be forbidden. For
further details, we direct the reader to appendix E.

It is interesting to contrast the results for random on-site disorder against a standard diagrammatic
calculation performed at the bare Born approximation (BA) and self-consistent Born approximation (SCBA)
levels. We find that for weak disorder (W < 50 meV), the numerically exact, BA and SCBA self-energy are all
in excellent agreement. For intermediate disorder strengths W = 0.5 eV, the simple BA is no longer able to
provide a satisfactory approximation to the self-energy. While the SCBA produces a better agreement, it is
still unable to capture some of the finer details of the self-energy that our method captures (red arrows in
figure 3(c)). This is to be expected, since, for strong disorder, quantum interference corrections are
ubiquitous and cannot be captured by the SCBA. Interestingly, the combination of disorder correlation
between the spins and a considerable (45 meV) SOC term induces a substantial spin-flip matrix element
dy;1dyy,, (see appendix D.2 for the other matrix elements).

For the second model of disorder, we use vacancies with concentration ¢ and compare our results to the
T-matrix approximation (figure 3(d)). At low concentrations (c ~ 0.1%), the T-matrix approximation is in
complete agreement with our results, but starts to break down at higher concentrations (c ~ 5%). To see this
more clearly, we show the self-energy as a function of the concentration for fixed energies in figure 3(e). For
low concentrations, the self-energy is proportional to the concentration of impurities in accord with the
T-matrix result, but at higher concentrations, we start to see discrepancies which scale as ~c'* near the peak,
signaling the onset of nonperturbative disorder corrections. We note that such peaks cannot be attributed to
van Hove singularities because they are absent at low defect concentration, and there is no correlation
between the position of the peaks and the position of the singularities. We attribute them to resonances
induced by multi-vacancy clusters, which only start to form at higher defect concentrations.

The renormalization of quasiparticles with a non-scalar self-energy, as predicted here, is expected to
strongly impact the response of materials to external perturbations. For example, recent theoretical studies
have alluded to robust spin—orbit scattering mechanisms underlying the extrinsic generation of spin Hall
currents and current-induced spin polarization, which can be traced back to the matrix structure of the
disorder self-energy in spin—orbit coupled materials [66—68]. On a fundamental level, the self-energy is
connected to the four-point vertex functions of linear response theory through exact symmetry relations
known as Ward identities [69-71] and thus the knowledge of all its matrix elements is essential to obtain
physically sensible transport equations. Because our approach provides a systematic way to accurately
evaluate the disorder self-energy of arbitrarily complex model Hamiltonians, regardless of the type and
strength of disorder, it could provide new insights into the array of rich interfacial magnetic phenomena
beyond the reach of diagrammatic calculations [72].

3.3. Disorder-enhanced p-wave superconductivity

While our discussion so far has focused on lattice models with conventional quasiparticles, it is
straightforward to generalize our approach to other condensed phases. As a final application, we employ our
computational machinery to map out the mean-field phase diagram of a dirty superconductor. For
definiteness, we focus on monolayer graphene, whose leading doping-dependent superconducting
instabilities include chiral p-wave pairing states [73, 74]. Chiral superconductivity has caused great
excitement because it provides a platform to realize Majorana zero modes that are insensitive to local
perturbations, and thus can be used to construct topological qubits [75]. Typically, disorder is detrimental
for unconventional (non s-wave) superconductivity due to the breakdown of Anderson’s theorem when the
impurities violate the pairing symmetry thus acting as pair breakers [76—79]. However, there are exceptions
to this rule (e.g. in d-wave cuprates, disorder is known to enhance the critical temperature through the
appearance of superconducting islands around the impurities [80]). In this respect, the unusual electronic
properties of graphene open up interesting possibilities. For example, it is known that the addition of scalar
impurities in charge-neutral graphene has the counterintuitive effect of enabling conventional
superconductivity for weak attractive interactions, while leading to a suppression of superconductivity in the
strong attraction regime [81, 82]. On the other hand, the phase diagram at finite doping, where
superconductivity is expected to develop more easily due to a nonzero single-particle density of states, is far
less explored. How is the doped graphene’s ability to form superconducting states affected by impurity
scattering? Can one tune the competition between different pairing states by tailoring the impurity potential
(e.g. using adatoms adsorbed on particular lattice positions)? Here, we make a start on addressing these
questions by computing the superconducting gaps at finite charge carrier density in the presence of disorder
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and competing order parameters. In the following, we demonstrate that p-wave superconductivity can be
substantially enhanced by the presence of bond disorder (e.g. generated by gauge fields due to strain or
adatoms at bridge sites).

Chebyshev-Bogoliubov—de Gennes formalism—The algorithm we use is a variant of the
Chebyshev-Bogoliubov—de Gennes algorithm proposed in [83], adapted here to reconstruct real-space
Green’s functions by means of the exact spectral decomposition (equation (9)) throughout the mean-field
self-consistency cycle; see figure 1(second panel). To speed up the evaluation of Chebyshev moments, we use
a domain-decomposition technique as implemented in the open-source code KITE [32]. The proposed
approach has two key features: (i) it is sufficiently powerful to handle systems with millions of sites, thus
bypassing finite-size effects that severely restricted the accessible coupling strengths in previous studies; and
(i) it provides flexibility to treat disorder to different levels of accuracy, ranging from a self-consistent
effective-medium-type approximation all the way to a numerically exact treatment. This offers the possibility
to capture important features of dirty superconductors missed by the commonly employed SCTM
approximation, including multiple-impurity quantum interference phenomena and inhomogeneous pairing
patterns.

The mean-field Hamiltonian reads as H = H, + Hp, where Hj is the single-particle Hamiltonian of
disordered graphene (equation (13)) and

Hp=Eo+g0 Ao (alyal 45160 )t hic g0 Ay (af o —al 0 ) +he (15)
j )

is the pairing term. In the above expression, a:»rs(b:-fs) adds an electron with spin s =7, to site 7 on sublattice A
(B) and go (g1) is the onsite (nearest-neighbor) interaction energy. The superconducting order parameters are
Ao, = (ajyair) = (b bir) and A, j; = <al¢bj¢ - ainjQ and Ey = —gyA3 — 31 A? is the condensation energy.

The clean system achieves quantum criticality at zero chemical potential (¢ = 0) and displays different
superconducting phases depending on the interaction strength. There are regions of s-wave, p-wave and
mixed symmetry. Away from half filling, every region is of mixed symmetry and the quasiparticle spectrum is
gapped. In this regime, the order parameters are smooth across the whole diagram [73].

The order parameters are expressed as

A
mfﬂ/’@u—ﬁw»@ﬂGWW¢» (16)
—A

A
Bug=2 [ de(1=2fw)) (i1 G, (17)

where f is the Fermi function, G is the retarded Green’s function operator and 7 and j denote nearest
neighbors. The exact choice of cutoff A depends on the origin of the pairing term. For conventional
phonon-mediated superconductors, this is the Debye energy fuwp, which restricts the integration to a thin
shell around the Fermi level. On the other hand, unconventional superconductors, such as
plasmon-mediated metal-coated superconducting graphene [73], generally have contributions from several
energy regions. For the sake of simplicity, we let A — +o00, which captures the whole spectrum and is still
able to accurately reproduce the clean phase diagram. In the simulations to be presented below, a set of
random sites belonging to either sublattice are selected as the impurity sites, with a uniform concentration
¢ = 5%. Around each impurity site, the nearest-neighbor hoppings are weakened by an amount At.

Spatial dependence of order parameters—For a clean system, equations (16) and (17) are easily
diagonalizable, yielding a set of two self-consistent equations. When disorder is introduced, there will be four
coupled self-consistent equations for each lattice site, which severely limits the system sizes accessible to exact
diagonalization. Traditionally, dirty superconductors have been addressed by means of T-matrix and CPA
schemes [84, 85]. Here instead, we implement a different strategy that will allow us to keep the complexity to
a minimum. Specifically, we restrict the order parameters to a constant uniform value in the bulk of the
superconductor, while allowing them to vary in a circle of radius z around each impurity (figure 4(a)). Since
we expect the behavior of the order parameters to be similar in the vicinity of each impurity, we further
restrict each order parameter to follow an identical spatial profile A, = f,(r) (n = 0,1) inside every circle
and then find the function f,(r) which satisfies the self-consistent equations within these restrictions. This
function is then computed using a stochastic evaluation of the matrix elements by means of the spectral
approach described earlier (further details are given in appendix F). This approach is best suited for dilute
point defects, where the regions rarely overlap. The choice of radius z regulates the approximation. A larger z
allows us to capture more of the spatial dependency of the order parameters, at the cost of increased running
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Figure 4. (a) Implementation: density map of order parameter Ao = fy(r) around impurity positions in the honeycomb lattice.
Lighter shades of green indicate larger |A¢|. The spatial modulation of A is confined to a circle of radius z (shown in red) and
forced to be identical in every circle. (b) Variation in the s- and p-wave order parameters (Ag and A;) due to the presence of
impurities at a concentration ¢ = 0.05 and chemical potential ¢ = 0.4t. (c) Order parameters for fixed g; as a function of the
concentration, across the transition line. (d) Components of the self-energy for four points in the phase diagram in the

g1 = —1.7tline. For all our simulations, we used systems with 10° atoms and 2048 Chebyshev polynomials.

time. The positions of the impurities are chosen randomly such that no two circles overlap. The spatial
modulation of A is expected to decay very rapidly [86], so we choose z to be around three lattice spacings.
Results—Figure 4(b) discloses a rich array of behaviors for different regions in the go, g plane. Most of
this diagram for doped graphene can be understood within a virtual crystal approximation, as if the only
effect of disorder is to renormalize the energy scales of the problem. The effective hopping is given by
t' = t+ (c/z) At, with z =3 the coordination number of the honeycomb lattice. Since At is negative, the
effective value of the interaction constants would increase to gj = got/ (t+ cAt/z) (likewise for g;). Such a
simple description is able to satisfactorily explain the behavior seen in regions of increased p-wave and
s-wave order parameters (see appendix F.3). However, there are two prominent features that cannot be
captured by this heuristic argument. First, the threshold for superconductivity is substantially reduced when
disorder is introduced, a behavior typical of the presence of superconducting islands. Secondly, there is a line
in the phase diagram across which the order parameters suffer an abrupt change that signals the onset of a
crossover driven by disorder (white dashed line in figure 4(b)). To better understand this transition, we plot
in figure 4(c) the order parameters for fixed g = —1.7¢ as a function of g, (horizontal gray line in
figure 4(b)) for several values of the concentration. This is a regime of mixed symmetry, since both order
parameters are nonzero. The discontinuity persists even at low (1%) concentrations of impurities, but the
value of gy for which it happens increases with increasing concentration. We also plot two matrix elements of
the self-energy as a function of energy at this value of g, for four different values of gy near the transition
(figure 4(d)). The discontinuity in the order parameters is also reflected in these matrix elements. On both
sides of the transition, we see the presence of a gap due to the finite value of both order parameters, but only
the curves at the right of the transition have a van-Hove-like singularity. The existence of all off-diagonal
matrix elements indicates that this disorder correlates different sublattices and spins, through the induced
spatial inhomogeneity of the order parameters around the impurities. The self-energy can therefore provide
valuable information about the LDOS around impurities through its connection to the LDOS [87]. Since
these superconducting phases may be mediated by plasmons in a proximitized metal layer, the corresponding
coupling parameters may also be controlled by changing the plasmonic properties of the metal or the
distance between the metal and the graphene sheet. This opens up the possibility of sweeping the coupling
parameters across the discontinuity line to look for the crossover, which may be identified experimentally
through spectroscopic studies around impurities.

4, Conclusion

We introduced a real-space numerical framework that gives access to the full wavevector and frequency
dependence of the quasiparticle self-energy in arbitrarily complex disordered tight-binding models. For this
purpose, we employed an exact Chebyshev decomposition of lattice Green’s functions (equation (9)) that
provides full control over the resolution of the computation. The method was applied to three distinct
problems (i.e. quantum criticality driven by chiral disorder in the honeycomb lattice, impurity resonances in
a spin—orbit coupled ferromagnet and disorder-enhanced superconductivity in monolayer graphene), in
unprecedented large systems, revealing a rich array of nonperturbative effects that challenge the standard
perturbative picture of disordered systems.
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For honeycomb lattices with a dilute concentration of vacancy defects, we uncovered nonzero
off-diagonal components in the self-energy as well as a strong momentum dependency near the Gade
singularity at zero energy. These previously inaccessible effects are ubiquitous even in the weak disorder
limit, which shows that the quantum interference of electronic waves scattered by multiple defects plays a
much deeper role than previously thought. A striking result emerges in the long wavelength limit: the
imaginary disorder self-energy at the Dirac (K) points vanishes Im 34 (K, 0) ~ 0, within spectral resolution
and accuracy, for any vacancy concentration. This suggests that the puzzling universal metallic conductivity
0Gade = (4/7)€*/h previously seen in large-scale quantum transport simulations of defected graphene
systems [45] is a fundamental property of chiral-symmetry-protected ZEMs with exceedingly large
quasiparticle lifetime.

Secondly, our real-space self-energy framework is applied to 2D spin-polarized electron gases formed in
SrRuO;/SrTiO; superlattices and compared against diagrammatic resummation schemes, including the
T-matrix for vacancies and the SCBA for uncorrelated on-site disorder. Both are found to be in excellent
agreement with the numerically exact self-energy at small disorder strength/impurity concentration, though
they diverge significantly away from this regime. The most distinct effect of a large concentration of
vacancies is the appearance of peaks in the self-energy whose height has a nonperturbative dependence on
the concentration, which we attribute to scattering resonances from impurity complexes. A rich matrix
structure of the self-energy is borne out by our study, illustrating how correlations in the disorder potential
can manifest as off-diagonal matrix elements in the self-energy.

Finally, we applied the Chebyshev polynomial Green’s function machinery to calculate the order
parameters of superconducting monolayer graphene in the presence of dilute bond disorder. We found that
for some regions of the phase diagram it is possible to enhance bulk s-wave, p-wave or both kinds of
superconductivity by adjusting the amplitude of local fluctuations in the hopping parameters. For this
purpose, a variation of the Chebyshev-Bogoliubov—de Gennes method was used to enable self-consistent
simulations of systems with millions of atomic orbitals. These results open up the intriguing possibility of
tailoring superconducting phases in twisted bilayer graphene, a topic that is currently of much interest.

We briefly comment on possible extensions of the real-space spectral framework for the disorder
self-energy that we introduced in this work. For conciseness, we restricted ourselves to orthogonal local basis
sets, but this requirement can be easily relaxed at the cost of introducing an overlap matrix in the calculation
of Chebyshev moments (viz. equation (2) and discussion therein). The use of a nonorthogonal
representation of the orbitals would open doors to accurate studies of disorder effects in complex problems
and materials [88, 89]. The method can also be easily extended to evaluate the self-energy resulting from
other types of disorder such as local structures of defects, random hoppings and correlated disorder. Another
interesting question for future study is whether the framework introduced here could shed new light on the
behavior of mesoscopic systems without self-averaging properties.
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Appendix A. Self averaging property

The self-averaging behavior of the disorder self-energy yields highly converged results in a computationally
efficient manner and so must be justified. While a rigorous general proof is beyond the scope of this paper,
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Figure 5. Feynman diagrams that contribute to the variance of Im Gy up to fourth order in Viis.

we show below that under some rather general assumptions, the matrix elements
Gop(k,w) = (a,k|G(w)|B,k) (and hence the quasiparticle self-energy) satisfy the self-averaging lemma

([Im Gap(k,w)]*) — (ImGap (k,w))® 1
(ImGpp(k,w))? D’

where (...) indicates disorder (configurational) averaging and D is the Hilbert space dimension of the lattice
model that scales with system volume (a similar expression holds for the real part of the matrix elements). To
simplify the discussion, we specialize to single-orbital models and thus omit the orbital index «, 5 hereafter.
Let & = (k| G k) denote the matrix element that will be used to determine the self-energy. It is implied that
G = (w— H+in)~" with H = Hy + V. Specifically, we want to show that the imaginary parts of & display
self-averaging behavior, that is var & = ((Im&)?) — (Im&)? o< D™ 1. The argument is identical for the real
part of £&k. We consider two common classes of problems for lattice models defined with an arbitrary number
of spatial dimensions: (i) systems characterized by perturbative (weak) disorder effects; and (ii) systems
possessing exponentially localized single-particle states in their spectrum. Finally, we provide numerical
evidence of our claim.

A.1. Weak disorder
If the diagrammatic expansion of the Green’s function is convergent, then we can use an expansion in powers
of V = Vy;, the disorder potential:

Img = Im (K| Go (VGO)" k)

n=0

to evaluate the disorder average (Im &, Im &), keeping in mind that the term (Im &) (Im &) will remove all
the terms in the diagrammatic expansion which do not connect both Green’s functions. Defining

GK = (k| G |k) for convenience and using (R|k) = D~'/2¢R to express the disorder potential in real space,
we obtain

Imé&, = ImGE + ImGE (Z VR> Gk+ImGkZZ dRR) (@K v GV, GX +

q RR/

We get a factor of 1/D from every disorder insertion Vg and also a factor of D due to the sum over R. We
assume that Vy is an uncorrelated disorder potential with Gaussian statistics, i.e. (Vg) =0, (VR VRr+)  Orr’»
(VRVR: VR:) =0, etc. As explained below this assumption is not essential, but it aids in substantially
simplifying the analysis. The configurational average introduces correlations between the disorder insertions
as Kronecker deltas dgr/ between different positions. Each dgg- effectively contributes with an additional
factor of 1/D. Lastly, each loop in the diagrams (representing integrations over internal momenta)
contributes with another factor of D.

Figure 5 shows the diagrams that contribute to the variance up to fourth order in Viis. Counting all the
powers of D, one can check that each term is associated with a factor of 1/D except for diagram (b). Instead,
this diagram is proportional to (D — 1) /D, but the constant term gets cancelled precisely by (Im&) (Im&y)
and what is left is again proportional to 1/D. At higher orders in Vg, similar arguments can be made. If the
upper branch of the diagrams is not connected to the lower branch, then it will get almost completely
cancelled by (Im&)?, leaving only the 1/D contribution. If both branches are connected, the number of
loops is not large enough to destroy the 1/D dependency.
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Figure 6. System size dependence of the standard deviation of the the AA component of the disorder self-energy matrix of
graphene at the Dirac point k = K for selected energies. Here we used a concentration of 0.3% of vacancies and a broadening of 1
meV in the spectral evaluation of the Green’s function. The same realization of disorder was used in the calculation of the matrix
elements of the full Green’s function G” (k,w) needed to evaluate the self-energy via equation (12). This prescription is highly
effective in improving the convergence of the ensemble average. Error bars are shown.

While we have only strictly presented our argument for uncorrelated disorder, we argue that a
generalization to correlated disorder should also be possible provided that the correlation length is finite. In
such a scenario, averaging over disorder would introduce asymptotically decreasing functions of the distance
between R and R in lieu of Kronecker deltas. In any case, a sum over the position (which would contribute
with a factor of D as noted above) now contributes with a factor of order unity, effectively having the same
effect as the Kronecker delta for the purposes of self averaging.

A.2. Localized states

Next, we analyze an important class of problems where diagrammatic methods break down [90]: strongly
disordered systems with localized states in their spectrum. We assume that the value of w is such that all the
states in an energy window 7 around w are localized, with a maximum localization length of (. We begin by
expressing & in terms of the eigenstates with energies {e,, } resolved in space

b= % 3 G (r-x) (Rla) (a|RY) Zng

w 1M —Eq
RR’ o + N

where gg i represents the contribution to & from the sites around R. By assumption, these states are
localized, so, for each R, only localized states with localization center within a distance 2¢ around R
contribute. Let S be this region. This means that gg x and gr- i have appreciable correlation only if

IR —R’| < 2¢. It is important to note that gg i is independent of the system size, since the percentage of
localized states is assumed to be an intensive property. This is a key assumption of this proof and
fundamentally relies on the existence of a mobility edge. Note that gg i is a random variable with a finite
maximum absolute value because only a finite number N, of elements contribute to both the sum over R’
and the sum over a. Using the triangle inequality,

(Rlav)] aR’
Z\ | (a|R%)]|

)+
n’zz | (Ren)| [ {@|R7)].

For both sums, N, is the number of degrees of freedom inside a d-dimensional sphere of radius 2¢. Therefore,
the sum D™' )"} gr i can be seen as a sum of bounded random variables which are only correlated within a
distance |r| < 2¢ of one another. Thus & follows the central limit theorem and so var &, ~ D~'/2, hence
proving the self-averaging property. We note the only assumptions made in this derivation were the locality
of the localized wave functions and that only localized wave functions have relevant spectral weight in Gy.

A.3. Numerical demonstration

Next, we demonstrate the self-averaging behavior numerically for the nontrivial example of a graphene
system hosting a Gade singularity at the band center (w = 0) generated by dilute point defects. To this end,
we calculated the self-energy at the k = K point of very large lattices (D = 2L? = 10616 832,42 467 328,
169869312 and 679 477 248) for 100 realizations of disorder. This allowed us to obtain the standard
deviation of this stochastic quantity (colored curves in figure 6), as a function of the linear system size. If

14



10P Publishing

J. Phys. Mater. 5 (2022) 045002 S M Joao et al

self-averaging is taking place, then the standard deviation should decrease as ~ L~!, which is exactly what we
obtain. The black dashed curves in figure 6 indeed have slope of —1 in a log—log scale, which indicates the
correct scaling law.

Appendix B. Multi-scale domain decomposition and other computational details

Computations for this work were carried out with the open-source KITE code [32]. Periodic boundary
conditions were employed in all calculations. KITE implements an efficient decomposition of the exact
Green’s function in terms of Chebyshev polynomials, which was used both for the calculation of the
self-energy in all case studies as well as the local Green’s function in the superconductor problem in

section 3.3. The real-space Green’s functions are evaluated using the CPGF approach (equation (9)) and the
calculation of («,k|G(w)|8,k) (or (o, R|G(w)|B,R’) for the superconductor problem) relies entirely on
evaluating the Chebyshev moments (o, k|T,,(H)|3,k). The recursive nature of our spectral approach means
that the complexity of the calculation of this matrix element scales linearly with the number of
polynomials M.

Every object in the spectral approach is expressed in real space, exploiting the sparseness of the
Hamiltonian matrix to improve the parallelization performance during the computation of the Chebyshev
moments. In addition to being sparse, this Hamiltonian H typically only connects sites that are close by
neighbors. In the process of the matrix-vector multiplication |v') = H|v), KITE divides the vector |v) into
equally-sized domains, which get assigned to different processing cores, and further subdivides these
domains into tiles. Within each core, this multiplication is completed within each tile first, before moving on
to the next tile to minimize cache misses when bringing the tile from memory. The size of the tile is adjusted
according to the processor’s cache size to maximize performance. This is at the core of the parallelization
scheme in KITE [32]. Each processor performs the real-space matrix multiplication within its assigned
domain, but it requires information about the other neighboring domains to correctly perform the
multiplication around the borders. This is mitigated by keeping a copy of the neighboring domains’ borders
stored in memory for each processor. After the matrix-vector product has been calculated, the stored copy of
the borders is updated before proceeding to the next iteration. This step is not parallelizable, but it scales
with the area of the lattice rather than the volume, so the algorithm becomes more efficient with increasing
lattice size.

In section 2.1, the k points chosen for the calculation of the self-energy belong to the (finite discrete) first
Brillouin zone. Since the K point of the honeycomb lattice may be expressed as (b; — b;) /3, in terms of the
reciprocal lattice primitive vectors, the linear system sizes used were limited to multiples of 3. Failing to do so
may induce noticeable errors due to the overlap with other momenta coming from the decomposition of k
in terms of vectors belonging to the first Brillouin zone.

Appendix C. Spectral convergence

Convergence against several factors has been carefully assessed in all problems studied in this work,
specifically:

(a) The energy resolution 7 has to be as small as possible to accurately capture the singular nature of the
Green’s functions;

(b) For any 7, convergence of the Chebyshev series (i.e. the choice of truncation order M — 1) to the desired
accuracy needs to be established carefully;

(c) Linear dimensions need to be large enough for the mean-level spacing to be suitably small compared to
the target resolution, d¢ < 7, and;

(d) There may be strong fluctuations arising from specific realizations of disorder. A larger system size helps
removing such artifacts.

Here we address points 1—4 with the help of figure 7, where we show the disorder self-energy of graphene
calculated for a selected concentration of vacancies (0.3%), two different system sizes and several broadening
factors 7.

(a) Due to the singular nature of this problem and the very fine resolutions required, full convergence with
7 is challenging to achieve, particularly at the band center. Sufficiently far from w = 0, the orange curve
in figure 7 appears to be converged. The inset shows the self-energy dependence as a function of ) for
states with w = 0. This curve is well fitted by Im X4 (K, 0) = 1>/? (orange line) which at =0
extrapolates to Im¥ 44 (K,0) = 0.
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Figure 7. Convergence study of the energy-dependence of the AA component of the self-energy matrix at the Dirac point k = K.
Calculations are carried out on large lattices with linear dimensions Ly = L, = 36864a (D ~ 2.7 X 10° orbitals). Each colored
curve represents a different broadening 7 and the superimposed dashed black curves are for a smaller system with

Ly = L, = 18432a. The inset shows the self-energy at zero energy as a function of 7). Here we used a vacancy concentration of
0.3%.

(b) The curves no longer change when we increase further the number of polynomials, indicating that the
Chebyshev series used to calculate the Green’s functions is fully converged. The maximum number of
polynomials was 131 072.

(c) Infigure 7, we represented Y44 (K,w) calculated with L, = L, = 36 864a, with a the lattice spacing, for
three different values of 7 in different colors. Each of these colors has a black dashed curve
superimposed, which is the same calculation done with L, = L, = 18432a. Close to zero energy, there
are no appreciable differences upon changing the system size. This indicates that the mean-level spacing
is very small near the band center (due to the large density of states in this region), thus leading to
smoother, fully converged curves. Away from this region, the discreteness of the spectrum starts to
become visible at finer resolutions and larger system sizes mitigate this effect.

(d) The statistical fluctuations due to the disorder realizations are very small, of the order of 2 meV when
Ly =L, = 18432a and therefore do not influence our results (see previous section).

Appendix D. SRO

D.1. Multi-orbital model
The Hamiltonian used in section 3.2 consists of a six-orbital tight-binding model on a square lattice, which
can be divided into four terms:

H:H1 +H2 +H3 +Iil4
Here,

Z tuxdjaad]‘w—i_ Z tﬂ#dluad]“d
o (i), 0,0,

represents the nearest-neighbor interactions, with t'¥ = 2 = t,, #* = #** = t! = £ = t;. The operator

djug creates an electron in site i orbital a (yz =1, xz =2, xy = 3) and spin projection ¢. The second term

I:IZ = Z f;bdluadbo' + Z gudj.ua'djﬂo'

a,b,0,((ij)) a,0,((i:j))

is the second-nearest-neighbor contribution to the Hamiltonian with ¢' = ¢* = 13, ¢ = t, and f}? = f3! = fif

i and j are along the diagonal and 1-1]-2 = fjl = —fif they are along the antidiagonal. The terms H3 and H,
encode the Zeeman interaction and SOC, respectively, with the expressions

— T
7m§ :ZTaodwo iac
a
Hy= MZ E eere . dl dipys

a,b,c,0,0’,i
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Figure 8. Imaginary part of all the eight independent matrix elements of the disorder self-energy calculated for SRO with
Anderson disorder at the I point. The calculation details are the same as in section 3.2.

where m is the amplitude of the Zeeman interaction, ) is the amplitude of the SOC, 7' is a Pauli matrix
(r'=0,, 12 = oy and 73 = 0,) and £™* is the Levi-Civita symbol. The SOC term was calculated by
evaluating the matrix elements L - S in the angular momentum basis with ¢ = 2 restricted to the Cartesian set

(i.e. {xy,xz,yz}).

D.2. Self-energy: other matrix elements

Figure 8 displays the non-zero independent self-energy matrix elements for the example of SRO with
Anderson disorder. The remaining 10 nonzero matrix elements of the self-energy are related to these
according to the following relations g + 4.4 = Yd t.dot> Ddetidet = — Dt det> Sdyeldyel = Ddyel delo
o ldet = ~Vdolidels Vdolodyt = Bdytdel = Dd.ldyt = Ydytded> and Xa4a, ) = Ya, a0 =
=104ty LIy | et

Appendix E. Disorder operator correlations

In this section we show that the elements appearing in the self-energy matrix depend on the type of
correlations appearing in the disorder potential. We find the dependency explicitly within the first Born
approximation. In this paper, we use two kinds of disorder: Anderson disorder and dilute (short-range)
disorder. We perform this analysis for Anderson disorder, but the proof is similar for the dilute case.
Consider the following disorder operator V = Vg, in the Hamiltonian. The disorder operator V is diagonal
in real space and is given by

V=" Wiali,e)(i,al
ia

where W, is taken from the uniform distribution (see e.g. equation (14)) with width W and mean 0. Here, i
indexes the unit cell and « indexes the degrees of freedom within the unit cell such as spin, orbital and/or
sublattices. In momentum space,

V=S vallp.a)ip. 4

'

where

Voﬁ, = Zexp (iRj- (p' = P)) Wjadas = V7, of

and R; denotes the position of the jth unit cell. The average of two disorder operators is

Byvo i
(V30 = s (B Wios 2o Wt

- ﬁ Z P (Wia Wiy ) 65
i

17



10P Publishing

J. Phys. Mater. 5 (2022) 045002 S M Joao et al

Now we assume that W, is uncorrelated among different unit cells, but there might be correlations within
any given unit cell. For example, if the a indices refer to spin up and down, one might require that

Wiy = Wjy, which would impose (Wjo Wi,) = 5ijvlv—; for arbitrary o and . In contrast, if one is dealing with
graphene and the « indices refer to the sublattice, one might require that the value of W in A be independent
of that in B, yielding (Wjq Wiy ) = 6jjda~ ‘/1"—22 With more generality, let us assume (Wjq Wiy) = 8;iM.~, where
M is a matrix which captures the correlations. Then,

1 iR;-p iR;-p’
(VEVe) = qa Do e 6 Mo
ij
1 iR:- /
= 5 2 @M 60565
j

1
= N‘Spﬂ’Maw(SaB(Sv&

The self-energy is calculated perturbatively by expanding the disorder-averaged Green’s function in a power
series of the disorder operator

ap .y _ [veb wr 0 o8
Sl €)= (Vid )+ 3 (Vod GogVin ) 4+
By

Here, only the 1-point irreducible diagrams are to be kept. In the BA, we obtain

af _ ay 08 0
Yoy (€)= Z <foqvq—p'> Gavo
a8y

1
= Z N‘sp—qﬂ—p’ a60ay0s8 Gg»y&
a8y

1 E 0
- N anﬂ Maﬁ (Sp_p/
q

and it is clear that the matrix elements appearing in ¥ depend on the correlation matrix M. If the disorder is
completely uncorrelated, only the diagonal elements will survive. Despite this, higher-order terms beyond
the BA may contribute to the off-diagonal matrix elements of the self-energy.

Appendix E. Superconductor

E.1. Computational details

Here we provide additional details on the superconducting order parameter calculation. The starting point is
the Chebyshev-Bogoliubov—de Gennes formalism [83], where the order parameters are obtained from
equations (16) and (17). In the clean case, the order parameters share the periodicity of the crystal. In the
presence of disorder, we expect the order parameters to change appreciably in the vicinity of impurities and
defects, but to remain relatively constant otherwise. In some cases, this modulation around an impurity may
extend up to a few dozens of nanometers [91], but in our case, with dilute nonmagnetic impurities in
graphene, the order parameter only changes appreciably on the order of a few unit cells [86].

For this task, we propose a new approach to calculate the order parameters which takes into account
most of the spatial modulation while only requiring a small number of self-consistent equations be solved.
Taking Ay ; as an example (an identical procedure is used for A, j;), we start by defining a circle centered
around each impurity site R, with radius z. Outside of these circles, the order parameter A ; is restricted to
be uniform: A ; = Ab. Inside every circle, the order parameter is assumed to behave identically, so for the
sites r; such that |R, — 1| < z, the order parameter satisfies A¢ (R, 4 1;) = po,; for every R,, and for some (yet
to be determined) function py ;. In each self-consistent step, the value for the next p ; is defined as an average

Nimp Ao (R, + 1;), where Nip, is the number of impurities.
> p p

over identical sites within each circle pp; = N, ;1 S~ ™

mp
Ab is calculated by averaging over the remaining sites. With this method, the number of self-consistent
equations that have to be solved scales with the area of one circle ~ z* instead of the number of lattice sites.
We are able to greatly reduce the number of self-consistent equations that have to be solved while still
capturing most of the spatial dependency of A ;. The radius of the circles can be adjusted in order to better

reflect the spatial dependency of the order parameters around the impurities.
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Figure 9. Superconducting order parameter A} across the pairing plane with (a) and without (b) disorder. Change in the
superconducting order parameter due to presence of impurities (c) and renormalization of the energy scales (d). The color scale
in (c) and (d) is the same as in figure 4.

Coming back to equation (16), the new self-consistent equation that has to be solved is

poi =1 / AAdwu —2f(w)) x

N4
1 imp
X —— 3 (Ry+1:,1|G(w) Ry +1i, 1)
Nimp n—1

The notation has been slightly changed to reflect the vector addition of position vectors. While before only
the site index was specified, now the position R,, + r; is specified. This matrix element can be expressed in
terms of a random vector

Nnmp

;o)

+ri’0—>a (18)

1mp n=1

thus casting the expression for py ; into

A
pos—1 / dw (1 - 2f(w)) €T IG@) € 1)
—A

where the bar denotes a random vector average. This expression can now be calculated with direct Chebyshev
expansion of the Green operator in an efficient manner.

E.2. Order parameters
Using the mean-field model of the main text, we first calculated the bulk superconducting order parameters
Ay and A, in the clean system. In this case, the parameters are homogeneous and the sum in equation (18)
runs over the whole lattice; see figure 9(b) for A;. The calculation was done at finite chemical potential
1 = 0.4¢. Both order parameters vary continuously over the g, g plane. A qualitatively similar picture exists
for Ag.

Then, we performed the same calculation, but with the disorder specified in the main text (see
figure 9(a)). Now the order parameters suffer a clear discontinuity which was not present before. The
difference between these two graphs is the result presented in the main text, in a 2D color scheme
(figure 4(c)).
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E.3. Renormalization

The main effect of the impurities is to renormalize the energy scales of the problem. Assuming the energy
scales vary as gj = go [1 + at/ (t+ At)] for some « depending on the concentration, we get the left panel of
figure 9(d). Here we used ov = 1.15.
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