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ABSTRACT: We report the influence of thickness of an undoped GaN (u- 20

GaN) layer on current transport to a 2DHG through the metal/p++GaN contact
in a GaN/AIGaN/GaN heterostructure. The current is dominated by an internal
potential barrier of 0.2—0.27 eV at the p+ GaN/u-GaN, which increases with
thickness from 5 to 15 nm and remains constant thereafter due to Fermi pinning
by a defect at ~0.6 eV from the top valence band. We also report a nonideality
factor, n, between 6 and 12, for the combined tunneling current through the p
+GaN/u-GaN to the 2DHG. Our contact resistivity of 5.3 X 107* Q cm? and
hole mobility, s, of ~15.65 cm?/V s are the best-in-class for this metal stack on a

GaN/AIGaN/GaN heterostructure, reported to date.
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stablishing a low resistivity contact to a two-dimensional

hole gas (2DHG) still remains a formidable challenge,
despite recent advances in e-mode p-channel transistors in
GaN. These are desirable for monolithic integration of beam
forming with front-end modules in SG antenna arrays and gate
drivers of GaN power devices. Although heterogeneous
integration of a p-type silicon MOSFET with an n-channel
GaN HEMT has been demonstrated, the technology suffers
from challenges of heat dissipation.”” The dream of realizing
CMOS in GaN has been spurred by demonstration of scaled p-
channel FINFETs™* to overcome trade-offs associated with
on/off ratio, threshold voltage, and the maximum on-current,
affected primarily by the poor mobility of holes, in p-channel
FETs.® Despite on-currents of 66 and 140 mA/mm in
comparison to 1.6 mA/mm in ref 6, there still remains
considerable scope for improvement.”

This work aims to develop an understanding of the
inherently high contact resistance to a 2DHG in GaN. The
high resistivity has been attributed partially to a poor efficiency
of Mg activation, usually lower than 1%, even at a doping
concentration of 1.0E20 cm™>, due to the high activation
energy of ~170 meV in Mg-doped MOCVD-GaN.*’ Recent
progress via low temperature molecular beam epitaxy (MBE)
has demonstrated a reduction of donor-like defects that tend to
compensate for the p-type doping, to levels of ~1.0E17 cm™,
resulting in higher activation' by a factor of 10. Regrown
contacts in combination with high work-function metals such
as Ni/Pd can help reduce the contact resistivity.'' Never-
theless, regrowth is not a desirable technique, and Au is
preferred over Pd as a capping layer.

© XXXX The Authors. Published by
American Chemical Society

- 4 ACS Publications

Beyond the metal/semiconductor contact, motivated by the
desire for CMOS technology, there is a smaller body of
work'' ™" attempting p-channel devices, from which reported
values of the resistivity of the contact to a 2DHG, and the
corresponding hole mobility, are depicted in the figure in the
abstract. In such devices, typically an undoped GaN (u-GaN)
layer may lie between the contact and the 2DHG, as
highlighted in Figure 1, resulting in a range of values of
contact resistivity of Ni/Au from 4.9 X 10°° Q cm? in a
structure without a u-GaN layer (at an estimated Mg doping
concentration of 3.0E19/cm?®),"* to ~1.0 X 1072 Q cm? for a
contact separated by 20 nm of GaN.'® Not all reported
structures are based on GaN/AlGaN; Vescan et al. achieved
7.3 X 107* Q cm? for a GaN thickness of 3 nm on quaternary
AlInGaN."® On the other hand, Palacios et al. demonstrated
~1.0 X 107 Q cm?® for a GaN thickness of 20 nm.'® From
these preceding articles, it is easily apparent that the
introduction of an undoped layer affects the resistivity of the
contact to the underlying 2DHG. With the exclusion of the
data points arising from this work, the figure in the abstract is
suggestive of a trade-off of the contact resistivity with mobility,
linearly with thickness of the u-GaN layer. Our motivation,
therefore, is to attempt physical insight into the origins of this
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Figure 1. (a) Cross section of the substrate and TLM contacts in Ni/
Au, highlighting the contributions of the total resistance to the current
flow path. (b) The corresponding zero bias energy band diagram of
the structure with the theoretical Schottky barrier of 1.65 eV,
represented by eq 1, highlighted in red.

behavior, because undoped GaN layers are essential in HEMT's
to reduce scattering of carriers in the 2DHG. However, our
previous work highlights reducing the on/off ratio in devices
with thickness in excess of 16 nm due to loss of electrostatic
control."”

Our device (Supporting Information A), highlighted in
Figure 1(a), includes a current path consisting of a maximum
SB of 1.65 eV (Figure 1(b)) between the Ni/Au metal stack
and a p++ GaN layer that yields an extracted value of contact
resistivity p., sheet resistance of the semiconductor regions
consisting of p+ GaN and a u-doped semiconductor channel
represented by R, and the resistivity of the 2DHG(ox1/p), as
limited by the Hall mobility. A bending of I-V curves around 0
V obtained from TLM measurements of a sample with u-GaN
thickness of 16 ym in Figure 2(a) indicates the existence of a
Schottky barrier between the metal and the 2DHG. Our
extracted transfer length, based on total resistance—distance
characteristics shown in Figure 2(b), is typically 1.2 + 0.19 ym
(Supporting Information B), the fluctuation representing the
spread of current with thickness of u-GaN. The sheet
resistance (Supporting Information B) increases linearly with
thickness between 34.7—42.4 kQ/sq with a limiting value of
27.2 kQ/sq extracted in Figure 2(c). Our results lie between
those of Jena et al., who achieved 8.89 k€2/sq, with Pd/Ni and
p-InGaN contacts with 15 nm of u-GaN channel,'’ and Chen
et al, who reported 56 kQ/sq for 12 nm AlGaN."” Using p-
InGaN is a major contributor to the reduction of the contact
resistivity because the conduction band offset between GaN

and InN is 1.6 eV,” leading to an electron affinity of InN of
5.91 eV, higher than any metal work-function. The ternary
compound of p-GaN and InN has an estimated valence band
offset of 1.15 eV*” that should reduce the resistance between
metal and 2DHG significantly. The values of resistivity
obtained in this study vary from p. ~ 5.6 X 107 Q cm? (16
nm) to p. ~ 5.1 X 107* Q cm? (30 nm) and show a relative
independence to thickness of u-GaN, in Figure 2(c), contrary
to the reported trend from the figure in the abstract. Figure
2(d) shows the Hall mobility with u-GaN thickness measured
using Van der Pauw structures with an average value of 15
cm?/V s, similar to that achieved by AIST.'>?! It is noted that
Hall mobility and sheet hole density are determined by

Hy = 1/qpRy, (1)

where py is the Hall mobility, p; is the sheet hole density, and
Ry, is the sheet resistance. This equation explains why the sheet
hole density and mobility track each other oppositely (Figure
2(d)), when extracted via this method with a relative immunity
to thickness of u-GaN (between 16 and 30 nm). The sheet
hole density at the GaN/AlGaN interface can be confirmed by
using C-V characteristics.”> To study current transport
through the contact, temperature dependent I—Vs at a gap
length of 5 nm, for an 18 nm thick u-GaN, are reported in
(Figure S1). The SB, @j, can be extracted from a semilog plot
of I-V as depicted in Figure 3(a) as

I= Isqu/nKT(1 _ e—qV/kT) (2)

where Iy = AA * T2e~9%/ T, 4 the diode ideality factor, is
obtained from the slope; and the SB, @y, can be obtained from
the intercept, I, as
kT AA*T?
Q= —In
q I 3)

The Richardson constant A*, defined by A* = 47tqk2m*/ w,
is traditionally obtained from a plot of In(I/T*) versus (1/T).
Based on an effective mass of 0.16, we obtain a theoretical
Richardson’s constant of 19.2 (Supporting Information D) and
note that an error of 2 in A* results in an error of only 0.7kT/q
in ®3.2*"** From Figure 3(a), it is observed that the I-V
characteristics plotted on a log—linear scale have significant
nonlinearity, resulting in a temperature dependent ideality
factor between 6—12 that we report here for the first time in
this type of contact to a 2DHG in GaN. Figure 3(a) also shows
a hypothetical curve with n = 1, whereas n > 1 is evidenced by
the flattening of the I-V characteristic.”’ Near to 0 V, there is
little change of current with voltage; hence, n = 6—12 reflects
the variation only due to T, in the term (nkT) in eq 3.
Physically, this signifies a contribution of tunneling to the
current transport mechanism from a large number of defective
states in the surface layers, which reduces the SB at lower
temperature, due to an increase in field emission (Figure
3(b)). These defects might be assigned to the Ga vacancy that
acts as acceptor (a result of removing native GaO, on the
GaN),* with an energy level of 0.1-0.3 eV®! and 0.15 eV*?
from the valence band maximum. This behavior is far from
ideal thermionic field-emission theory used previously to
extract the SBH to p-GaN,”*****” which assumes a single SB
fitted to the entire range of temperature, from a plot of
resistivity versus temperature, which is clearly not the case
when n # 1. Okumura reports three ranges of behavior for
their contacts based on (i) Ny\—Np < 2e19/cm’, resulting in
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Figure 2. (a) I-V characteristics as a function of spacing of contacts for a u-GaN thickness of 16 nm measured at 300 K. (b) Total resistance
measured at 300 K versus gap distance of the TLM structure as a function of u-GaN thickness. The total resistance increases with the thickness of
the GaN layer. (c) Sheet resistance and contact resistivity as a function of u-GaN thickness show a linear increase of the former and independence
of the latter with thickness. (d) Extracted mobility and sheet hole density versus u-GaN thickness indicate a marginal peak at ~18 nm within the

error margins of variation from sample to sample.

= Measured 300K (n=5.2) " BN 0.33
—— Measured 120K (n=12.6) it TN
001 300K (n=1) 12} R Ty P (©
-~
— 0.001 foem c oL
< Gap length Sum | 5 0.32 &
£ 1E4 (a) € 10p u-GaN thickness: S s
3 i —— 16 nm A \
E B
3 1ES Table.2 : sf = Bmliaé &
T&a I=lge™/T(1.eVAT) (1) | 2 ——  30am 0:381
I=AA T2 9%WKT () 6 300K
187 De=(kT/Q)IN(AA'THI)  (3)
4 . . . . 0.1 0.30
000 0.05 010 015 020 100 150 200 250 300 350 15 20 25 30
Voltage (V) T(K) Channel thickness (nm)

Figure 3. (a) The method of extraction of the nonideality factor n from the current—voltage characteristics in the diode region at 120 and 300 K. In
the Schottky region, current is almost independent of temperature; therefore, n changes (proportional to T). n is obtained from the slope: g/slope -
kT; @y, is obtained from the intercept, I,. A hypothetical ideal curve for n = 1 at 300 K is indicated. (b) Plot of the ideality factor n and Schottky
barrier @y of a Ni/Au contact as a function of temperature and thickness of the u-GaN layer. (c) Schottky barrier versus u-GaN thickness at 300 K

corresponding to the data in b.

the onset of Schottky behavior, (ii) Ohmic behavior between
3E19—7E19/cm’ attributed to hole tunneling via field
emission, whereas (iii) higher doping concentrations show a
peculiar increase in resistivity due to deactivation of Mg but
without any accompanying Schottky behavior in their I-V."
They propose this behavior to arise from tunneling through
deep level defects and interfacial traps of compounds including
accumulated Mg at the surface, via trap assisted tunneling,
consistent with the high nonideality factors we observe.

In comparison to many other studies, there is no annealing
involved in our process. We assume that theories related to the
formation of a NiO interface’® or the dissociation of Mg—H
complexes™ that prevent activation of Mg may well not apply
to our case, with relatively thick Ni/Au layers. Our experiment
indicates that the most likely reason for the quality of the
Schottky contact is the thin amorphous layer present on the p-

GaN surface, consisting of Ga,O; and adsorbed carbon or
hydrocarbon contamination formed during exposure to air of
the GaN surface immediately after MOCVD growth.*® This
layer is removed via wet chemical etching to improve the
contact.

Figure 3(c) shows the SB extracted from the experimental
I-V curves using eqs 2 and 3 to be largely invariant with
thickness of the u-GaN layer larger than 15 nm, at ~0.32 eV at
300 K, which does not explain the reported trend of thinner u-
GaN layers resulting in lower contact resistivity (cf. figure in
abstract). Although there could be room for marginal
improvement of the reported barrier height, this figure proves
that the resistivity of the contact metal stack is unrelated to the
surface layer alone.

The influence of the u-GaN thickness is examined via TCAD
simulations (Supporting Information E), by hypothetically

https://doi.org/10.1021/acsaelm.2c01138
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Figure 4. (a) The valence band maximum (VBM) as a function of channel thickness at equilibrium (V' = 0 V) with interface traps at the p+GaN/u-
GaN interface. (b) Built-in potential at the p+GaN/u-GaN interface as a function of channel thickness with and without Q. The figure in the inset
describes the two barriers present in a NiAu/p++GaN/p+GaN/u-GaN structure. (c) The VBM of p++GaN/AlGaN and p++GaN/p+GaN/u-
GaN/AlGaN, when @, = 0.1 eV. The formation of ®, is only observed with p+GaN and u-GaN layers. (d) Schematic based on TCAD simulations
to highlight the influence of voltage on the tunneling distance from p+GaN to the 2DHG. Current transport through the p+GaN is via diffusion of
holes through acceptors, while that from p+GaN to u-GaN is tunneling at a small applied voltage, which reduces ®, and tunneling distance L, to

the 2DHG.

varying its value from 2 to 30 nm with a constant p = 5.3 X
10™* Q cm? in all simulations. The resultant I-V characteristics
in Figure S4 (Supporting Information E) fit well with
experiment at all channel thicknesses (16, 18, 20, and 30
nm). We include interface traps (Q;) of 1.0E17 cm™, with the
energy level E, + 0.6 eV (Supporting Information E), believed
to be carbon contaminants at the p+GaN/u-GaN interface to
match the experiment.”” Depending on the deposition
condition, carbon contamination has been reported previously
to be 1.0E16 to 1.0E18 cm™.”” The simulated I—Vs show an
increase of current with reducing channel thickness in Figure
SS (Supporting Information F), proving the contribution of
the u-GaN layer to the resistance between the metal contact
and the 2DHG. The value of the barrier at the NiAu/p++GaN
interface, @), is obtained by fitting the simulated I-V curves
with experimental data for all u-GaN thicknesses. The best
fitted barrier is ®; = 0.1 eV. Band diagrams in Figure 4(a)
reveal the downward bending of the valence band, due to
depletion at the p+GaN/u-GaN interface, resulting in an
internal built-in potential, ®,, for thicknesses >S5 nm. Evidence
for the existence of this barrier is demonstrated in
Supplementary Figure S6. At S nm, the valence band energy
is nearly flat (blue curve in Figure 4(a)). @, varies with u-GaN
thickness, at the p+GaN/u-GaN interface as shown in Figure
4(b), resulting in a total barrier ® = @, + @, = 0.34 eV for 18
nm, as highlighted in the inset of Figure 4(b), matched to
experiment via the inclusion of Q. The fact that @, is twice as
large as @, at ¢, > 18 nm indicates that the current is controlled
by the p+GaN/u-GaN interface rather than the metal/p+
+GaN contact. Figure 4(b) also illustrates that @, saturates as
t. > 18 nm, due to Fermi pinning at the p+GaN/u-GaN

interface, highlighted by the red circle in Figure 4(a). The
small value of @, and the relative invariance of @, at u-GaN
thicknesses larger than 18 nm explain why our specific
resistances are relatively constant at 5.8 X 10™* Q cm?® and
cannot be reduced further by optimizing the stack. This can
only be explained by the (Q;) which induces an upward shift
of the VBM at the p+GaN/u-GaN interface (inset of Figure
4(b)), keeping @, pinned at 0.25—0.27 eV for ¢, > 18 nm.
To investigate the causes of the built-in potential barrier @,,
two structures are compared in Figure 4(c): (i) the present p+
+GaN/p+GaN/u-GaN/AlGaN; and (ii) p++GaN/AlGaN,
without the u-GaN layer. In both cases, the Schottky barrier
®, is assumed to be 0.1 eV. Figure 4(c) indicates that the
internal potential @, occurs in the presence of u-GaN. This
result explains why Chowdhury et al. obtained a smaller
contact resistivity of 4.9 X 107 Q cm?* by using the structure
NiAu/p++GaN/AlGaN.14 In their structure, @, = 0V, so their
specific contact resistivity can be optimized by using a cleaning
process to reduce @, at the metal/p++GaN (0.1 eV in this
study). However, without a u-GaN layer, the devices showed a
mobility of 7.5 cm?/V s'* in comparison to 11 cm?/V s in their
FINFET device with 20 nm of u-GaN.” This degradation could
be due to scattering of carriers at the p++GaN to 2DHG
interface.”®”” The increase of ®, with u-GaN thickness in
Figure 4(ab) therefore underlies the increase of sheet
resistance in Figure 2. The considerations in separating
resistivity at the metal/p++GaN and p+GaN/u-GaN via the
TLM method are discussed in Supplementary Figure S7.
Figure 4(d) can be used to differentiate the contributions of
current flow through the p+GaN to u-GaN layers. It is seen
that at equilibrium (V = 0 V), the Fermi level (dashed blue

https://doi.org/10.1021/acsaelm.2c01138
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line) crosses the acceptor level, assumed here to be 170 meV
from the VBM. Note that acceptor states are empty (open
circles in orange) above the Fermi level and filled below, so
holes may transport through the p+GaN via diffusion through
these acceptor states (Figure 4(d)). At the u-GaN/p+GaN
interface, the barrier varies with tunneling distance (L,) from
5—9 nm, between p+GaN and u-GaN for V= —0.1 and 0 V
respectively as highlighted. The barrier arising from the
acceptor level to the VBM is 170 meV, so at a small applied
voltage of —0.1 V (green curve), the current tunnels through
this interface. The total current is found to reduce with
acceptor level (E,g) from 110 to 190 meV (Supplementary
Figure S8), corresponding to the position of empty acceptor
states in the band gap.

In conclusion, the nature of current transport from a metal
contact through a 2DHG is examined. The total current is
controlled by two factors, a Schottky barrier at the NiAu/p+
+GaN contact (0.1 eV in our experiments) and a second
barrier of 0—0.25 eV at the p+GaN/u-GaN interface. At a u-
GaN thickness less than 5 nm, the u-GaN has no effect on the
total current from the metal through to the 2DHG (assuming
an absence of dopant scattering at this thickness), though
mobility is likely degraded by up to a factor of 3. This is
opposite to the case where the u-GaN thickness is larger than 5
nm, where the impact of the barrier at the p+GaN/u-GaN
overwhelms that of the barrier at the NiAu/p++GaN interface.
The tunneling current through this stack is assisted by empty
acceptor states with energy level of 170 meV from the valence
band maximum, resulting in a nonideality factor, n, between
6—12. This is the first discovery that clearly explains the
resistivity increase with u-GaN thickness up to ~15—20 nm.
Also, the best-in-class of Ohmic contacts of resistivity ~5.0 X
10™* Q cm?, independent of u-GaN thickness from 16 to 30
nm, are demonstrated for the GaN/AlGaN/GaN hetero-
structure.
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