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Abstract— We report a new electrochemical exfoliation 

method to produce graphene oxide (GO) on a large scale from 

disposed graphite rod, recycled from a zinc-carbon battery. 

GO is exfoliated with plasma from the tip of the cathode. The 

properties of GO are characterized by Raman, SEM and EDX 

analysis. A moderate ratio of ID/IG  0.75 in Raman spectra 

indicates that the product includes a mix of GO and graphite. 
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I. INTRODUCTION  

Since the discovery of graphene in 2014, two-
dimensional (2D) materials are attracting considerable 
interest, for example, as ribbon FETs to be introduced in 
mainstream CMOS ,. Graphene exhibits outstanding 
mechanical, thermal and electronic properties [1] and can 
be synthesized by a variety of methods such as Chemical 
vapor deposition (CVD), epitaxial growth, scotch tape 
method, and exfoliation of graphite in solution. CVD 
methods can be employed at scale [2], however, mass 
production of graphene by CVD has still proved to be a 
challenge due to the high cost of production in an inert 
environment at high temperature. Plasma-assisted 
electrochemical exfoliation is a highly efficient method to 
fabricate graphene/graphene oxide from graphite [3]. The 
purpose of this study is to investigate a continuous 
production of GO from recycled graphite, recovered from a 
zinc-carbon battery. The safe disposal of batteries is the 
leading cause of environmental concern, due to pollution 
from toxic metals and graphite rods [4]. The advantage of 
reutilization of graphite rods from battery is reduced 
pollution as well as cheap and sustainable methods of 
production of graphene/graphene oxide (GO). 

II. EXPERIMENTAL 

The electrolytic solution in this work was prepared by 
dissolving KOH in 200 ml H2O and (NH4)2SO4 in 40 ml 
H2O. KOH and (NH4)2SO4 solutions were prepared 
separately, subsequently mixed and stirred for 10 minutes. 
An anode and a cathode were obtained from disposed 
graphite rods with the diameter of 6 mm (Pinaco, the eagle 
brand). The tip of the cathode was prepared by grinding to 
a diameter of ~ 200 m. All electrodes were cleaned in 
acetone, isopropanol (IPA), and annealed in 24 hours at 

130oC. The experiment was conducted in an 
electrochemical chamber illustrated in Fig. 1(a), with a cap 
designed to have a freely moving cathode. All electrodes 
were connected to a DC power supply with the bias voltage 
increased gradually to 60 V. The initial temperature of the 
chamber was recorded at 30oC. To exfoliate graphene, the 
cathode was slowly moved downwards in steps of 20 m 
until a plasma occurred around the tip of the cathode (Fig. 
1(a)). At this moment, several bubbles were released at the 
anode and a gas was exhausted out the chamber as shown 
in Fig 1(b). During the experiment, GO was exfoliated and 
floated on the surface of the electrolyte solution, and the 
plasma was maintained for more than 1 hour. GO was 
washed in deionized (DI) water and collected using vacuum 
filtration through Poly(vinylidene fluoride) (PVDF) 
membrane with an average pore size of 0.45 m. It was 
subsequently dried at 50oC for 2 hours. Hitachi FE-SEM S-
4800 with Horiba EDX system was employed to obtain 
Scanning electron microscope (SEM) and energy dispersive 
X-ray spectroscopy (EDX). Fourier transform infrared 
(FTIR) spectra were recorded by Thermo Nicolet 6700 FT-

 

Figure 1: An electrochemistal cell, indicating the 
placement of the cathode and anode. The cathode can be 
moved freely along an axis perpendicular to a bottom of 
the chamber. Plasma occurs at a surface when inside the 
electrolytic solution. 
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IR optical spectrometer, and Raman spectra were measured 
by Horiba XploRA ONE system. 

III. RESULTS AND DISCUSSION 

Fig. 2 shows the field emission scanning electron 
microscope (FESEM) images of graphite powder, directly 
ground from the graphite rod, and exfoliated graphene oxide 
collected after filtration, for comparison. A stacked layer 
structure of graphite is observed in graphite powder in Fig. 
2(a), whereas the plasma-assisted electrochemical 
exfoliation creates randomly crumpled nano-sheets, closely 
associated with each other due to strong − bonds in Fig. 
2(b). The exfoliated product includes several nanometer-
scale plates (Fig.2(b)). At high magnification, GO sheets are 
observed to be scrolled as indicated by red arrows in the 
inset of Fig. 2(b). The purification of GO after filtration, is 
determined in EDX spectrum as shown in Fig. 3. It is found 
that oxygen dominates  10% in weight in filtration 

products, while other metals, including Al, Si, K, and Ca, 
are observed within the marginal errors of EDX 
measurement  (less than 2%). There are no toxic materials 
observed. 

Fig. 4 shows the FTIR spectra of graphite power and 
graphene oxide. The highly intense peak at 3432.7 cm−1 is 
due to the O-H stretching vibration, indicating the present 
of OH or COOH functional groups. The symmetry and 
asymmetry stretching vibration of C-H bond is clearly 

 

Figure 2: SEM image of (a) graphite and (b) graphene oxide obtained from plasma-assisted exfoliation method. Inset of figure 
b is a magnification of this figure. A stacked layer and bulk structure of graphite is observed in figure a, while crumped nano-
sheets are obtained in figure b. Graphene oxide is scrolled illustrated by red arrow in the inset of figure b.  

(a) (b)

 

Figure 3: EDS spectrum of GO after filtration. There is 
not toxic metal observed in the samples. 

750 1500 2250 3000 3750

T
ra

n
s
m

it
a
n

c
e
 (

a
.u

)

Wave number (cm
−1

)

 Graphite powder

 Graphene oxide

C-O
1033.7

1635.4

C=C

1733.7
C=O

C-H

2848.4

C-H

2917.8
−OH

3432.7 

Figure 4: FTIR spectra of graphite powder (obtained from the disposed 
graphite rod in battery) and graphene oxide. Many oxygen containing 
functional groups were observed. 
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observed at 2848.4 and 2917.8 cm−1. Very weak stretching 
vibration is observed for the carbonyl C=O peak at 1733.7 
cm−1. The peak at 1635.4 cm−1 is assigned to an un-
oxidized C=C stretching vibration. The most intense peak is 
at 1033.7, which is related to the C-O stretching vibration 
of the alkoxy group. The results obtained from FTIR (Table 
1) indicate the present of several oxygen containing 
functional groups in agreement with those reported in [5-9]. 
The FTIR spectrum of the graphene oxide powder is similar 
to that of the graphite powder, indicating that the graphite 
rod is oxidized before exfoliation.  

Figure 5 shows Raman spectra of graphite and 
exfoliated graphene oxide, which reveals structural changes 
during the chemical conversion from graphite to graphene 
oxide. The principle is that C=C double bonds give rise to 
high intensity in the Raman spectra [10]. For graphite (black 
line), the highest intensity is at 1568.8 cm-1, representing 
the G band, due to the first order scattering of the E2g 
phonon of sp2 C atoms [11]. All sp2 carbon materials such 
as graphite, amorphous carbon, carbon nanotube, and 
graphene exhibit the G band. Weak bands are related to D 
band at 1342.3 cm-1 and 2D band at 2682.3 cm-1. The D 
band is known as a defect band derived from edge effects, 

structural defects, and the sp2 bond that breaks the 

symmetry. The 2D peak is due to the linear dispersion of its 
electronic bands, giving rise to triple or double resonance. 
The Raman spectra of graphene oxide depends not only on 
the phonon properties but also on their electronic structures. 
In Fig. 5, the frequencies of D, G, and 2D bands are shifted 
to higher values, reaching 1354.4, 1581.6, and 2703.2 cm−1, 
respectively, in agreement with previous reports [5, 12]. It 
is seen that G and D bands change significantly during the 
exfoliation of graphite to graphene oxide, illustrated by a 
broadening and a right shift of these bands shown in Fig. 5. 
The right shift of the G band is supposed to be the higher 
resonance frequency of isolated double bonds present in a 
single layer GO [13]. An increase in ID/IG ratio from 0.18, 
corresponding to graphite (black line), to 0.75, for graphene 
oxide (red line), in Fig. 5 indicates that the size and 
crystallinity of graphitic materials decreases, increasing in 
isolated graphene domains [11, 12]. The observed results 
are in agreement with those reported in [5].  The results 
indicate that graphite has been exfoliated to GO. It is also 
known that the intensity ratio of the D and G bands (ID/IG) 
helps to estimate the defects in GO sample, where higher 
ratio implies more defects in the graphene sheet. 

IV. CONCLUSION 

In conclusion, the disposed graphite of a battery is used 
to produce graphene oxide. The process is designed to work 
for more than 1 hour. The SEM, EDX, and Raman 
characteristics verify the obtained GO. There are no toxic 
elements observed in the exfoliated GO, so this study opens 
a new way to sustainably produce cheap GO and protect the 
environment from battery waste. 
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