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Abstract

We present a stochastic dynamic model of the adjustment of betting odds by bookmakers in

a horse-racing betting market. We use optimal stopping theory in a two-horse benchmark model

with both informed and noise punters. A costly learning process discloses what information the

informed traders possess and a risk-neutral bookmaker selects a stopping time at which the

betting odds for each horse in a race are adjusted. Our main finding shows that an increased

fraction of informed punters has a non-monotonic effect on the loss per trade to the bookmaker.

We also find that as the fraction of noise traders goes up, the learning process is less informative,

so that the decision to change the prices for each horse is taken sooner.
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tial hypothesis testing
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1 Introduction

Horse-racing betting markets provide economists with a ready-made laboratory and large datasets.

Therefore, it is no surprise that there is a large body of (empirical) literature examining these mar-

kets from different perspectives, e.g., by testing market efficiency theories (see Vaughan Williams

(2005) and Hausch et al. (2008) for an overview), explaining the favorite-longshot bias (see Griffith

(1949), McGlothlin (1956), Ali (1977), Hausch et al. (1981), Asch et al. (1984), Asch et al. (1982),

Henery (1985), Brown et al. (1994), Shing and Koch (2008), Ottaviani and Sorensen (2010), Jeong

et al. (2019), and references therein), or detecting the incidence of insider trading and decision-

making under uncertainty. The literature documenting these problems covers both parimutuel

markets, which prevail in North America, and bookmaking markets in the United Kingdom and

other Commonwealth countries. The latter system can be traced back to the late 18th century

and, on average, the bookmakers have been the winners in the punter-versus-bookmaker battle ever

since the UK Parliament passed the Gaming Act in 1845.1

The markets for horse-racing betting have various structures. At North American racetracks,

betting odds are determined by the parimutuel method, in which the win bet fractions (also known

as subjective winning probabilities) are proportional to the amounts wagered. The public directly

determines the odds in a parimutuel betting market—the more the public bets on a horse, the

shorter its odds and the lower its return upon winning. In the UK and other Commonwealth

countries, the dominant structure is the fixed-odds system in which bookmakers offer the odds. In

the fixed-odds system, bookmakers set odds that may vary throughout the betting period. Bettors

lock in their odds at the time they place a bet, even if the offered odds change later. Bets can

also be placed at the “Starting Price”, which is defined as the last available odds for the selection.

Starting price bets can be placed at any time prior to the race and remain available up until the

start of the race. Although far less popular, a parimutuel betting system using the Tote board is

also available in the UK for betting both on and off track.

Each race convenes for 20–30 minutes, and is then followed by the next race. In this market,

1“All bets are off: Why bookmakers aren’t playing fair,” https://www.theguardian.com/global/2015/aug/02/

betting-horses-gambling-bookmakers-accounts-closed.
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the outcome of the race, and the payoffs occur at the end of each race. Bettors can choose from

a variety of wagers. The simplest is a wager to win, which involves picking the horse that finishes

first. Alternatively, “Each Way” (EW) bets can be placed, consisting of the Win part and the

Place part.2 These two betting methods are very popular in the UK.

When compared with the trading frequency in financial markets, Levitt (2004) mentioned that

price adjustments are typically small and relatively infrequent in sports wagering and horse racing.

While it is possibly optimal to continuously adjust betting odds to avoid any losses, this is not

what is observed in practice. In our previous research3 on on-course racetrack betting markets,

the posted odds change, on average, 4–5 times during the betting period. Thus, prices initially

remain fairly constant before changing. In this paper, we will analyze the bookmaking market

from the point of view of a bookmaker who acts as a market intermediary by setting betting odds

for each horse in any race. In particular, we are trying to find the first time (for example, at

time t) that the bookmaker decides to deviate from the posted prices, as shown in Figure 1. We

posit that bookmakers use given odds to learn about the information that market participants

hold. Gabriel and Marsden (1990) argued that the existence of insiders would provide a market

signal to bookmakers to cut the odds. Dowie (1976) illustrated that the starting price incorporates

more information than any of the various odds generated early, and should include any inside or

monopolistically held information. Therefore, we believe that bookmakers choose to change the

odds when the losses made on trading by informed punters sufficiently outweigh the benefits of

learning.

It is clear from Figure 1 that all bettors in the market can only wager at the opening odds

from the opening to time t. During this betting period, the bookmaker learns from the trades and

decides whether there are insiders and which horse is more favorable. The realized bets contain

less information when punters are less informed (Ottaviani and Sorensen, 2010).

2Horse Racing Rules. https://support.skybet.com/s/article/Horse-Racing-Overall-Rules#Horse_Racing_

Rules.
3Data in our research containing all price adjustments for each racehorse at different racetracks in

Yorkshire were collected from The Sporting Life for other purposes. For more details, please re-

fer to https://www.semanticscholar.org/paper/Economic-Analysis-of-Horseracing-Betting-Markets-Zhang/

d3345bb01da11658e3a3467e9078935e14d6927b.
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Figure 1: A toy example on the betting period in the bookmaking market. The betting market
convenes for 30 minutes. Bookmakers usually post the opening odds to signal punters that they
start to take bets. The posted odds remain fairly constant at the initial stage (e.g. from 0 to 10
minutes) and change relatively more frequently in the last few minutes. Note that bettors can only
lock in the current posted odds before changing.

In this paper we shall not explore the reasons for price stickiness, but we will focus on an

important side-effect. Namely, stickiness allows the bookmaker to learn about information that is

held by informed punters. So, while bookmakers may lose money, in expectation, by not changing

their odds, they do get some value in return.

We investigate this in the context of a simple stochastic dynamic model in which punters are

either informed or are pure noise traders. Thus, the sticky bookmaking is that a rational bookmaker

is willing to take initial losses to collect information about informed traders, because these punters

are the main source of bookmakers’ losses. That is, the presence of insiders imposes adverse

selection costs on bookmakers and noise traders. We call this the learning process. Our benchmark

model offers a simple rule for finding the optimal time at which the value of learning no longer

outweighs the losses made on informed punters, and thus, the time at which it is optimal to change

the betting odds. The main driver of our result is that, to learn about the private information held

by informed punters, bookmakers must keep the betting odds constant for a while. In such a short

period, bookmakers can extract the signal from the noise.

The main contribution of this study is the construction of a dynamic theory of price discovery

in horse-racing markets. Additionally, we provide a methodological contribution by introducing

optimal stopping techniques into the betting literature. In economic terms, our most important

result is that the decision bounds become wider as the fraction of informed punters becomes larger,

but the expected loss made on those punters is non-monotonic. This occurs because of two opposing

effects. It is intuitively clear that, if there are more insiders in the market, the bookmakers’ losses

will be higher, because informed punters can exploit their information advantage. However, a larger
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proportion of informed traders implies that the learning process is more informative. Thus, a choice

between the two states is made sooner, which, in turn, lowers the bookmakers’ losses, as expected.

In contrast with the standard literature on real options (see, e.g., Dixit and Pindyck, 1994),

which suggests that higher uncertainty implies wider decision bounds and, therefore, the higher

value of an investment project, we find that the posterior bounds become narrower due to volatility.

This is because of the uncertainty introduced to the observations in the form of the trades made by

noise punters. If there are more noise punters, then the bookmakers learn less quickly, which leads

to narrower bounds of the continuation region. It turns out that the expected loss increases with

the volatility, because a decision is taken at worse posterior odds, leading to a higher probability

of an erroneous decision being taken.

This study presents a continuous-time two-state model for a two-horse benchmark framework

in which the bookmaker changes the odds of horse A if one particular state is revealed or changes

the odds of horse B if the evidence sufficiently points to the other state prevailing. No matter

which odds are adjusted, the other odds change automatically. We assume that the cumulative

sales of tickets on horse A, net of the cumulative sales of tickets on horse B, can be modeled by

an arithmetic Brownian motion with either a positive or negative trend. These are the two states

of the world: the high state implies that informed traders know horse A is going to win, whereas

the low state means horse B is more favorable among insiders. The true state remains unknown to

the bookmaker ex ante, so they have no information about which horse the informed traders are

backing. These two states determine the direction in which the odds are changed. This information

is gradually disclosed through a sequential observation of trades. The bookmaker then acts and

will accept the hypothesis of the high state if the cumulative sales on horse A exceed the tickets

sold on horse B by an (endogenously determined) sufficient margin. If cumulative sales point to

the low state, the odds on horse B will be changed.

Our model is analyzed using the theory of sequential hypothesis testing, as described by, e.g.,

Peskir and Shiryayev (2006). However, where they analyze an optimal stopping problem framed

purely in terms of (non-discounted) statistical losses, we extend the model using the discounted

benefits and costs developed by Thijssen and Bregantini (2017) to account for the uncertain number
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of bets that are observed. Our model allows for an analytical solution. We show that there

is a unique solution to the problem from simultaneously (and implicitly) solving two nonlinear

equations. This solution provides the upper and lower boundaries of the posterior belief of informed

punters who know that horse A will win (the high state). These boundaries indicate the optimal

point at which the odds should be changed. The upper boundary is the trigger for the bookmaker to

change the odds of horse A, whereas the lower boundary is the trigger for horse B. The “continuation

region” lies between these two boundaries. In this region, the bookmaker should keep observing

trades without changing the odds.

The rest of the paper is structured as follows. We review related literature in Section 2.

In Section 3 we build a continuous-time statistical-probabilistic framework of a two-horse betting

market. In Section 4, we formulate our optimal stopping problem and its solution. A comparative

statics analysis is reported in Section 5, and Section 6 concludes.

2 Related Literature

Racetrack betting has many parallels with traditional financial markets, and much of the analysis

is similar. A betting market is a simple example of a financial market, having a large number

of investors (bettors) with heterogeneous beliefs, extensive market information, and ease of entry.

There are vast amounts of data in the form of prices and other information. This market also raises

informational issues. The major difference is that there is a well-defined termination point at which

the value of the asset is fixed at the end of the betting period. The added advantage is that we

are no longer bounded by future cash flow and net present value. Although investments in betting

markets have negative expected value for most investors, they have wide appeal for entertainment.

Insider trading and adverse selection costs

A central notion of the market microstructure literature is that trades are informative. Information

affecting security prices is one of the main subjects in financial markets, and has been researched by

numerous scholars. In a series of papers, Bagehot (1971), Copeland and Galai (1983), and Glosten
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and Milgrom (1985) studied the effect of informed traders on the spreads between bid and ask

prices.

Our model is mainly related to the standard literature on insider trading. The idea of insider

trading was first introduced by Bagehot in 1971, who mentioned that “every time one investor ben-

efits from a trade [...] another loses” and showed that the market maker always loses to traders with

special information and gains with liquidity-motivated transactors. The gains from noise traders

must exceed the losses to informed traders. Since this study of Bagehot (1971), the presence of

traders with superior information has received widespread attention in the finance literature. Due

to the existence of insiders, a closely related topic is the estimation of the theoretical components

of the bid–ask spread. Kyle (1985) developed a dynamic model of insider trading in which prices

exhibit Brownian motion and the market maker can only see the order imbalance. With sequential

auctions, informed traders make positive profits while noise traders provide camouflage, but even-

tually all private information is incorporated into the prices. He also argued that the presence of

insiders imposes adverse selection costs on market makers and liquidity traders. A wider spread is

set to compensate the market maker for losses from informed traders. In the Glosten and Milgrom

(1985) model, the bid–ask spread can be explained by adverse selection as well as the exogenous

arrival pattern of traders. The presence of insiders leads to a positive spread. Because the trans-

action prices are informative, the spread declines as trading continues. Easley and O’Hara (1987)

showed that informed traders prefer to trade larger amounts at any given price, if they wish to

trade at all. As a result, larger trade volumes indicate a greater likelihood that the market maker

is trading with informed traders. Although the market maker faces uncertainty about whether

any individual trader is informed, there is also uncertainty about whether any new information

exists. This latter uncertainty dictates that both the size and the sequence of trades matter in

determining the price–quantity relationship. Li and Song (2019) showed that market makers are

willing to initiate trades with more-informed traders to obtain their private information and then

set higher bid–ask spreads to recoup from the liquidity traders.

In the horse-racing betting markets, especially under the fixed-odds system whereby bookmak-

ers set the odds to balance the book, taking into account the adverse selection costs recoups the
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loss from uninformed traders. While bookmakers face the adverse selection problem, the optimal

pricing strategy is to contract the odds, which leads to a favorite-longshot bias.

Shin (1991, 1992, 1993) extended the seminal Glosten and Milgrom (1985) model to the horse-

racing context and used it to provide a measure of the degree of insider trading in UK horse-

racing betting markets. Fingleton and Waldron (1999) generalized the Shin model and showed

that informed trading, the bookmaker’s attitude towards risk, and the bookmaker margin are

three factors that determine the optimal odds. Schnytzer and Shilony (1995) provided empirical

evidence of the presence of inside information in Melbourne horse-betting markets. They showed

that punters with inside information, even those exposed to “secondhand” information, change

their behavior to increase their payoffs. Positive information can be a significant predictor of a

race’s outcome. Gabriel and Marsden (1990) provided evidence that Tote (Totalizator) returns on

winning bets exceed the starting price returns paid out by bookmakers. Cain et al. (2001) showed

that bookmakers pay more generously on favorites than the Tote, but less generously on high-odds

bets. The difference between these two papers is that the latter considers the incidence of insider

trading.

Favorite-longshot bias and market efficiency

A central theme of the betting literature is the occurrence of the favorite-longshot bias (FLB).

That is, the expected return on longshot bets tends to be systematically lower than on favorite

bets in betting markets. This FLB is a widely documented empirical fact, often perceived to be

an important deviation from the market efficiency hypothesis. The first documentation of this bias

is attributed to Griffith (1949), and it has been observed in racetrack betting data from around

the world covering both bookmaker and parimutuel markets. Over recent decades, a number of

theories have been developed to explain the FLB.

After Griffith first uncovered the FLB, Isaacs (1953) advanced an explanation based on the fact

that, in the parimutuel system, bettors placing more money on a horse results in lower odds. Thus,

an informed bettor would want to limit the amount bet in order to maximize the profits made. Ali

(1977) assumed that bettors have heterogeneous prior beliefs. If bettors are risk neutral but not
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sophisticated, the parimutuel market mechanism may generate the FLB. Hurley and McDonough

(1995) demonstrated that the FLB can be explained on the basis of limited arbitrage by bettors

who possess superior information. As the amount of arbitrage is limited and bets placed on the

favorite are unable to produce the expected return on a longshot to the same level, the presence

of the track take induces an asymmetry in the rational bets, resulting in the FLB. Ottaviani

and Sorensen (2010) proposed a purely informational explanation for the FLB in the context of

parimutuel betting. To illustrate this explanation, they considered the simplest case in which two

horses are ex-ante equally likely to win (1/2), outsiders bet equal amounts on the two horses, the

track take is zero, and the number of privately informed insiders is large. They concluded that when

there are many privately informed bettors, the FLB arises if they place last-minute bets without

knowing the final market odds. Cain et al. (2003) found that sports with higher incidences of insider

trading exhibit a strong FLB, while Vaughan Williams and Paton (1997) supported the conclusion

that the adverse selection problem may be the reason for the observed FLB. Smith et al. (2006)

concluded that the incidence of insider trading, and hence the FLB, is higher in the bookmaking

setting than in betting exchanges.

For fixed-odds betting markets, Shin (1991, 1992, 1993) also explained the FLB as the response

of an uninformed bookmaker to the private information possessed by insiders. Our paper is closely

related to these papers, as we assume that a bookmaker faces different types of bettors—some are

informed, while others are uninformed. The insiders are perfectly informed, meaning that they

always pick the winning horse; the outsiders are assumed to have uniformly distributed beliefs. In

the absence of outsiders, the bookmaker would make a loss at any finite price. In the bookmaking

system, the bookmaker sets prices considering that outsiders are involved in the betting. This is

a natural precondition for the bookmaker to run the market and make any positive profit at all.

Intuitively, a lower market price encourages fewer outsiders to participate, and enhances the bias

chosen by the bookmaker to protect against the adverse selection of bettors. Our model uses some

assumptions proposed by Shin, but analyzes a different question. We are interested in the optimal

time at which the bookmaker decides to adjust the odds of the horses. Up to this point, we observe

the cumulative sales and bear some costs to learn whether there are insiders in the market and how
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they place their bets.

Most of the literature on horse-racing betting concerns statistical tests of the extent to which

these markets are efficient. The abovementioned FLB is often perceived to be an important devia-

tion from the market efficiency hypothesis. Evidence of inefficiency also provides indirect support

for the popular hypothesis that insiders operate in these markets.

Research on market efficiency theory was first conducted by Fama in the early 1960s. Market

efficiency per se is not testable and must proceed on the models of market equilibrium, which can be

described in terms of expected returns in theoretical and empirical work. Dowie (1976) found that

if insider information does exist, it will not be available to the public and only the final Starting

Prices can reveal it. Therefore, he concluded that there is no insider information. Crafts (1985)

suggested that the way Dowie tests the “strong inefficient” market is not appropriate. To argue

this, Crafts redesigned a test using the same data source as Dowie and gave evidence to prove

that there exist profitable opportunities for insider trading. Gabriel and Marsden (1990, 1991)

compared the returns to the bookmaker’s starting prices and to the parimutuel Tote bets, based on

data from the 1978 horse-racing season in the UK. Their analysis indicated that, on average, the

Tote returns for winning bets are persistently higher than the odds set by bookmakers given that

the risk and payoffs are widely available under both systems. This implies that the UK horse-racing

betting market fails to satisfy the conditions of semi-strong and strong efficiency. Both the FLB

and market inefficiency imply that informed traders do exist in betting markets.

3 Bookmaking as Sequential Hypothesis Testing

In this section, we describe the market in which bets are placed on a two-horse race. Consider

a bookmaker who sets betting odds for the two horses. Unlike betting activity in other sports

where bookmakers are allowed to change the odds during the game based mainly on the players’

performance (football, tennis, etc.), we pay particular attention to horse racing because of the short

racing period during which it is not suitable to adjust prices. Since a horse’s in-game performance

has little effect on the price-adjusting process, bookmakers must rely only on the demand for each
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horse when updating the betting odds. At any point in time, the bookmaker faces a two-sided

decision: to change either the price of horse A or the price of horse B.

We assume that the bookmaker always tries to maximize their profits by setting prices4 in

which the summation of all the odds should be greater than or equal to 1, no matter which horse

wins, otherwise there is an arbitrage opportunity. The over-roundness, which is a way of expressing

to what extent the odds are in favor of the bookmaker, is the bookmaker’s profit margins. That

is, if there are two horses in a race, then PA + PB = 1 + ǫ where PA denotes the price for horse

A, PB the price for horse B, and ǫ is the bookmaker’s margin. Note that the cost per ticket is £1,

which means the bookie pays out £1 for the winning horse per ticket sold. For the marginal noise

trader who is indifferent between two horses, the fair price is one half each and there is also no

need to change the price because the marginal noise punter goes with each horse with probability

1/2. There exist some traders who have privileged information, and those people are endowed with

information about which horse is going to win. They are known as informed traders. Because of

the existence of insiders, bookmakers face uncertainty when setting up the betting odds.

Since there is empirical evidence of the presence of informed traders in horse-betting markets,5

we assume that a (known) fraction µ of traders is informed. We separate uninformed traders into

liquidity traders and noise traders. Therefore, there are three types of traders in the market:

informed traders, noise traders, and “liquidity” traders (Weston, 2001). Liquidity traders enter the

market purely for fun6. They come to the racecourse for a picnic, a day out, etc. Trades made

by such people are very small and do not influence the bookmaker’s decision. So, we ignore this

type of trader in the following analysis. The marginal noise trader, whose valuation is uniformly

distributed on the interval [0, 1], has his own subjective winning probabilities for each horse. The

proportion of noise punters is denoted σ ≤ 1− µ.

Our dynamics are modeled in continuous time, but to illustrate the main idea, we build one

4In this paper, we convert fractional odds to decimal prices. For example, odds of 2/1 correspond to the price £0.33

(= 1/(1 + 2)), which means you pay £0.33 for a ticket in return for £1 from the bookmaker, if that horse wins.
5See, for example, Shin (1991, 1992, 1993) and Schnytzer and Shilony (1995).
6See Ziemba (2019). Liquidity traders are defined as those people who “attend a day’s card, particularly on Saturdays

and Sundays, do not go to the track all that frequently. They go every so often to enjoy a good day’s racing and to

have an entertaining afternoon or evening. They do not expect to win but they certainly would enjoy a winning day

and particularly a big exciting payoff.”
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in discrete time. Suppose t ≥ 0 is the first time that the bookmaker stops the learning process and

decides to adjust the prices. Consider a time interval [0, t], which we partition into n parts of equal

length dt = t/n. During this time, assume that we observe the net cumulative sales sequentially

at n equally spaced occasions. Over a small time interval dt, say, from time ti−1 to ti, we expect

the net cumulative sales (of horse A over horse B) to go up by u = θµdt + σ
√
dt and to go down

by d = θµdt − σ
√
dt, where µ is the fraction of informed traders and σ ≤ 1 − µ is the fraction of

uninformed noise traders as defined above. The value of θ is unknown to the bookmaker and from

the observed trades at given odds, she learns about its value. Note that, while the initial odds

remain unchanged, the bookmaker loses on bets from informed traders, but these losses give her

the information to change odds in the right direction later on. The net cumulative sales depend on

what the informed traders know. If they know that horse A is going to win, their net cumulative

sales will go up. Otherwise they will go down. So, θ is going to be either 1 or −1.
√
dt here keeps

the variance of the cumulative relative sales finite when we take the limit dt→ 0. In addition, the

marginal noise trader’s bet is such that each of the binomial steps occurs with probability p = 1/2.

The total net accumulated sales at time t after the n-th trade are defined as S(n)(t) :=
∑n

i=1Xi.

In order to obtain analytical results, we move to the continuous-time limit of this simple model.

For fixed t, as n → ∞, we define St := limn→∞ S(n)(t), where the limit is understood to be in

distribution.7 According to the central limit theorem, the conditional distribution of St is well-

defined and is given by

St | θ ∼ N(θµt, σ2t).

Thus the continuous-time stochastic process (St)t≥0 gives these distributions at each finite

time t is the arithmetic Brownian motion (ABM)

dSt = θµdt+ σdBt,

where Bt is a standard Brownian motion.

Since the betting period will not last forever, this learning process will definitely cease at some

7Note that here we applied Donsker’s invariance principle (see, e.g., Steele, 2012).
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time. For analytical convenience, we propose a Poisson process with intensity λ that jumps from 0

to 1. Once it has jumped, our learning process will stop.

We use a jump process rather than a deterministic end time for the following reason. The

betting period usually lasts for about 30 minutes in on-course horse-racing gambling markets. We

know for sure that betting takes place over a fixed time interval. The race will start at a certain

time and the market will then close at the starting prices. However, the number of bets placed

during that period is unknown ex ante. Theoretically there is an almost infinite array of bets that

can be made with a bookmaker (Gabriel and Marsden, 1990). To model this, we use an infinite

horizon model, which stops after the first jump of the Poisson process with intensity λ. A jump

process is just a mechanism to introduce a finite betting time and we can still model our problem

with an infinite betting time horizon using all the analytical tools.

In the real world, punters come and go in no particular order. Trades do not happen at regular

betting time intervals so that the bookmaker does not know exactly how many trades are going to

be made and how fast the trade will come. The intensity λ plays the same role as a discount factor.

Uncertainty over the number of trades that a bookmaker will make during the fixed and known

betting period of time that bets can be made has the same effect as having a discount factor in an

infinite horizon model. Therefore, our model, which has a random cut-off point, is discounted at

λ. To get analytical results, we assume that there is a random process that determines when the

decision should be made. There is no discounting per se, but since trades do not appear regularly

and since trading will cease at some point, the cut-off occurs when the bookmaker decides to end

the learning period and changes the price.

The way to turn λ into a discount rate is standard (see, e.g., Dixit and Pindyck, 1994). We

assume that there is a Poisson process (qt)t≥0, independent of (St)t≥0, with intensity λ and q0 = 0.

If τ̄ := inf {t ≥ 0 | qt = 1}, and τ̄ follows an exponential distribution with parameter λ, we know

that P (τ̄ ≥ t) = e−λt, and the expected value of the project equals

F (s) = Es

[∫ ∞

0
StP (τ̄ ≥ t)dt

]

= Es

[∫ ∞

0
e−λtStdt

]

.
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By introducing the Poisson process with intensity λ, we model how many trades occur in the

time interval [0, t], and the time elapsed between any two trades is exponentially distributed with

mean 1/λ.

4 The Optimal Stopping Problem and Main Result

Recall that St denotes the cumulative sales of tickets on horse A, net of cumulative sales of tickets

on horse B. If we assume that punters arrive sequentially in continuous time, then we observe

dSt = θµdt+ σdBt, (1)

where µ ≥ 0 and σ > 0 are constant, and (Bt)t≥0 is a standard Brownian motion.

The hypotheses that the bookmaker is testing are H0 : θ = −1 and H1 : θ = 1. The intuition

behind this is that if insiders know that horse A (B) will win, we should have a positive (negative)

trend. The decision depends on the state of the world, θ: conditional on the event {θ = 1} the

bookmaker makes a decision to increase the price of horse A as all informed traders are backing

horse A, thereby decreasing the price for horse B accordingly. However, if the state of the world

turns out to be {θ = −1}, the price of horse B should be changed. The true value of θ is not known,

but the bookmaker has a (subjective) prior probability, ξ, that the state is {θ = 1}. If the decision

is correct, positive profits should be expected. There is also a chance that the decision is wrong.

Let the Type I error be the situation where all the informed traders know that horse B is

going to win but the bookmaker thinks they favor horse A, conditional on the event {θ = 1}.

A Type II error is the opposite situation. In this case, insiders are backing horse A but the

bookmaker thinks horse B is their choice. If these two types of errors occur, for example, the true

state is {θ = −1}, but the bookmaker decides it is {θ = 1}, or vice versa, a huge loss is on the way.

Therefore, the loss is temporary and the bookmaker gets the profit in the long run conditional on

making the pricing decisions on the correct state θ.

To derive a proper value function, it seems appropriate to exclude two extreme cases. The first
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case is that a rational bookmaker will never set a price equal to £1 (£0) for either horse A or horse

B because this price immediately reveals to the market which horse will win. On the one hand,

from the punters’ point of view, given that the odds are properly determined, if they purchase the

winning horse, there is no profit to earn as the cost of the ticket now equals the return. If punters

buy the other one, they will definitely lose. So, no punter would be willing to be involved in such

a market, except for the informed traders, who may have different information about the winning

horse. From the bookmaker’s perspective, on the other hand, they are taking the risk of setting

the wrong prices, which implies making tremendous losses due to the insiders. In reality, a rational

bookmaker would never set a price equal to 1 just to break down the market. They are willing

to take losses to collect information about the true state in which, theoretically, they will make a

profit eventually.

The second case is that all the punters are informed, and the bookmaker will learn in the first

trade what information the traders have. The bookmaker would make a loss if the price of the

winning horse is other than £1. This situation is not allowed in our model either.

In the following, we derive the optimal price for horse A at time t if {θ = 1} and also derive

the loss due to a Type I error. In the current study, we consider that the fraction µ is informed.

The bookmaker does not know what information they have. There are two possibilities. A fraction

µ of punters knows either that horse A is the winning horse or that it is horse B. Let P ∗
A ∈ (0, 1)

denote the adjusted price for horse A at time t, conditional on {θ = 1}. The loss the bookmaker

makes on informed traders is µ(P ∗
A − 1).

We assume that the valuation of a horse by the marginal noise trader, denoted by V , is

uniformly distributed on the interval [0, 1], where 1 indicates that he is sure that horse A is going

to win and 0 indicates the opposite, that is, he is sure that horse B is going to win. Let π ∈ (0, 1)

denote a noise punter’s belief in horse A winning. We assume that π is independent of the odds.

Note that the noise punter puts a bet on horse A if and only if

π × 1− P ∗
A ≥ 0 ⇐⇒ π ≥ P ∗

A,
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and a bet on horse B if and only if

(1− π)× 1− P ∗
B ≥ 0 ⇐⇒ π ≤ 1− P ∗

B.

where P ∗
A and P ∗

B are the prices after the odds are changed.

Conditional on the event {θ = 1}, the expected profit of the bookmaker is

E[profit | θ = 1] = µ (P ∗
A − 1) + (1− µ)

{
∫ 1−P ∗

B

0
(P ∗

B − 0) dπ +

∫ 1

P ∗
A

(P ∗
A − 1) dπ

}

= −{µ (1− P ∗
A) + (1− µ) (1− P ∗

A)
2

︸ ︷︷ ︸

>0

}+ (1− µ)P ∗
B (1− P ∗

B) ,

which is maximized for P ∗
B = 1/2. Now we find the value for P ∗

A such that

E[profit | θ = 1] = η,

for some margin η ≥ 0.

This problem is equivalent to finding the value for P ∗
A under the constraint P ∗

B = 1/2, such

that

− {µ (1− P ∗
A) + (1− µ) (1− P ∗

A)
2}+ 1

4
(1− µ) = η. (2)

By solving Eq. (2), we immediately arrive at

P ∗
A =

2− µ−
√

2µ2 + (4η − 2)µ+ 1− 4η

2(1− µ)
.

where 0 ≤ µ < 1 and 0 ≤ η <
√
2−1
2 .8

With the prices P ∗
A and P ∗

B in hand, we can compute the expected loss of Type I error

8See Appendix A for the proof.
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conditional on {θ = 1}, i.e.,

E[loss | θ = 1] = µ (P ∗
B − 1) + (1− µ)

{
∫ 1−P ∗

B

0
(P ∗

B − 1) dπ +

∫ 1

P ∗
A

(P ∗
A − 0)dπ

}

= −{µ (1− P ∗
B) + (1− µ) (1− P ∗

B)
2}+ (1− µ)P ∗

A (1− P ∗
A)

= −µ
2
− 1− µ

4
+ (1− µ)P ∗

A (1− P ∗
A)

, ℓ.

It is obvious that P ∗
A(1 − P ∗

A) < 1/4 when P ∗
A > 1/2, thus E[loss | θ = 1] < 0. A similar analysis

holds conditional on the event {θ = −1}, the solutions to the prices P ∗∗
A and P ∗∗

B are

P ∗∗
A = 1/2, P ∗∗

B =
2− µ−

√

2µ2 + (4η − 2)µ+ 1− 4η

2(1− µ)
,

with the same constraints 0 ≤ µ < 1 and 0 ≤ η <
√
2−1
2 . The expected loss of Type II error

conditional on the event {θ = −1} can be written as

E[loss | θ = −1] = µ (P ∗∗
A − 1) + (1− µ)

{
∫ 1

P ∗∗
A

(P ∗∗
A − 1) dπ +

∫ 1

P ∗∗
B

(P ∗∗
B − 0)dπ

}

= −{µ (1− P ∗∗
A ) + (1− µ) (1− P ∗∗

A )2}+ (1− µ)P ∗∗
B (1− P ∗∗

B )

= −µ
2
− 1− µ

4
+ (1− µ)P ∗∗

B (1− P ∗∗
B )

, ℓ.

Table 1 summarizes the expected profits and losses for different states of the world.

Table 1: Expected profits and losses.

State of the world

θ = 1 θ = −1

Decision
Adjust the Price of Horse A η ℓ

Adjust the Price of Horse B ℓ η

Suppose the posterior belief of the bookmaker in the event {θ = 1} at time t is pt ∈ (0, 1), the
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expected value functions, denoted by V1(pt) and V0(pt) respectively, are

V1(pt) = pt × η + (1− pt)× ℓ, (3)

V0(pt) = pt × ℓ+ (1− pt)× η. (4)

The margin is determined in equilibrium such that if the bookmaker decides on the correct odds,

they make a profit to compensate for the loss they make during the learning phase. A natural

question that arises is for what levels of η not all losses can be covered. By plugging ℓ into Eq. (3),

we obtain that

pt · η ≤ (1− pt)

[
µ

2
+

1− µ

4
− (1− µ)P ∗

A (1− P ∗
A)

]

⇐⇒ η ≤ 1− pt
pt

[
µ

2
+

1− µ

4
− (1− µ)P ∗

A (1− P ∗
A)

]

⇐⇒ η ≤ inf

{
1− pt
pt

[
µ

2
+

1− µ

4
− (1− µ)P ∗

A (1− P ∗
A)

]}

=
1− pt
pt

· µ
2
.

This gives an upper bound on the level of η that one would expect to observe in real-life betting

markets.

Since we are mainly interested in the learning effect of keeping odds constant for a while,

we will focus on the extreme case where η = 0, which will maximize the loss of learning for the

bookmaker. So, for simplicity, we focus on the problem with P ∗
A + P ∗

B = 1.

The expected profit of a trade conditional on {θ = 1} becomes

E(profit | θ = 1) = µ(P ∗
A − 1) + (1− µ) [(1− P ∗

A)(P
∗
A − 1) + P ∗

A(1− P ∗
A − 0)] . (5)

Setting (5) equal to 0, we obtain

P ∗
A =

1

2(1− µ)
, (6)

where 0 ≤ µ < 1/2. As can be seen from (6), as µ→ 1, which implies all punters in the market are

informed, then the price the bookmaker should set goes to infinity. In this case, no one is willing to

participate in the market. If µ = 1/2, then P ∗
A = 1 and the market also breaks down. The market
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functions only when the fraction µ of informed traders is less than half and the bookmaker gets a

chance to break even on the noisy ones.

To sum up, the expected profit is 0 if the bookmaker sets the price P ∗
A conditional on making

the right decision that the true state is indeed {θ = 1}. All insiders will back horse A. However, if

the Type I error occurs, the expected loss is

EA(loss | θ = 1) = µ(1− P ∗
A − 1) + (1− µ)[(1− P ∗

A)(P
∗
A − 0) + P ∗

A(1− P ∗
A − 1)]

= −µP ∗
A + (1− µ)P ∗

A(1− 2P ∗
A)

= − µ

2(1− µ)
+

1− µ

2(1− µ)

[

1− 2

2(1− µ)

]

= − µ

1− µ
.

(7)

The expectation is that if µ = 0, the price P ∗
A = 1/2, and the punter is uniformly distributed, then

the bookmaker makes zero loss. As µ → 1/2, the price goes to 1 and the loss per ticket goes to 1

as well. So, the loss is bounded between 0 and 1, which is consistent with our assumptions. The

loss due to the Type II error is also µ/(1 − µ).9 Table 2 summarizes the losses due to the two

types of errors for different states of the world.

Table 2: Loss of the two types of error.

State of the world

θ = 1 θ = −1

Decision
Adjust the Price of Horse A 0 µ

1−µ

Adjust the Price of Horse B µ
1−µ 0

If the posterior belief in the event {θ = 1} at time t is pt ∈ (0, 1), the expected loss due to the

Type I error, denoted by L1, is

L1(pt) = pt × 0 + (1− pt)

(
µ

1− µ

)

= (1− pt)

(
µ

1− µ

)

.

(8)

9See Appendix B for more details.
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Similarly, the expected loss due to the Type II error, denoted by L0, is

L0(pt) = pt

(
µ

1− µ

)

+ (1− pt)× 0

= pt

(
µ

1− µ

)

.

(9)

Note that at time t, the bookmaker will choose to change the price of horse A if and only if

pt > p̄ ≡ 1

2
. (10)

We model the net cumulative sales with Brownian motion. Initially, the bookmaker is trying

to ensure that the expected profit they make from the marginal noise trader is zero. So, if the

opening odds for both horses are 1/2 and if there are no informed traders in the market, then the

marginal noise trader buys horse A with probability 1/2 and horse B with probability 1/2. This

gives us a binomial tree, and the net cumulative sales could either go up or down. In this case, the

loss per trade is always going to be 1/2, no matter what information the marginal noise punter has

or which horse he bets on because the bookmaker always gets 1/2 from selling both types of ticket.

For informed traders, the bookmaker should charge either 1 or for horse A, but if they charge 1/2

for horse A instead, the loss is also always going to be 1/2 per trade. So the expected loss, if the

bookmaker does not make a decision, is

µ

2
+ (1− µ)

[
1

2

(
1

2
− 1

)

+
1

2

(
1

2
− 0

)]

=
µ

2
.

Therefore, until a decision is reached, the bookmaker is assumed to take a loss during this

learning process. From time 0 to τ , the loss function is

L∗(p) = inf
τ∈T

Ep

[∫ τ

0
e−λt

µ

2
dt+ e−λτ min {L1(p), L0(p)}

]

= Ep

[
∫ τ∗

0
e−λt

µ

2
dt+ e−λτ

∗

min {L1(pτ∗), L0(pτ∗)}
]

,

(11)

where T is the set of all stopping times. This is our optimal stopping problem. Since the aim of
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the bookmaker is to minimize the loss from either the informed or uninformed noise punters, we

choose the minimum functions in Eq. (11).

Since (pt)t≥0 is Markovian, the optimal stopping problem (11) can be written as

L∗(p) =
1

λ
· µ
2
+ inf

τ
Ep

[

e−λτ min
{

L0(pτ )−
µ

2λ
, L1(pτ )−

µ

2λ

}]

=
1

λ
· µ
2
+ inf

τ
Ep

[

e−λτ min

{

pτ

(
µ

1− µ

)

− µ

2λ
, (1− pτ )

(
µ

1− µ

)

− µ

2λ

}]

=
1

λ
· µ
2
+ inf

τ
Ep

[

e−λτ min {G0(pτ ), G1(pτ )}
]

.

(12)

Note that since we assume µ ∈ [0, 1/2), G0(·) and G1(·) are increasing and decreasing, respec-

tively. That condition also ensures that G0(0) < G1(0) and G0(1) > G1(1). Note that p̄ = 1/2 is

the unique point where G0(p̄) = G1(p̄).

This learning process reveals information about the true state of the world. We model the

optimal stopping problem (11) as one of Bayesian sequential testing of two simple hypotheses in

continuous time. Following Peskir and Shiryayev (2006), uncertainty is modeled on a probability

space (Ω, F , Pξ) for a family of probability measures (Pξ)ξ∈[0,1]. For fixed ξ ∈ [0, 1], we use a random

variable θ̃ to represent the true state of the world, which has values in {−1, 1}. The parameter θ

is assumed to be the realization of a random variable θ̃. For p ∈ (0, 1), the probability measure Pξ

is obtained as follows:

Pξ = ξP1 + (1− ξ)P0,

where P1 and P0 denote degenerate distributions of the observed process under H1 and H0, respec-

tively, with P1(θ̃ = 1) = P0(θ̃ = −1) = 1. So, for the Bayes formulation, in a measurable space

(Ω,F), a probability measure Pξ is given such that

Pξ{θ = 1} = ξ, Pξ{θ = −1} = 1− ξ.

In other words, we assume that θ̃ has the two values 1 and −1 with a priori probabilities ξ and

1− ξ.

Since we are sequentially testing the hypotheses H1 and H0, we observe the continuous process
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(St)t≥0 defined in Eq. (1). This process generates the natural filtration FS
t = σ(Ss : 0 ≤ s ≤ t),

which is augmented with the Pξ-null set.

Let pt = Pξ(θ̃ = 1 | FS
t ) with t ≥ 0. Thus,

pt =
ξ · exp

{
−(St − µt)2/2σ2t

}

ξ · exp {−(St − µt)2/2σ2t}+ (1− ξ) · exp {−(St + µt)2/2σ2t}

=

[

1 +
1− ξ

ξ
exp

{

−2µ

σ2
St

}]−1

.

(13)

The Radon–Nikodym derivative

ϕt =
d
(
P1 | FS

t

)

d
(
P0 | FS

t

) , (14)

defines the likelihood ratio process between the two hypotheses (ϕt)t≥0. It is well known that

(Shiryayev, 1978)

ϕt = exp

{
2µ

σ2
St

}

. (15)

The posterior process (pt)t≥0 can be shown in terms of the likelihood ratio process using Bayes’

rule

pt =
[ξ/(1− ξ)]ϕt

1 + [ξ/(1− ξ)]ϕt
. (16)

From Ito’s lemma, the right-hand side of (16) becomes

dpt =
2µ2

σ2
pt(1− pt)(1− 2pt)dt+

2µ

σ2
pt(1− pt)dSt.

10 (17)

Note that in our study pt = Pξ(θ̃ = 1 | FS
t ) = Eξ[θ̃ | FS

t ]. We consider the process

Bt = σ−1

(

Xt + µt− 2µ

∫ t

0
psds

)

. (18)

Combining (17) and (18), we obtain that (pt)t≥0 follows the stochastic differential equation

dpt =
2µ

σ
pt(1− pt)dBt, with p0 = ξ, (19)

10See Appendix C for derivations.
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where (Bt)t≥0 is also a standard Brownian motion, called the innovation process (see, e.g., Poor

and Hadjiliadis, 2009). Using (15) and (16), it can be verified that the process (pt)t≥0 is time-

homogeneous and strongly Markovian under Pξ with respect to the natural filtration. Note that

if θ = 1, then pt
a.s.−−→ 1 and if θ = −1, pt

a.s.−−→ 0 as t → ∞. So, as t → ∞, Var(dpt) → 0 holds in

either case since Var(dpt) = (2µ/σ)2 p2t (1− pt)
2dt.

In the following, we adapt Thijssen and Bregantini’s model (2017) as the starting point. The

closer (pt)t≥0 gets to either 0 or 1, the less likely it is that the loss will decrease upon continuation.

This suggests that there are two points pB ∈ (0, 1/2) and pA ∈ (1/2, 1) that distinguish the

adjusting regions. Thus, the state space (0, 1) can be divided into three regions. The first is called

the continuation region. It is the region around p where keeping the price unchanged is optimal. It

is denoted by

C = {p ∈ (0, 1) | L∗(p) < min(L0(p), L1(p))} = (pB, pA),

where pB and pA, with 0 < pB < p < pA < 1, are the boundaries for changing the price of horse

B and changing the price of horse A, respectively. When p is small enough, we enter the adjusting

horse B region, where the cumulative sales of horse B are larger than those of horse A, so that we

change the price of horse B. This region is denoted by

DB = {p ∈ (0, 1) | L∗(p) = L0(p)} = (0, pB].

Conversely, when p is large enough, we enter the adjusting horse A region, where we should increase

the price of horse A. This region is denoted by

DA = {p ∈ (0, 1) | L∗(p) = L1(p)} = [pA, 1).

It follows that the stopping time

τ∗ = inf {t ≥ 0 : pt /∈ (pB, pA)} (20)

is optimal in (11).
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We give a proof of the following proposition in the appendix.

Proposition 4.1 Suppose that

1. 0 ≤ µ <
1

2
and

2.
1− µ

2λ
>

1

2
+

1

4γ
.

In testing the two simple hypotheses H0 : θ = −1 and H1 : θ = 1 on the observations of the process

given by dSt = θµdt + σdBt, there are unique thresholds p∗B and p∗A, p
∗
B < p̄ < p∗A, such that the

optimal stopping time is the first exit time of (p∗B, p
∗
A). That is,

τ∗p = inf {t ≥ 0 | ppt /∈ (p∗B, p
∗
A)}

and the loss function L is explicitly given by

L∗(p) =







p ·
(

µ

1− µ

)

, if p ∈ (0, p∗B],

µ

2λ
+ v̂p∗

B
,p∗

A
(p)G1(p

∗
A) + v̆p∗

B
,p∗

A
(p)G0(p

∗
B), if p ∈ (p∗B, p

∗
A),

(1− p) ·
(

µ

1− µ

)

, if p ∈ [p∗A, 1),

(21)

where

v̂p∗
B
,p∗

A
(p) :=

√

p(1− p)

p∗A(1− p∗A)

(
1−p∗B
p∗
B

p
1−p

)γ

−
(

p∗B
1−p∗

B

1−p
p

)γ

(
1−p∗

B

p∗
B

p∗
A

1−p∗
A

)γ

−
(

p∗
B

1−p∗
B

1−p∗
A

p∗
A

)γ

,
(22)

and

v̆p∗
B
,p∗

A
(p) :=

√

p(1− p)

p∗B(1− p∗B)

(
1−p
p

p∗A
1−p∗

A

)γ

−
(

p
1−p

1−p∗A
p∗
A

)γ

(
1−p∗

B

p∗
B

p∗
A

1−p∗
A

)γ

−
(

p∗
B

1−p∗
B

1−p∗
A

p∗
A

)γ

,
(23)

are the expected discount factors of first reaching p∗B and p∗A, respectively, given the current posterior

probability p ∈ (0, 1).

The first condition in 4.1 states that the fraction of informed bettors is less than one half, which

is consistence with the empirical evidence in Shin (1993). A large number of informed traders will

24





break down the markets. The second condition, to some extent, may be too strong. The proof of

4.1 gives more details.

In the region C = (pB, pA) the loss incurred is equal to the loss of not changing the odds, plus

the expected loss of making two types of errors at p∗B and p∗A, respectively, discounted back to the

current time using the expected discount factor, i.e., the parameter of the jump process λ.

5 Comparative Statics

In this section, we obtain analytical results for the posterior bounds p∗A and p∗B, as well as the loss

function given different parameters. To assess the quantitative effects of the bounds, we consider

the base-case scenario described in Table 3.

Table 3: Parameters for a base-case numerical example.

Base-case scenario

µ = 0.1
σ = 0.1
λ = 0.1

For this particular case, we obtain p∗B = 0.2527 and p∗A = 0.7473.11 The loss is shown in

Figure 2 for different values of the posterior belief in the event {θ̃ = 1}. Note that the curved line

between the thresholds p∗B and p∗A shows the loss while waiting for belief. The continuation region

is between the thresholds pB and pA, as the loss is higher if the bookmaker decides to stop learning

and takes action by adjusting the price. In the continuation region, to guarantee the minimum loss

for the bookmaker, instead of making a decision, it is optimal to continue learning. The maximum

loss is at the point 1/2 because under this circumstance the bookmaker is unable to distinguish

which horse the informed traders believe is the winning horse. The odds are kept at 1/2, so that

the loss on the winning horse is one half, regardless of what information the punters possess. Note

that this figure includes the loss from both sides, whether the bookmaker decides to change the

11All calculations were done in MatLab.
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Figure 2: The loss function.

price of horse A or horse B. As expected, the curve is symmetric because we assumed that for the

bookmaker to achieve zero profits, the sum of the prices of the two horses is 1.

In the following, we check the sensitivity of the solution to (11) with respect to µ, σ, and λ.

Proposition 5.1 Suppose that the conditions of Proposition 1 hold. Let τ∗ = inf {t ≥ 0 | pt /∈ (pB, pA)}

be the unique solution to (11). It then holds that

• pB is decreasing and pA is increasing in the proportion of insiders µ, conditional on θ = 1,

provided that pB < 1/2 < pA.

• pB is increasing and pA is decreasing with the volatility σ, provided that pB < 1/2 < pA.

• pB is decreasing and pA is increasing as the parameter of the jump process λ increases.
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A proof of this proposition can be found in Appendix E.

We can also derive the expected time to make a decision. The procedure is standard and

follows Poor and Hadjiliadis (2009). We then obtain the following equation:

Ep[τ
∗] = (1− p)E0[τ

∗] + pE1[τ
∗]

=
2σ2

(2µ)2
· log

[(
p

1− p

)1−2p(1− pB
pB

)1−2pB
]

+
2σ2

(2µ)2
· p− pB
pA − pB

· log
[(

pB
1− pB

)1−2pB
(
1− pA
pA

)1−2pA
]

.

(24)

The comparative statics for the parameter µ are shown in Figure 3. Recall that the parameter

µ denotes the fraction of the informed traders in the learning process in unit time. It is easily seen

that pB is decreasing and pA is increasing with µ. The posterior bounds become wider because the

higher value of µ implies the learning process is more informative. The non-monotonicity in the

loss function can be explained from two perspectives. On the one hand, having a large proportion

of insiders in the market would lead to a huge loss for the bookmaker. On the other hand, since

the bookmaker can get more information in each time period from the insiders, the decision can

be taken sooner, which means the loss declines. The base-case scenario explicitly shows that the

maximum loss occurs when the fraction µ = 16%.

The comparative statics for the parameter σ are shown in Figure 4. As pB is increasing and

pA is decreasing, the posterior bounds narrow to the point 0.5, which implies that a decision can

be reached earlier. This is partially different from the standard literature on real options, in which

more uncertainty widens the decision bounds. In this paper, more uncertainty lowers the bounds

but increases the loss. Since this volatility also represents the fraction of noise traders in the market,

the larger the value of σ, the more noise traders there are and the fewer informed traders there are.

As having more noise traders makes the learning process less informative as the signal is noisier,

the loss is incurred during learning, but the costs are the same, so we expect the decision would be

taken sooner, thereby lowering the loss accordingly.

The comparative statics for the parameter λ are shown in Figure 5. As pB is decreasing and
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Figure 3: Comparative statics for µ.

pA is increasing, the posterior bounds widen, which implies the learning process becomes more

informative. A higher λ reduces the expected cost of keeping the current odds and makes waiting

longer more attractive. However, the higher λ acts as a discount factor. The less we care about the

future, the faster a decision is reached. These are two opposing effects, one of which apparently

dominates. In our setting, the running loss is important. The loss is decreasing and the expected

time to make a decision is increasing, as the expectation is that it takes longer as the bounds widen.

6 Conclusions

The Bayesian model presented in this paper focuses on the optimal stopping problem for a book-

maker who has to decide when to change the odds for each horse in a race. There are informed

traders in the market, but which horse the informed traders prefer is unknown ex ante. The book-
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Figure 4: Comparative statics for σ.

maker goes through a learning process to assess whether they have gathered enough statistical

evidence to determine which is the favorite horse of the insiders at each point in time by applying

a sequential hypothesis test.

For this two-horse benchmark model, we have provided analytical results that give posterior

bounds for adjusting the price of horse A or the price of horse B when the learning stops. Once a

decision is taken, no matter what it is, it is guaranteed that the loss to the bookmaker is minimized.

We also investigated the sensitivity of the model parameters to the proposed solution to (11),

which is consistent with our intuition. We found that: (i) As the fraction of informed punters

gets bigger, the posterior bounds widen and the bookmaker receives more information per time

period. Non-monotonicity occurs because of two opposing effects. On the one hand, having a

large proportion of insiders leads to a huge loss to the bookmaker. On the other hand, since the
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Figure 5: Comparative statics for λ.

bookmaker can get more information per time period, decisions will be taken sooner, thus reducing

the loss. (ii) For higher σ, there are more noise traders in the market so that the signal the

bookmaker observes is noisier. The bookmaker has to pay to keep the learning process going as

less information is provided. A loss is incurred in learning, but the process is not informative and

the costs are the same. We, therefore, expect a decision will be reached sooner as the posterior

bounds get narrower. (iii) The bounds widen as λ increases, and as expected, it takes longer to

reach a decision. A higher λ reduces the expected cost of keeping the current odds and makes

waiting longer more attractive. On the other hand, the higher λ, the less we care about the future

and the faster a decision is reached. These are the two opposing effects, one of which apparently

dominates.
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Appendices

Appendix A. Proof of restrictions on µ and η.

Re-arranging Eq. (2), we get

(1− µ)(1− P ∗
A)

2 + µ (1− P ∗
A) + η − 1

4
(1− µ) = 0.

By solving the above equation, we immediately arrive at

P ∗
A =

2− µ−
√

2µ2 + (4η − 2)µ+ 1− 4η

2(1− µ)
.

Note that conditional on the event {θ = 1}, the price P ∗
A needs to satisfy P ∗

A > P ∗
B = 1/2, but

P ∗
A < 1, i.e.,

1/2 <
2− µ−

√

2µ2 + (4η − 2)µ+ 1− 4η

2(1− µ)
< 1, (A.1)

and

2µ2 + (4η − 2)µ+ 1− 4η > 0, (A.2)

To guarantee (A.2) holds, ∆ = (4η − 2)2 − 8(1 − 4η) = 4(4η2 + 4η − 1) < 0. We obtain

0 ≤ η <
√
2−1
2 . By solving (A.1), we can obtain 0 ≤ µ < 1.
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Appendix B. Loss of the Type II error

Similarly, let P ∗∗
B denote the adjusted price for horse B at time t given the event {θ = −1}. The

valuation of the marginal noise trader, V , is also uniformly distributed on the interval [0, 1]. For

the informed trader, the bookmaker loses µ(P ∗∗
B − 1). For the marginal noise trader, he buys a

horse-A ticket if and only if his own valuation is higher than P ∗∗
B . With probability 1 − P ∗∗

B , the

marginal noise trader buys horse B and the bookmaker loses P ∗∗
B −1 on this kind. With probability

P ∗∗
B , a horse-A ticket is bought and the loss of this kind is 0. So the expected profit of a trade is

E(profit | θ = −1) = µ(P ∗∗
B − 1) + (1− µ)[(1− P ∗∗

B )(P ∗∗
B − 1) + P ∗∗

B (1− P ∗∗
B − 0)].

Setting the above equation equal to 0, we can get

P ∗∗
B =

1

2(1− µ)
.

So the loss to the Type II error follows the same analysis.

EB(loss | θ = −1) = µ(1− P ∗∗
B − 1) + (1− µ)[(1− P ∗∗

B )(P ∗∗
B − 0) + P ∗∗

B (1− P ∗∗
B − 1)]

= −µP ∗∗
B + (1− µ)P ∗∗

B (1− 2P ∗∗
B )

= − µ

2(1− µ)
+

1− µ

2(1− µ)
[1− 2

2(1− µ)
]

= − µ

(1− µ)
,

where 0 ≤ µ < 1/2.
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Appendix C. Derivations of Eq. (17)

Let pt = Pξ(θ̃ = 1 | FS
t ) with t ≥ 0. Thus,

pt =
ξ · exp

{
−(St − µt)2/2σ2t

}

ξ · exp {−(St − µt)2/2σ2t}+ (1− ξ) · exp {−(St + µt)2/2σ2t}

=

[

1 +
1− ξ

ξ
exp

{

−2µ

σ2
St

}]−1

.

The Radon–Nikodym derivative

ϕt =
d
(
P1 | FS

t

)

d
(
P0 | FS

t

) ,

defines the likelihood ratio process between the two hypotheses (ϕt)t≥0. It is well known that

(Shiryayev, 1978)

ϕt = exp

{
2µ

σ2
St

}

, (C.1)

and since for ξ < 1

pt =
ξd(P1 | FS

t )

ξd(P1 | FS
t ) + (1− ξ)d(P0 | FS

t )
,

it follows that

pt =
[ξ/(1− ξ)]ϕt

1 + [ξ/(1− ξ)]ϕt
. (C.2)

Applying Ito’s lemma to equation (C.1) yields

dϕt =
2µ2

σ2
ϕtdSt +

1

2
(
2µ

σ2
)2ϕt(dSt)

2

=
2µ2

σ2
ϕtdSt +

1

2
(
2µ

σ2
)2ϕtσ

2dt

=
2µ

σ2
ϕt(dSt + µdt).

which follows the geometric Brownian motion:

dϕ

ϕ
=

(

θ
2µ2

σ2
+ µ

)

dt+
2µ

σ
dBt.
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Similarly applying Ito’s lemma to equation (C.2) yields

dpt = − ξ(ξ − 1)

(ξϕt − ξ + 1)2
dϕt +

1

2

2ξ2(ξ − 1)

(ξϕt − ξ + 1)3
dϕ2

t

= − ξ(ξ − 1)

(ξϕt − ξ + 1)2
2µ

σ2
ϕt(dSt + µdt)

+
1

2

2ξ2(ξ − 1)

(ξϕt − ξ + 1)3
(
2µ

σ2
ϕt(dSt + µdt))2

=
2µ

σ2
(

ξϕt
ξϕt − ξ + 1

)(
1− ξ

ξϕt − ξ + 1
)(dSt + µdt)

−(
2µ

σ2
)2σ2(

ξϕt
ξϕt − ξ + 1

)2(
1− ξ

ξϕt − ξ + 1
)dt

=
2µ

σ2
pt(1− pt)dSt +

2µ2

σ2
pt(1− pt)(1− 2pt)dt.

35





Appendix D. Proof of Proposition 4.1

We need to find a function L∗ ∈ C2 that solves the following free-boundary problem:







LL∗ − λL∗ = 0, for p ∈ (pB, pA),

L∗(pB; pA) = G0(pB),

L∗(pA; pB) = G1(pA),

L∗′(pB; pA) = G′
0(pB), (smooth fit)

L∗′(pA; pB) = G′
1(pA). (smooth fit)

(D.1)

Here, L defines the characteristic operator of (pt)t≥0 (Øksendal, 2003). That is, for any ψ ∈ C2,

Lψ(p) = 1

2

(
2µ

σ

)2

p2(1− p)2ψ′′(p).

To derive the loss function of (11), we introduce the parameter:

γ :=
1

2

√

1 + 2λ

(
σ

µ

)2

>
1

2
.

There are two fundamental solutions to the differential equation Lψ − λψ = 0:

ψ̂(p) =
√

p(1− p)

(
p

1− p

)γ

,

ψ̆(p) =
√

p(1− p)

(
1− p

p

)γ

.

Note that ψ̂(·) is increasing and ψ̆(·) is decreasing. The general solution to Lψ − λψ = 0 is of the

form

ψ(p) = Âψ̂(p) + Ăψ̆(p),
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where Â and Ă are arbitrary constants. Furthermore, it is easily obtained that

ψ̂′(p) = ψ̂(p)
1/2 + γ − p

p(1− p)
> 0,

ψ̆′(p) = ψ̆(p)
1/2− γ − p

p(1− p)
< 0,

ψ̂′′(p) = ψ̂(p)
γ2 − 1/4

p2(1− p)2
> 0,

and

ψ̆′′(p) = ψ̆(p)
γ2 − 1/4

p2(1− p)2
> 0.

1. For pL ≤ p̄, we define a mapping in the p 7→ L̆(p; pL) by

L̆(p; pL) = Â(pL)ψ̂(p) + Ă(pL)ψ̆(p), (D.2)

where the constants Â(pL) and Ă(pL) are given by

Â(pL) =
ψ̆(pL)

2γ

[

G′
0(pL)−

1/2− γ − pL
pL(1− pL)

G0(pL)

]

, (D.3)

and

Ă(pL) =
ψ̂(pL)

2γ

[
1/2 + γ − pL
pL(1− pL)

G0(pL)−G′
0(pL)

]

. (D.4)

Notice that LL̆(p; pL)−λL̆(p; pL) = 0 for all p ∈ (0, 1). Furthermore, we show that L̆(pL; pL) =

G0(pL) and L̆
′(pL; pL) = G′

0(pL) > 0. With Assumption 2, it is ensured that G0(p̄) < 0 and since

G′
0(p) = µ

1−µ > 0, it implies G0(·) is monotonically increasing. With pL ∈ (0, p̄), it follows

G0(pL) < 0 and

∂Â(pL)

∂pL
= − ψ̆(pL)

2γ
· γ2 − 1

4

p2L(1− pL)2
·G0(pL) > 0,

and

∂Ă(pL)

∂pL
=
ψ̂(pL)

2γ
· γ2 − 1

4

p2L(1− pL)2
·G0(pL) < 0.
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Therefore, it is easily verified that Ă(pL) < 0 for all pL. Since Ă(pL) is decreasing in pL, and

Ă(·) is strictly monotone between 0 and p̄, it is seen that Ă(p̄) < 0. Assumption 2 also ensures

that Â(p̄) < 0. Since Â(·) is monotonically increasing on (0, p̄), Â(pL) < 0. Thus, the function

p 7→ L̆(p; p̄) is concave on (0, 1)12 and it satisfies L̆(0+; p̄) = L̆(1−; p̄) = −∞.

Since Â(pL) increases and Ă(pL) decreases in pL, it holds that ∂L̆(p;pL)
∂pL

= ∂Â(pL)
∂pL

ψ̂(p) +

∂Ă(pL)
∂pL

ψ̆(p) > 0 for all p > pL.
13

So there is a unique point pH ∈ (p̄, 1) such that L̆′(pH ; pL) = G′
1(pH), ensuring that L̆(pH ; pL)

increases in pL, but decreases in pH . Then we get the existence of a unique point pB ∈ (0, p̄) for

which there is pA ∈ (p̄, 1) such that L̆(pA; pB) = G1(pA) and L̆
′(pA; pB) = G′

1(pA).
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Figure D.1: The Loss Function for Different Values of pL.

12L̆′′(p; p̄) = Â(p̄)ψ̂′′(p) + Ă(p̄)ψ̆′′(p) < 0.
13For every p > pL, ψ̂(p) > ψ̂(pL) and ψ̆(p) < ψ̆(pL), then

∂Â(pL)
∂pL

ψ̂(p) > ∂Â(pL)
∂pL

ψ̂(pL) and
∂Ă(pL)
∂pL

ψ̆(p) > ∂Ă(pL)
∂pL

ψ̆(pL),

therefore ∂L̆(p;pL)
∂pL

= ∂Â(pL)
∂pL

ψ̂(p) + ∂Ă(pL)
∂pL

ψ̆(p) > ∂Â(pL)
∂pL

ψ̂(pL) +
∂Ă(pL)
∂pL

ψ̆(pL) = 0.
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2. For pH ≥ p̄, we can also define the mapping in the p→ L̂(p; pH) by

L̂(p; pH) = B̂(pH)ψ̂(p) + B̆(pH)ψ̆(p), (D.5)

where the constants B̂(pH) and B̆(pH) are given by

B̂(pH) =
ψ̆(pH)

2γ

[

G′
1(pH)−

1/2− γ − pH
pH(1− pH)

G1(pH)

]

, (D.6)

and

B̆(pH) =
ψ̂(pH)

2γ

[
1/2 + γ − pH
pH(1− pH)

G1(pH)−G′
1(pH)

]

. (D.7)
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Figure D.2: The Loss Function for Different Values of pH .

It is easily verified that L̂(pH ; pH) = G1(pH) and L̂′(pH ; pH) = G′
1(pH). Using a similar

method it holds that B̂ < 0, B̆ < 0, and L̂ is concave on (0, 1).

3. It is easy to prove that a solution to the free-boundary problem (D.1) is also a solution to
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the optimal stopping problem (11). That is,

G∗(p) := L∗(p)− µ

2λ
= inf

τ
Ep

[

e−λτG(pτ )
]

=: inf
τ
Jτ (p).

Obviously, it holds that G∗(p) ≥ infτ J
τ (p). To prove the reverse inequality, take any stopping

time τ . It now holds that

G∗(p) = Ep
[
e−λτG∗(pτ )

]
− Ep

[∫ τ

0 e
−rt (L − λ)G∗(pt)dt

]

≤ Ep
[
e−λτG∗(pτ )

]
≤ Ep

[
e−λτG(pτ )

]
= Jτ (p),

where the first equality follows from Dynkin’s formula (see Øksendal (2003)), the first inequality

follows from LG∗ − λG∗ ≥ 0, and the second inequality follows from G∗ ≤ G. Hence, G∗(p) ≤

infτ J
τ (p). So G∗(p) = infτ J

τ (p).
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Appendix E. Proof of Proposition 5.1

Let τ∗ = inf {t ≥ 0 | pt /∈ (pB, pA)} be the unique solution to (12). Consider a change in γ. Such a

change affects Â, Ă, B̂, B̆, ψ̂ and ψ̆. The constants Â and Ă in (D.3, D.4) can be rewritten as

Â (pB) =
pB (1− pB)

2γψ̂ (pB)

(

G′
0 (pB)−

1
2 − γ − pB

pB (1− pB)
G0 (pB)

)

,

and

Ă (pB) =
pB (1− pB)

2γψ̆ (pB)

(
1
2 + γ − pB

pB (1− pB)
G0 (pB)−G′

0 (pB)

)

.

Similarly, the constants B̂ and B̆ in (D.6, D.7) can be rewritten as

B̂ (pA) =
pA (1− pA)

2γψ̂ (pA)

(

G′
1 (pA)−

1
2 − γ − pA

pA (1− pA)
G1 (pA)

)

,

and

B̆ (pA) =
pA (1− pA)

2γψ̆ (pA)

(
1
2 + γ − pA

pA (1− pA)
G1 (pA)−G′

1 (pA)

)

.

The proof of Proposition 4.1 was based on the fact that the mapping p 7→ L̆(p; pL) is such that

L̆(pL; pL) = G0(pL) and L̆
′(pL; pL) = G′

0(pL) for all pL ∈ (0, p̄); and the mapping p → L̂(p; pH) is

such that L̂(pH ; pH) = G1(pH) and L̂
′(pH ; pH) = G′

1(pH) for all pH ∈ (p̄, 1).

We have also shown that Â < 0, Ă < 0, B̂ < 0 and B̆ < 0 in the proof of Proposition 4.1.

Then we prove that

∂γ
∂λ

= 1
2 · 1

2 ·
[

1 + 2λ
(
σ
µ

)2
]− 1

2

· 2 ·
(
σ
µ

)2
> 0,

∂γ
∂µ

= 1
2 · 1

2 ·
[

1 + 2λ
(
σ
µ

)2
]− 1

2

· 2λ · 2
(
σ
µ

)

·
(

− σ
µ2

)

< 0,

∂γ
∂σ

= 1
2 · 1

2 ·
[

1 + 2λ
(
σ
µ

)2
]− 1

2

· 2λ · 2
(
σ
µ

)

· 1
µ
> 0.

So γ is increasing in λ and σ, but decreasing in µ.
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Differentiating ψ̂ and ψ̆ with respect to γ get

∂ψ̂(p)

∂γ
= ψ̂(p) log

(
p

1− p

)

,
∂ψ̆(p)

∂γ
= ψ̆(p) log

(
1− p

p

)

.

Then we differentiate Â < 0 and Ă < 0 with respect to γ,

∂Â

∂γ
= Â

[

log

(
1− pB
pB

)

− 1

γ

]

+
ψ̆ (pB)

2γ

G0 (pB)

pB (1− pB)
,

∂Ă

∂γ
= Ă

[

log

(
pB

1− pB

)

− 1

γ

]

+
ψ̂ (pB)

2γ

G0 (pB)

pB (1− pB)
.

It is then easily obtained that

∂L̆ (pA; pB)

∂γ
=
(

Âψ̂ (pA)− Ăψ̆ (pA)
)

log

(
1− pB
pB

pA
1− pA

)

+
1

2γ

[

ψ̂ (pA) ψ̆ (pB) + ψ̆(pA)ψ̂ (pB)

pB (1− pB)
G0 (pB)− 2G1 (pA)

]

.

(E.1)

Note that the logarithmic term in (E.1) is positive since 0 < pB < 1/2 < pA < 1 and the term

in round brackets is negative. If we differentiate at pA, we obtain

Âψ̂′ (pA) + Ăψ̆′ (pA) = G′
1 (pA) < 0,

⇐⇒γ +
(
1
2 − pA

)

pA (1− pA)
Âψ̂ (pA) +

−γ +
(
1
2 − pA

)

pA (1− pA)
Ăψ̆ (pA) < 0,

⇐⇒Âψ̂(pA) <
γ −

(
1
2 − pA

)

γ +
(
1
2 − pA

)Ăψ̆ (pA) < Ăψ̆ (pA) .

(E.2)
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So the first term on the right-hand side is negative and the second term is also negative because

ψ̂(pA)ψ̆(pB)+ψ̆(pA)ψ̂(pB)
pB(1−pB) G0 (pB)− 2G1 (pA)

=
(
ψ̂(pA)

ψ̂(pB)
+ ψ̆(pA)

ψ̆(pB)

)

G0 (pB)− 2G1 (pA)

=
(
ψ̂(pA)

ψ̂(pB)
+ ψ̆(pA)

ψ̆(pB)

)(

Âψ̂ (pB) + Ăψ̆ (pB)
)

− 2
(

Âψ̂ (pA) + Ăψ̆ (pA)
)

= Â
[

ψ̂ (pA) +
ψ̆(pA)ψ̂(pB)

ψ̆(pB)
− 2ψ̂ (pA)

]

+ Ă
[
ψ̂(pA)ψ̆(pB)

ψ̂(pB)
+ ψ̆ (pA)− 2ψ̆(pA)

]

= Â
[
ψ̆(pA)ψ̂(pB)−ψ̂(pA)ψ̆(pB)

ψ̆(pB)

]

+ Ă
[
ψ̂(pA)ψ̆(pB)−ψ̆(pA)ψ̂(pB)

ψ̂(pB)

]

=
(

ψ̆ (pA) ψ̂ (pB)− ψ̂ (pA) ψ̆ (pB)
)(

Â

ψ̆(pB)
− Ă

ψ̂(pB)

)

=
ψ̆ (pA) ψ̂ (pB)− ψ̂ (pA) ψ̆ (pB)

ψ̆ (pB) ψ̂ (pB)
︸ ︷︷ ︸

<0

(

Âψ̂ (pB)− Ăψ̆ (pB)
)

︸ ︷︷ ︸

>0

.

(E.3)

Combining (E.2) and (E.3) shows that ∂L̆(pA;pB)
∂γ

< 0. To restore optimality after an increase

in γ, the trigger pB must be increased. A similar analysis shows that ∂L̂(pB ;pA)
∂γ

< 0 so that pA must

be decreased after an increase in γ.
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Appendix F. Expected Discount Factors

The general solution to the second order stochastic differential equation Lψ − λψ = 0 is

ψ(p) = Âψ̂(p) + Ăψ̆(p).

We need that ψ(pB) = 0 and ψ(pA) = 0, so

Âψ̂(pB) + Ăψ̆(pB) = 0, (F.1)

which means

Â = − ψ̆(pB)
ψ̂(pB)

Ă. (F.2)

Substituting (F.2) into (F.1), we obtain

ψ(p) = − ψ̆(pB)
ψ̂(pB)

Ăψ̂(p) + Ăψ̆(p).

Therefore the discount factor is

v̂pB ,pA(p) =
ψ(p)

ψ̆(pA)

=
− ψ̆(pB)

ψ̂(pB)
Ăψ̂(p) + Ăψ̆(p)

− ψ̆(pB)

ψ̂(pB)
Ăψ̂(pA) + Ăψ̆(pA)

=
−ψ̆(pB)ψ̂(p) + ψ̂(pB)ψ̆(p)

−ψ̆(pB)ψ̂(pA) + ψ̂(pB)ψ̆(pA)

=

√

p(1− p)

pA(1− pA)

(1−pB
pB

p
1−p)

γ − ( pB
1−pB

1−p
p
)γ

(1−pB
pB

pA
1−pA )

γ − ( pB
1−pB

1−pA
pA

)γ
.
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