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On Topological Data Analysis
for Structural Dynamics: An
Introduction to Persistent
Homology
Topologicalmethods canprovide away of proposing newmetrics andmethods of scrutinizing
data, that otherwise may be overlooked. A method of quantifying the shape of data, via a
topic called topological data analysis (TDA) will be introduced. The main tool of TDA is
persistent homology. Persistent homology is a method of quantifying the shape of data
over a range of length scales. The required background and a method of computing persis-
tent homology are briefly discussed in this work. Ideas from topological data analysis are
then used for nonlinear dynamics to analyze some common attractors, by calculating their
embedding dimension, and then to assess their general topologies. A method will also be
proposed, that uses topological data analysis to determine the optimal delay for a time-
delay embedding. TDA will also be applied to a Z24 bridge case study in structural

health monitoring, where it will be used to scrutinize different data partitions, classified
by the conditions at which the data were collected. A metric, from topological data analysis,

is used to compare data between the partitions. The results presented demonstrate that the
presence of damage alters the manifold shape more significantly than the effects present
from temperature. [DOI: 10.1115/1.4055184]

Keywords: chaotic system, data analytics, nonlinear dynamical systems, nonlinear
systems, structural dynamics, structural health monitoring, structures

1 Introduction

Topological methods are very rarely used in structural dynamics
generally, although considering the structure and topology of
observed data may be useful. Topological methods can provide
new metrics and methods of scrutinizing data; the most rudimentary
and powerful of which, persistence homology, will be discussed and
used extensively in this paper. By applying topological methods, an
understanding of the topological structure of data can be used to for-
mulate arguments and develop an understanding of system param-
eters on a manifold shape. This statement is especially true when
working with higher-dimensional data sets, where an intuitive
understanding of a manifold is not easy to visualize. By using topo-
logical methods, an understanding can be quantifiably analyzed.
When considering engineering data, data sets are often embedded
in higher-dimensional space, and topological information is often
not well explored, leaving out potentially important and insightful
information.
Topological data analysis (TDA) is a recently-developed and

fast-growing field which has found its way into many areas of
science and engineering. The general idea of TDA applies concepts
from algebraic topology to data sets. The primary focus of TDA is
to determine the shape of the manifold in which sampled data are
embedded. This process is achieved by identifying 2D holes, 3D
cavities, and higher-dimensional analogs within the data structures.
From these sampled data, an approximation to the topological struc-
ture can be calculated by using simplicial complexes, which are
higher-dimensional analogs of graphs. From the simplicial com-
plexes, the persistent homology can be calculated, this is then
used to understand the topological structure of the data. The persis-
tent homology is invariant for each data set, and can be used to iden-
tify the data set; just like a fingerprint.
After the simplicial complexes have been constructed for some

point data, these can be manipulated using ideas from algebraic

topology, to determine algebraic groups that will capture informa-
tion about the shape and structure of the simplicial complex;
these groups are topological invariants. For any simplicial
complex, algebraic topology can deduce a property called homol-
ogy, which encodes information about its number of k-dimensional
holes. A generalization of homology will be discussed with respect
to pioneering work by Edelsbrunner and coauthors [1,2], where the
homology can be considered over a range of simplicial complexes;
this is called as persistent homology, aptly named, as this uncovers
how the homology persists over a range of scales.
The field of algebraic topology is well-studied, but the applica-

tion of the ideas to discrete point clouds has contributed to a
boom in computational topology. Many standard packages exist
to analyze data with regard to topological methods: Gudhi [3] and
Ripser [4] being the most influential throughout this piece of work.
The remainder of the paper is as follows: Sec. 2 will be devoted to

persistent homology and its significance and will provide an intui-
tive understanding. Some use cases of persistent homology will also
be discussed. Section 3 will introduce and analyze the topology of
some common attractors from the field of nonlinear dynamics.
Section 4 will look at the classic Z24 bridge structural health mon-
itoring (SHM) case study, and explore the role of topology as a
metric between partitions of the data set.

2 Topological Data Analysis

Only the strict mathematical formulations will be introduced. For
more information regarding the mathematics of group theory and
algebraic topology, the authors would advise referring to [5–8],
and [1,2,9–15] for more on TDA. For some other interesting appli-
cations in economics and genomics, the readers can refer to
[9,16,17].

2.1 Manifolds. Manifolds are continuous surfaces from which
the data are assumed to be sampled. By understanding the topology
of the sampled data points, TDA aims to extract topological
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information about the underlying manifold from the data. The man-
ifold shape is unknown prior to analysis, and persistent homology
will identify features within the manifold over a range of length
scales. Thereby, understanding the shape of the sampled data,
TDA conjectures that the shape of the manifold is also understood.
Formally, a manifold is a space that is locally homeomorphic to

some n-dimensional Euclidean space, Rn. Manifolds are primarily
thought of as the underlying space from which the generated or col-
lected data are sampled. Throughout this work, there will be a reoc-
curring idea that a change in the parameters of a dynamic system
may change the shape of the associated manifold; therefore the
topology can potentially be used to identify a change in the system.

2.2 Simplicial Complex. Simplicial complexes will be used as
a way of attributing quantifiable shape to the data; they can be
thought of as higher-dimensional analogs of graphs, giving a way
of encoding connections between vertices. In TDA, the vertices
of the simplicial complexes are the observed data points. Simplicial
complexes can be analyzed to output the homology of the data, and
following this, the persistent homology. The homology and persis-
tent homology are key topological invariants that can be used to
describe the structure of the data.
A simplicial complex is a structure made up of fundamental

building blocks called simplices, the first four types of which are
shown in Fig. 1. Each vertex in the simplex is fully-connected to
all the other vertices and the space enclosed by the vertices is part
of that simplex. For instance, Δ2 encloses a two-dimensional area,
and Δ

3 encloses a three-dimensional volume. This sequence
can be generalized for Δ

k enclosing a k-dimensional space
between (k+ 1) fully-connected vertices.
A filtration of a simplicial complex, K, is a nested sequence of

sub-complexes, such that, ∅=K0
⊂ K1

⊂ … ⊂ Km
=K, where

K
i+1

=K
i
∪ Δ

i where Δ
i is a simplex of K [11], and ∅ is the

empty set, i.e., there are no points inside.
There are many ways to construct a simplicial complex from

point data. For simplification, only one method will be discussed

in this paper, i.e., the Vietoris–Rips (VR) complex [18]. The VR
complex can be constructed for point data present in a metric space.
A metric ∂X is defined on a set X, which maps two elements from

X into the positive real numbers. The mapping gives the associated
distance between the two elements. For a set to be deemed a metric
space, it must satisfy the following axioms:

(1) for any x,y ∈ X, then ∂X(x, y)= ∂X(y, x);
(2) for any x,y ∈ X, then ∂X(x, y)≥ 0, and= 0 if x= y;
(3) for any x,y,z ∈ X, then ∂X(x, z)≤∂X(x, y)+ ∂X(y, z).

If the aforementioned axioms are satisfied, then (X,∂X) forms a
metric space, where ∂X is the metric on X.
An open ball is defined on a metric space, (X,∂X). For a point a ∈

X and ɛ> 0, the subset of X consisting of all the points x ∈ X such
that ∂X(a, x) < ɛ is referred to as the open ball of radius ɛ at a.
For the VR complex VR

ɛ
(X, ∂X), let (X, ∂X) be a finite metric

space and ɛ ∈ R> 0 be a fixed value that determines the scale of
the VR complex [19], where X is the set of vertices and ∂X is the
metric on X. A VR complex is defined by the following condition

{x0, . . . , xk} ∈ VRε(X, ∂X) ⇔ ‖xi − xj‖ ≤ ε, ∀i, j ∈ {0, . . . , k}

(1)

As ɛ goes from 0 to +∞, a nested sequence of complexes defines
the Vietoris–Rips filtration [11].
This process is depicted in Fig. 2 for some randomly-sampled

data and an arbitrary value of ɛ, which can be seen as the radius
of the balls. The existence of a simplex is determined by how the
balls intersect between the vertices. For a VR complex, a simplex
between some set of vertices is formed if the Euclidean distance
between all those vertices is less than ɛ.

2.3 Persistent Homology. Before delving into persistent
homology, the homology of a topological space needs to be
defined. Many great introductions and summaries of homology
already exist; the more intrigued reader may want to consult
Refs. [6,7,9–11,20]. In very quick terms, the homology is

Fig. 1 The first four simplices

Fig. 2 The process of constructing a VR complex
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calculated by computing successive boundary operations on a
chain complex of a topological space. Homology is essentially
the quantification of the number of voids present in a topological
space, or the case of TDA, a simplicial complex. The homology
groups, Hk(X ) are invariants for the data set X, where k refers to
the dimension of the homology group. Generally, the kth homol-
ogy group encodes information about the number of k-dimensional
holes in the data. Under the rules of topology, discontinuities
(voids) cannot be created or destroyed under continuous maps
(homeomorphisms). Therefore, a simplicial complex can be catego-
rized by the properties underpinned by homology. The homology
can be used to categorize and compare simplicial complexes, and
by extension, data sets.
From the homology, the Betti numbers are defined as the rank of

the homology groups. If the Betti numbers for two topological
spaces are different, these spaces are not topologically identical,
meaning a continuous bijective map between the spaces does not
exist. The zeroth Betti number, β0, is the rank of the zeroth homol-
ogy group, H0(X ), and refers to the number of connected sets in the
topological space. The first Betti number, β1, is the rank of the first
homology group, H1(X ), and refers to the number of non-
contractible holes present in the space. The second Betti number,
β2, refers to the number of enclosed volumes in the topological
space. This analogy carries on further for higher dimensions.
This discussion now raises the question: which length scale ɛ is

representative of the topology of the data? When constructing the
VR complexes, for the same data set, different values of ɛ will
result in different values for the Betti numbers. The hyper-parameter
ɛ determines the Betti numbers for that specific instance of some
point cloud data. Additionally, when the feature present within
the data is at a length scale less than ɛ this feature will not be
expressed, as ɛ will span the feature. This reasoning means that
only topological properties that are described at a length scale
greater than ɛ can be captured. A problem arises here, as usually
the feature scale is not known prior to analysis, and a manifold
may have many multi-scale features.
The answer to this problem is to vary ɛ and see how the Betti

numbers evolve and persist. When varying ɛ, a filtered simplicial
complex is formed. This can be thought of as a chain or sequence
of simplices; with n disconnected points at the beginning and a
fully connected (n− 1)- simplex at the end. The next simplicial
complex in the filtration is the earlier simplicial complex plus the
next simplex to be formed as ɛ increases. Figure 3 shows some sim-
plicial complexes in this process. A filtered simplicial complex is an
ordering of simplices to show how they evolve as a distance scale is
increased. From this, one can form an idea of how the topology
evolves over the filtration.
Obtaining the homology for a single value of ɛ provides very

limited information; this notion is almost redundant, because of
potential varying feature length scales in the manifold. For this
reason, it is vital to consider what homological features persist as
ɛ is varied. The goal of persistent homology is to track the homol-
ogy classes as ɛ is varied. The process of varying ɛ does not bias any
disk size, as all are being considered. This process will give an
initial value, ɛmin, where a specific homological feature comes to
life and ɛmax, where the feature is no longer considered for that sim-
plicial complex. This range of values [ɛmin,ɛmax] is called the persis-
tence interval for that homological feature. Each persistence
interval is attributed to a Betti number. Following this, the set of
all persistence intervals is descriptive for that manifold, giving
information about in which dimension a hole exists in the data
and over what range of values it persists.
The persistence intervals obtained can be represented in two

ways: barcodes or persistence diagrams. In a barcode representa-
tion, the x-axis refers to the value of ɛ. As ɛ increases, the
barcode shows which features persist. The set of intervals is
plotted with each interval beginning at its ɛmin and ending at its
ɛmax. The color of the interval on the barcode refers to the Betti
number, βk [15]. The value of the y-axis can simply be thought of
as indexing of the intervals in the barcode.

An example of a barcode is shown in Fig. 3, with vertical dotted
lines showing the intersections with the intervals, showing which
features are present for the corresponding simplicial complex in
the filtration. The bars starting at 0, refer to the persistence intervals
for β0, similarly, the bars that do not start at 0 are for β1. A bar is
formed when that feature begins and ends when that feature dies.
The number of intersections of the persistence intervals with the
slices (denoted by the dashed black line) at each ɛ refers to the
Betti number for each feature. For instance, for ɛ= 0.3, the simpli-
cial complex consists of one connected component (as there is only
one intersection with the persistence intervals) and there are two
holes present (denoted by two intersections with the β1 persistence
intervals). For ɛ= 0.50, 1.00, these are shown beside the barcode, as
there is no change in the barcode for these values. For ɛ> 0.45, all
of the holes have been spanned, and there is only one connected
component. The vertices only become more and more connected
as ɛ increases, and this has little topological interest. The length
of the interval represents for how long the feature persists. The
longer the feature persists, the higher the probability that this
feature is characteristic of the manifold. Shorter intervals are gener-
ally regarded as topological noise.
The other method of visualizing the set of persistence intervals is

the persistence diagram or birth–death diagram. In this representa-
tion, ɛmin is plotted on the x-axis and ɛmax is plotted on the y-axis,
with each interval represented by the point (ɛmin, ɛmax). Intuitively,
there is a line defined by y= x, below which points will not be
plotted. This fact means that the gray region in Fig. 3 will never
contain any points. The line y= x has the interpretation that the
feature must first exist before it can die. Reading these diagrams
is as intuitive as reading the barcodes; the vertical height of the
point from the line y= x is analogous to the length of the interval,
i.e., the further a point is from the line y= x, the more the feature
is persistent. An example of a birth–death diagram is shown in
Fig. 4.
On both the barcode and birth–death diagrams, it can be seen that

one feature persists to ∞; this is because there will always be a
fully-connected simplex that persists to infinity. There will be a
value of ɛfc that results in a fully-connected simplex, where every
vertex is connected to every other vertex. For values ɛ> ɛfc the
simplex will remain fully-connected, and therefore this will con-
tinue to infinity. The removal of this infinite interval is called
reduced homology. The reduced homology is required for use in
many calculations.
The space of barcodes actually forms a metric space [9]; the dis-

tance between the barcodes is a measure of the similarity between
two barcodes. As the persistent intervals are invariant for a mani-
fold, the data manifolds can be represented by their persistent
homology. This notion of a metric space allows one to compare
the similarity of manifolds. Metrics between barcodes are well
established and the one used in this paper is the p-Wasserstein
distance (WD) [21].
DEFINITION 2.1. Given two barcodes B1 and B2. For p> 0, the

p-Wasserstein distance, ∂Wp, is given by

∂Wp(B1, B2) = inf
∑

Z∈B1

d∞(Z, ϕ (Z))p
( )1

p

where φ is a matching between B1 and B2, d∞ is the supremum
metric, and Z is a persistence interval in B1 [9].
The Wasserstein distance is used to measure the similarity

between two persistence barcodes, by computing the sum over
their edge lengths. The q-Wasserstein distance is defined as the
minimum value achieved by a perfect matching between the
points of the two diagrams, where the value of matching is
defined as the qth root of the sum of all edge lengths to the
power q [21].

2.4 Calculating Fractal Dimension. The first application of
persistent homology in this paper is on calculating fractal dimen-
sion, which is a measure of how much space a set occupies. To
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gauge the idea of the fractal dimension intuitively, consider that a
single point is zero-dimensional, a line spanning two points is
one dimension, and the area enclosed by three points is two-
dimensional, and so on. Now, suppose a curve, consisting of
purely one-dimensional elements has infinite length and is
bounded by a finite region. This curve may be believed to occupy
more space than something that is only considered one-
dimensional, but it also does not completely fill this arbitrarily-
defined space. A logical conclusion is that the dimension of this
curve is somewhere between one and two, depending on how effi-
ciently it occupies this area.
The first notable work on quantifying fractal dimension was by

Hausdorff [22], where a measure of roughness was conceived;
this was later expanded on by Falconer, and generalized for point
clustering in Ref. [23]. Mandelbrot popularized the idea of fractal
dimension in the notable work [24].
The two most common methods of quantifying fractal dimen-

sions are the Hausdorff and box-counting dimensions. The box-
counting method exploits the dimensional relations to scalability
and the difference in occupied space over different scales. The box-
counting method is very popular because of its ease of computation.

The method of using the persistent intervals, which is described
later, more closely represents the box-counting method.
To calculate the box-counting dimension, assume a space X. The

smallest number of sets of diameter that can cover X, is referred to
as N(∈). The scale determines N(∈), and the dimension of X deter-
mines the rate of change of N(∈). As the scale is altered, it is
expected that

N(∈) ≃ c ∈−dB (2)

for positive constants dB and c. It is said that X has a box dimension
of dB. To solve for the dimension of the set, this equation can be
rearranged to give

dB = lim
∈�0

log(N(∈))

− log(∈)
(3)

with the constant term, c, disappearing in the limit [23].
Inherently, fractals are infinitely-complex objects that are self-

similar, often over an infinite range of scales. This view gives a
problem when working with finite point-data sets, as only finite
information can be captured in a finite point-data set. When

Fig. 3 A persistence barcode with realizations showing which simplicial complexes are present at values of ɛ of 0:10, 0:15,
0:20, 0:25, 0:30, 0:35, 0:40, 0:50, and 1:00

011038-4 / Vol. 1, 2022 Transactions of the ASME
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zooming in excessively, points will become sparser and the approx-
imations will inevitably become less exact. In reality for finite sets,
self-similarity may only be visible over a small number of scales.
This process can be seen later, in Fig. 9, where the self-similarity
is clear over two length scales, and then thereafter points become
sparse.

2.5 Fractal Dimension—Persistent Homology. Persistent
homology can be used to calculate fractal dimension, given some
point data sampled from a fractal. This idea first came from that
of the minimal spanning tree (MST) [25,26]. The MST method
was shown as a viable method to calculate the fractal dimension
of a set [27]. Numerous works have shown that the MST method
is equivalent to using the zeroth homology group for calculating
the fractal dimension [27–30]. Unlike using the MST method, the
persistent homology can be generalized for higher-order homology
groups, therefore returning more information regarding the topol-
ogy of the fractal shapes.
Often when analyzing the persistent data, the smaller intervals are

discarded as noise, as this mean that this specific feature only per-
sists for a short while. In the case of calculating fractal dimension,
there is information contained in all of the persistent intervals, as the
idea here is to deduce the fractal dimension of Xn points as n→∞

and see how the lengths of the persistence intervals in each homol-
ogy group vary. The shorter intervals provide a good measure of
how the local geometry is present in the finite random sample.
To calculate the fractal dimension from the persistent homology,

the α-weighted sum for α> 0, of the persistent intervals, in a given
dimension should be computed, as follows:

Ei
α(x1, . . . , xn) =

∑

I∈PHi(x1 ,...,xn)
|I|α (4)

(x1,…,xn) are n points sampled from a manifold, most interestingly
one that exhibits fractal behavior. PHi(x1,…,xn) is the ith dimension
persistent homology group. |I| is the length of the interval from PHi.
The α-weighted sum of the persistence intervals tracks the rate at
which the topological noise decays, and similarly to the box-
counting method, this can be linked to the fractal dimension [31].
The value of alpha will give a larger weighting to longer intervals.
DEFINITION 2.2. Let X be a bounded subset of a metric space and

µ a measure on X. For all i ∈ N and a value α>0, which is used to
give a weighting to larger persistence intervals in the calculation
[31], the persistent homology dimension can be defined as

dimPHα
i (μ) =

α

1 − β
(5)

where

β = lim
n�∞

sup
log (E(Ei

α(x1, . . . , xn)))

log (n)
(6)

Here, sup refers to the largest value in the set. The operator E is
used as the expected value of a random variable. Finally,

Ei
α(x1, . . . , xn) is the α-weighted cumulative sum over the n

points. This result means that the embedding dimension d= dimPHi-

α(µ), of a manifold can be calculated if Eα
i (x1,…,xn) scales with

nd−α/d [29,31].
For the case when i= 0, the persistence intervals are equivalent to

the lengths of the edges in the MST. From the MST, there is a set of
n vertices and a set of n− 1 edges, where each edge spans two ver-
tices. This work is built on ideas from Kruskal [25] and Prim [26] in
the 1950s. The edges in the MST are equivalent to the persistence
intervals in the reduced zeroth homology group.
The MST approach formulates the problem in terms of graph

theory, with V being the set of vertices and E being the edge-set,
connecting the vertices. Two vertices are referred to as connected,
if a path connects them. A path is the successive joining of adjacent
edges from one vertex to another, i.e., one can walk from one vertex
to the other without leaving the path. If these edges form a closed

Fig. 4 Birth–death diagram for the same random data present in
Fig. 3

Fig. 5 Hénon attractor constructed with the two methods of calculating fractal dimension: (a) VR complex and (b) MST

ASME Open Journal of Engineering 2022, Vol. 1 / 011038-5
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loop, this is called a circuit. If a graph does not contain a closed
circuit, it is called a tree.
A spanning tree has an attribute called its length. The length of a

spanning tree is the sum of all the edges in the tree. The MST is the
spanning tree that spans the points most efficiently, by minimizing
the length of the edges. The algorithms used to calculate MSTs are
very well optimized, meaning that competitive results for calculat-
ing fractal dimensions can be obtained from their usage [31]. One
can use the lengths of the edges in an MST to approximate the
dimension of the manifold from which the vertices are sampled.
The asymptotic behavior of Eq. (4) is studied to calculate the
fractal dimension.
This property is useful, as algorithms for calculating MSTs are

much faster than calculating persistent intervals. However, the
MST is only equivalent to the zeroth homology group. If more
information is required for higher-dimensional homological fea-
tures, the slower, but more informative persistence algorithms
must be used. Figure 5 shows the VR complex and the MST for
an attractor.
When dealing with higher-order persistent homology, i≥ 1,

things become more tricky. With PH0, it is known that there are
going to be n− 1 edges for n points. However, for higher-order per-
sistent homology, this is not the case. There exist metric spaces
where the number of persistent intervals grows faster than linearly
in the number of points. To get around this problem, a limit for
the upper bound can be proven. In the case of the VR complex,
Schweinhart proved |PH1|=O(n) for the points (x1,…,xn) [29].

3 Attractors

Strange attractors arise from nonlinear dynamical systems. A
dynamical system is modeled (and evolves) in a phase space
embedded in Rn, where the geometric object is embedded in Euclid-
ean space and parameterized by time. Attractors represent the state
to which a dissipative dynamical system will eventually converge,
seemingly regardless of initial conditions. Attractors are common-
place for study as they describe the asymptotic behavior of many
dynamical systems [32–34].

3.1 Lorenz Attractor. The Lorenz attractor is defined by the
differential equations

ẋ = −σ (7)

ẏ = ρu − v–uw (8)

ż = −βw + uv (9)

The attractor was first discovered by Lorenz, when studying non-
periodic turbulent flows [32]. It displays an interesting topology,
with two holes being present in the manifold. It also shows a
Cantor-set like behavior over its cross sections [35] for certain
parameters.
For the system parameters ρ= 28, σ= 10, and β= 8/3, the fractal

dimension has previously been calculated by Viswanath [35] to be
2.063. To obtain a structure with fine details, showing the Cantor-
like fractal cross sections, a large number of points are required
for the embedding. Ten thousand points were calculated here for
a dense embedding of the Lorenz attractor. Using the MST
method of calculating the fractal dimension [31,36,37], of the
embedded attractor shown in Fig. 6, an approximation to the Haus-
dorff dimension of 2.0826± 0.03603 was calculated. This value is
calculated by determining the linear gradient of the log-log plot of
the cumulative sum of the MST edges, which are analogous to the
persistent intervals in PH0.
Now, in order to capture the global topology of the system, fewer

points are required to calculate the persistent homology. In this
example, a more sparse Lorenz attractor is sampled with only
1000 points, as shown in Fig. 7. These samples were taken over
the same range as the earlier case but now there is a greater time-
step between each point. This procedure ensures a relatively dis-
persed distribution of points over the Lorenz attractor. By taking
a dispersed distribution of points on the manifold, the global topol-
ogy of the manifold should become clearer.
The birth–death diagram can be seen on the right-hand side of

Fig. 7. There are no large differences in β0, represented by the
points lying along the line x= 0; this strongly indicates that the
Lorenz attractor consists of only one connected component. For
the case of the first homology group, there is a large amount of
noise present close to the line y= x. Most interestingly from this
plot, two features persist long enough to be deemed properties of
the manifold. The points are (2.59, 7.29) and (1.97, 9.17). The
holes represented by these points can be visibly seen on the left-
hand side of Fig. 7 as the holes present within the manifold. The
smaller of the two intervals represents the void on the left-hand
side of the plot.

3.2 Hénon Attractor. The Hénon attractor is a two-
dimensional quadratic map with a constant Jacobian; it was first
conceived as a simplified discrete map of the Lorenz system. As
the map is discrete, it has become a common object for study in
dynamical systems, as computations for generating a large
number of points are fast [34]. The Hénon attractor used in this
work is defined by

xn + 1 = 1 − ax2n + yn (10)

Fig. 6 Lorenz attractor: (a) dense Lorenz attractor and (b) log-log plot to determine fractal dimension, with gradient
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yn + 1 = bxn (11)

In this case, the well-studied parameters of a= 1.4, b= 0.3, and
an initial point of (0.1, 0.3) were used, as these give a convergent
solution. Two thousand iterations were taken to give a finite approx-
imation of the orbit of this specific Hénon attractor, with the initial
conditions listed. Using the MST method of calculating the fractal
dimension [31,36,37], a value of 1.2558± 0.04476 was obtained.
A previously-calculated value from work by Grassberger and
Procaccia [38], calculated the dimension to be 1.26 (Fig. 8).
The Hénon attractor is well known to exhibit a self-similar,

Cantor-like, behavior over its cross sections [34]. The longitudinal
structure of the Hénon attractor is simple, with each curve appearing
to be a 1D manifold. The traversal structure is the interesting part;
this can be seen to be self-similar in Fig. 9.
The dimensions of (a), (b), and (c) in Fig. 9 are 1.233, 1.245, and

1.526; this shows that, as the data become more sparse, this fractal
dimension calculation method becomes less accurate as more data
points are missing at the smaller length scales

3.3 Rössler Attractor. This attractor was first formulated in
Refs. [33,39], a dense example of which is shown in Fig. 10.
The Rössler attractor is obtained by solving the differential

equations

ẋ = −y–z (12)

ẏ = x + ay (13)

ż = b + z(x − c) (14)

The values for the initial conditions and system parameters were
a= 0.2, b= 0.2, and c= 5.7, with the initial point, p0= (0,0,0). With
20,000 points sampled from the Rössler attractor, the dimension
estimate gives a value of¨ 2.025± 0.0246 [31,36,37]. Kuznetsov
calculated the dimension of the Rössler attractor, for these parame-
ters to be 2.0160 [40].
From looking at the persistence barcode in Fig. 11, it can be seen

that all the dots, corresponding to β0 are close and show no clear
split between these values. This observation strongly implies that
the Rössler attractor is a fully-connected manifold. The range in
which these occur is most likely because of the data points along
the “flick” of the Rössler attractor being more sparse; if this were
a continuous embedding, these features would not be present.
For the case of the first-dimensional Betti numbers, represented

by the points not lying along x= 0 in Fig. 11, there is a lot of topo-
logical noise close to the line y= x. Interestingly, there is a point far
from the line y= x, which is representative of the topology of the
Rössler attractor. This point has the coordinates (4.00, 10.3) and

Fig. 7 Lorenz attractor: (a) Lorenz attractor and (b) persistence homology for the Lorenz attractor

Fig. 8 Hénon attractor: (a) Hénon attractor generated with 2000 points and (b) log-log plot to determine fractal dimension, with
gradient
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Fig. 9 Hénon points sampled from three different scales, showing the Cantor cross section: (a) x ∊ [0.5, 0:75], y ∊ [0.15, 0:21],
(b) x ∊ [0.62, 0.64], y ∊ [0.185, 0.191], and (c) x ∊ [0.63, 0.6325], y ∊ [0.1889, 0.1895]

Fig. 10 Rössler attractor with 20,000 points, used to calculate the embedding dimension: (a) Rössler attractor and (b) log-log
plot to determine fractal dimension, with gradient

Fig. 11 Rössler attractor, with 700 points, used to analyze the topology: (a) Rössler attractor and (b) persistence homology of
the Rössler attractor
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is representative of the hole formed over the “flick” of the attractor.
These persistence data will now act as the benchmark for the
Rössler attractor, and multiple embeddings will be compared to
this. The aim is to minimize the WD between the reconstructed
object and the original attractor. The smaller the WD, the closer
the topologies.

3.4 Reconstruction From Time-Delay Embedding. In this
case, the topologies of a reconstructed phase space, formed from
a 1D time series from the attractor, and the original point cloud
are compared. Persistent homology will be used to determine the
optimal embedding parameter from the 1D time series.
Time-delay embeddings were first introduced in Ref. [41] as a

method of inducing geometry from a one-dimensional time series.
This work was further expanded on by Takens [42], proving that
the topology can be perfectly reconstructed for chaotic attractors.
Skraba et al. [43] then showed that persistent homology could be
used with the time-delay embedding to yield useful topological
results.
Given a time-varying series, f : t→R, the time-delay embedding

can be stacked d times, each with a delay α, to give a new embed-
ding φ: t→Rd where the new embedding is represented by

φ(t) = ( f (t), f (t + α), . . . , f (t + (d − 1)α)) (15)

From this embedding, the time series now has a topology
induced. This embedding is a reconstruction of the topology from
a one-dimensional time series into any desired dimension.
Takens’ theorem shows that under certain circumstances,
this reconstructed attractor is homeomorphic to the original
attractor [42].
The delay embedding highlights periodic recurrent features in the

time series. Recurrent behavior will be highlighted in the time-delay
embedding as a loop. Persistent homology can then be used to quan-
tify the size of these loops.
If the delay is too small, there will not be sufficient information to

form meaningful topology, and the reconstruction will be too
similar to a straight diagonal line. Therefore, by maximizing the
size of the holes present in the attractor by using the persistent
homology, an optimal time-delay embedding can be determined.
Conversely, using a too-large delay will result in nonsense, as the
gap between the readings will be too large and will not show a
local change over the manifold, resulting in a deformed attractor.
By computing a range of delay embeddings, the persistent

homology of these can be calculated, and then the WD can be
used as a metric of topological similarity, to give the optimal
delay embedding. Figure 12 shows the WD between the original
Rössler attractor and attractors formed from a delay embedding
over a range of delays. By taking the delay for the minimal WD,

this implies that the topology of the original attractor and the recon-
structed delay embedding has the most similar topology. Therefore,
the delay that minimizes the WD is the one that gives the optimal
delay embedding.
There is a clear periodic trend emerging in Fig. 12; this trend

occurs as the time-delay embedding comes in and out of phase
with the original attractor. The general trend in Fig. 12 shows an
increase in the WD as the delay is increased. This trend is
because of artifacts induced in the reconstruction, as successive
points are sampled over different periods from the attractor.
From Fig. 12, it can be seen that a delay equal to one gives the

smallest WD; in this case, the reconstructed topology is too
similar to the diagonal set, and the topology is relatively uninterest-
ing. If one was to assume a delay embedding of α= 0, this would
result in the straight line x= y= z, which will clearly have an unin-
teresting topology. Therefore, in this analysis, only values after the
first peak (α= 13) will be considered, as these ensure an interesting
topology is being formed from the embedding. On the other hand,
using a too-large value for the delay gives a deformed manifold.
Two bad examples of delay embeddings, α= 1, and α= 57, are
shown in Fig. 13.
For α= 19, not only the topology of the attractor is most accu-

rately being captured, but from Fig. 14(a), there is also a strong
likeness to the original geometry. This is not likely to be the case
for all other reconstructions, as Takens’ only proved this for the
topology [42].

4 A Case Study of Interest for Structural Health

Monitoring: The Z24 Bridge

4.1 Introduction to the Problem. The Z24 bridge was a struc-
ture connecting the two regions, Koppigen and Utzenstorf, in
Switzerland. Data were collected over a whole year, with a sensor
network placed over the bridge to collect modal parameters.
Sensors were also used to measure the air temperature, soil temper-
ature, and humidity. Because of the extreme conditions of the Swiss
weather, the air temperature was recorded as low as −9 °C and as
high as 36 °C. As a result, the temperature effects are clearly
visible on the calculated natural frequencies [44]. Shortly before
the destruction of the Z24 bridge, there was controlled damage
introduced to the system, which is also visible in the natural fre-
quencies after a certain point in time.
The change in temperature is the biggest contributing factor to the

change in the natural frequency (≈30%). The change in temperature
has a greater impact than introducing damage (≈7%). For this
reason, the change in the magnitude of the natural frequencies
offers little insight into the presence of damage. The main
problem here is to separate the damage case from the temperature
effects.
The data set can be broken down into four categories, according

to the air temperature at the time of the measurements, and whether
the damage was present. Figure 15 shows the temperature readings
and the first four calculated natural frequencies; the corresponding
colors refer to:

• Light blue makes up the freezing data set. This is any value
with a temperature reading of T< 0 °C.

• Dark blue makes up the cold data set. This is any value in the
temperature range of 0 °C≤ T< 4 °C.

• Red makes up the warm data set. This is any value with a tem-
perature reading of 4 °C≤ T.

• Black makes up the damage-state data set. This is any reading
taken after an index of 3475, irrespective of the temperature.

At every measurement instance, the natural frequencies {ωi}, can
be calculated; where ωi is the resonance frequency for the ith mode.
The first set of the n natural frequencies can be represented as a
point in Rn, where the ith axis is for the value of ωi.
As the Z24 data set has been sampled over different environmen-

tal and operational variations (EOVs), it is expected that theFig. 12 WD versus time-delay embedding for Rössler
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Fig. 13 Examples of bad Rössler reconstructions: (a) α=1 and (b) α=57

Fig. 14 Optimal reconstructed Rössler attractor: (a) α=19 and (b) persistence homology

Fig. 15 Natural frequency classes according to their temperature
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resonance frequencies will vary, depending on the environmental
variables on the day. The bigger the change in the EOVs, the
greater the change in ωi. As the temperature changes, it is expected
that material properties will be affected, therefore resulting in a
change in the natural frequency.
In the case of the Z24 Bridge, by sampling over the time frame of

a year, there will be slight changes in humidity, air temperature, and
soil temperature, which mean that each natural frequency will be
slightly different from any other day. As the first four natural fre-
quencies have previously been extracted for each reading [44],
each point can be plotted in R4. Plotting these points will trace
out a manifold shape that is parameterized by all of these EOVs.
The data points are then assumed to lie on a manifold, representative
of this specific bridge. TDA can then be used to form an understand-
ing of what is expected for the shape of the natural frequency man-
ifold for the Z24 data set.
Since the data have been partitioned into freezing, cold, warm,

and damage, TDA can be used to compare the relative shapes of
these manifolds. A significant change in the shape of the manifold
could potentially be an indicator of the presence of damage.

4.2 Wasserstein Distance of Z24 Partitions. There will be
three case studies presented, all on the Z24 data set. Each case

study will include a new aspect of analysis to make the analysis
more concrete.

(1) The first case study will compare the manifolds embedded in
four-dimensional space, where each of the axes corresponds
to a natural frequency ω1, ω2, ω3, and ω4. This case will also
show how normalizing by the number of points when using
the WD makes a more robust metric for comparing data sets
of different sizes.

(2) The second case study will remove ω2, and plot the manifold
embedded in R

3. Earlier analysis of the Z24 bridge, has
shown that a lot of the nonlinear features are present in the
second natural frequency. This case study is useful, as now
that the natural frequency data are embedded in three dimen-
sions, the data can be plotted and visualized, whilst showing
that topological arguments are still valid in lower-
dimensional shadows.

(3) The third case study shows the robustness of the manifolds to
a linear dimension reduction algorithm. In this case, the four-
dimensional embedding of the data will be compressed down
to two and three dimensions [45]. The reduced-dimension
manifolds are then analyzed with TDA.

4.2.1 Raw Natural Frequency Case. For the first case, a full
walk-through of the calculation procedure will be displayed. For
the succeeding cases, this will be omitted to limit repetition. This
case will take the first four natural frequencies obtained from the
Z24 data set [44]. The natural frequencies will be represented by
a point in four-dimensional space. It is believed that the introduction
of damage will change the shape of the manifold more substantially
than the change in temperature. TDA can be used here to compare
the different shapes of the partitioned manifolds.
The persistent homology of the manifolds is calculated accord-

ingly. The partitions are not all of the same sizes. The warm data
set is the largest data set, and this will be randomly split in half to
form two data sets, the original warm data set will remain in the
analysis. The second can be used to verify the results; the two
new random subsets will have a very similar topological structure,
as they are all sampled from the same manifold. There will be slight
differences because of topological noise formed in the persistence
intervals from missing points in the smaller samples. These
effects should be negligible when over the true global structure of
the manifold, there are enough points to adequately describe the
topology. For smaller partitions, the absence of many missing
points will affect the topology in a significant way.
Table 1 shows the WDs over the different partitions of the data

set. These values are relatively uninteresting, as the WD values
are a factor in the number of points present in the data. This
effect can be seen clearly between the warm and the warm

Table 1 WD values over each partition

Freezing Cold Warm Damage Warm1 Warm2

Freezing 0.00 9.39 22.92 10.62 12.62 12.50
Cold 9.39 0.00 21.47 5.35 8.78 8.50
Warm 22.92 21.46 0.00 23.44 14.26 14.51
Damage 10.62 5.35 23.44 0.00 10.09 9.59
Warm1 12.62 8.78 14.26 10.09 0.00 1.80
Warm2 12.50 8.50 14.51 9.59 1.80 0.00

Table 2 Summed and scaled WD data

WD sum Number of points Scaled WD sum

Freezing 68.050 720 0.095
Cold 53.481 666 0.080
Warm 96.584 2089 0.046
Damage 59.095 457 0.129
Warm1 47.549 1044 0.046
Warm2 46.903 1045 0.045

Fig. 16 Size of the WD values depending on the size of the warm partition size: (a) raw and (b) scaled
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subsets, as all the WD values for the full warm data set are rough
twice the size of the two random subsets. This effect shows that
the number of points present in the point cloud is linked to the
size of the WD value.
As a more informative measure, the WD values can be summed

along the rows. Summing along the rows gives an understanding of
how different a data set is from all the others. The larger the value,
the more different it is. As well as this, one can normalize by the
number of points present in the data set; this gives a normalized
value, independent of the size of the data set. This measure then
acts as a metric to discriminate between manifold shapes for mani-
folds with a varying number of points present (Table 2).
Here, the change in the partition size and its effect on the WD

value will be discussed, (Fig. 16). The left-hand plot in Fig. 16
shows how the sum of the WD values for any data set varies as
the partition size of the warm data set changes. It can be seen that
the very cold, cold, warm, and damage sets are all changing propor-
tionally, as the partition size is varied, as is expected. On the other
hand, the two warm subsets vary a lot as the partition size changes.
For small partition sizes, the topology of the manifold is subsam-
pled to an extreme and a likeness between the manifolds cannot
be established.
The right-hand plot of Fig. 16 shows the sum of all the WDs for a

data set, and then scaled by the number of points present in the data
set. This figure shows how dividing by the number of points almost
perfectly maps the warm subsets to the full warm set, in the regions
where there are enough points to adequately describe the topology.
As shown, the damage case is clearly the most different in terms

of manifold structure, compared to the other data sets. The freezing
data are the next most distinct.
For reference, if the partitions are not included in the analysis,

results are obtained as in Tables 3 and 4. The damage manifold
comes out as less different from the other values, as this now con-
tains a greater weight in the analysis. When the warm subsets were
included, this gave a much larger weight to this condition. Despite
this, the damage manifold still comes out as the most topologically
dissimilar manifold.

4.2.2 3D Shadow: ω1, ω3, and ω4. Earlier analysis of the Z24
Bridge data has determined that ω2 contains the most nonlinear fea-
tures. The analysis presented in the earlier section can be repeated,
but after eliminating ω2 and plotting the manifold in three dimen-
sions (Fig. 17). This restriction acts as a visual aid as the data can
now be plotted; it also presents a case where a lower-dimensional
shadow is taken of the data, and the topology is preserved over
this type of subsampling.
This example shows the resilience of the TDA procedure; how a

lower-dimensional shadow still contains enough information to dis-
tinguish the damage data partition as the most different, shown in
Table 5.

4.2.3 Principal Component Analysis. In this section, a linear
dimension reduction algorithm, called principal component analysis
(PCA) [45] will be applied to the data. Naturally, when reducing the
dimension of the data, some information will be lost. The 4D space
will be reduced to the principal components present in 3D and 2D;
the results of both will be presented. This demonstration will show
how the data’s topological structure is preserved over linear trans-
formations, and how the accuracy degrades as the dimension reduc-
tion becomes more distant from the true embedding dimension.

The first principal component can be thought of as the direction
that maximizes the variance of the data into a projected space. The
successive principal components are the ones that maximize the var-
iance of the data into the projected space that are also orthonormal
to all the previous components.
To clarify how the topological structure is altered when taking the

principal components, a case will be considered that uses some
points randomly sampled from a torus. The example is shown in
Fig. 18. This figure shows that as the PCA embedding dimension
is reduced, topological information is lost. When going from a
3D embedding to a 2D embedding, the volume enclosed by the
torus is lost. Following this progression, when going from 2D to
1D, the embedding is simply a straight line with a distribution of
points weighted at the ends. These changes in the embedding
dimension mean topological information in the dimensions higher
than the current embedding are lost, i.e., in Fig. 18(b) the
3D-volume is lost, and in Fig. 18(c), the 2D-hole is lost. Despite
this loss of information, the topology captured in the remaining
principal components is still adequately represented, in Fig. 18(b),

Table 3 WDs with subsets not included

Freezing Cold Warm Damage

Freezing 0.00 9.39 22.92 10.62
Cold 9.39 0.00 21.47 5.35
Warm 22.92 21.46 0.00 23.44
Damage 10.62 5.35 23.44 0.00

Table 4 Scaled summed WDs with subsets not included

WD sum Number of points Scaled WD sum

Freezing 42.922 720 0.060
Cold 36.203 666 0.054
Warm 67.817 2089 0.032
Damage 39.411 457 0.086

Fig. 17 ω1, ω3, ω4 3D plot, with the colors specifying data
partitions

Table 5 WD values with the highly nonlinear ω2 removed

WD sum Number of points Scaled WD

Freezing 43.373 720 0.060
Cold 32.461 666 0.049
Warm 54.486 2089 0.026
Damage 41.078 457 0.090
Warm1 29.190 1044 0.028
Warm2 29.013 1045 0.028
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the 2D-hole is still visible, and in Fig. 18(c), the manifold still con-
sists of one connected component.
The first PCA example presented here on the Z24 Bridge data set,

is for the dimension reduction from 4D space into 3D space. As
shown in Fig. 19, calculating the PCA of the data has still kept
the clusters in somewhat separate regions of space. Under close
inspection, the warm, cold, and freezing all seem to be single clus-
ters. Whereas, the damage cluster appears to be comprised of two
clusters positioned very close to one another. This property will
result in the topology of the damage partition being different from
the other clusters.
Performing the PCA of the data is interesting, as it shows that the

topology and persistent homology is conserved over the first three

Fig. 18 Torus principal components: (a) regular torus, (b) first two principal components, and (c) first principal component

Fig. 19 A visualization of the first three principal components of
Z24 natural frequency data

Table 6 WD values for data reduced from 4D to 3D

WD sum Number of points Scaled WD

Freezing 56.763 720 0.079
Cold 42.665 666 0.064
Warm 69.743 2089 0.033
Damage 44.878 457 0.098
Warm1 36.561 1044 0.035
Warm2 37.414 1045 0.036

Fig. 20 A visualization of the first two principal components of Z24 natural fre-
quency data
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principal components. As shown in Table 6, using the principal
components of the data still results in the same orderings between
the different partitions.
Now for a larger dimension reduction, into 2D space (Fig. 20).

This result still preserves the topology, although the WD values
are a lot less distinct between the different cases, shown in Table
7. This result is because more topological information is being
lost, as the data are compressed down to only the first two principal
components. Despite the loss of information, the ordering from the
scaled WD calculations still remains the same.

4.3 Time-Delay Embedding. In this section, the topology of
the natural frequency manifold will be reconstructed from each of
the 1D time series. For visualization, the Z24 time series data will
be embedded in 3D, so that an intuitive understanding of the topol-
ogy can be formed.

Figures 21–24 show the delay embeddings of the first four natural
frequencies, projected into three dimensions. The embeddings for
ω1, ω3, and ω4 show a similar structure at the delay value α= 75.
However, ω2 has a different topology defined around the colder
temperatures. This can be inferred by the second mode having a
more pronounced effect from the freezing temperature variations.
When delaying the time series, this means that the delayed

dimensions will have different temperature readings from the one-
dimensional time series data used to form the embedding. The
value for the temperature used to represent the point is the one
from the initial time series data. The other dimensions will have
their own respective temperatures. The classes used for the temper-
atures in these plots are a little less certain than in earlier cases. This
classification isn’t too much of a problem, as the change in temper-
ature is assumed to be a smooth change over each day, and as the
value of α= 75 is relatively small compared to the size of the
data set, the time delay can be inferred as a local change.

5 Conclusion

The focus of this paper is to present an overview of TDA to the
structural dynamics community, with a variety of use cases that
highlight its depth and borderline limitless capabilities.
For the case of attractors, the calculation of the dimension of

some common attractors was facilitated. A novel method for deter-
mining the optimal delay for constructing an attractor’s topology
from a 1D time series was also presented.Fig. 22 ω2 time-delay embedding α=75

Fig. 23 ω3 time-delay embedding α=75

Fig. 24 ω4 time-delay embedding α=75

Fig. 21 ω1 time-delay embedding α=75

Table 7 WD values for data reduced from 4D to 2D

WD sum Number of points Scaled WD

Freezing 28.074 720 0.039
Cold 19.816 666 0.030
Warm 25.156 2089 0.012
Damage 19.310 457 0.042
Warm1 16.637 1044 0.016
Warm2 16.043 1045 0.015
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With respect to the Z24 data set, topological methods have been
able to single out the damage data partition as the most topo-
logically dissimilar. However, further analysis on topological
methods for damage detection would need to be explored to under-
stand the true limits and possibilities of TDA in SHM. An insight
into the data structure provides powerful insight into the operating
conditions of a machine or structure.
Future work on TDA, will look at different topological methods;

aside from using the Wasserstein distance as a metric, other case
studies will also be considered. A further journal paper, which
extends on the ideas presented here, will be submitted.
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