
Citation: Kilian, L.; Owen, A.;

Newing, A.; Ivanova, D. Exploring

Transport Consumption-Based

Emissions: Spatial Patterns, Social

Factors, Well-Being, and Policy

Implications. Sustainability 2022, 14,

11844. https://doi.org/10.3390/

su141911844

Academic Editor: Jianfa Shen

Received: 5 August 2022

Accepted: 16 September 2022

Published: 20 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Exploring Transport Consumption-Based Emissions: Spatial
Patterns, Social Factors, Well-Being, and Policy Implications
Lena Kilian 1,*, Anne Owen 2, Andy Newing 1 and Diana Ivanova 2

1 School of Geography, University of Leeds, Leeds LS2 9JT, UK
2 School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
* Correspondence: l.kilian@leeds.ac.uk

Abstract: Recent years have seen an increased interest in demand-side mitigation of greenhouse
gas emissions. Despite the oftentimes spatial nature of emissions research, links to social factors
and infrastructure are often not analysed geographically. To reach substantial and lasting emission
reductions without further disadvantaging vulnerable populations, the design of effective mitigation
policies on the local level requires considerations of spatial and social inequalities as well as the context
of well-being. Consequently, we explore spatial variations in the links between consumption-based
transport emissions with infrastructural factors, such as workplace distance and public transport
density, and with risk-factors of transport poverty, including income, age, ethnicity, mobility con-
straints in London. We find that linear models report significant spatial autocorrelation at p ≤ 0.01
in their model residuals, indicating spatial dependency. Using geographically weighted regression
models improves model fits by an adjusted R2 value of 9–70% compared to linear models. Here,
modelling flight emissions generally sees the lowest improvements, while those models modelling
emissions from cars and vans see the highest improvements in model fit. We conclude that using
geographically weighted regression to assess the links between social factors and emissions offers
insights which global, linear models overlook. Moreover, this type of analysis enables an assessment
of where, spatially, different types of policy interventions may be most effective in reducing not only
emissions, but transport poverty risks. Patterns of spatial heterogeneity and policy implications of
this research are discussed.

Keywords: transport footprints; geographically weighted regression; consumption-based accounting;
greenhouse gas emissions; social factors

1. Introduction

The increased involvement of local actors in climate change mitigation has meant an
increased focus on local strategies [1–5]. Determining how local consumption contributes to
global and national emissions is therefore important for effective, socially just greenhouse
gas (GHG) reduction and resource inequality management [6–9]. With transport being one
of the highest emitting sectors [10–13] and some aspects of UK road transport (including
road building, infrastructure projects, congestion charging and creating low emissions
zones) and airport planning being administered locally, a spatial analysis of transport can
aid local climate policy makers.

Reducing transport emissions faces various challenges. Differences in incomes and
access to services link emissions to social inequalities [6,10,14–21], which a focus on be-
haviour change can overlook. For instance, UK-based research links increased transport
poverty to rural communities, lower incomes, Black, Asian, and Minority Ethnic (BAME)
households, households with children, people with disabilities, and women [22,23]. Reduc-
ing and redistributing transport emissions must, therefore, also take existing inequalities
and vulnerabilities into account. Furthermore, high transport emissions are driven by
lock-ins [13,24,25]. Mattioli et al. [26] argue that the entanglement between the automotive

Sustainability 2022, 14, 11844. https://doi.org/10.3390/su141911844 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141911844
https://doi.org/10.3390/su141911844
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-3222-6640
https://doi.org/10.3390/su141911844
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141911844?type=check_update&version=2


Sustainability 2022, 14, 11844 2 of 26

industry, car-related infrastructure, political-economic relations, public transport provision,
and socio-cultural factors create a lock-in and that moving away from car dependency
requires consideration of all factors.

Similarly, although air travel participation of low-income households is increasing,
carbon inequality remains high [27–30]. Moreover, prioritisation of economic growth,
increased reliance on flights [31], disagreements about how international aviation emissions
are assigned in footprint calculations, and a focus on individual responsibility [32,33] results
in increased flight emissions over time and side-lines systemic changes needed for emission
reductions. With policy strategies of different cities to reduce aviation emissions differing
widely [34], the extent to which local policy can and does reduce aviation emissions is
highly varied and often limited.

Despite evidence suggesting that energy efficiency advancements can only reduce emis-
sions sufficiently if combined with major societal, economic, and cultural changes [35–37],
transport decarbonisation discussions and policies often centre technological shifts [38–40].
Nonetheless, recent years have seen a steep increase in research published on reducing
emissions through decreasing demand [41], such as avoiding flying and living car-free [42].
Moreover, research suggests that transport emissions can be effectively reduced through
local policies [43–45]. In line with this, the UK’s Climate Change Committee [46] aims to
encourage increased use of public and active transport by 2030, through investment in local
infrastructure. A spatial analysis of neighbourhood footprints can offer a perspective on
how such infrastructure affects transport emissions.

Climate policy also needs to consider energy justice and well-being. Creutzig et al. [47]
suggest that demand-side mitigation can positively impact different aspects of well-being.
For instance, decreased commuting is linked to decreased land transport emissions [48]
and increased subjective well-being [47]. Active and public transport can decrease emis-
sions, motor vehicle crashes, and noise, while increasing greenspace can promote physical
activity [49–51]. Moreover, understanding emissions through energy [52,53] and trans-
port [54,55] justice lenses is necessary: Energy and transport access are impacted by factors
such as income, age, and disability [23,56–58]. Emission reduction efforts need to consider
human well-being and social factors to avoid widening inequalities.

While much research looks at the links between social factors and consumption-based
emissions [10,14–17,19–21,27,59–62], the spatial aspects of consumption-based emissions
are not well-studied. Although concepts of spatial justice and injustice are debated, as some
argue that spatial injustices only represent social injustices [63–68], applying a spatial justice
framework can be helpful in highlighting and evaluating emission inequalities. Using such
a framework, Bouzarovski and Simcock [68] are able to identify various mechanisms which
produce and reproduce energy poverty and vulnerability. Space is similarly important in
quantitative analysis. Geographic data are generally considered to be spatially dependent,
such that areas in closer geographic proximity are more likely to be more similar [69].
Ignoring spatial dependencies falsely assumes that relationships between variables are
the same in all areas [70] and can overlook inconsistencies and spatial variance. Indeed,
evidence from China suggests that the relationships between emissions and its predictors
are spatially heterogeneous, and that employing spatial statistics can shine light on these
differences [71–73].

To our knowledge, consumption-based transport emissions and their links with social
factors have not been analysed spatially, in the UK. We focus on transport emissions as
these have inherently spatial qualities, have the potential for local policy interventions,
and as transport is one of the highest emitting sectors in the UK [74–76]. Moreover, we
assess spatial factors, such as distance to workplace and public transport network density,
as well as factors which increase the risk of transport poverty (where transport poverty
is defined as being caused by high cost and low public transport access), including lower
incomes, BAME households, households with children, people with health or mobility
difficulties [22,23].
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Bridging the gap between environmental economics and geographical analysis, we
employ geographically weighted regression analysis, a variation of a regression analysis
which embeds the spatial relationships between observations to estimate local parameters
for each observation [69,73,77]. The aim of this paper is to explore whether and how
relationships between social factors and transport emissions are spatially heterogenous
and assess how this may impact local policy decisions. We look at emissions from the years
2015–2016 with a particular focus on London. In this paper, we first discuss the methods
and data used for our analysis, results from analysis, which we split into spatial patterns of
the relationships between incomes and emissions, and other social factors and emissions,
as well as provide an overview of the links between emissions and well-being. Finally, we
discuss our findings in the context of other research and their policy implications.

2. Materials and Methods
2.1. Neighbourhood Emissions

To estimate neighbourhood GHG emissions, we need two pieces of data: an estimate of
local expenditure and product-based intensities (in tCO2e/£). The multipliers incorporate
both indirect emissions which occur throughout the supply chain globally and direct
emissions from the burning of fuel for personal transport use (e.g., private cars).

To calculate these product-based multipliers, we first need to calculate the UK’s total
household GHG emissions. We conduct a multi-regional input–output (MRIO) analysis
with and environmental extension to calculate indirect emissions from goods and services
consumed by UK households, which occurred throughout the global supply chain. MRIO
databases originate from economics but have been used by environmental economists since
the 1960s due to their ability to make the link between the environmental impacts associated
with the production of goods and services and final demand. The Leontief input–output
model reports the economic interrelationships between industries throughout the supply
chain, by documenting, in monetary units, which inputs industries consume from each
other to produce their own outputs [78]. Equation (1) shows how product-level emissions
(p) can be estimated using the fundamental Leontief equation, x = (I − A)−1y, where s is a
vector showing direct industry emissions, I is the identity matrix with the same dimensions
as the input–output matrix (Z), A is the product of Z and the total industry output vector,
and y is final demand. More details of the structure of an MRIO database can be found in
the literature [78,79].

p = s(I − A)−1 ^
y (1)

The MRIO database used to calculate product-level household emissions for the UK
in the current research is the UKMRIO model from the year 2015 for 307 products and ser-
vices [80–82]. The UKMRIO is an annually reported national statistic, which is constructed
by the University of Leeds and follows the recommendations from Tukker et al. [83] and
Eden et al. [84] for calculating consumption emissions consistent with National Accounts
(see [85] for more detail). All greenhouse gases reported in the UKMRIO are converted
into CO2 equivalents and include carbon dioxide (CO2), methane (CH4), nitrous oxide
(N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6)
and nitrogen trifluoride (NF3). We estimate emissions at a Classification of Individual
Consumption by Purpose (COICOP) 4 level, [86], using a UKMRIO sector to COICOP
bridging table, from the UK’s Office for National Statistics. After indirect emissions of UK
households are calculated, direct household emissions are added to products associated
with fuel burning. Direct emissions are also reported in the UKMRIO as CO2 equivalents.

To disaggregate UK emissions subnationally, we use microdata on neighbourhood-
level household expenditure. Product-level emissions estimates can be divided by total
household spends for each product to produce the aforementioned carbon multipliers. The
expenditure microdata used here is from the Living Costs and Food Survey (LCFS), an
openly available expenditure survey recording detailed spends from 4000–6000 private
households across the UK every year [87]. To increase our sample size, we combine data



Sustainability 2022, 14, 11844 4 of 26

from 2015 and 2016 LCFS. Moreover, to reduce the effect of outliers on emission estimates,
product-level household expenditures that are 3.5 standard deviations above or below
the sample mean are windosirsed. To ensure that household expenditure from the LCFS
matches that from the UKMRIO database [88], we adjust expenditure in the LCFS for each
COICOP 4 product/service by the total spend reported in the UKMRIO.

To generate neighbourhood expenditure profiles, we follow the method used by Kilian
et al. [85] to calculate neighbourhood emissions in the UK using the LCFS. This means that
we use the geodemographic classification of Output Areas, the smallest census geography
in the England (with a population of 100–625 people [89]), and regional information from
the LCFS to generate sub-regional neighbourhood expenditure profiles. Applying the
carbon multipliers to neighbourhood expenditure provides and estimate of household
GHG consumption-based emissions by neighburhood. This method provides emission
estimates which are comparable, for the majority of the consumption-based footprint, to
estimates generated from other microdata [85]. Moreover, our selection of the method,
neighbourhood size and microdata is based on suggestions by Kilian et al. [85] to ensure
that data are as robust as possible.

The neighbourhood geography used in this research is Middle Layer Super Out-
put Area (MSOA), the third smallest census geography in England, with populations of
5000–15,000 people [89] (Figure 1). To match official records, we also adjust populations
from the LCFS to mid-year populations [90]. The mean number of unique households
used to create an MSOA expenditure profile is 259.38 households (SD = 89.91). The distri-
bution of sample sizes for each MSOA is shown in Figure 1: This only shows the unique
observations; MSOA expenditure profiles are weighted by how often household types are
present in each MSOA. Moreover, the same observation may be used to estimate emissions
for multiple MSOAs, where the geodemographic neighbourhood classification indicates
similar neighbourhood types in multiple MSOAs.

Figure 1. Histogram showing the population (left) and the number of unique observations (house-
holds) from LCFS (right) in each MSOA in London.

Using expenditure as a proxy for volume consumed is a source of uncertainty for this
type of analysis [91]. We reduce this uncertainty by using data on the number of flights
taken, rather than cost. We also follow Kilian et al.’s [85] recommendations to increase
emission estimate robustness, including aggregating to large neighbourhoods and combin-
ing expenditure surveys from 2 years. However, using expenditure presents an issue for
public transport season tickets. Here, ticket cost is not reflective of trip numbers. However,
travelcard prices change with distance from central London, so prices are adjusted to the
maximum distance travelable. Therefore, while we do not know the number of journeys
taken, we can assume that those traveling less frequently purchase individual tickets. In
other words, we assume that those buying travel cards purchase these when buying indi-
vidual tickets for journeys is more expensive than buying a travel card. Thus, we assume
that those buying travel cards take more journeys than those buying individual tickets, and
that, therefore, prices are indicative of distance travelled, up to the travel card price.
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2.2. Geographic, Census and Other Data

In this section, we summarise additional datasets we use in the current research.
Descriptive statistics for all variables are shown in Table 1.

Table 1. Means and standard deviations of social and spatial factors.

Weighted by Population MSOA Average

MSOA
Population

(1000)

Weekly
Income

(1000 GBP)

Distance to
Workplace
(100 km)

Public
Transport
Density
(Metric)

Pop. Aged
≥65 (%)

Pop. Aged
≤14 (%)

Pop.
Identifying
as BAME

(%)

Pop. Limited
in Day-to-Day
Activities (%)

Mean 0.23 0.11 2.31 11.22 18.68 39.51 14.17 8.69
Std.

deviation 0.08 0.02 0.77 4.12 3.88 19.35 2.68 1.54

Minimum 0.10 0.06 0.00 2.40 5.78 3.81 6.04 5.41
Maximum 0.59 0.18 4.64 27.23 34.00 93.86 22.79 15.36

2.2.1. 2011 Census

We use data from the 2011 census [92] for geography lookup tables, geographical
boundaries, distance to workplace and the numbers of people aged 65 and over, 14 and
younger, limited in their day-to-day activities due to long-term health problems and/or
disabilities, and identifying as BAME. To ensure consistency between population data
from the emission estimates and census, we adjust census data to the 2015 mid-year
population [90]. Mid-year populations estimate populations for 30 June of a given year by
adjusting population counts from the census with administrative data on births, deaths,
and migration [93].

2.2.2. Public Transport Density

Data for 2015 public transport density are available via the London Datastore [94].
We use the Access Index measurement from the Public Transport Access Level (PTAL)
indicator, which estimates public transport network density and frequency at a small area
level across London. We use a log transformation on Access Index values to better represent
the PTAL categories linearly [95]. How this transformed variable maps onto original PTAL
categories is shown in Table 2, more information on how these categories are defined is
available at the London Datastore [95]. Public transport density data are spatially divided
into 100 m grid squares with 159,451 cells. For each of these, the centroid is calculated and
the median transport density value of all centroids that fall within one MSOA are taken to
represent the public transport density of this MSOA.

Table 2. Transformed public transport density mapping onto original PTAL category.

Original CategoryPTAL 2015
Transformed Variable Used in This Paper

Minimum Maximum

0 (lowest) 0.00 0.00
1a 0.01 1.24
1b 1.25 1.79
2 1.80 2.40
3 2.41 2.77
4 2.78 3.03
5 3.04 3.26
6a 3.27 3.71

6b (highest) 3.72 4.64

2.2.3. Income

The income data we use are available via the UK’s Office for National Statistics [96].
As data are reported as household income, we adjust them to per capita income using data
on household size from the 2011 census.
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2.2.4. Well-Being

We use well-being data from the London Datastore [97,98]. For data availability rea-
sons, we use the 2013 data. These data are at ward level, which is an electoral geography
larger than MSOAs. Ward boundaries for the data are from the year 2009. For this part of
the analysis, therefore, we calculate ward-level emissions by generating the mean emissions
from the MSOAs in each ward, weighted by MSOA population and the proportion of
each MSOA’s area in each ward. As research indicates that findings can depend on the
definition of well-being used [99], we analyse both a well-being index score and subjective
well-being. The well-being index captures life expectancy, childhood obesity, incapacity
benefit claimant rate, unemployment rate, crime rate, rate of deliberate fires, GCSE point
scores, unauthorised pupil absence, children in out-of-work households, public transport
accessibility, access to public open spaces, and subjective well-being [97,98]. The subjective
well-being score captures self-reported life satisfaction, worthwhileness, anxiety, and hap-
piness, and is used here as transport choices have been linked to subjective well-being in
the past [100–102].

2.3. Geographically Weighted Regression

Spatial data typically exhibit spatial dependency and non-stationarity. This means
that more proximal locations share more similar attributes than those further apart and
that processes responsible for observed phenomena can spatially vary [69,103]. Traditional
regression modelling neglects these spatial differences. We therefore use geographically
weighted regression (GWR) models, an extension of regular regression models. This can
be expressed as shown in (2), where y is the dependent variable, x1 to xn are independent
variables, β0 is the intercept, β1 to βn represent model coefficients, and ε is the random
error term [69]. Here i refers to a location, in this research an MSOA-level neighbourhood.
A distance weight is used to weigh data from nearer locations more strongly than data from
more distant locations, resulting in local coefficients highlighting variable relationships
around location i [69]. This is calculated using Euclidian distance. Moreover, we use an
adaptive cross-validation approach to selecting the bandwidth, or number of neighbours
included in each model. This means that we can find the optimal bandwidth, as a too
small value can lead to large variance in local coefficients, while a too large bandwidth
value can bias local estimates by including observations which are too far away [69]. This
helps select a model which has a good model fit, without overfitting to the data. A more
detailed description of GWR can be found in Fotheringham [69]. We use the R-package
‘Gwmodel’ [104] to estimate the GWR models and the distance matrix.

yi = β0i
+β1i

x1i +β2i
x2 + . . .βni

xni + εi (2)

To assess the usefulness of GWR modelling for our data, we follow recommendations
by Comber et al. [70]. We do this by running both GWR and ordinary least squared linear
regression (LM) models with the same variables, and comparing the fits of the two models,
as well as assessing the spatial distribution of the residuals of the LM models. If residuals
of LM models exhibit significant spatial clustering, they are not considered independent,
thus violate assumptions of linear regression modelling. Moreover, we can compare model
fits to assess which model is better able to represent the data. This allows us to evaluate
whether GWR models should be used for this type of research, and if yes, where they are
most able to improve on LM models.

3. Results
3.1. Descriptive Statistics and Spatial Emission Patterns

In 2015–2016, approximately 30% of London’s consumption-based household emis-
sions come from transport. As shown in Table 3, when breaking transport emissions down
into various modes of transport, we find that cars have the largest footprint (M = 1.11,
SD = 0.39), followed by flights (M = 0.98, SD = 0.35). It should be noted that UK flight
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emissions are lower between 2008 and 2018 [105] due to the 2007/08 economic crisis.
Combined, emissions from flights and cars make up over 75% of the average Londoner’s
transport footprints. The lowest per capita emission, on the other hand, come from bus and
combined transport, which includes emission from combined bus and mass rapid transit
system tickets. Their combined footprint is only 0.11 tCO2e/capita, or less than 5% of the
total transport footprint. Detail on the aggregation of different COICOP 4 categories to the
transport modes analysed in this paper can be found in Appendix A Table A1.

Table 3. Descriptive statistics for emissions from different transport modes in London.

Car/Van
Purchases and
Motoring Oils

Flights Rail Bus Combined
Fares

Other
Transport

Total
Transport

Mean (tCO2e/capita) 1.11 0.98 0.13 0.03 0.08 0.39 2.72
Standard deviation 0.39 0.35 0.07 0.01 0.02 0.17 0.66
Minimum (MSOA) 0.52 0.45 0.02 0.01 0.01 0.10 1.44
Maximum (MSOA) 2.26 2.40 0.47 0.06 0.16 1.29 4.47

When comparing per capita emissions of different London neighbourhoods, we find
that per capita flight emissions have the largest range between London neighbourhoods
(Range = 1.95 tCO2e/capita), followed by emissions from cars (Range = 1.74 tCO2e/capita).
However, relative to magnitudes, car emissions have the smallest, albeit notable, difference
where the neighbourhood with the highest emission has a per capita footprint four times
that of the lowest emitting neighbourhood. For flights, it is five times as high, while for rail,
bus, and combined fare emissions the highest per capita footprint is 9–21 times as high as
the lowest. Thus, large carbon inequalities occur across all transport modes in London.

Spatial patterns are also evident (Figure 2). Car emissions are lower in Inner London
and higher in Outer London. Contrastingly, higher rail and flight emissions are clustered
mostly in Inner London. Higher bus emissions non-uniformly clustered, mostly around the
southern half of Inner London and north-eastern parts of Outer London. This may be linked
to reduced availability of suburban rail and mass rapid transport in some areas. Higher
emissions from combined fares, on the other hand, are more present in Inner London,
likely mirroring income patterns, as buses are cheaper than combined fares. Notably, some
areas between the centre and outskirts indicate below median emissions from car, rail, and
bus transport. This could point to areas with increased transport poverty, or with higher
active transport.

3.2. Emissions and Social Factors
3.2.1. Spatial Variance in the Relationship between Income and Emissions

Regression analyses are conducted to explore the relationships between socio-demographic
and spatial factors and consumption-based GHG emissions. For this, we run geographically
weighted regression (GWR) models. A GWR produces two results: a ‘global’ model, which
here is a London-wide regression model that does not consider spatial variation; and
‘local’ coefficients for each neighbourhood. Local coefficients represent the relationships
between variables for the given and surrounding MSOAs. We also run ordinary least
square regression (LM) models with the same parameters to be able to compare the model
fits of a linear regression to a GWR.
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Figure 2. London’s consumption-based transport emissions from 2015 to 2016 for different modes of
transport. Notes: Colour ranges show quintiles. Blue neighbourhoods have below median, white
neighbourhoods have close to median, red neighbourhoods have above median per capita emissions
for a given transport mode.

First, we run one GWR and one LM model for each mode of transport, where we
use income to predict consumption-based GHG emissions. This analysis allows us to
explore spatial differences in the relationship between income and emissions. To prevent
a spurious correlations by using multiple variables which are derived from common
ancestors [106,107], we use total MSOA emissions and incomes, but control for MSOA
populations in our models.

First, we compare the LM models to the GWR models, following suggestions by
Comber et al. [70] by looking at the spatial distribution of LM residuals and model fits. The
residuals of all LM models show significant spatial autocorrelation, as indicated by the
Moran’s I statistic and significance testing; Moran’s I ≥ 0.50 (p < 0.01). A Moran’s I value of
−1 indicates an even distribution, 0 indicates a random distribution, 1 indicates complete
clustering. Thus, residuals of the LM models are significantly clustered and the use of a
GWR model is advised. Next, we compare model fits of the LM and GWR models. The
Akaike Information Criterion (AIC) considers both the complexity of a model, as well as its
goodness of fit. This can be used to compare models, where a lower score is regarded as a
better model, with less risk of over- or underfitting. Adjusted R2 is based on the R2 statistic,
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which provides a value between 0 and 1, which expressed the proportion of change in the
dependent variable, which is explained by the model. Here 1 means that all change in the
dependent variable is explained, while 0 means that no change in the dependent variable is
explained by the model. Adjusted R2 adjusts for the number of terms in the model and is
always lower than the R2 value of a model.

Results from our analysis are shown in Table 4. For all dependent variables, GWR has
a lower AIC and a higher adjusted R2 value, indicating that the GWR models provide a
better fit for the data than the LM models. Most notable are the model improvements for
the model estimating emissions from car/van purchases and motoring oils, which explains
over 70% more of the change in emissions when using a GWR rather than an LM. For
combined fare and bus emissions, this is around 40%, while flight and rail emissions see
an improvement of 16% and 22%, respectively. As GWR models provide a better fit, we
continue to assess the GWR models in more detail.

Table 4. Results from the GWR and LM models when using income as a predictor of emissions from
different transport modes.

Dep.
Variable
(tCO2e)

Residual
Moran’s
I (LM)

AIC Adjusted R2 Global Coefficients (GWR) Local Income Coeff. (GWR)

LM GWR LM GWR Income Intercept Pop. 1st Qu. Med 3rd Qu. >0 (%)

Cars/vans 0.79 ** 5139 3016 0.17 0.88 1.06 ** 1.55 * 0.69 ** 0.42 1.59 4.35 83.2
Flights 0.54 ** 3867 2817 0.73 0.89 3.84 ** −1.41 ** 0.26 ** 2.46 3.15 3.98 98.89

Rail 0.55 ** 842 −282 0.65 0.87 0.73 ** −0.25 ** −0.01 0.46 0.62 0.81 96.26
Bus 0.51 ** −2069 −3089 0.31 0.72 −0.05 ** 0.02 0.04 ** −0.11 −0.06 −0.02 17.91

C. Fares 0.56 ** −761 −1877 0.38 0.77 0.07 ** −0.07 * 0.07 ** −0.07 0.06 0.14 64.47

Notes: Single asterisk (*) indicates significance at p < 0.05, double asterisk (**) indicates significance at p < 0.01.
Each line in the table shows a different model.

The global, London-wide results indicate that income significantly predicts emissions
from all transport modes, p < 0.01. As shown in the local predictor coefficient columns,
however, local, neighbourhood-level income coefficients vary. Local coefficients for income
are greater than 0, and thus positively linked to emissions, for over 80% of MSOAs for
emissions from cars, flights, and rail transport. In line with previous research, therefore,
we find that higher incomes mostly predict higher emissions in carbon-intensive transport
such as flights and cars [10,14,15,27,48,108].

Despite predominantly positive associations between income and emissions from cars
and flights, our results also indicate notable differences in the strength of the associations
within London. The inter quartile range of local coefficients of income to predict car
emissions is 3.93, more than three times the coefficient of the global model. Similarly, the
inter quartile range of local coefficients of income to predict emissions from flights is almost
half as large as the global coefficient—at 1.52. These findings highlight that here spatial
variance in the relationship between income and different transport emissions is strong
and cannot be captured well by the global models.

Furthermore, associations between income and combined fare emissions range clearly
from negative to positive (see also Figure 3). Thus, in 64.47% of MSOAs higher incomes
predict higher combined fares emissions, while in the rest of London higher incomes predict
lower combined fare emissions. Thus, for combined fare emissions relying on a global
model can lead to misleading conclusions for local areas.

Spatial distributions of local coefficients are visualised in Figure 3. These reveal
that neighbourhood clusters with negative associations between income and combined
fare emissions appear mostly in Outer London. In Inner London, on the other hand,
we find mostly neighbourhood clusters with negative associations between income and
car emissions. Moreover, neighbourhoods with strong positive associations between car
emissions and income also have the strongest negative associations between income and
emissions from combined transport. This indicates that local factors other than income, such
as infrastructure and workplace commute, may be important. Moreover, these findings
emphasise the importance of understanding local contexts and spatial differences, as the
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global models can fail to capture large differences in patterns between different areas of the
same city.

Figure 3. Spatial distributions of local coefficients of income when predicting bus and combined fare
emissions. Notes: Emission estimates are from the years 2015–2016. Population is controlled for.

3.2.2. Spatial Variance in the Relationship between Other Social Factors and Emissions

In this section, we repeat a similar analysis for other social and spatial factors. We fit
GWR and LM models for using other social factors to predict emissions from different trans-
port modes. As the link between higher incomes and higher emissions is well-established,
both in previous research [10,14,15,27,48] and our findings in the previous section, we con-
trol for income in all models in this section. Moreover, as spurious correlations can occur
when modelling multiple variables which are derived from common ancestors [106,107],
we again use total MSOA values for emissions, incomes, and other variables. As our aim
is to explore the spatial variance in relationships between individual variables, and not
to create a predictive model or infer causality, we run individual models for the different
social factors, controlling only for population and income. This means that we model the
total income from all households in one MSOA, the total emissions from all households in
one MSOA, combined distance to workplace of all MSOA residents, as well as the total the
numbers of people aged 65 and over, 14 and younger, limited in their day-to-day activities
due to long-term health problems and/or disabilities, and identifying as BAME. To control
for the effect of MSOA population, we include this as a control variable in our models.
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This analysis is conducted to explore spatial variance in the relationships between different
social factors and emissions when controlling for income. Social factors are chosen as they
are linked to increased risk of transport poverty [22,23], or have previously been linked to
increased emissions [48]. While results from this analysis cannot infer causation, they can
highlight where and how such relationships are spatially heterogeneous.

Results for the model comparison indicate that the use of GWR models rather than
LM models is appropriate for all models. The spatial autocorrelation tests show significant
spatial clustering of residuals for all models, Moran’s I ≥ 0.37 (p < 0.01). Moreover,
model fits indicate, again, that the GWR has a better model fit than a LM for the same
data, as indicated by lower AIC, and higher adjusted R2 values (Table 5). GWR models
explain 9–69% more change in the dependent variables than LM models, varying both by
transport type and independent variables. Again, models predicting emissions from cars
see the greatest improvements, with adjusted R2 values increasing by 0.18–0.69, followed
by models predicting bus emissions, which see increased in adjusted R2 values of 0.32–
0.42. For flight emissions, GWRs see the smallest improvements in adjusted R2 values
across all models.

Table 5. Model fits of GWR and LM models when using different social factors as predictors of
emissions from different transport modes.

Dependent Variable
(tCO2e) Predictor Variable

Residuals’
Moran’s I (LM)

AIC Adjusted R2

LM GWR LM GWR

Car/van purchases
and motoring oils

Public Transport Density 0.49 ** 4534 3072 0.55 0.88
Pop. ltd in day-to-day act. 0.74 ** 5087 3223 0.21 0.86

Pop. aged 65 or older 0.42 ** 4140 3148 0.70 0.88
Pop. aged 14 or younger 0.77 ** 5123 3184 0.18 0.87

Pop. identifying as BAME 0.69 ** 4856 3127 0.38 0.88
Distance to workplace 0.51 ** 4577 3240 0.53 0.86

Flights

Pop. ltd in day-to-day act. 0.50 ** 3669 2500 0.78 0.92
Pop. aged 65 or older 0.43 ** 3542 2749 0.81 0.90

Pop. aged 14 or younger 0.53 ** 3733 2630 0.76 0.91
Pop. identifying as BAME 0.44 ** 3764 2822 0.76 0.89

Rail

Public Transport Density 0.38 ** 565 −197 0.73 0.87
Pop. ltd in day-to-day act. 0.50 ** 746 −168 0.68 0.86

Pop. aged 65 or older 0.37 ** 538 −196 0.74 0.87
Pop. aged 14 or younger 0.53 ** 766 −133 0.67 0.86

Pop. identifying as BAME 0.49 ** 798 −210 0.66 0.87
Distance to workplace 0.39 ** 601 −119 0.72 0.86

Bus

Public Transport Density 0.49 ** −2107 −3047 0.34 0.71
Pop. ltd in day-to-day act. 0.51 ** −2076 −3029 0.32 0.71

Pop. aged 65 or older 0.49 ** −2226 −3101 0.41 0.73
Pop. aged 14 or younger 0.51 ** −2084 −3155 0.32 0.74

Pop. identifying as BAME 0.51 ** −2067 −2999 0.31 0.70
Distance to workplace 0.50 ** −2076 −3024 0.32 0.70

Combined fares

Public Transport Density 0.47 ** −876 −1877 0.45 0.77
Pop. ltd in day-to-day act. 0.52 ** −856 −1752 0.43 0.75

Pop. aged 65 or older 0.50 ** −849 −1788 0.43 0.76
Pop. aged 14 or younger 0.53 ** −812 −1773 0.41 0.75

Pop. identifying as BAME 0.37 ** −1205 −1975 0.60 0.80
Distance to workplace 0.47 ** −885 −1803 0.45 0.76

Notes: Double asterisk (**) indicates significance at p < 0.01. Each line in the table shows a different model.
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An analysis of the coefficients confirms that spatial differences in the relationships
between transport emissions and social factors occur throughout London, when controlling
for income. As shown in in Table 6, the GWR analyses show, for instance, that approximately
50% of local coefficients of workplace distance are above 0 for all modes of transport,
indicating high local variation. This could be due to different types of jobs and households
in different areas, or differing levels of transport poverty and active transport. While our
global model confirms Brand et al.’s [48] findings that workplace distance is positively
linked to car emissions, locally we find spatial heterogeneity. As Figure 4 shows, both
negative and positive associations between workplace distance and car emissions mostly
appear in Outer London. Both trends may be linked to commuting: The negative association
may be explained through better public transport connections into Central London, than
within Outer London; the positive association could be linked to people in these areas
working mostly outside of London. Notably clusters of positive associations are near
motorways (see Appendix B Figure A1). It is also possible that journeys within Outer
London have higher emissions than longer journeys into Inner London, due to rail networks
mainly going into London. Future analyses of the impacts of the COVID-19 lockdowns on
emissions may reveal the effects of increased localisation. Although we cannot assess why
these local variations occur, it emphasises the importance of understanding local contexts.

Table 6. Geographically weighted regression coefficients when using different social factors as
predictors of emissions from different transport modes. ‘Predictor’ refers to the variable listed in the
‘Predictor Variable’ column.

Dependent
Variable (tCO2e) Predictor Variable

Global Coefficients Local Predictor Coefficients

Predictor Intercept Population Income 1st Qu. Med 3rd Qu. >0 (%)

Car/van
purchases and
motoring oils

Public Transport Density −2.91 ** 6.50 ** 0.76 ** 1.63 ** −1.71 −0.76 −0.17 15.08
Pop. ltd in day-to-day act. 3.74 ** 0.98 0.07 1.73 ** −2.35 −0.53 1.63 42.41

Pop. aged 65 or older 7.86 ** −0.81 * 0.36 ** −0.10 0.97 3.78 5.55 83.20
Pop. aged 14 or younger 1.70 ** 1.39 * 0.25 * 1.65 ** −2.07 −0.35 1.24 41.40

Pop. identifying as BAME −1.46 ** −0.49 2.15 ** −1.72 ** −1.19 −0.49 0.20 31.88
Distance to workplace 1.17 ** 0.64 −0.64 ** 1.51 ** −0.38 0.00 0.37 49.60

Flights

Pop. ltd in day-to-day act. −3.63 ** −0.85 ** 0.86 ** 3.20 ** −4.49 −2.29 −0.81 11.44
Pop. aged 65 or older −2.75 ** −0.58 * 0.38 ** 4.25 ** −3.52 −1.80 −0.68 12.15

Pop. aged 14 or younger −2.34 ** −1.20 ** 0.86 ** 3.04 ** −3.20 −1.67 −0.36 17.51
Pop. identifying as BAME 0.49 ** −0.73 * −0.23 ** 4.77 ** −0.37 0.02 0.37 52.23

Rail

Public Transport Density 0.24 ** −0.66 ** −0.01 0.68 ** −0.01 0.01 0.04 63.77
Pop. ltd in day-to-day act. −0.56 ** −0.16 * 0.09 ** 0.63 ** −0.07 0.00 0.10 50.91

Pop. aged 65 or older −0.58 ** −0.07 0.02 * 0.82 ** −0.18 −0.08 −0.02 19.03
Pop. aged 14 or younger −0.39 ** −0.21 ** 0.09 ** 0.60 ** −0.02 0.05 0.12 69.33

Pop. identifying as BAME 0.07 ** −0.15 * −0.08 ** 0.86 ** −0.03 0.00 0.02 47.47
Distance to workplace −0.09 ** −0.17 ** 0.10 ** 0.69 ** −0.01 0.00 0.02 59.41

Bus

Public Transport Density 0.02 ** −0.02 0.04 ** −0.05 ** 0.04 0.12 0.20 84.01
Pop. ltd in day-to-day act. −0.04 ** 0.02 0.05 ** −0.05 ** −0.66 −0.40 −0.14 12.96

Pop. aged 65 or older −0.10 ** 0.05 ** 0.04 ** −0.03 ** −0.57 −0.33 −0.06 19.33
Pop. aged 14 or younger 0.04 ** 0.01 0.03 ** −0.03 ** −0.52 −0.31 −0.11 14.98

Pop. identifying as BAME 0.00 0.02 0.04 ** −0.05 ** −0.15 −0.03 0.06 43.02
Distance to workplace 0.00 ** 0.02 0.04 ** −0.05 ** −0.02 0.03 0.06 66.50

Combined fares

Public Transport Density 0.07 ** −0.19 ** 0.07 ** 0.06 ** −0.22 −0.11 0.01 26.62
Pop. ltd in day-to-day act. −0.25 ** −0.03 0.11 ** 0.03 ** −0.19 −0.09 0.10 36.03

Pop. aged 65 or older −0.15 ** −0.03 0.07 ** 0.09 ** −0.19 −0.08 0.03 30.26
Pop. aged 14 or younger −0.14 ** −0.06 0.10 ** 0.02 * 0.00 0.04 0.09 77.13

Pop. identifying as BAME 0.09 ** 0.05 * −0.02 ** 0.24 ** −0.02 0.01 0.03 59.41
Distance to workplace −0.03 ** −0.05 0.10 ** 0.06 ** −1.71 −0.76 −0.17 15.08

Notes: Single asterisk (*) indicates significance at p < 0.05, double asterisk (**) indicates significance at p < 0.01.
Each line in the table shows a different model.
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Figure 4. Spatial distributions of local coefficients of public transport density and distance to work-
place when predicting emissions for cars/vans and motoring oils. Notes: Emission estimates are
from the years 2015–2016. Population and income are controlled for.

Rail emissions mostly increase with public transport density, when controlling for
income and population. In contrast, car emissions are mostly negatively associated with
public transport density. However, the spatial variation in local coefficients (Figure 4),
shows that in Outer London, and particularly in the south, this association is stronger,
indicating that here public transport density is more strongly linked to reduced car emis-
sions. This may be due to different modes of public transport being distributed unevenly
throughout London but could also be linked to local attitudes, place of work, access to
services, or other factors. Regardless of the reasons behind these differences, we can see
that looking at the global and local coefficients may result in different policy interventions.
Whereas distance to workplace is positively associated with car emissions globally, the local
coefficients indicate that a positive association between these variables is only found in
half the MSOAs. This means that policies aiming to reduce car emissions from workplace
travel can be targeted at specific areas, namely areas where the link is strongly positive (see
Figure 4).

Spatial variation between the relationships of population characteristics and emissions,
when controlling for income and population, vary by transport type. For example, increases
in populations limited in day-to-day activities, aged 14 or younger and aged 65 or older
associated with decreased flight emissions for over two-thirds of MSOAs. On the other
hand, increases in populations aged 14 or younger are linked to increased rail emissions in
over two-thirds of MSOAs. Moreover, an increased population of people limited in their
day-to-day activities is linked to increased rail emissions in 52% of MSOAs, indicating that
the direction of this relationship is evenly varied across London.

Next, we analyse the land transport patterns of those identified by Simcock et al. [22]
to be at increased risk of transport poverty. In the previous section, we report lower income
to be mostly associated with bus emissions, where lower incomes are associated with
higher bus emissions for over 80% of MSOAs (see Table 4), indicating that buses may be
the most accessible form of motorised transport for low-income households across London.
In this section (see Table 5), we find that stronger variance in local estimates occurs for the
links between car-related emissions and larger populations of people identifying as BAME,
limited in their day-to-day activities due to health problems or disabilities, or aged 14 or
younger. This is shown by 50–60% of MSOAs being associated with increased emissions and
the other ones are associated with decreased emissions, after controlling for income. This
emphasises the need of understanding the contexts within which land transport emissions
occur for effective and just climate policy. Transport choices can be deeply embedded
in cultural, gender, and class structures [109–111], and, as Shove [112–114] points out,
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emissions and behaviours must be understood within the socio-cultural context in which
they occur.

Moreover, larger populations identifying as BAME and 14 and younger are most
commonly positively associated with increased emissions from combined fares when
controlling for income. For larger populations limited in their day-to-day activities, this
is for emissions from rail transport, although here positive associations only occur for
around 50% of MSOAs. Thus, public transport may not only be less carbon intensive,
but also more used in areas with larger populations at increased risk of transport poverty.
Nonetheless, even after controlling for income, we find strong differences in different parts
of London, indicating that local context matters and that global models overlook the variety
of transport patterns. Moreover, this highlights specific neighbourhoods in which public
transport may be more or less used indicating where further research or policy needs to
asses reasons behind transport use and accessibility. This can help not only with targeting
policy to reduce total transport emissions to specific areas, but also with assessing spatial
differences in transport poverty.

Finally, for those aged 65 or older and those limited in day-to-day activities, accessi-
bility needs may differ. For instance, the finding that car emissions are mostly negatively
associated with a higher population of people limited in day-to-day activities points to
transport and energy injustice, as this population should have higher transport energy
needs due to decreased accessibility of public and active transport. Our results support
previous findings that despite having increased energy needs, people with disabilities have
lower energy footprints in the UK than those without disabilities [57].

3.3. Emissions and Well-Being

To assess relationships between land transport emissions and well-being, we analyse
well-being index scores and subjective well-being. Here, our aim is not to assess the causal
links between emissions and well-being, but to see if there are neighbourhoods in London
with high well-being scores but low transport emissions.

Index scores are positively correlated to car emissions, land transport emissions, and
all transport emissions (Figure 5). Income likely mediates these relationships, as the well-
being index incorporates rates of incapacity benefit claimants, unemployment, and children
in out-of-work households. Promisingly, transport emissions are only weakly correlated
with subjective well-being, in line with previous findings [115–117].

Most importantly for this analysis, we find that 10.56% of wards have below median
emissions from all transport, but a median or above median score on the well-being index
(Table 7). For subjective well-being, this is higher at 24.80%. A spatial overview of this is
provided in Appendix B Figure A2.

Table 7. Percentages of wards with below median emissions and median or above well-being.

Car/Van Purchases
and Motoring Oils Land Transport All Transport

Index Score 2013 17.60 11.68 10.56
Subjective well-being
average score, 2013 27.84 25.60 24.80

While the relationship between well-being and emissions is complicated and this is not
a causal analysis, our findings indicate that some areas in London have low land transport
footprints, but high well-being. In other words, therefore, it is possible to have reduced
emissions without negatively impacting well-being.
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Figure 5. Scatterplots of London wards’ well-being and emissions, shaded by population. Notes:
Pearson’s r values show correlation coefficients. Double asterisk (**) indicates significance at p < 0.01.
Red boxes highlight below median emissions and above median well-being.

4. Discussion
4.1. Geographically Weighted Regression as a Tool for Emissions Analysis

In this paper, we bring together methods from industrial ecology and spatial statis-
tics to assess if and how the relationships between transport emissions and social and
spatial factors show spatial variance. Although the links between social factors and
consumption-based emissions are well-studied [6,10,14–21,27,59–62], the spatial aspects of
consumption-based emissions are not well-understood. Although some existing research
already highlights the benefits of using spatial models for emission analyses [71–73,118], to
our knowledge, this paper is the first to investigate spatial heterogeneity in the relation-
ship between social factors and consumption-based emissions, highlighting the important
contribution spatial statistics can make to the field of industrial ecology. In this paper, we
find that geographically weighted regression models should be used in all tested instances
of this paper, as our data exhibit spatial dependency. Thus, geographically weighted re-
gression models are better able to model the relationships between consumption-based
neighbourhood transport emissions from cars and vans, flights, rail, buses, and combined
fare public transport with public transport density, distance to workplace, income, and
populations limited in their day-to-day activities due to long-term health problems or
disabilities, aged 14 or younger, aged 65 or older, and identifying as BAME.
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For instance, in line with previous UK-based research which finds consumption-based
GHG emissions to increase with income [16,17], especially transport emissions [14], we
find mostly positive relationships between income and transport emissions across London.
An exception to this is emissions from buses, which are mostly negatively associated with
income. Despite this, our findings also indicate that both the direction and the strength
of these relationships can vary. Our findings thus complement this previous research by
showing that the association between income and transport emissions can vary across
neighbourhoods, even within one city. Moreover, in contrast to previous research reporting
a positive link between car emissions and distance to workplace [48], we find that this
relationship is spatially heterogeneous, with some neighbourhoods in London having a
positive and some a negative association.

We find differences in spatial heterogeneity of the relationships between higher popu-
lations of those more at risk of transport poverty and emissions from different transport
modes, even after controlling for income. This links to previous research which points out
that air and land travel emissions are not necessarily complementary for the same social
groups [30,59,62]. For example, our results indicate that across London, increases in popu-
lations of people identifying as BAME are less frequently linked to increased car emissions
that to increased flight emissions. However, in addition to previous findings, we find that
even after controlling for income the relationship between higher populations of people
identifying as BAME and flight emissions varies spatially both in strength and direction,
indicating that consideration of spatial factors is necessary in this analysis. Similarly, we
find spatial variation in the links between increased populations of those identified by
Simcock et al. [22] to be at increased risk of transport poverty and different land transport
emissions. Despite being more frequently linked to higher public transport emissions from
rail, buses, and combined tickets, here too we find spatial variance across London. These
findings highlight the importance of local and spatial contexts for understanding emissions.
Regardless of whether this highlights the need for a spatial inequality lens or only points to
other social inequalities which are unevenly distributed across space [63–68], our analysis
underlines nuances in the relationships between emission and social factors, which global
analyses overlook.

The following section discusses our findings in more detail and in light of well-being
and the policy implications they may have.

4.2. Policy Implications

In the UK, transport is one of the highest emitting sectors [74–76], and thus, reduc-
ing transport emissions is important for meeting climate targets. Effectively reducing
consumption-based transport emissions requires focussing on the highest-emitting cate-
gories: cars and flights.

While aviation is not part of the London Councils’ [2] programmes on climate change,
there is potential for local policy makers to impact aviation emissions [34], for instance, by in-
fluencing aviation infrastructure. Nationally, while the Committee on Climate Change [119]
outlines demand management as flight emission reduction strategy, the UK Government
focuses on growing the aviation sector and reducing emissions through future techno-
logical advancements [120]. This contrasts our and previous [42] findings that reducing
aviation demand can strongly reduce emissions and that flight emissions cannot be reduced
sufficiently through technological changes alone [31,121]. Moreover, although some other
social drivers may play a role [59,62], flight emissions are strongly income-dependent and
present a main source of carbon inequality. Continued focus on aviation growth does not
challenge such patterns, which have long been pointed out by the literature on carbon
lock-ins [25,26], carbon inequality [15,27,122,123], and degrowth [35,36,124].
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Although we find spatial heterogeneity in the strength of the relationships between
income and flight emissions, the association is positive for over 98% of London neighbour-
hoods. Indeed, while a geographically weighted regression model has an improved model
fit compared to a linear regression model, we find flight emission models to improve the
least compared to those modelling other transport modes. We conclude from this that a
global model can approximate the relationship between flight and income. Thus, a widely
used income-based approach to reducing emissions from aviation, such as a distance-based
tax as outlined by Larsson et al. [125], may be most effective in reducing emissions from
flights from a demand-side perspective.

Cars present a second large source of emissions and carbon inequality. Current
strategies to reduce land transport emissions of the London Councils [126] and the Mayor
of London [127] include making active transport more attractive, increasing the number of
bus services, adding bus lanes, and building charging stations for electric vehicles. Here,
efforts to increase bus services and reduce bus congestion should be prioritised, as buses
may be more accessible to those at risk of transport poverty and as fast and dense public
transport networks, particularly in Outer London, may be most effective in reducing car
emissions. Investing in accessible, affordable, and fast public transport infrastructure
in outer areas with high car emissions may be able to reduce car emissions as well as
congestion. However, affordability also needs to be considered.

Considering links between emissions and socio-demographic characteristics differ
at a neighbourhood level, approaches can also better incorporate local needs. As the
relationship between workplace distance and car emissions is heterogeneously distributed
across London, understanding what kind of journeys people use cars for and why people
use cars is also essential when encouraging increased use of active and public transport.
Investigating attitudes towards public transport could provide further insight into transport
choices and how emissions can be reduced. Moreover, our findings suggest that increased
public transport access in the southern outskirts of London may reduce emission more
effectively than in the north, although this may be linked to having better or faster existing
routes available. Other ways to reduce emissions from commuting include increased
remote working [47].

Furthermore, our analysis suggests that higher public transport emissions are more
often associated with those identified by Simcock et al. [22] to be at increased risk of
transport poverty across different neighbourhoods. Higher bus emissions are linked
to neighbourhoods with lower incomes, and higher combined fare emissions to larger
populations of people aged 14 or younger and identifying as BAME, more often than
emissions from other transport modes. Thus, increasing bus and mass rapid transit access
and making public transport more affordable for those with lower incomes may also reduce
transport inequality. This mirrors survey findings that cost is the key factor determining
transport choices for 25% of Outer London commuters [128]. Despite this, spatial factors
and inequalities need to be considered, as our analysis reveals spatial variation in all
relationships between higher populations of groups more at risk of transport poverty and
transport emissions.

Nonetheless, increasing transport access—and emissions—for those whose mobility is
limited by long-term health problems or disabilities is necessary, who have lower energy
footprints despite having higher energy needs [57]. Likewise, those with age-related
mobility constraints may have different transport needs. Understanding reasons for lower
and higher transport footprints is therefore important.

For most Londoners, however, decreased transport emissions can likely coexist with
high well-being, where switching to public transport can be the key to reducing emissions.
Some previous research already points to some positive impact demand-side emission
mitigation efforts can have on well-being [47,49–51]. Here, our research only focuses on
assessing whether areas of higher well-being and lower emissions already exist within
London. Promisingly, subjective well-being does not appear to be correlated to combined
fare emissions, confirming previous findings [115–117], and suggesting that switching from
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private to public transport does not necessarily reduce subjective well-being. Addition-
ally, while high objective well-being is often associated with high transport emissions,
some neighbourhoods in London have below average emissions while maintaining high
well-being scores, showing that achieving low emissions and high well-being is possible.
Consequently, investing in well-connected, convenient, and affordable bus infrastructure,
in addition to making combined fares more affordable, may be key to providing low-carbon
transport in a socially just way.

4.3. International Applications

In the UK, these findings are specific to London, as neither its size nor its public
transport infrastructure are comparable to other cities. However, our findings may be
relevant to large cities worldwide. With one in eight people globally living in megacities
with more than 10 million people in 2018 [129], understanding urban transport emissions
from reduction and redistribution perspectives is becoming increasingly important. Our
research highlights, first, that understanding local contexts such as how existing infras-
tructure is being used and localised travel needs and access barriers for public transport
can be key in moving from private to public transport, and, second, that methods from
spatial statistics may be able to improve on more frequently used linear models when trying
to understand the relationships between emissions and social factors. At the same time,
high incomes have been linked to higher emissions transport internationally–particularly
to higher emissions from private and air travel [10,12,14,15,18,48,122]. This mirrors our
findings that reductions in flight and private transport emissions are needed to reduce
the global greenhouse gas footprint. Reducing transport footprints, therefore, needs to be
viewed not only from an emissions, but also an inequality lens.

4.4. Limitations

IO analysis comes with various data and analytical limitations [91,130,131], such as
uncertainty from using expenditure to represent quantity. We reduce this uncertainty by
using data on the number of flights taken, rather than cost. We also follow recommendations
from the literature to increase emission estimate robustness [85], including aggregating to
large neighbourhoods and combining expenditure surveys from 2 years; however, despite
these considerations, we are generating population data from a household sample and thus
introducing bias.

A further data uncertainty comes from using data from various years. Data from the
census are taken from 2011, income data, emission data, and public transport data are from
2015, and well-being data from 2013. While this adds some uncertainty, we have ensured
that emissions data are calculated for the last year that other data are available, such that the
independent variables come chronologically before the dependent variables. Moreover, the
UK census is only updated every 10 years, under the assumption that demographic changes
within a smaller timeframe are relatively small. Finally, as we analyse data from 983 MSOAs,
we assume that, even though some neighbourhoods may see demographic changes within
the 2011–2015 time period, the majority of neighbourhoods remains constant and thus,
trends are consistent between these time periods.

Moreover, this analysis is exploratory. While our relationships show correlations
and predictive value, estimates do not infer causality. Future research investigating these
relationships under a carefully controlled causal framework can better assess whether the
associations and local variations we find here are correlational or causal.

Our findings may be linked to a further issue policy makers face: decreasing demand
of one product may increase total footprints as people may consequently have more money
for more carbon-intense activities [132]. Thus, understanding household emission patterns
overall and not just for transport may be most useful in guiding campaigns and policies.
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Finally, geographic research can suffer from various limitations. One common problem
in spatial research is the Modifiable Areal Unit Problem (MAUP), which describes how
where spatial boundaries are drawn influences results) [133]. While research has shown that
the MAUP effect is often low for English census data and geographies, it can occur [134],
and may therefore be a point of uncertainty in this research. Secondly, making inferences
about individuals based on areal observation can result in ecological fallacies [135]. Thus,
the findings of this paper should be interpreted at a neighbourhood level and cannot be
projected onto individuals.

5. Conclusions

Understanding consumption-based emissions through a geographical lens is impor-
tant for understanding the links between GHG emissions and social factors. Especially
for advising a socially just transport policy, recognising spatial heterogeneity between
the relationships between those at risk of transport poverty and transport emissions is
invaluable. In this paper, we find that geographically weighted regression models improve
on linear models, when modelling the relationships between different social factors, infras-
tructural factors, and consumption-based transport emissions. We conclude, therefore, that
greater consideration must be given to the geographical component of consumption-based
emissions when assessing their links with social factors and their social drivers. Moreover,
we show how our analysis can highlight specific areas where different kinds of policy
interventions may be more effective. For instance, we find that links between car emissions
and distance to workplace are spatially varied, indicating that policy aiming to reduce
emissions from commuting may be most effective when targeting areas of high positive
links between these variables. While our current analysis is exploratory, future research
could investigate this under a causal inference framework, evaluating the levels of spatial
heterogeneity for social drivers of emissions. In light of local actors being increasingly
involved in climate change mitigation efforts, this analysis also highlights the potential local
actors have in creating context-based policies. Finally, our research highlights both consis-
tencies and inconsistencies with previous research looking at emissions and social factors.
We highlight where findings are in line with previous research and can be represented by a
global model, and where local, spatial statistical approaches are needed. Bringing together
industrial ecology and spatial statistics, as this paper shows, can provide new insights into
consumption-based emission patterns, which are overlooked by non-geographic analysis.
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Appendix A

Table A1. Product aggregation description from COICOP 4.

COICOP 4 Code and Description New Category

7.1.1.1 New cars/vans outright purchase Car/van purchases and motoring oils
7.1.1.2 New cars/vans loan/HP purchase Car/van purchases and motoring oils
7.1.2.1 Second-hand cars/vans outright purchase Car/van purchases and motoring oils
7.1.2.2 Second-hand cars/vans loan/HP purchase Car/van purchases and motoring oils
7.1.3.1 Outright purchase of new or second-hand motorcycles Car/van purchases and motoring oils
7.1.3.2 Loan/HP purchase of new or second-hand motorcycles Car/van purchases and motoring oils
7.1.3.3 Purchase of bicycles and other vehicles Other transport
7.2.1.1 Can/van accessories and fittings Car/van purchases and motoring oils
7.2.1.2 Car/van spare parts Car/van purchases and motoring oils
7.2.1.3 Motorcycle accessories and spare parts Car/van purchases and motoring oils
7.2.1.4 Bicycle accessories and spare parts Other transport
7.2.2.1 Petrol Car/van purchases and motoring oils
7.2.2.2 Diesel oil Car/van purchases and motoring oils
7.2.2.3 Other motor oils Car/van purchases and motoring oils
7.2.3.1 Car of van repairs, servicing and other work Other transport
7.2.3.2 Motorcycle repairs and servicing Other transport
7.2.4.1 Motoring organisation subscription Other transport
7.2.4.2 Garage rent other costs, car washing Other transport
7.2.4.3 Parking fees, tolls and permits Other transport
7.2.4.4 Driving lessons Other transport
7.2.4.5 Anti-freeze, battery water, cleaning materials Other transport
7.3.1.1 Rail and tube season tickets Rail
7.3.1.2 Rail and tube other than season tickets Rail
7.3.2.1 Bus and coach season tickets Bus
7.3.2.2 Bus and coach other than season tickets Bus
7.3.3.1 Combined fares other than season tickets Combined fares
7.3.3.2 Combined fares season tickets Combined fares
7.3.4.1 Air fares within UK Flights
7.3.4.2 Air fares international Flights
7.3.4.3 School travel Other transport
7.3.4.4 Taxis and hired cars with drivers Other transport
7.3.4.5 Other personal travel and transport services Other transport
7.3.4.6 Hire of self drive cars, vans, bicycles Other transport
7.3.4.7 Car leasing Car/van purchases and motoring oils
7.3.4.8 Water travel, ferries and season tickets Other transport
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Appendix B

Figure A1. Map of motorways in London. Notes: Road data come from OpenStreetMap, downloaded
via https://www.geofabrik.de (accessed on 14 February 2022).

Figure A2. Maps showing spatial above and below median emission and well-being patterns.

https://www.geofabrik.de
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