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A B S T R A C T

The Sentinel-1 SAR dataset provides the opportunity to monitor floods at unprecedentedly high spatial and
temporal resolutions. However, the accuracy of the flood maps can be affected by the image polarization, the
flood detection method used, and the reference data. This research compared change detection and histogram
thresholding methods using co-polarization (VV) and cross-polarization (VH) images for flood mapping in the
Akaki catchment, Ethiopia, where Addis Ababa city is located. Reference data for the accuracy assessment were
collected on the satellite overpass date. A new method, Root of Normalized Image Difference (RNID), has been
developed for change detection. Multi-temporal flood maps using the best performing method and image po-
larization were generated from April to November of 2017–2020. Better accuracy was observed when using the
RNID method on the VH polarization image with an overall accuracy of 95% and a kappa coefficient of 0.86.
Results showed that flooding in the Akaki commonly begins in May and recedes in November, but flooding was
most frequent and widespread from June to September. Irrigated land and built-up area accounted for 1057 ha
and 544 ha of the inundated area, respectively. Several major roads in the study area were also affected by the
floods during this period. Our findings indicate that the S-1 images were very useful for flood inundation map-
ping, the new change detection method (RNID) performed better in urban and peri-urban flood mapping, but the
accuracy of the flood map significantly varied with the flood detection method and the image polarization.
1. Introduction

Ground-based monitoring of flood inundation is challenging due to
site accessibility (Bayik et al., 2018), the rapidly varying nature of floods,
and the limited capacity of national hydrological services, especially in
low- and middle-income countries. However, remote sensing technolo-
gies can overcome these challenges to aid in Near Real-Time (NRT)
monitoring of floods (Li et al., 2018a). In particular, radar satellites
overcome the limitation of optical satellites for flood hazard monitoring
at NRT conditions (Surampudi and Yarrakula, 2019). They can operate
day and night and under all weather conditions (Zeng et al., 2020).

The Sentinel-1 (S-1) Synthetic Aperture Radar (SAR) is an active
remote sensing (RS) satellite that records the signal backscatter intensity
generated from the land surface (Devries et al., 2020). The S-1 data is
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available free of charge. Flood surfaces, under the radar, generate a
specular (small) signal backscatter intensity that can be easily detected
on an S-1 image (Conde & De Mata Mu~noz, 2019). However, the
small-signal backscatter from the flooded surface can be hidden by the
double bounce (DB), dielectricity (blocking signal backscatter flow
through the soil), and vegetation submerged during the flood (Mason
et al., 2021; Tsyganskaya et al., 2018). These effects can cause the al-
gorithm to miss actual floods. A steep topography affects the radar
viewing angle, creating a shadow on the radar image (Zeng et al., 2020).
Sandy areas produce low signal backscatter intensity similar to the
flooded surface (Martinis and Plank, 2018). This causes false positive
floods since the non-flood affected area can be detected as a flood. False
floods can also be reported on the image by the effect of speckle noise
(Conde & De Mata Mu~noz, 2019).
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The influence of the factors mentioned above can be large in highly
heterogeneous urban areas (Chini et al., 2019; Liang and Liu, 2020).
Consequently, reducing their effect on flood detection using the S-1 SAR
dataset is an ongoing research challenge. For example, Li et al. (2019)
applied the Interferometric (InSAR) coherence-based change to extract
the flooded pixels from the phase difference observed between consec-
utive acquisition dates; their approach reduced errors caused by the DB.
Tsyganskaya et al. (2018) implemented the Global Urban Footprint
(GUF) dataset to mask the urban areas that can generate DB and, Anusha
& Bharathi (2020) applied local thresholds to reduce the effects of het-
erogeneous land use in flood detection. Height above Nearest Drainage
(HAND) and terrain slope masking have been applied to reduce the
topography effect by masking the pixels situated on the high elevated and
steep sloped areas (Clement et al., 2017).

Based on the level of user involvement in training the algorithm, the
flood mapping methods using the S-1 SAR dataset can be categorized as
automatic (Liang and Liu, 2020), semi-automatic (Andreoli and Yesou,
2007) and manual (Zhang et al., 2020). These three methods may use
either multi-temporal S-1 dataset (a reference and flooded image), e.g.
change detection, Red Green Blue (RGB) composition methods (Conde &
De Mata Mu~noz, 2019); or single (target) image (Schlaffer et al., 2015)
analysis using histogram thresholding, fuzzy logic, regional growing,
texture analysis as listed in (Clement et al., 2017) to detect the flooded
pixels.

Histogram thresholding is a widely used method for flood mapping
due to its flexibility, simplicity, and effectiveness (Gumma et al., 2020).
The bi-modal histogram of signal backscatter intensity is expected from
the combination of flooded and non-flooded surfaces. A threshold is
identified at the intersection of the two overlapping histograms to
distinguish the backscatter intensity generated from the flooded and
non-flooded land surfaces. The pixels with signal backscatter intensity
less than the threshold value are categorized as the flooded pixels. To
simplify the estimation of the threshold value, Liang & Liu (2020)
divided their study area into many small parts to make sure that the
analysis area proportionally covered the water and land surfaces. Tavus
et al. (2018) and Manjusree et al. (2012) determined the average signal
backscatter intensity generated from different water bodies to optimize
the value of a flood threshold. However, determining the threshold is
challenging due to the small flood depth at the interface of the flooded
and non-flooded surface that may affect the signal backscatter intensity.

In the change detection method, dual images are acquired from a dry
season (reference) and flooded (target) images to detect signal back-
scatter intensity changes between the two conditions. The maximum
change is found at the interface of the flooded and non-flooded area
(Clement et al., 2017). Hence the change detection method is combined
with thresholding and other clustering algorithms to detect the flooded
(target) pixels (Tavus et al., 2018). The image difference (Clement et al.,
2017; Long et al., 2014), image rationing (Andreoli and Yesou, 2007),
and log-ration (Bayik et al., 2018; Li et al., 2018a) are the most
commonly usedmethods due to their ease of detection of the land surface
changes obtained from the reference and target images (Long et al.,
2014). By using dual image methods, the permanent sandy area, DB,
shadow and layover generated from both reference and flooded images
have minimum effect when detecting the flooded pixels (Li et al., 2018a).
However, the selection of the reference image affects the performance of
the change detection method for flood inundation mapping (Schlaffer
et al., 2015). Nevertheless, optimal difference and a reduced soil mois-
ture effect are obtained when applying a flood free reference image (Li
et al., 2018a). For instance, Hostache et al. (2012) determined the
non-flooded reference image based on the irregularity index observed on
the histogram of signal backscatter intensity of the radar image. A suit-
able reference image has low irregularity index. Based on statistical
analysis, the image which contains close to the median backscatter in-
tensity of all the candidate images can be selected as the better reference
image in flood detection (Clement et al., 2017; Hostache et al., 2012).
However, the median value of the signal backscatter intensity of the
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candidate images can be affected by different factors. Tavus et al. (2018)
and Reksten & Solberg (2019) randomly selected the reference image
acquired before the flood (target) image. These studies did not evaluate
the effects of the reference image on the accuracy of the flood map.
Hence, the flood inundated area may be over or underestimated because
of the selected reference image.

The accuracy of a flood map can be determined qualitatively (Long
et al., 2014) and some studies did not report the accuracy of the flood
map they generated (Ganji et al., 2019; Tavus et al., 2018). Most studies
applied a secondary dataset, for instance, optical satellite image (Clement
et al., 2017; Long et al., 2014), modelled flood map, land cover map,
community information (Dadhich et al., 2019), or Ground Control Points
(GCPs) collected from GeoEye-1 high-resolution airborne imagery to
validate the S-1 dataset for flood mapping (Zeng et al., 2020; Schlaffer
et al., 2015). These secondary datasets can introduce additional errors
that are not present in the S-1 dataset at the Near Real-Time condition.
For instance, Kianfar (2019) used Sentinel-2 (S-2) optical satellite images
acquired two days before S-1A and four days after S–1B. Martinis& Plank
(2018) collected the optical satellite image that was acquired five days
later than the S-1 overpass. Hence, the time difference between the
acquisition of the S-1 and the secondary reference data introduces
additional errors in evaluating flood map accuracy. Some studies re-
ported the accuracy, but did not report the various error components to
determine whether false or missed floods caused the primary error. For
instance, Liang & Liu (2020) reported high overall accuracies of greater
than 97% with better detection accuracy of non-flooded surface than the
target flooded area. Zeng et al. (2020) obtained 89.9% overall accuracy
and kappa coefficient of 0.681.

The main objective of this study is the evaluation and comparison of
methods and image polarizations of the S-1 SAR dataset for flood extent
mapping in urban and peri-urban areas applied to the Akaki catchment
that feeds the Awash Basin of Ethiopia. The Akaki has a large economic
significance for the country given the location of the capital city, Addis
Ababa. The evaluation of the different methods is performed using in-situ
data collected on the date of the satellite overpass. We also evaluate the
spatial and temporal variability of flood occurrence from April to
November of 2017–2020, to determine the flood affected major roads in
the Addis Ababa city and flooded Land Use Land Cover (LULC) classes in
the Akaki catchment.

2. Material and methodology

2.1. Description of the study area

The Akaki is a catchment of the Upper Awash River sub-basin. Addis
Ababa city, which is experiencing a rapid growth, is situated in the Akaki
catchment. Three water supply reservoirs (Dire, Legedadi, and Gefersa)
are located in the upstream part, and the Aba Samuel reservoir (hydro-
power plant) is situated at the outlet of the catchment (Fig. 1). The Akaki
has a catchment area of about 1500 km2 with an elevation range from
2,028 m (a.m.s.l) to 3,370 m (a.m.s.l). The average terrain slope of the
Akaki catchment is 10.6%, with 25% of the catchment area steeply
sloping (8–15% slope).

Two main rivers, which are the Big Akaki and Little Akaki, drain the
Akaki catchment to feed the Aba Samuel reservoir. The main tributaries
of Big Akaki River are the Bulbula and Kebena rivers, with the former
draining the north-east peri-urban part of the catchment and the latter
draining the north part of the catchment (the old part of the Addis Ababa
city). The Bulbula River is fed by the Legedadi River from its most up-
stream part, which hosts the small towns of Dire, Legedadi and Sendefa.
The flood release from the Legedadi and Dire reservoirs is conveyed by
the Legedadi River towards the Bulbula River and then towards the
floodplain of the Big Akaki River. The Little Akaki River drains the
northwest part of the catchment. It conveys water released from the
Gefersa reservoir towards the floodplains and then feeds the Aba Samuel
reservoir.



Fig. 1. Location map of the study area: - (a) the boundary of Ethiopia and Awash River basin, (b) the elevation, and drainage of the Akaki catchment where the Addis
Ababa city is located (red polyline), and (c) detailed base map that is digitized from Google Earth imagery and GPS tracking of features at the downstream flood-prone
area of the catchment around Tirunesh Beijing Hospital (TBH).

T.W. Bekele et al. Natural Hazards Research 2 (2022) 97–110
The Akaki catchment has seven main land use land cover (LULC)
classes: built-up area, rainfed-agricultural, irrigated agricultural, bare
land, grassland, mixed forest, and water body. A large part of the
catchment is covered by the rainfed agricultural land (33.98% of the
catchment area) and the built-up area accounts for 25.55% of the
catchment area. The detailed area coverage of each LULC class within the
Akaki catchment is shown in Table 1. The asphalt roads, resident, com-
mercial, industrial, and paved land are categorized as built-up area due to
the similarity in their hydrological response (runoff generation). The
irrigated land is mostly found at the downstream stretches of both the
Little and Big Akaki Rivers. The method used to detect the land cover
classes is described in section 2.5.

The main wet season (called Kiremt) of the Akaki catchment is only
four months, June to September whereas, the Belg (small rainy season) is
from mid-February to April. The catchment receives the maximum
Table 1
LULC classes of the Akaki catchment as classified using the Sentinel-2 image.

LULC classes Land Use Land Cover (LULC)

Area (ha) (%) of Akaki catchment

Rainfed agriculture 50,034 33.98
Built-up 37,616 25.55
Bare land 8217 5.58
Forest area 19,247 13.07
Grassland 26,277 17.85
Irrigated 4965 3.37
Water Body 869 0.59
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monthly rainfall (250 mm–300 mm) in July and August. The mean
annual rainfall of the catchment is 1254 mm. For further details on the
climate of the Akaki catchment, reference is made to Risi et al. (2020);
Demlie et al. (2007).

2.2. Datasets

In this study, 80 pre-processed (for thermal and border noise removal,
radiometric calibration, orthorectification and georeferencing) S-1 SAR
images were accessed and analyzed in Google Earth Engine (GEE). These
images were acquired from April to November of 2017–2020 for multi-
temporal flood extent mapping. The S-1 satellites were launched on
April 3, 2014 (S-1A) and April 25, 2016 (S–1B). S-1A and S–1B are
positioned at a 180� phase difference to operate over the land surface
with 6 day intervals over Europe (Li et al., 2018a), but at 12 day intervals
for the rest of the earth surface (Devries et al., 2020). The S-1 dataset is
employed in different image modes: Interferometric Wide swath (IW),
Stripmap (SM), Extra-Wide swath (EW), and Wave Mode (WM). The IW
S-1 dataset is suitable for land observation and flood monitoring (Conde
& De Mata Mu~noz, 2019). It has a wide swath of 250 km, with a
resampled spatial resolution of 10 � 10 m. Based on the direction of the
transmitted microwave radiation and reception of the signal backscatter
intensity, the IW dataset has different combinations, co-polarization
(vertical transmit-vertical receive, VV) and cross polarization (vertical
transmit-horizontal receive, VH) (Kianfar, 2019).

The Sentinel-2 (S-2) optical image satellite was launched by the Eu-
ropean Space Agency (ESA). Its two missions are S-2A, launched on June
23, 2015 and S–2B, launched on March 7, 2017. S-2A and S–2B are
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positioned at 180� phase difference. These satellites have 12 spectral-
bands at a 10–60 m horizontal resolution (Nguyen et al., 2020). Both
satellites have a revisit interval of 5 days over non-equatorial regions.

We obtained the roads network map of the Addis Ababa city from the
OpenStreetMap data sources https://extract.bbbike.org/.

We used the Global Surface Water (GSW) dataset to mask the per-
manent surface water bodies from the S-1 image. GSW was developed by
the Joint Research Center (JRC) of the European Commission using all
Landsat image available in GEE. The GSWwas developed from 3,865,618
scenes of the Landsat 5, 7, 8 satellite, with a 30 m resolution covering
March 16, 1984 to the present. The images were classified into water and
non-water bodies using change detection approaches applied between
the time periods of 1984–1999 and 2000–2016 (Pekel et al., 2016).

A 10m horizontal spatial resolution DEM and administrative bound-
aries of the sub-areas of Addis Ababa city were collected from the
Ethiopia Geospatial Information Institute (EGII). The DEMwas generated
by a photogrammetry technique with Ground Sampling Distance (GSD)
of 25 cm and the maximum expected vertical accuracy is double the GSD
(50 cm) (Personal communication with the EGII staff). The elevation
dataset was used to mask the pixels situated on steep sloping areas to
discard false alarms during flood detection from the S-1 image (Clement
et al., 2017; Zhang et al., 2020).

2.3. Methods

Ground Control Points (GCPs) were systematically collected from the
flooded and non-flooded surface areas to evaluate the accuracy of the
flood inundation maps that were generated using the S-1 dataset. To
match the S-1 image resolution, the GCPs were collected from a mini-
mum flood inundated area of 10 � 10 m. However, the GCPs for the non-
flooded area were collected at the edge of the flooded area and at a
distance 10–30 m (up to 3 pixels) further from the edge of the flooded
surface. The flood extent of September 9, 2020, which was also the sat-
ellite overpass date of S-1, was found to be large enough, and hence was
used for validation of the flood inundation map that was extracted from
the S-1 image. In this study, 233 GCPs were collected on September 9,
2020 (179 GCPs from flooded and 54 GCPs from non-flooded surface). In
addition, 433 GCPs were collected from six different land cover classes in
December 2020 to evaluate the accuracy of LULCmap that was generated
from the S-2 dataset by using machine learning algorithms in GEE.

JavaScript was used to implement the algorithm in GEE and an
Application Programming Interface was used to access, process and
detect floods from the S-1 dataset (Mutanga & Kumar, 2019). The GCPs
collected from the field at the date of the satellite overpass were used to
evaluate the accuracy of the flood maps detected from the S-1 image. We
compared the change detection and histogram thresholding methods for
flood detection. Both methods were applied separately with the VV and
VH polarization of the S-1 datasets. However, speckle noise is a common
problem to overcome before using the S-1 SAR dataset for flood detec-
tion. Here, we used the median statistical method in a small window size
of 3 � 3 to minimize the effect of high signal backscatter variability and
to prevent information loss from important features. This median filter
method is not influenced by the extreme signal backscatter intensity
generated from the flooded surfaces (Andreoli and Yesou, 2007; Bhatt
et al., 2017).

2.3.1. Flood inundation mapping
For the histogram thresholding method, the signal backscatter in-

tensity generated from a single target (flooded) image was analyzed to
detect the flood affected pixels by applying a threshold value. Two his-
tograms of signal backscatter intensity are expected from the S-1 image
collected in the flood season, (i) a histogram of signal backscatter in-
tensity generated from the land surface (containing high signal back-
scatter intensity) and (ii) a histogram of signal backscatter intensity
generated from the land surface (containing high signal backscatter in-
tensity). Then, the flood threshold value that was located inside the
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intersection of the two histogram peaks was used to distinguish the
flooded and non-flooded surface pixels. However, due to the non-
proportional area coverage of the flooded and non-flooded area that
was obtained at the date of S-1 satellite overpass (September 9, 2020) in
the Akaki catchment, the generated histogram was dominated by the
signal backscatter intensity of the non-flooded surface. Hence, firstly we
estimated the threshold value from the literature (Ganji et al., 2019;
Bhatt et al., 2017; O’Hara et al., 2019). Then, the threshold value was
adjusted based on the expert knowledge of the boundary between the
flooded and non-flooded area as observed during the field visit on the
date of the satellite overpass. Therefore, the flood threshold value was
adjusted until an optimal threshold value and an acceptable accuracy are
obtained with reference to the GCPs collected and until the pattern of the
flood map resembles what was observed in the field. The method was
applied separately for co-polarization (VV) and cross-polarization (VH)
of the S-1 dataset. The accuracy of the flood maps generated from the two
polarizations was compared using an error matrix.

In this study, a new change detection method called the root of
normalized image difference (RNID) was developed to retain the char-
acteristics of the S-1 radar sensor in the flooded pixel. The previous
change detectionmethods (Clement et al., 2017) can detect changes in all
features during the time-period between the acquisition date of the
reference image and the target image. Thus, the methods may not isolate
the change by flooding from the changes by other factors. This led to the
generation of additional false flood alarms. The limitation of these pre-
vious change detection methods in reporting false flood alarms can be
overcome by the RNID method which is developed based on the as-
sumptions that feature that generate false flood alarms can be identified
and eliminated by using dry and wet season images. It is assumed that the
pixels of the S-1 image affected by flooding have lower signal backscatter
intensity than the pixels of the dry season (reference) image. Therefore,
only the pixels of the target image which have a lower signal backscatter
intensity than the reference image can be detected as flooded.

The following steps were used when applying the RNIDmethod. First,
the flood (target) image (I2) was collected from the flooded season. The
reference image (I1) was then selected by following the method applied
in (Hostache et al., 2012). The candidate reference images were acquired
for the driest month i.e. January of 2017–2020. Then the image contains
minimum irregularity index and has a small signal backscatter variability
was selected as the reference image. The irregularity index is used to
determine the variety of a pixel’s signal backscatter intensity value from
the given image (Hostache et al., 2012). It is determined by the difference
between 95% and 5% inferred pixel’s signal backscatter intensity values
of the image. From the common characteristics of the S-1 dataset, the
image from the flooded period has a large signal backscatter variability
(i.e. large irregularity index) relative to the image of the dry period, since
the signal backscatter intensity generated from the flooded pixels greatly
varies from that generated from non-flooded pixels.

Two different reference images that contained a minimum irregu-
larity index were selected to evaluate the effects of the reference image
on the accuracy of flood inundation maps. These reference images were
selected (i) from the candidate images that contained a minimum ir-
regularity index from January of 2017–2019 and (ii) January of 2020
that was acquired from the same year as the target image. Therefore, in
this study, we selected the dry period image that has minimum irregu-
larity index as a reference image to detect flooded pixels using the change
detection method. The threshold was identified at the start of the high
signal backscatter variability observed on the histogram of the RNID
values to distinguish the flood affected pixels. The RNID equation reads: -

RNID¼ðI1� I2
I1þ I2

Þ0:5 3.1

where: - RNID is a change detection method developed in this study, I1 is
the signal backscatter intensity of the reference (dry) season image, and
I2 is the signal backscatter intensity of the flooded (target) image.

https://extract.bbbike.org/


1 https://www.tobiatube247.com/article-read.php?a¼1313.
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To select the best performing polarization of the S-1 data, the method
was applied separately for co-polarization (VV) and cross-polarization
(VH). The error (confusion) matrix was used to evaluate the accuracy
of the resulting flood inundation maps. The error matrix contains n x n
cells (rows and columns), where n is the number of land cover classes.
The column contains the GCPs of the land cover classes, and the row
contains the classified data using the satellite image. The diagonal ele-
ments in the matrix indicate the number of correctly classified pixels,
whereas the non-diagonal element indicates the number of incorrectly
classified pixels. The overall accuracy, producer’s accuracy, and user’s
accuracy were determined from the matrix (Zeng et al., 2020). Addi-
tionally, the agreement between the GCPs (reference data) and the
classified flood data was determined by the statistical analysis of the
kappa coefficient (Rwanga and Ndambuki, 2017; Nkomeje, 2017).

2.3.2. Multi-temporal flood mapping and analysis
Flooding occurs dynamically throughout a certain time duration,

whereas the satellite provides instantaneous data (snap-shot) at a regular
time interval. Hence, the satellite can miss flood information between the
acquisition dates, particularly with rapid urban flooding. However, the
multi-temporal nature of satellite data over long periods can provide an
adequate sample size to characterize the flood extent (Martinis and
Plank, 2018; Trigg et al., 2013). In the Akaki catchment, flooding
commonly occurs in the main rainy season from June to September.
However, it might occasionally extend outside the rainy season. The
flood inundation maps were generated from April to November of
2017–2020 (4 years) by using the best performing method and polari-
zation of the S-1 dataset. The frequency of flood occurrence was esti-
mated for each pixel to show the seasonal and inter-annual flood
variations. The flooded pixels were categorized as ‘rarely’, ‘sometimes’,
‘moderately’, ‘mostly’ and ‘always’ affected by flooding. These categories
were determined as follows: (i) a binary map was generated for each
image acquired in the analysis period with a value of 1 indicating flooded
pixel and 0 indicating non-flooded pixel; (ii) frequency of flood occur-
rence was estimated by aggregating (through addition) of the binary
maps over the analysis period; and (iii) a frequency value classes were
applied to categorize the flood affected pixels into the five flood occur-
rence frequency classes. For this study, the pixels were categorized as
follows: “always affected”when the flood occurrence exceeds 90% of the
time; “mostly affected” when the flood occurrence is between 60% and
90%; “moderately affected” when the flood occurrence is between 40%
and 60%; “sometimes affected” when the flood occurrence is between 10
and 40% of the time; and “rarely affected” if the flood occurrence is less
than 10% of the time. To show the spatial-temporal frequency of flood
occurrence the domain area selected was at the downstream of the study
area as it is frequently affected by flooding.

2.3.3. Land use land cover (LULC) classification
The pre-processed S-2A level-2A dataset was used to generate a LULC

classification dataset with UTM/WGS84 projection/datum. The Euro-
pean Space Agency (ESA) develop and provide the Sentinel-2 tool-box
that can be used to pre-process the S-2 dataset. Already, pre-processed
and atmospherically corrected to obtain the bottom atmosphere reflec-
tance (BOA), the S-2 image dataset was loaded into GEE (Verde et al.,
2020). We mapped the irrigated land using the image acquired during
the irrigation season and other land cover classes including the rain-fed
agricultural land were mapped using the image which was acquired
during the rainy season. The two maps were merged using overlay
analysis to enhance the accuracy of the LULC map. A supervised classi-
fication was applied using the machine learning algorithms offered in the
GEE platform. The Classification And Regression Tree (CART), Naive-
Bayes and Support Vector machine (SVM) algorithms are commonly used
for LULC classification (Nguyen et al., 2020). The accuracy of these al-
gorithms was evaluated with GCPs as a reference and by using an error
matrix to select the best performing. The GCPs were collected from six
different land cover classes during the field trip to the catchment.
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However, the LULC map detected from the S-2 dataset does not capture
the detail of roads that exist in the Akaki catchment and Addis Ababa
city.

2.3.4. Flood exposure assessment
The flood exposure of the major roads of Addis Ababa city and the

LULC classes of the study area were also assessed. During the field work
to collect the GCPs, many streets were flooded in Addis Ababa city due to
the extreme rainfall.1 The poor performance and blocking of the city’s
drainage system is one of the major reasons for the occurrence of this
street flooding. This flash flooding usually lasts between a fewminutes to
hours and occasionally for a few days. The S-1 SAR satellite's ability to
capture such flood affected roads is evaluated. The flood occurrence
maps that were detected from the S-1 image were overlaid on the Google
earth image to visually identify the flood affected roads. However, the
flood occurrence map was intersected with OpenStreetMap data using
overlay analysis in GIS, to determine the length of flood affected roads in
Addis Ababa city.

3. Result and discussion

In this section, the results are presented and interpreted for: (i) the
accuracy of the flood maps generated using the two methods as sepa-
rately applied to two polarizations of the S-1 data, (ii) the frequency of
flood occurrence in the Akaki catchment from April to November of
2017–2020 and, (iii) the flood affected roads in Addis Ababa city and the
different LULC classes in the Akaki catchment.

3.1. Accuracy assessment

The accuracy of flood inundation maps that was detected using his-
togram thresholding method on the S-1 VH polarization data was
determined using error matrix. These flood maps were detected by
applying different threshold values which are (�20 dB, �21 dB, �22 dB,
and �25 dB) as shown in Fig. 2. The flood extents and their accuracies
varied for each threshold value. Varying the threshold values caused the
overall accuracy of the flood map to vary from 85 to 88% and the kappa
coefficient varied from 0.66 to 0.71. The optimal threshold value is found
as �21 dB as it produced an overall accuracy of 88% and kappa value of
0.71. The error matrix for the best performed threshold value (�21 dB)
was presented in this study, the detailed description is presented in the
next paragraph.

Table 2 shows the accuracy of the flood inundation map that was
detected using the histogram thresholding method on the VH polariza-
tion data. The optimal flood threshold value was estimated as �21 dB,
which resulted in the highest accuracy. The histogram thresholding
method has a user accuracy of 87.7% for the flooded pixel and 90.7% for
the non-flooded pixels as shown in Table 2. This indicates that 87.7% of
the flooded pixels on the map are flooded as observed on the ground. We
observed the largest commission error at the boundary of the flooded and
non-flooded surface and where the flood-depth is low (<20 cm).
Whereas, 96.91% of the flooded area on the ground was identified as
flooded on the satellite derived map (producer’s accuracy¼ 96.91%) and
a high omission error was observed in the non-flooded surface. Generally,
the accuracy of flood inundation maps that were generated using the
histogram thresholding method on the VH polarization can be rated as
moderate.

The accuracy of the flood inundation map which was detected using
histogram thresholding method applied on the VV polarization data is
shown in Table 3. The optimal threshold value was determined as�15 dB
that resulted in the best accuracy. It shows that 74.3% of the flooded
pixels detected on the map matched with the actual flood on the ground.
A high commission error was observed near the interface of the flooded

https://www.tobiatube247.com/article-read.php?a=1313
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Fig. 2. The flood inundation maps detected using the method of Histogram thresholding (HT) by applying various threshold values. In the legend, “One …” indicates
the flooded pixels were detected only when one of the threshold values was specified, “Two …” indicates detection by two of the threshold values, and so forth.

Table 2
Error matrix of the flood inundation map of 9 September 2020 using the VH
polarization and the histogram thresholding method.

Classified
Reference data (GCPs)

Flooded Non-
flooded

P
User's
accuracy

Commission
error

Flooded 157 22 179 87.7% 12.3%
Non-flooded 5 49 54 90.7% 9.3%
P

162 71 233
Producer's
accuracy

Omission error

96.91
3.09

69.01
30.99

Table 3
Error matrix of the flood inundation map of September 9 2020, which was
produced by using VV polarization and the histogram thresholding method.

Classified
Reference data (GCPs)

Flooded Non-
flooded

P
User's
accuracy

Commission
error

Flooded 133 46 179 74.30% 25.7%
Non-Flooded 3 51 54 94.44% 5.56%
P

136 97
Producer's
accuracy

97.79% 52.58%

Omission error 2.21% 47.42%
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surface and the non-flooded surface that have a shallow flood depth.
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Most of the flooded pixels on the ground were detected as the flooded
surface on the satellite map (producer’s accuracy ¼ 97.7%). High omis-
sion error was found in the non-flooded surface since the reference GCPs
collected from the small flood depth were detected as non-flooded. The
overall accuracy of the flood map which was generated using the histo-
gram thresholding method on the VV polarization data is 79% and the
kappa coefficient is 0.53.

The change detection (RNID) method requires two satellite images
(reference and target or flooded image) to detect the flooded area. Here
we identified 10 images from the driest month (January) from 2017 to
2020 as a candidate reference image. However, the irregularity index
was found to be at a minimum for the reference image of January 6,
2019. For the sake of comparison, we also used the image of January 25,
2020, which has the minimum irregularity index in 2020, as a reference
image.

Fig. 3 shows the flood inundation maps detected using the RNID
method by applying these two different reference images to evaluate its
impact on the flood inundation maps. There is a moderate difference
observed between the flood map generated using the two reference im-
ages, with a large difference observed for small flood extents.

Table 4 shows the error matrix of the flood map generated using the
change detection method on the VH data with the January 6, 2019
reference image. The flood map has a user accuracy of about 95% for the
flooded pixel and 94% for the non-flooded pixels. This is equivalent to a
commission error of only 6%. There was a large difference on the pro-
ducer’s accuracy of the non-flooded (85%) and flooded (98.3%) pixels,
with higher accuracy for the latter. The overall accuracy of the flood map
is 95%, with a kappa statistic coefficient of 0.86, which indicates strong
agreement between the classified and reference dataset. Generally, the



Fig. 3. September 9, 2020 flood inundation maps detected using two different reference images acquired on January 25, 2020 and January 6, 2019. In the legend,
“Both” represents pixels are detected as flooded when applying both reference images, whereas “Ref 06012019” and “Ref 25012020” represent floods detected by the
respective reference images.

Table 4
Error matrix of the flood inundation map of September 9 2020 by using the
method of change detection (Root of Normalized Image Difference) on the VH
polarization and image of January 6 2019 as reference.

Classified
Reference data (GCPs)

Flooded Non-
flooded

P
User's
accuracy

Commission
error

Flooded 170 9 179 94.97% 5.03%
Non-flooded 3 51 54 94.4% 5.56%
P

173 60 233
Producer's accuracy 98.3% 85%
Omission error 1.7% 15%

Table 5
Error matrix of the flood inundation map detected using change detection (Root
of Normalized Image Difference) method on the VV polarization of S-1 dataset.

Classified
Reference data (GCPs)

Flooded Non-
flooded

P
User's
accuracy

Commission
error

Flooded 152 27 179 84.9% 15.1%
Non-Flooded 4 50 54 92.6% 7.4%
P

156 77
Producer's
accuracy

97.4% 64.9%

Omission error 2.6% 35.1%
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overall accuracy of the flood inundation maps that were produced using
the RNID method on the VH polarization was greater than 95% and that
can be rated as almost perfect (Rwanga and Ndambuki, 2017). Whereas,
by comparison, applying the January 25, 2020 reference image result in
an overall accuracy of 94% and kappa coefficient of 0.84.

Table 5 shows the accuracy of flood inundation map produced by the
RNID method applied to the VV polarization data. The producer’s ac-
curacy is low (64.9%) for the non-flooded area and the omission error is
35.1%, which indicates that most of the flooded pixels on the ground
were detected as non-flooded in the map. The GCPs which are charac-
terized by shallow depths (<20 cm) were detected as non-flooded area.
The user accuracy is 84.9% which indicates that the flooded pixels
detected on the map mostly matched with the flood affected pixels on the
ground. The overall accuracy of the flood inundation map is 86.7% and
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kappa coefficient is 0.67. For the RNID method applied to the VV po-
larization data, this indicates only a moderate agreement between the
classification and what is on the ground during the flood event.
3.2. Flood occurrence

Flood inundation maps were generated for the flood season from
April to November over four years (2017–2020) using the best per-
forming method (i.e. RNID method), VH polarization data and the image
of January 06, 2019 as the reference image. The following sub-sections
describe the interpretation of the maps.

3.2.1. Frequency of flood occurrence
In Fig. 4A and Fig. 4B, the frequency of flood occurrence is shown for



Fig. 4(A). Monthly frequency of flood occurrence maps detected in April (a) to July (d) from 2017 to 2020 left to right sequence shown at the downstream of
the catchment.
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the flood season that stretches from April (left top) to July (right bottom)
and August (left top) to November (right bottom) of 2017–2020,
respectively. We focused mainly on the downstream part of the catch-
ment where flooding is frequent and widespread, as observed during the
field visit. In April, the flood extent was small and concentrated close to
the Aba Samuel reservoir. In May, small size flooded pockets started to
appear along the Little Akaki and Big Akaki rivers. The flood pockets then
connected to form a more extensive flooded surface in June. Small
pluvial floods were also detected in the area situated between the Big and
Little Akaki River. In July, the flood extent increased by a large amount
compared to that of the earlier months. The flood stretched along the Big
104
Akaki riverside from the Tirunesh Beijing Hospital (TBH) to the Aba
Samuel reservoir. Additionally, an increased extent of pluvial flood was
observed in the area between the Big and Little Akaki riversides.
Frequent flooding was detected in the area that is situated downstream of
Kilinto prison. Along the little Akaki riverside the flood extended from
the area around the new railway (rare flood) to the Aba Samuel reservoir
(frequent flood). Near the new railway, the residents and their livestock
were affected by the flood that occurred in July.

In August, the riverine and pluvial floods contracted compared to the
flood extent of July. Still frequent floods were observed inside the
meandering section of the Big Akaki river which is situated downstream



Fig. 4(B). Monthly frequency of flood occurrence maps detected in August (e) to November (h) from 2017 to 2020 left to right sequence shown at the downstream of
the catchment.
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of the rail station. Rare flooding was detected along the Little Akaki
riverside. However, frequent flood affected areas were observed at the
most downstream parts which are situated close to Aba Samuel reservoir.
In September, the pluvial flood which was observed in the previous
month disappeared and the inundation extent decreased along the Big
and Little Akaki rivers. A low frequency flood still occurred at the new
railway along the downstream stretch of the Little Akaki River. In
October, new flood areas were not detected, whereas the existing riverine
and pluvial flooding were highly reduced along both Big and Little Akaki
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riversides. The floods of Akaki catchment receded in November except
for small flood pockets inside the deepest and meandering section of the
river.

Fig. 5 shows inter-annual flood extent variability that was detected
per twelve-day interval of S-1 overpass time from April to November of
2017–2020. In the Akaki catchment, a large flood extent was detected on
July 22, 2018 which inundated 0.6% of the total catchment area. There
was also a large flood in June 2018 which covered 0.39% of the catch-
ment area, whereas an unusual large flood extent was observed in



Fig. 5. Temporal variation of the flood extent in the Akaki catchment detected from April to November of 2017–2020.
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October 2017, which is outside themain rainy season. The flood extent in
July and August 2020 covered 0.26% and 0.19% of the Akaki catchment
area, respectively.

The flood occurrence frequency map for the period from April to
November of 2017–2020 is shown in Fig. 6. Most of the inundated area
was observed downstream of the Addis Ababa to Adama expressway.
During a visit to the study area in the summer of 2020, we observed that
Fig. 6. Flood inundation extent and frequency of flood occurrence at the downstream
2017–2020. See the legend of Fig. 2 for the features on the map.
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the community’s mobility and their livestock were highly affected by
these floods. Along the Big Akaki river, the pumps, which are used to
deliver drinking water to the city, are shown in the map. These pumping
sites are prone to flooding particularly in terms of affecting access to the
sites. Most parts of the flooded surface were affected by rarely occurring
floods. However, areas in the meandering section of the river were
affected by frequently occurring floods.
part of the Akaki catchment. The analysis period is from April to November of
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3.3. Flood affected roads and LULC classes

The S-1 images were used to identify the flood affected roads in Addis
Ababa City. For instance, roads in the Gurd Shola area (around ILRI
campus), from Lebu Mebrat Hail to Jemo-1 (around the Safeway super-
market) (Fig. 7A), Maseltegna to Kality (around Wiha Limat) and from
Michael taxi Mazoriya to Jemo-1 (around Anbesa Garaj) (Fig. 7B) were
identified as flood affected roads. We were also able to identify several
major roads of Addis Ababa city that were affected by rare to frequently
floods.

The road map shows that the total length of roads in Addis Ababa city
is 5002 km. These roads are categorized into different classes based on
the standard grades. The flood inundation map generated in this study
indicates that 2.2% (108 km) of the roads were affected by floods in the
analysis period of this study. Table 6 shows the length of major roads
(trunk, track, primary, secondary, tertiary) and different LULC classes
that were inundated by the flood. During flooding, most roads of Addis
Ababa are congested with traffic, affecting mobility. These roads are also
affected by flooding which necessities major maintenance work after
each rainy season, not only by extreme rainfall but also by inadequate
and poor management of the drainage system of the city and its road
network.

The CART algorithm performed better for LULC classification of the
Fig. 7 (A). Some of the major roads in Addis Ababa city that were affected by floods
Jemo-1 road (b). The Google Earth satellite image was used as a background.
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Akaki catchment, and hence was used for the classification. The domi-
nant LULC classes in the Akaki catchment are rainfed agricultural land
(34% of the total Akaki catchment area) and built-up area (25.78% of the
total Akaki catchment area). The local farmers informed us that an un-
expected early flood in the irrigation season causes losses of standing
crops. Our finding also indicates about 1057.05 ha irrigated land was
affected in the Akaki (Table 6). A large part of the built-up area (544.11
ha) was affected by flooding between 2017 and 2020. We observed that
the impact of flooding in the built-up areas is widespread and requires
further future investigation. It is also noted that 209 ha of the rainfed
agricultural land was affected by flooding. Some farmers informed us that
they no longer practice rainfed agriculture since the frequency of flood
inundation of their farmland significantly increased in recent years.
3.4. Discussion

For both methods of flood mapping (RNID change detection and
histogram thresholding), a better accuracy was obtained when using the
VH polarization than the VV polarization data. This finding is similar to
the finding of (Conde & De Mata Mu~noz, 2019). The VV polarization has
two limitations: (i) it does not detect flooded areas with shallow depth
and generates as high a signal backscatter intensity as the non-flooded
surface, which leads to underestimation of the flood affected area
. These roads are, Megenagna to Gurd Shola road (a), from Lebu Mebrat Hail to



Fig. 7 (B). Some of the major roads in Addis Ababa city that were affected by floods. These roads are from Maseltegna to Kality (C) and from Michael taxi mazoriya to
Jemo-1 (D).

Table 6
Length of major road types and area of land cover classes affected by flood from
2017 to 2020. Inundated land cover classes were determined as area in per-
centage (%) of individual land cover classes.

Road type Length(m) Flood Inundation

Primary 1424.7 Land cover
classes

Area
(ha)

Inundated part of the
LULC area (%)

Primary link 20414.8 Rainfed
agriculture

208.53 0.42

Secondary 28899.4 Built-up 544.11 1.44
Secondary
link

1888.6 Bare land 147.99 1.8

Tertiary 22.3 Forest area 73.31 0.38
Tertiary link 7658.1 Grassland 281.69 1.07
Track 30.8 Irrigated 1057.05 21.28
Trunk 2154.6
Trunk link 6916.2
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(Clement et al., 2017); and (ii) it can result in false positive flood
detection since its low incidence angle allows penetration of moist sparse
soil to generate dark pixels on the S-1 image incorrectly identified as a
flooded surface (Bayik et al., 2018; Gumma et al., 2020).When using the
change detection method in this study, the VV polarization resulted in
511.37 ha of flood extent, whereas the VH polarization data resulted in
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256.23 ha of flood extent in the Akaki catchment. This indicates false
flood alarms are more dominant than flood misses when using the VV
polarization for the Akaki catchment. Known non-flooded farmlands
were wrongly detected as flooded inundated surface on the date of
September 9, 2020 satellite overpass.

The optimal threshold value used to differentiate the flooded and
non-flooded area was found as �21 dB when applying the Histogram
thresholding method on the VH polarization dataset. The flood extent
was increased (non-flood affected area was detected as a flood) when the
threshold value was less than �21 dB. Whereas the actual flood affected
area was missed when applying the threshold value on the histogram of
signal backscatter intensity greater than �21 dB. Hence, determining an
optimal threshold value is crucial to overcome both over and under
estimation in flood inundation mapping. Due to the low viewing angle of
the VV polarization, the optimal threshold was found at �15dB. How-
ever, increased false flood alarms were obtained when applying the
threshold values less than the optimal (�15 dB).

A large difference in the overall accuracy of the flood map was ob-
tained when using the VH (95%) and VV (86.7%) polarization data as
input for the change detection method. The kappa coefficients of the two
flood maps also showed a large difference (0.86 and 0.67), with VH
resulting in a better agreement than VV in detecting surface flooded areas
(Conde & De Mata Mu~noz, 2019). This shows the importance of
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evaluating the accuracy of the maps using the two polarizations before
arbitrary selecting only one of the polarizations in multi-temporal flood
mapping.

The RNID change detection method was better in flood detection than
the histogram thresholding method for both VV and VH polarization
data. The two methods resulted in an overall accuracy of 95% for RNID
and 88% for the method of histogram thresholding. A large difference
was also obtained in terms of the kappa statistics coefficient (0.86 for
RNID and 0.71 for histogram thresholding). A widespread false flood
affected area was detected on the north-east part of the catchment when
applying the histogram thresholdingmethod.We observed that the sandy
soil areas and the agricultural land in that part of the catchment were
moist but without any water impoundment. In Clement et al. (2017), a
high amount of false flooded area was detected in areas where extensive
agriculture was dominant in their study area. In the Akaki catchment, the
flooded area that was detected by the histogram thresholding method
was 5.17 times larger than the flooded area that was detected by the
RNID change detection method using the same polarization of S-1 data.

Our finding indicates that the flood map accuracy for the RNID
method slightly improved when the reference image was selected based
on the comparison of candidate images in the dry season. Therefore, the
best performing reference image (January 6, 2019) in applying the RNID
was also found to be suitable for use for the entire analysis period
(2017–2020).

The S-1 SAR images are acquired at 12 days interval in the Akaki
catchment. Hence, not all flood events can be captured by the satellite.
However, the flood maps generated from the satellite image proved to be
useful information when long-time series multi-temporal images were
analyzed as applied in this study. The risk of flood in the Akaki catchment
has increased due to rapid urban expansion and climate change which
requires further investigation (Birhanu et al., 2016). Future studies could
monitor flooding in the Akaki catchment per 12 days interval using the
S-1 images to provide useful information for flood risk assessment and
management. Detailed feature characteristics, and assets exposed to and
vulnerable to this flooding would be determined by combining the
remote sensing satellite image and field survey for flood risk assessment
(Risi et al., 2020). The flood extent detected from the S-1 dataset can be
useful for validating hydrodynamic flood models of the study area.

The accuracy of the flood inundation map was successfully validated
against the field data collected from a stretch of the floodplain area at the
date of satellite overpass. We used actual GCPs collected from the field to
reduce the accuracy deterioration that can occur with the use of sec-
ondary data as a reference. Future studies could investigate the scope of
citizen science for community engagement in collecting GCPs for detailed
flood characteristics (depth, location) at large (catchment) scale (Cheung
and Feldman, 2019). However, the data reliability, motivation, engage-
ment and experiences to deliver detailed flood extent information are
challenges for the citizen science approach to flood monitoring (Sy et al.,
2018). A flood that has a large depth and high velocity can also influence
the citizen science approach since it can be life threatening. However,
crowdsourced data gathered using electronic technologies (mobile de-
vices), web platforms and installing staff gauges provide the opportunity
to address these challenges and engage the citizen scientists for flood
hazard monitoring (Le et al., 2016).

The change detection method applied in this study can be used to
detect the flood affected area in the Awash River basin where the Akaki
catchment is situated. The threshold and polarization selected for the
Akaki catchment can be applied to the Awash River basin when the aim is
rapid mapping of the flood extent. However, the confidence of the
method can be increased by collecting GCPs from selected parts of the
Awash River basin to apply a local training of the algorithm and evaluate
the accuracy of the method. Flood mapping in other basins could repeat
the method followed in this study to determine the most appropriate
algorithm, polarization of the S-1 and threshold for detecting floods in
comparable areas.
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4. Conclusions

In this study, we evaluated the accuracy of Sentinel-1 VV and VH
polarization data, and the histogram thresholding and Root of Normal-
ized Image Difference for flood mapping in the Akaki catchment. Overall,
the methods developed in this study could contribute to rapid flood
exposure monitoring using the S-1 dataset. The following key conclusions
have been drawn based on our analysis:

� The accuracy of the flood maps using the S-1 image was largely
affected by image polarization, flood detection method, and reference
image. Wet soils and low flood depths introduced additional errors in
flood detection.

� The accuracy of the flood map was significantly higher using the VH
polarization data rather than the VV polarization data.

� Flood inundation mapping of the Akaki catchment has a higher ac-
curacy when generated using Root of Normalized Image Difference,
instead of the histogram thresholding method. Thus, the Root of
Normalized Image Difference method can be applied on the S-1 VH
polarization dataset for monitoring flood inundation in the Akaki
catchment.

� The reference image for the change detection method should be
selected based on an accuracy assessment of the flood map.

� A multi-temporal analysis of S-1 images provides useful information
on flood extent and frequency of occurrence in the Akaki catchment.
The irrigated land was the most flood affected LULC class in terms of
area coverage, but built-up and rain-fed agriculture were also
affected. The S-1 image was found useful not only to identify flood
affected LULC classes but also flood affected roads in the catchment.
The built-up area and irrigated agricultural land that were highly
affected with floods require further action to reduce the risk.

In this study, a single threshold value was applied to distinguish
flooded and non-flooded area from the remote sensing images. Future
studies could evaluate the merit of developing a local threshold value
based on the LULC characteristics, soil characteristics and topography
conditions. We highly recommended such an evaluation for large basins
and heterogeneous catchments that are affected by flooding.
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