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We present a formal task allocation and scheduling approach for multi-robot missions (KANOA).

KANOA supports two important types of task constraints: task ordering, which requires the execu-

tion of several tasks in a specified order; and joint tasks, which indicates tasks that must be performed

by more than one robot. To mitigate the complexity of robotic mission planning, KANOA handles the

allocation of the mission tasks to robots, and the scheduling of the allocated tasks separately. To that

end, the task allocation problem is formalised in first-order logic and resolved using the Alloy model

analyzer, and the task scheduling problem is encoded as a Markov decision process and resolved

using the PRISM probabilistic model checker. We illustrate the application of KANOA through a

case study in which a heterogeneous robotic team is assigned a hospital maintenance mission.

1 Introduction

Multi-robot systems (MRS) are increasingly used in domains ranging from medical and emergency as-

sistance [29] to inspection of critical infrastructures [12]. Nevertheless, the specification of complex

missions with constrained tasks, the allocation of these tasks to the robots, and the scheduling of allo-

cated tasks for each robot continues to pose significant challenges to the use of MRS in these applica-

tions [28, 32, 40].

Our paper introduces KANOA, a new MRS task allocation and scheduling approach that uses a

combination of formal methods to solve what Tran et al. [32] describe as “the joint problem of deciding

what tasks to perform, when, and with what resources, to achieve a set of goals”. Task allocation and

scheduling can be tackled in two ways: as a single, monolithic problem [14], or separately, as two

interrelated sub-problems [18]. KANOA does the latter. As in [18], we posit that this enables a separation

of concerns that not only increases scalability, but also simplifies the enforcement of a broad range of

mission constraints and the achievement of optimization objectives.

Task allocation and scheduling is among the problems that can be approached using formal meth-

ods [37], which offer underlying logics for the unambiguous specification of missions, and behavioural

models that are able to capture important MRS mission characteristics such as task interdependence [13].

However, the adoption of formal methods in real MRS scenarios has been limited due to the complexity

of formalising MRS missions and their requirements into the required modelling paradigms and logic

formulae, respectively [39, 38]. To address this limitation, KANOA (i) supports the specification of

MRS missions with their tasks, task constraints and requirements in a domain-specific language, and

(ii) automates both the allocation of tasks to robots (by using the model analyzer Alloy [24]) and the

scheduling of the allocated tasks (by using the probabilistic model checker PRISM [26]). PRISM sched-

ules the tasks allocated to each robot by solving the ordering of the tasks through synthesising a Markov

decision process policy that minimises the time needed to complete the tasks.
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The rest of the paper is organised as follows. After providing a motivating example in Section 2, we

present our KANOA approach in Section 3, and its implementation and evaluation in Sections 4 and 5,

respectively. Section 6 discusses related work, and Section 7 a short summary.

2 Motivating Scenario

Figure 1: Floor plan of hospital area with six rooms

serviced by robots r1-r5. Crosses mark the loca-

tions that robots must reach to start a task in each

room, and blue rectangles denote medical equipment

(inspired by [30]). The red lines shows a possible

robots’ schedule to clean rooms 2 to 4, and to move

equipment in rooms 1 and 6.

We will illustrate our approach in the context of

a hospital environment, in which patient recov-

ery rooms must be kept clean, and medical equip-

ment has to be moved around to perform daily

operations (Fig. 1). We introduce two types of

tasks: atomic tasks, AT; and compound tasks, CT.

The MRS mission consists of six tasks: mov-

ing medical equipment in Room1 (task M1) and

Room6 (task M2); and cleaning patient rooms 2–

5 (tasks M3 to M6). Moving medical equipment

is a type of task (AT1) that must be performed

by two robots. Cleaning a patient’s room (CT2)

requires notifying the patient (AT4) and cleaning

the room (CT1), in that specific order. Finally,

cleaning a room comprises floor cleaning (AT2)

and sanitising (AT3). Five robots are available:

two cleaner robots (r1 and r2) and three pick-and-

place robots (r3-r5).

Figure 2: The four-stage KANOA approach

In addition to the constraints imposed by

the ordering of tasks and the tasks requiring

more than one robot, the mission must be com-

pleted within 100 time units, and the robots

that are used to perform the mission cannot

spend more than 30 time units idle. Further-

more, the tasks must be allocated and sched-

uled such that the total robot idle time and trav-

elling time are minimised, and the probability

of succeeding with the mission is maximised.

An example of a synthesized plan (discussed

later in the paper) is shown by the red arrows

from Fig. 1.

3 KANOA Approach

KANOA employs the four-stage process from

Fig. 2. In stage 1, the KANOA domain-specific

language (DSL) is used to specify the world

model, robots model, task model and mission that together form the problem that KANOA needs to solve.

In stage 2, KANOA solves the allocation of tasks to robots, producing multiple allocation models, all of
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Figure 3: KANOA problem specification DSL. Based on the EBNF metasyntax notation [1].

which comply with the robot capabilities. Stage 3, pre-scheduling, groups robots that share constrained

tasks, so that their tasks are scheduled together. Finally, the task scheduling stage generates a set of

feasible MRS plans that satisfy all task constraints and are Pareto optimal with respect to the optimisation

objectives from the mission specification. The user can select one of the synthesized plans to be deployed

to the physical robots, as shown in the deployment stage. KANOA focuses on the four KANOA stages

as detailed below.

3.1 Stage 1: Problem specification

We use the user-friendly DSL with the syntax from Fig. 3 for the unambiguous specification of the

KANOA task allocation and scheduling problem. In line with established conventions, alternative items

are divided by | and may be enclosed in brackets (). Items that can appear one or more times are followed

by a plus +.

A KANOA problem specification comprises a world model, a task model, a robot model, and a

mission specification:

• The world model consists of a sequence of locations loc and path (distances) dist, where each

location is defined by an identifier locID and its x and y coordinates, and each path dist specifies

the all of the distance between two locations.

• The tasks model defines a set of atomic tasks and compound tasks. An atomic task (a_task) needs

to be performed in one go, by a predefined number of robots needed. In contrast, a compound

task (c_task) comprises a set of subtasks, each of which is an atomic or a compound task. The

subtasks of a compound task may need to be performed in the specified order.
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Figure 4: KANOA tool screenshot showing DSL encoding of the hospital MRS mission from Section 2

• The robots model specifies, for each robot available, its initial position, its (mean) velocity and

its list of capabilities, i.e., the identifiers atID of the atomic tasks that the robot can do, and the

required time and success probability associated with the task execution by the robot1.

• The mission specification (miss) comprises a sequence of mission tasks, constraints. A mission

task (m_task) specifies a compound task or atomic task (from the task model), which needs

to be performed at a location specified by locID. Constraints define boundaries within which a

specific robot robID or all robots must reside at all times, or the time available to complete the

mission.

Example 3.1. Figure 4 shows the KANOA problem specification of the hospital scenario from our

motivating example. As detailed in Section 2, this scenario comprises: (a) six rooms with their (entry

1The success probabilities differ from robot to robot based on age, manufacturing differences, etc.; and calculated in advance

after N runs of the physical or simulated robots
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point) coordinates, initial locations for the five robots, and all distances between these; (b) two compound

tasks and four atomic tasks; (c) two pick-and-place robots (r1 and r2) and three cleaner robots (r3–r5);

(d) the mission that the robots are required to carry out (within 100 time units), consisting of moving

medical equipment in rooms 1 and 6, and cleaning the patient rooms 2–5. Pick-and-place robots r1 and

r2 require 10 time units to reorganise the medical equipment in a surgical room. Cleaner robots r3–r5

have a higher probability of success compared to r5, but r5 travels twice as fast as r3 and r4.

3.2 Stage 2: Task allocation

The multi-robot task allocation problem involves the optimal partitioning of the tasks of a mission among

the available robots. This problem is very challenging due to the heterogeneity of robots, the unreliability

of sensors and actuators, temporal and spatial task constraints, the complexity of task dependencies,

and the search for an optimal allocation [2]. The KANOA Task Allocator (see Fig. 2) performs the

allocation of tasks to robots by using the Alloy Analyzer constraint solver [24] to generate feasible

allocations through reasoning about the capabilities of each robot, and the spatial constraints from the

mission specification.

3.2.1 Background

Alloy is a formal specification language (supported by the Alloy analyzer tool) that has its roots in the

Z specification language [24]. It supports the formal description of the structural properties of systems.

Alloy is defined in terms of simple relational semantics, using constraint solver notation, and employing

constructs that are common in object-oriented notations. We can indicate the existence of a set (of atoms)

for robots, which in Alloy is specified using signatures:

abstract sig Robot {hascapability: some Capability}

In this signature, Robot.hascapability denotes a relation with a non-empty set of capabilities that a robot

possesses. The keyword ‘abstract’ indicates that new signatures can extend this signature, inheriting all

of its characteristics. In our example, we can, for instance, create concrete robots and capabilities (e.g.,

r1, r2 and c1, c2) that instantiate their corresponding abstract signatures:

sig r1, r2 extends Robot { ... }

Alloy models can incorporate relational logic sentences in the form of predicates and facts (i.e., ex-

pressions that always have to be satisfied). These constructs place explicit constraints on the model.

Hence, when the Alloy analyzer searches for instantiations that satisfy the structural properties described

in the Alloy model, it discards any which violate any fact. In our example, we can write a fact which

makes sure that, if a capability c belongs to a specific robot r, that robot indeed has c among its capabili-

ties (and the other way around):

fact { all c:Capability, r:Robot | r in c.belongsto <=> c in r.hascapability }

The Alloy analyzer can look for examples of structures that satisfy all of the relational constraints in the

model within a finite scope that explicitly sets the maximum number of atoms of each signature to be

considered by a solution.

3.2.2 Task allocation problem

We define the task allocation problem in the Alloy declarative language with abstract signatures for

atomic tasks, robot capabilities and robots. There are four facts associated with these signatures. First, a
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Figure 5: Allocation generated by Alloy Analyzer.

robot has its own set of capabilities, meaning that each capability belongs to only one robot. Second, if a

robot appears in the allocation (see Figure 5) it must have assigned tasks, so that robots that are not used

are ignored. Third, only capabilities that have allocated tasks are shown. Finally, each robot appears

once or, if not selected by the allocator, does not appear at all.

For the declaration of atomic tasks, we model a second abstraction extending the AtomicTask abstract

signature. These are atomic tasks specified in the problem specification. The instances of these tasks are

atomic tasks required by the mission (recursively fetched from the tree-like structure of the tasks model).

We explicitly define the maximum number of robots and capabilities, the number of atomic tasks and

each atomic task, to generate N > 0 possible allocations, where N is a KANOA configuration parameter.

Figure 6: Path from the initial location of robot r2 to

room 6 found using PRM

Figure 5 shows part of an allocation found by

Alloy Analyser. At the top are three of the robots,

r5,r4 and r1. Only capabilities needed from the

robots for the allocated tasks are shown, for in-

stance, r1 only shows one capability r1at3_sanit.

Notice that robots r4 and r5 have the same allo-

cated task at1_move_0 as it is a joint task. Links

(x,y) at the bottom of the figure point to the loca-

tions where each atomic task must be done.

Example 3.2 An example of a robot instance

based on our motivating example is shown in Fig-

ure 6, lines 1-4. In this case, robot r1 has capabil-

ities r1at2_ f loor,r1at3_sanit and r1at4_noti f y,

modelled as the disjoint set of these tasks robot

capabilities and the set of all capabilities. The

number of robots required is written as a fact (line 5). A robot capability instance has the constraint

of only performing atomic tasks in a specific scope. For example, robot r1 with capability r1at2_ f loor

can only perform at2_ f loor type of tasks, as specified in Figure 6 lines 6-8. We add a constraint to show

a capability instance once, or 0 if it has no allocated tasks (lines 9-13). Due to space constraints, we refer

the user our GitHub repository for the complete Alloy code for the motivating example [33].

3.3 Stage 3: Pre-scheduling

For each allocation found by KANOA, we reduce (where possible) the complexity of the scheduling

models, by creating separate models for each group of robots that share task dependencies and do not
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Figure 7: Transitive closure of robot interdependence relation: (a) atomic tasks clustered by breath-first

until a constrained task is found; (b) for each subtree, the robots in the current allocation are obtained;

(c) the transitive closure returns clusters of robots—in this example, there are two robot clusters, i.e.,

{r3,r4,r5} and {r2}.

share any robot with the other groups. We call this stage pre-scheduling, as shown in Figure 2.

Let T be the tree of tasks from the mission specification to the atomic tasks. First, KANOA computes

the Breadth-first search BFS algorithm pruning the tree every time that a constraint (joint or consecutive

task) is found, or a leaf node (atomic task) is reached, returning multiple subtrees, as shown in Fig. 7a.

BFS(T ) = {subtree1,subtree2, ...} (1)

Let Ai be the ith allocation of tasks to robots found by Alloy, and Robi the set of all robots in Ai; for

example, the task allocation in Figure 7.b has robots Robi = [r2,r3,r4,r5]. For each subtree j ∈ BFS(T ),
we define the set of robots associated with its leaf nodes by,

Robi j(Ai,subtree j)⊆ Robi (2)

as shown in Fig. 7b. We define a reflexive binary relation R between robot ra and rb as,

ra Rrb =

{

1, if ∃subtree ∈ BFS(T ) · ra,rb ∈ subtree

0, otherwise

Finally, we define the transitive closure of R as a reflexive relation R′ such that raR′rk if there is

a sequence (ra,rb, ...,r j,rk) of the members of the domain of R such that raRrb, . . . ,r jRrk, as shown in

Fig. 7c. The relation R may be represented as a Boolean matrix M (where M(ra,rb) = raRrb), and R′ as

matrix M′ computed from M using Warshall’s algorithm or variations [31].

3.4 Stage 4: Task scheduling

KANOA uses probabilistic model checking for the scheduling of individual robot plans. In short, it

models the scheduling problem as a Markov decision process (MDP), finding a policy that optimises

a set of objectives under a set of constraints. A policy is a solution to the non-determinism actions,

assessing if a robot should do the next task or wait. Hence, finding a policy means finding a feasible

schedule.

3.4.1 Background

Markov decision processes (MDPs) support the modelling of probabilistic and nondeterministic be-

haviour [34]. An MDP is defined as a tuple M = (S,si,A,δM ,L), where S is the finite set of states and
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si ∈ S an initial state; A is the set of actions and δM : S×A → Dist(s) is a partial probabilistic function

returning a distribution over S when an action a ∈ A is taken from s ∈ S; and, L : S → 2AP is a labelling

function assigning a set of atomic prepositions from a set AP to each state s ∈ S. Reward structures that

associate a quantity to each action choice can be used, for example, to track the energy consumption, or

the total travelling distance of a robot.

An MDP policy resolves the non-deterministic choice of an action in the states of an MDP [34]. KANOA

uses deterministic−memoryless policies, which involves the selection of a fixed action whenever the

same state is reached [16, 34].

Probabilistic computational tree logic (PCTL) augmented with rewards is used to define qualitative

and quantitative formulae related to MDP rewards and probabilities that can be assessed via probabilistic

model checking. A state PCTL formula Φ and a path PCTL formula Ψ are defined over a set of atomic

prepositions AP by the grammar:

Φ := true|α|¬Φ|Φ∧Φ|P▷◁p[Ψ]|R▷◁r[FΦ]
Ψ := XΦ|ΦUΦ|ΦU≤k

Φ
(3)

with atomic preposition α ∈ AP, probability bound p ∈ [0,1], reward bound r ∈ R
+
0 , time step bound

k ∈ N>0, and ▷◁ ∈ {≥,>,<,≤}. PCTL semantics is defined by the satisfaction relation |=. For a state

s ∈ S of an MDP M , we describe a relation M ,s |= Φ as “the formula Φ holds on s”. Hence, the

following relations are valid: always s |= true; s ∈¬Φ iff ¬(s |= Φ); s |= α iff α ∈ L(s); and s |= Φ1∧Φ2

iff s |= Φ1 and s |= Φ2. The until formula Φ1UΦ2 holds for a path iff Φ1 holds in the first i states and Φ2

holds in the state i+1. The next formula XΦ holds if Φ is satisfied in the following state. Formulae with

the probability symbol P , have their semantics defined over all policies σ of M , such that P▷◁p[Ψ]
is the probability that paths starting at a defined initial state satisfy a path property Ψ with probability

▷◁ p for all policies. Replacing ▷◁ p with min =? or max =? specifies the calculation of the minimum

or maximum probability over all the MDP policies. Similarly, for reward formulae, R▷◁r[FΦ] (where F

represents a reachable state in the future) holds if the expected reward accumulated before reaching a state

satisfying Φ is ▷◁ p for all policies. Replacing ‘▷◁ r’ with ‘min =?’ or ‘max =?’ specifies the calculation

of the minimum or maximum reward over all the MDP policies. We refer the reader to [34, 4, 22] for

further details.

PRISM modelling language KANOA MDPs are defined in the high-level modelling language of the

probabilistic model checker PRISM [26]. A model specified in this language comprises several interact-

ing reactive modules. Each such module consists of a set of finite-valued state variables, and a number

of transitions (i.e., commands) modifying these variables. A transition has the generic form

[<action>] <guard>→ <prob>:<update> +...+ <prob>:<update>;

and comprises an optional action label, a guard and state updates with transition probabilities assigned.

An action is a label that allows synchronisation between modules. A guard is a predicate over the vari-

ables of all modules. An update modifies the module variables if the transition is taken (→) with a

probability of prob. In an MDP, non-deterministic actions are taken when two transitions in the same or

different modules have overlapping guards.

3.4.2 Multi-robot task scheduling problem

We use MDPs encoded in the PRISM language to capture the KANOA multi-robot task scheduling

problem. Informally, we define this problem as finding a sequence of possible robot actions (execute
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Figure 8: Model assembly for scheduling the tasks of interdependent robots under task constraints and

multiple optimisation objectives: (a) representation of the models—(1) maximisation of probability of

success, (2) minimisation of the travelling distance, and (3) minimisation of the idle time; (b) MDP

assembly with the actions and state variables from (a); and (c) the three optimisation objectives. The

bottom left shows the definitions for A and B for the MDP in (b).

a task, travel, or stay idle) such that, for each robot, all of its allocated tasks from Section 3.2.2 are

completed with an optimal level (minimising the completion time, travelling cost and probability of

success), preserving any required task ordering and joint execution of tasks across the schedules of all

robots.

To this end, we first generate feasible permutations of tasks that satisfy the tasks constraints. This

is done by randomly selecting a task that is not part of any constrained task, or the first task to be done

in a task tree of ordered tasks. We use MDPs to model the robots’ behaviour [26]. For an allocation a
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with robot ri, a permutation of its tasks is given by p = a.modules[ri]. Each permutation is modelled as

a PRISM module with state variables sri
defined by the tuple,

sri
= (riorder,ritime,riidle,ri f ail,ritasks) (4)

where riorder tracks the order in which tasks are executed and the travelling action (further explained

later); ritime tracks the current time updating every time a robot travels to another location or a task

is completed and ridle the time that the robot has spent idling; ritravel contains the information of the

robots travelling time; ri f ail is a boolean flag triggered when the robot fails performing a task; and

ritasks is a set of variables associated to task constraints (see Section 3.4.3). An MDP state is given by

the composition of each robot module variables s = (sr1,sr2, ...,srn).

The MDP modules can be explained as the composition of three sub-models, as shown in Figure 8a.

In the first model, a probabilistic choice is made between succeeding with a task or failing with a small

probability. From the robot’s initial position, where atomic proposition init is true, a robot travels and

completes its first task with probability p1 (state with atomic preposition t1), and with probability 1− p1

fails. If a robot fails, the system recovers and continues with the next task2 until all tasks are completed

(label done).

Second, as shown in Section 2 from Figure 8a, the travelling cost is computed as the sum of the

distances from the initial location of the robot to the location of its last task, passing through the locations

of all the tasks of the current permutation3.

Third, a nondeterministic action is available at any stage as the robot progresses with its tasks. This

action allows the robot to stop for one time unit. This idle option allows robots to synchronise in the case

they need to perform join tasks, or wait until previous tasks are completed in case of ordered tasks (see

Figure 8a.3).

MDP model. Figure 8b shows the composition of an MDP model in the PRISM language. In the first

line, mdp declares the type of model. Second, all necessary constants const that are used within the

robot modules are declared4. Third, the boolean formula done is true when all robots have completed

their tasks and the formula success is true when no robot fails with their tasks. Fourth, the robot modules

ri contains the variables: a) riorder, from 0 to last(riorder); b) ritime, from 0 to the maximum time

available (T T ); and C) ri f ail as a Boolean (changing to true when the robot fails a task). For each

transition, the guard checks: the order of transitions, that the time does not exceed the available time and

that the robot has not failed. When a transition is taken, with a probability of succeeding with the task,

the time and order is updated, meaning that the task has been completed; and with a smaller probability,

the robot fails and ri f ail′ = true. Continuing, there is a transition for recovery after failure, where ri f ail

becomes false again; and a non-deterministic action riidle (feasible if the robot hasn’t finished, if it has

not failed and if time allows) that adds +1 to the robot timer. Finally, a travel reward structure computes

the cumulative travelling cost among robots; and an idle reward the cumulative time that the robots spend

in stand-by (idling).

For an MDP, we use probabilistic model checking to assess if the selected permutation of tasks is

2We consider the probability of recovery of 1. However, it can be modelled as multiple recovery modes, for instance, with a

probability p1 the robot can retry and succeed, with probability p2 it asks for help from a human, and with probability p3, the

robot sends an alert that the task failed and needs to be rescheduled.
3The travelling cost changes among permutations, as the distance covered by robot r1 travelling between two tasks t1, t2, is

different if following the order ⟨initialPosition(r), location(t1),location(t2)⟩ or ⟨initialPosition(r), location(t2),location(t1)⟩
4For the description of all constants const, we refer the reader directly to Figure 8b.
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Figure 9: (a) Joint task JT1 in robot r1 written in the PRISM language as two transitions: first travel,

then synchronise with other robots via the action label [JT 1]. All transitions in other modules, with the

same action label, “transition” at the same time. (b) Robot r1 is assigned with the second subtask of the

ordered task ti. In its jth transition, r1 checks if robot r5 has already completed the first subtask in the

past, by checking if r1 time is greater than or equal to r5 time, and ti_subtask_1 is true. Every constraint

subtask is declared as a Boolean constant. Changes compared to unconstrained tasks are highlighted in

blue.

feasible5, meaning that the non-determinism can be solved to create a plan for which each robot knows

exactly what to do at every time step and that the plan fulfils all constraints. We check for feasibility by

assessing:

Pmax=?[F done] (5)

If there is a path that reaches label done, then this formula evaluates to 1, and 0 otherwise. For fea-

sible solutions, we can compute the optimisation objectives depicted in Figure 8c: finding the minimal

probability of success, minimising the idle time and the travelling cost. Note that the first formula eval-

uates the probability of completing a mission without a failure, which is equivalent to the multiplication

of the probabilities of each robot completing its tasks; and the last formula evaluates the travelling cost,

which can be computed in advance as describe in Figure 8a.2.

3.4.3 Modelling task constraints

Joint tasks. Joint tasks require two or more robots to meet at the same space and time. We model joint

tasks using two PRISM transitions. In each module, the robots travel to the location of the joint task, JTi.

If the robot is to synchronize in time with the other robots (r1time=r2time=...), synchronous transitions

among their modules are possible via a common action so that all robots perform the task. Figure 9a

shows robot r1 with the action label JT 1.

Ordered tasks. We model ordered tasks in PRISM as single transitions, in the same way as uncon-

strained tasks. Then, we modify the guard of the ith subtask of the ordered task (∀i > 1), to check if its

5The feasibility of a permutation of tasks does not necessarily mean that the robot schedule is feasible. For example,

assuming that the permutation of tasks assigned to robot r1 is correct, if the available time is set to 5 and the robot requires 6

time units travelling, the schedule is unfeasible.
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time is greater than or equal to the robot’s time assigned with the subtask i−1; as well as checking if the

subtask i−1 itself has been completed. This solution is illustrate in Figure 9b.

3.5 Optimisation of feasible solutions

In the previous section, we described the assembly of an MDP model for a group of robots, each of which

with a pre-defined sequence of allocated tasks, we used probabilistic model checking to obtain policies

satisfying three optimisation objectives: maximisation of the probability of success, and minimisation

of the idle time and travelling cost, and we described the assessment of the feasibility of a schedule.

We solve the problem of obtaining the Pareto-optimal solutions of this constrained multi-objective op-

timization problem using a elitist genetic algorithm. Each a chromosome represents an allocation and

task permutation as a single gene. The Pareto front of a such a problem comprises all non-dominated

solutions, i.e., all solutions for which there is no other feasible solution that can improve one of the

optimisation objectives without worsening one or more of the others [10].

Genetic algorithms (GA) provide an effective approach for solving complex optimisation problems.

They operate by encoding a number of solutions (population) whose elements (chromosomes) consist

of one or more values, called genes, that are genetically bred through the application of the Darwinian

principles of survival and reproduction of the fittest solutions, and their recombination (croosover) to

create new populations (offspring) that evolve towards an optimal solution [25]. For KANOA, we

adopt the widely used NSGA-II (nondominated sorting genetic algorithm II) with chromosomes that

encode both the selected allocation and the selected permutation of robot tasks. Furthermore, we use

the EvoChecker [17, 15] framework (which integrates NSGA-II with the PRISM probabilistic model

checker) to obtain the Pareto front of task scheduling solutions.

4 Implementation

Figure 10: Path from the initial location

of robot r2 to room 6 found using PRM

We developed a prototype tool that implements KANOA.

The input is a .mydsl file with the problem specification writ-

ten in our DSL. For the paths in the world model, we use

the established probabilistic roadmaps (PRM) path planner

to find the distances between locations in the world model,

rounding the distances up to the closest integer (see Fig-

ure 10) [11].

We used Ecore and Xtend [27] to check the DSL syntax

and to automatically generate the Alloy model. As described

in Section 3.2.1, Alloy is a declarative language for the spec-

ification of systems under a set of constraints supported by

the Alloy Analyzer solver tool. Hence, Alloy Analyzer gen-

erates up to N allocation files. For each allocation, the transitive closure algorithm finds clusters of robots

sharing task constraints.

The JMetal 5 [23] framework was used to solve the optimisation of the permutation of tasks using the

NSGA-II algorithm. We use the PRISM model checker [26] in the NSGA-II evaluation stage, to compute

the values of the three objective variables: probability of success, idle time and travelling cost; as well as

assessing if a schedule is feasible under the time and space constraints. The KANOA open-source code

is available from our GitHub repository at https://github.com/Gricel-lee/Kanoa.
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Figure 12: Example of a scheduled plan synthesized by KANOA. All results were obtained on a Mac-

Book Air computer with Apple M1 processor, macOS Monterey 12.3.1, and 8 GB of memory.

5 Evaluation

In this section, we evaluate KANOA applicability using the hospital motivating scenario, and the effi-

ciency of the approach varying the number of tasks, robots and complexity of the tasks.

Figure 11: Solutions found by KANOA for the hospital case

study. Pareto-front solutions are coloured in red. The schedule

of the solution circled in red, is depicted in Figure 12, with

values corresponding to the first row of Table 1.

Application to the motivating ex-

ample. To evaluate KANOA, we ap-

plied it to the hospital maintenance mis-

sion from our motivating example. The

DSL-encoded specification of this mis-

sion is provided in Figure 4 earlier in

the paper. This specification was sup-

plied as input to KANOA tool. Inter-

nally, the Alloy analyzer is configured

to generate 30 allocations models. One

of these models is depicted in Figure 1

earlier in the paper.

Pre-scheduling was then applied to

each of these task allocations, yielding

between two and three subsets of robots

with one to three robots in each. The

KANOA genetic algorithm was config-

ured to run for 5 iterations with a popu-

lation of 50 chromosomes. Each of the

30 allocation was allowed to compute 20 permutations, giving a total of 600 possible chromosomes. The

idle time, travelling cost and probability of failing to execute the mission for the Pareto-optimal solu-

tions evaluated across the task allocations are shown in Figure 11, and one of these solutions is detailed

along the timeline in Figure 12. We note that: (i) the failure probability was used instead of the success

probability because multiobjective optimisation genetic algorithms operate by minimising all objectives;

and (ii) that the values obtained for the failure probability are unacceptably high, which is due to using

randomly selected failure probabilities for the individual robots in our experiments. Nevertheless, nei-

ther of these issues affects the validity of the experimental results, which were only intended to assess

the ability of KANOA to produce Pareto-optimal plans for MRS missions.

From the Pareto-optimal solutions detailed in Table 1, four solutions (rows 1, 3, 6 and 10) achieve

very low travelling cost and the idling time at the expense of high failure probabilities. The rest of the

Pareto-optimal solutions correspond to solutions that achieve much lower probabilities of failure (with
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values below 0.55) in exchange for completing the mission with additional travelling cost and idling

time.

Table 1: Pareto-optimal solutions
Alloc

ation

Permu

tation

Probability

of failure
Idling Travel

1 17 9 0.63423811 6 80

2 5 5 0.51937429 39 117

3 17 5 0.63423811 5 84

4 16 5 0.53284079 31 126

5 11 1 0.41844289 28 137

6 21 1 0.69771745 2 84

7 11 7 0.41844289 21 145

8 9 8 0.47131171 29 132

9 9 1 0.47131171 22 135

10 12 8 0.70993088 1 88

Table 1 shows the number of allocations and

permutations that the Pareto solutions belong to.

It is interesting that there is not a single alloca-

tion of tasks to robots that seem to perform better

than the rest. For instance, allocations 9, 11 and

17 each occur twice. Also notice that the proba-

bility of success is the same among the same al-

locations, however, the idling time and travelling

costs change as the permutation changes.

Figure 12 shows a schedule from the Pareto front;

in this schedule, all robots were deployed. Robots

r1 and r2 first visit room1, perform task at1 (mov-

ing medical equipment), travel to room2, and

again perform at1. In this case, KANOA found that deploying robots r3 and r4 to clean rooms 2 and

3, and robot r5 to clean rooms 4 and 5 is a Pareto-optimal schedule. Notice that these three cleaner

robots travel between the rooms back and forth (see also Figure 1). This is because the distance between

rooms 2 to 3 and 4 to 5, is relatively small that it represents a better solution that travelling between other

rooms. Although a better solution, where robots avoid repeating rooms, was not found (given the number

of permutations and allocations, population and evaluation size), the synthesized solution complies with

all requirements and, besides GA, no heuristic guidance was used in the searching process.

Efficiency. We also carried out preliminary experiments to assess the execution time of KANOA. We

tested five variants of the hospital scenario in order to assess the impact that (a) adding new tasks and

(b) adding more robots have on the time required to find and assess a solution; and (c) the impact that

the complexity of the task constraints have on the overall performance. The results obtained for all five

variants and for the original case study are shown in Figure 13. The experiments were run until 30

feasible solutions were found or until the time surpassed 300 seconds, whichever occurred first.

Variants v1 and v2 involved using the two pick-and-place robots to move surgical equipment in

multiple rooms. For variant v1, they must visit two rooms, and for variant v2 there were six rooms to

service. The time to get one feasible solution was 9ms for both variants. However, the time for variant v3

increases to a mean of 4.7s per solution, while for variant v4 KANOA finds a solution every 1.33s. This

is an increase of approximately 3.53 times the time to assess a solution when the number of tasks tripled.

As v1 and v2 plots show a linear increase, this means that we expect the time to increase approximately

1.17 times for each task added to this hospital scenario.

The third, fourth and fifth variants (v3, v4, and v5) correspond to one, two and three robots available,

respectively, with the mission to clean patient rooms 2 to 5. For variant v3, we only found 3 solutions

as only one robot has all tasks assigned, making it difficult to synthesize plans that comply with the time

limit. The time to find the solutions is 14.86 seconds, this is understandable as, for most permutations,

PRISM is called only to check for feasibility and discarded as they do not comply with the requirements.

Variants v4 and v5, increasing v3 by one and two robots, show a considerable increase in the time to find

a solution. This is understandable as the complexity of the PRISM models increases, taking more time

for the PMC to check for feasibility and to return the probability of failure, idling time and travelling

cost.
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Figure 13: Scheduled plan synthesized by KANOA; all solutions were computed with 30 allocations,

20 permutation of tasks, with population size 50 and 5 evaluations (except variants v3, which was tested

with 500 permutations)

6 Related Work

Work in other domains, such as manufacturing [36] and distributed computer systems [35] has influenced

the algorithms used to solve allocation and scheduling problems in robotics. Some of the most broadly

researched categories are mixed-integer linear programming (MILP), and hybrid methods such as MILP

constraint programming and MILP depth-first search heuristics [7]. These approaches exhibit desirable

traits such as scalability, but often require crafting application-dependent heuristics by domain-experts

to become scalable, simplify task complexity to concurrent and temporal constraints of simple tasks, and

do not consider uncertainty [40, 18, 6].

On the other hand, model checking has successfully been applied in MRS to provide guarantees

for the synthesised robot schedules. To solve the allocation and scheduling problems, these can be

modelled together or separately. There is not a clear preference adopted by the research community. For

instance, some research only focuses on one of these problems. Menghi et al. [8] used model checking

for scheduling when only incomplete knowledge is available; and Yu et al. [39] consider constraints

due to the robots sharing a room or hall, and limited local information for re-planning online. When

allocation and scheduling are modelled together, we notice the introduction of optimisation metrics. For

instance, Antlab [14] ranks the schedules by travelling cost, and Ulusoy et al. [3] optimise the time

for the completion of all tasks. In terms of probabilistic model checking, Lacerda et al. [5] presents a

single-robot planning problem to perform a series of tasks. However, they consider the tasks ordered in

advance, and PMC only used to select a path amount pre-define paths. Others use PMC for the synthesis

of MRS controllers without considering [9], inferring the allocation and scheduling as a prerequisite.

KANOA extends our preliminary work from [19] (where we advocate the use of this type of approach
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in a doctoral symposium paper) and [20] (where we assess the feasibility of applying Alloy analyzer and

PRISM), and tackles the allocation and scheduling of tasks separately. The information about the robot

capabilities and mission tasks is used for both the allocation and the scheduling of tasks, allowing us

to modify how the schedules are done by grouping robots from the allocations found, thus reducing

the complexity of the models used in the KANOA’s scheduling stage. We also assume that the path

planning is performed in advance, as adding the planning into the model (e.g., as in [14]) requires adding

each intermediate point, increasing the states and transitions of the model and reducing scalability. In

further work, we will reduce the state explosion problem by adding middle points where necessary, for

instance, in the hospital halls to avoid two robots entering the same location at the same time. Other

interesting MRS characteristics were also found in the state-of-the-art. Antlab [14] captures dynamic

collision avoidance, and MALTA [21] models road conditions that may slow down robots. MRS must

deal with a large range of uncertainty sources.

Although the ultimate goal for multi-robot planning, scheduling and allocation may be the creation

of a single tool that is applicable to all the variants of MRS applications, this will be very challenging

to achieve (and may not be feasible) because there are too many applications with different critical

characteristics to model. For example, for search-and-rescue missions, the robots must be able to work

in unknown environments; while in a factory, robots may have a map in advance, although they must be

able to avoid staff and cooperate with operators. In further work, we would like to incorporate further

task constraints, such as time windows (for example, serving meals to the patients between 13:00 and

14:00), and consecutive tasks (tasks that must be perform one after the other).

7 Conclusion

We introduced a new end-to-end approach for the task allocation and scheduling of multi-robot missions

comprising joint and ordered tasks that need to be executed by teams of robots with different capabilities.

Three different optimisation objectives and a feasibility constraint were use to find Pareto-optimal solu-

tions. We support our end-to-end approach (from the high-level problem definition to the synthesis of

robot plans) with an open-source tool and a preliminary evaluation of a hospital case study. We presented

five different variants of the MRS mission from this case study, assessing the impact of adding new tasks

and robots to the MRS mission.

In future work, we will explore options for improving the scalability of KANOA, and for gracefully

degrading the constraints defined in the KANOA problem specifications when no plan can be found

when the initial constraints are taken into account. We also aim to enhance KANOA with self-adaptation

capabilities, enabling the dynamic evolution of the generated plans after disturbances such as the failure

of a robot, the failure of a robot’s sensors/actuators, or a delay in the execution of a task by one of the

robots. Moreover, longer runs will be used in the evaluation of our future work to establish whether

a longer search produces significantly better solutions. Additionally, we will explore the inclusion of

spatial restrictions, such as “only one robot can pass through a hall at a time” or “no more than two

robots are allowed in a room at the same time”. Moreover, as we deal with autonomous mobile robots,

we need to introduce an event when the battery is low so that the robot can reach a charging station.

Understanding the computational complexity of our approach is another area of future work for the

project. Analysing the complexity of the approach is nontrivial, as it depends on the Alloy Analyser

solver, PRISM engine and JMetal configuration, and, as described in Section 5, it also depends on the

number of robots, number of tasks and task dependencies.
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