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Abstract
Due to rising demand for both food and environmental services, agriculture is increasingly
required to deliver multiple outcomes. Characterising differences, across agricultural landscapes,
via the identification of broad archetypal groupings, is an important step in exploring spatial
patterns in the capacity of land to deliver these potentially competing functions. Creating
characterisations at multiple levels, for landscape and farm management, can allow policy-makers
and land managers to harmonise delivery of ecosystem services at different intervention scales.
This can identify ways to increase the complementarity of public goods and the sustainability of
farmed landscapes. We used data-driven machine learning to create landscape and agricultural
management archetypes (1 km resolution) at three levels, defined by opportunities for adaptation.
Tier 1 archetypes quantify broad differences in soil, land cover and population across Great Britain,
which cannot be readily influenced by the actions of land managers; Tier 2 archetypes capture
more nuanced variations within farmland-dominated landscapes of Great Britain, over which land
managers may have some degree of influence. Tier 3 archetypes are built at national levels for
England and Wales and focus on socioeconomic and agro-ecological characteristics within
farmland-dominated landscapes, characterising differences in farm management. By using a
non-nested hierarchy, we identified which types of management are restricted to certain landscape
settings, and which are applicable across multiple landscape contexts. Understanding variation
within and between agricultural landscapes and farming practices has implications for planning
environmental sustainability and food security. It can also aid understanding of the scale at which
interventions could be most effective, from incentivising changes in farmer behaviour to policy
drivers of large-scale land use change.

1. Introduction

Farmland is under great pressure to increase produc-
tion of food in response to increased and changing
demand from growing human populations [1, 2].
Growing awareness of the environmental impacts of
intensified farming, the need for agricultural land
to deliver multiple functions [3] and competition for
other land uses, such as biofuels or carbon storage [4],

puts further pressure on agricultural land to increase
production sustainably [5, 6]. Thus, there is a need
to holistically assess the potential of different farming
systems to deliver multiple public goods and services
across landscapes [7]. Thismay include trade-offs and
synergies between the services delivered by different
systems [1, 8, 9]. Agricultural policy development
can help shape that balance at critical times, such
as the current situation in Great Britain, following

© 2022 The Author(s). Published by IOP Publishing Ltd
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the country’s withdrawal from the European
Union (EU).

Farming systems are formed of the fixed ele-
ments of the landscape, and more flexible elements
of management practices. Landscapes vary in their
soils, climate, land cover and features [10–12], as well
as in more anthropogenic elements such as popu-
lation, infrastructure and land protections. Under-
standing variation at the landscape scale can allow
insight into how different landscapes can constrain
management interventions [13, 14]. Set within the
landscape, farms themselves are socio-ecological sys-
tems [15–17]. For instance, farms can have different
crop and livestock management systems, field config-
urations and employment structures [18–20]. These
aspects interact to affect farm productivity and the
delivery of ecosystem services [19, 21].

The varied and interdependent nature of farming
systems makes it challenging to explore the impacts
of potential changes on multiple outcomes. Assess-
ing variation in farming systems at both landscape
and farm-scales can allow for an understanding of
how these two aspects relate to each other [17, 18].
Through understanding variation in farm manage-
ment, and how this is influenced and constrained by
landscape, more suitable and adaptive management
strategies can be devised [22–25]. One route to quan-
tifying this complex variation, and identifying spatial
patterns across large extents, is the characterisation
of farm management and landscapes into typolo-
gies. This can be done through the identification of
archetypes, which involves recognising recurrent pat-
terns to create groupings at an intermediate level of
abstraction [26]. Archetypes thus represent a bal-
ance between generalisation and case-based validity
[27, 28].

Archetypes of farming systems enable the con-
textualisation of local specific cases within larger
regional or national frameworks [3, 26, 27]. Relation-
ships between archetypes and their constituent cases
help to assess the opportunity space for change [28].
Although requiring care in selection and structuring
of data, data-driven methods can detect archetypal
patterns in complex multi-dimensional data without
the imposition of subjective judgements about the
nature of groupings [29–31].

In this study we identify archetypes of land sys-
tems at two different tiers for Great Britain (GB), and
at a third tier for England and Wales. These three
tiers represent gradients of decreasing permanence
and increasing intervention potential:

(a) Tier 1, landscape archetypes: highest perman-
ence and lowest intervention capacity, capturing
broad differences in land cover, land features and
population across GB. These are largely inde-
pendent of land manager decisions except over
long timescales (i.e. 10–100 years).

(b) Tier 2, farmed landscape archetypes: landscape-
driven differences within farming dominatedGB
landscapes, incorporating landscape elements
important in farming and potentially modifiable
by land managers’ strategic decisions over time
periods of 1–10 years.

(c) Tier 3, farm management archetypes: manage-
ment and social differences in farmmanagement
across the national level for England and Wales
separately, which are largely under land man-
agers’ control and thus can potentially change
over relatively short timescales given sufficient
incentives.

We then assess the relationships between, and dis-
tribution of, the three tiers of archetypes and dis-
cuss their potential use in assessing current and future
environmental impacts.

2. Methods

The three tiers of archetypes were analysed separately
and not as a nested structure (i.e. a single Tier 3 arche-
type can occur in more than one Tier 2 archetype),
predominantly to ensure that archetype definitions
were easily interpreted across tiers. Tier 1 and 2 arche-
types were generated for GB, while Tier 3 archetypes
were generated separately for England and Wales,
as policy instruments that target land management
are determined at this devolved national level. The
unavailability of several input variables for agricul-
tural management prevented the generation of Tier
3 archetypes for Scotland.

2.1. Input variables
All spatial variables used to define archetypes (table 1)
were processed at a 1 km2 resolution, as this reflects
the scale at which most data were available, as well
as approximating the mean size (0.87 km2) of farms
in England [32]. This was done for governmental
Ordnance Survey grid cells with over 75% terrestrial
land cover [33]. Different data were included in each
of the three tiers to achieve good coverage of bio-
geo-physical, land management and socioeconomic
variation. Variables for the three tiers were selec-
ted by expert judgement according to their capa-
city to represent: Tier 1 broad differences in land-
scape character across the country, modifiable only
over long timeframes (10–100 years); Tier 2 differ-
ences in the farmed landscape, which landowners
decisions may have effects over intermediate time-
frames (1–10 years); and Tier 3 elements of the land-
scape which farmers have the ability to modify, or
might influence their decisions over shorter time-
frames. Processing and analyses were conducted
using ArcGIS v.10.6 (ESRI, Redlands, CA, USA)
and R [34].
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Table 1. Data used in the derivation of the three archetype tiers. Variable name and shorthand (if used in tables S1–S4) are given. Units are per 1 km2.

Variable Units Timeframe Tiers Source

Land cover Land cover (each of: arable, improved grassland, broadleaf woodland, semi-natural grassland,
urban)

% cover 2015 1, 2 [33]

Land cover (each of: conifer, coast, freshwater, mountain/heath/bog) % cover 2015 1 [33]
Land cover structure (LS) (each of: arable, improved grassland, broadleaf woodland, semi-natural
grassland, urban)

Aggregation Index 2015 2 [33]

Watercourses (WCL) Total length (m) 2000 1, 2 [43]
Woody linear features (WLF) Total length (m) 2016 1, 2 [44]
Inter-field hedges Total length (m) 2016 3 [44]

Geo-physical Soil composition (each of: sand, clay, silt) Relative % content 2013 1, 2 [36, 37]
Soil pH pH 2013 1, 2 [36, 37]
Soil organic carbon (SoilOCC) % Organic carbon content 2013 1, 2 [36, 37]
Soil moisture Mean monthly (mmm−1) 2005–2015 2 [38]
Relative soil dryness (reldry) Mean monthly deviation 2005–2015 2 [38]
Air temperature Daily mean (K) 2005–2015 1, 2 [35]
Rainfall Daily mean (kg m2 s2) 2005–2015 1, 2 [35]
Elevation (EleMean) Mean (m) 1990 1 [42]
Elevation variability (EleSD) Mean (m) 1990 1 [42]
Slope Mean tangent (degrees) 1990 2 [42]

Farm/field spatial
features

Size of each of: farm and field Mean area (km2) 2018, 2020 3 [54, 56, 57]
Farm spread Spread Index 2018, 2020 3 [54, 56, 57]
Field shape index Edge:area 2018, 2020 3 [54, 56, 57]

Crop cover
landscape metrics

Mean patch area Mean area (km2) 2015–2020 3 [59]
Patch isolation Mean NND (km) 2015–2020 3 [59]
Patch index (each of: Simpson’s diversity (Diversity), evenness (Evenness), subdivision (Subdiv),
edge contrast (EdgeContr))

Index 2015–2020 3 [59]

Variance (ST) of patch index (each of: mean area, Simpson’s diversity and evenness, isolation,
subdivision, edge contrast)

Variance of index 2015–2020 3 [59]

Crop cover Livestock (each of: horses, cattle, dairy cattle, beef cattle, pigs, poultry, sheep) Number of heads 2010 3 [61]
Crops (each of: beans, fodder, vegetables, old grassland, new grassland) Total area (km2) 2010 3 [61]
Crops (each of: maize, oilseed rape, potatoes, spring barley, spring wheat, winter barley, winter
wheat, sugar beet, other)

Total area (km2) 2015–2020 3 [59]

Socio-economic Farm costs (fixed (CostFix) and variable costs (CostVar)) Yearly expenditure (£) 2016 3 [51]
Animal welfare (AnimalWel) Ethical risk coefficient 2016 3 [51]
AE Scheme Income (AES_FBS) Income from AES (£) 2016 3 [51]
Economy proportion of agriculture & forestry (PropEcon) Proportion index 2016 3 [51]
Employment proportion (for each of: agriculture & forestry (PropPop), tourism; woodland
management)

Proportion index 2016 3 [51]

Income Total Income (£) 2016 3 [51]
Population density (PopDen) Total population 2011 1 [45]
Distance from minor (Mnroad) and major roads (Mjroad) Distance (m) 2019 1 [46]
Designated area: protected areas & scheduled monuments (Desig_area) % cover 2020 2 [47–50]
Pesticide application rate Mean annual (kg km−2 yr−1 ) 2012–2016 3 [62]
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2.1.1. Land cover and geo-physical variables
Percentage cover of nine aggregate land cover classes
was extracted from the UKCEH Land Cover Map
2015 [33]. Mean temperature and precipitation were
calculated from daily estimates [35] from January
2006 to December 2015. Soil pH, sand, silt, clay and
organic carbon content were obtained from national
soil maps [36, 37]. To integrate further measures
of soil moisture relevant for farming into Tier 2
archetypes, mean soil moisture was calculated from
monthly estimates between January 2006 andDecem-
ber 2015 based on the G2G hydrological model [38].
Mean relative soil dryness was calculated based on
the difference of each monthly soil moisture estimate
from the per-month per-cell 10 yearmean, divided by
the difference between the per-cell per-month 10 year
minimum and mean.

To describe landscape structure, the Aggregation
Index of 25 m pixels of each land cover class was cal-
culated using the landscapemetrics package [39]. The
Aggregation Index was chosen as it is relatively inde-
pendent of the amount of land cover [40, 41]. Land-
scape structure is less relevant for cells with high or
low amounts of land cover as landscape structure pos-
sibilities are constrained. We therefore only included
structure for cells with between 10% and 70% cover
for a given land cover type.

The mean and standard deviation of elevation
and slope were calculated based on a Digital Terrain
Model [42]. As these variables were inter-correlated,
we included elevation variables in deriving Tier 1
landscape archetypes to capture the broad differ-
ences in mountainous and lowland landscapes, and
slope in deriving Tier 2 landscape archetypes, as it
hasmore relevance for constraining farming practises
and types.

Lengths of water courses and woody linear fea-
tures were calculated based on GB linear features
maps [43, 44]. All woody linear features falling within
4 m from a field edge were classified as inter-field
hedges.

2.2.2. Socio-economic variables
As the population density of landscapes is related to
other features, such as demand for certain land uses, it
was included in the generation of Tier 1 archetypes. It
is more relevant across these more varied landscapes
with a range in population densities, e.g. suburban
and urban, and was not included in Tier 2 arche-
type generation, where the % cover of urban land
cover was considered sufficient to capture rural pop-
ulations. Gridded (1 km2) population density data
was based on the 2011 census [45]. Distance from cell
centres to the nearest major (motorways, A roads and
B roads) andminor road quantified accessibility (cells
that contained a road were assigned a value of 0) [46],
at Tier 1 level, where there are much broader differ-
ences in the isolation of landscapes, e.g. in mountain-
ous areas. Protected area coverage will influence how

the land is managed, and so was included in Tier 2
archetype generation as % cover of two land desig-
nations: natural protected areas [47] and scheduled
monuments [48–50].

Ten high-level variables were extracted from the
Sustainable Intensification Dynamic Typology Tool
([51] see table 1)[63]. These were based on the Farm
Business Survey dataset, a questionnaire of farm busi-
nesses randomly selected across England and Wales.
Absolute values were rescaled to relative measures on
a consistent scale. These data were resampled to 1 km2

from a resolution of 10 km2 by bilinear interpolation.

2.2.3. Farm and field spatial characteristics
The spatial properties of farms and fields were
included as they are associated with a range of
management characteristics [52, 53]. Farm bound-
aries were extracted from Countryside Stewardship
Scheme [54], Environmental Stewardship Scheme
[55] and organic farming scheme [56] data for Eng-
land; and various Glastir schemes [57] for Wales.
These data were interpolated with the ordinary Kri-
ging algorithm from gstat [58] giving predicted farm
size. Similarly, a Spread Index was calculated for the
fields belonging to each farm (S.I., equation (1)):

S.I.= 1− √Fsize
/

√Fmcp
. (1)

Equation (1): Spread Index, where Fsize is the total
farm area and Fmcp is the area of the minimum con-
vex polygon encompassing all fields belonging to that
farm.

Average field size was computed from the land
cover plus: crops map (LCC [59]). To capture the
shape of fields, themean ratio of the perimeter of each
field to the perimeter of a square of equal area was cal-
culated (based on [60]).

2.2.4. Crop and livestock-cover
Data on crops and livestock were obtained from LCC
[59] andAgCensus data [61]. LCCdata was used pref-
erentially, but for crops not in the LCC, the AgCensus
dataset was used. The resolution of AgCensus is 5 km
for England and 2 km for Wales; so data were res-
ampled to 1 km by bilinear interpolation. As well as
cattle (total including calves), a further division into
beef and dairy was made due to their different envir-
onmental impacts. Average pesticide application rates
(2012–2016) were derived from the land cover plus
pesticides dataset [62].

Six variables were derived to capture the spa-
tial distribution of crops and grassland, including
Simpson’s diversity and evenness indices [64, 65].
To represent functional diversity of crop types, the
Edge Contrast Index was calculated using a distance
matrix (using Gower’s method) between pairs of
crops, based on functional traits (crop functional type
(e.g. cereal vs. legume); mass flowering; narrow/wide
row spacing; month of planting and harvest; method
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of harvest; height; agrochemical usage intensity).
This was then multiplied by the length of perimeter
between crop pairs, the weighted lengths summed
and divided by the total patch perimeter [65]. The
subdivision index quantified the separation of crop
patches (a contiguous area covered by the same crop),
as one minus the sum of the proportion of area
covered by a patch [39]. Because five years of LCC
data were available for these crop types, each of these
six metrics was calculated as the variance of the met-
ric over five years. The isolation index of crops was
calculated as the mean Euclidean nearest neighbour
distance between each patch [39].

2.2. Self-organising map (SOM) parameterisation
Clustering and dimensionality reduction were per-
formed using SOMs [66]. SOMs are an artificial
neural network method [66, 67], which simplify and
visualise complex data by reducing its dimensionality
and grouping similar units into clusters, referred to as
‘nodes’ [29, 67]. The method allows for flexibility in
the use of input data, and is well suited to land system
classification [10, 11, 29, 68].

SOMs work iteratively by competitively mapping
each input data vector (in this case, associated with
each 1 km2 grid cell) to its best matching node, within
an N×N node grid. This in turn influences the vari-
able values (‘codebooks’) for that node and its sur-
rounding nodes through co-operative learning. The
SOM’s output nodes represent data clusters, and their
codebooks represent the node’s coordinates in the
input variable space; thus the (arche-)typical values,
or centroids, for cells mapped to that node [30, 69].
For more detail on the SOM methodology, please
refer to [29, 66–68].

SOMs were run using the Kohonen R package
[70], on normalised (mean-centred and divided by
standard deviation) input data. SOMs were set up to
accept cells with missing data for up to all but one
variable, so that cells would be clustered based on
their available data, but missing data did not affect
the clustering. SOMswere run using the parallel batch
method and datawere presented to the grid 500 times.

A challenge in creating archetypes is to main-
tain a balance between the generalisation and spe-
cificity of the archetypes [26]. The configuration of
the SOM grid (and therefore the number of nodes,
and resultant archetypes) was determined through an
assessment of the ‘elbow’ in the graph of the mean
distance of cases from archetype centroids for dif-
ferent configurations (figure S1). If there were mul-
tiple candidate grid formations which resulted in a
sharp decrease in within-cluster distance, including
formations with the same number of clusters, the
configuration was chosen which increased: accuracy
(mean Euclidean distance of cells from their code-
book); consistency (the proportion of times cases
were assigned to the same node); and the consist-
ency of production of the same archetype set across

multiple iterations (to account for randomness in
the SOM [71]). Sensitivity analyses were conducted
on correlated and alternative variables, by removing
or adding variables, and investigating effects on the
archetypes, cluster and classification consistency.

2.3. Deriving archetypes
As the co-ordinates of the SOM nodes are initial-
ised randomly, different outputs can be produced
from the same data [71]. To account for this and
gain a measure of classification certainty, we ran 1000
iterations of the analysis, holding input parameters
constant. To assess consistency, there was a need to
recognise similar nodes across iterations. We did this
by performing hierarchical clustering using Ward’s
method [72] on the codebooks associated with nodes
produced from all iterations. To ensure a 1:1 map-
ping, the iterations which resulted in one node over
each cluster (the major archetype groupings) were
extracted, along with the mean codebook values for
each archetype over these iterations. Each cell was
classed as the archetype to which it was most fre-
quently assigned over iterations, as well as record-
ing its Euclidean distance from the central codebook
estimates for the archetype. To avoid losing informa-
tion on the stability of archetypes, we used data across
all the iterations to calculate consistency (‘Certainty’)
of assignment of each km cell.

Archetype names were derived through extract-
ing and concatenating the names of variables with
the strongest negative and positive weightings in
each archetype codebook; then simplifying the res-
ult to more human-readable, intuitive names. They
are therefore assigned for convenience, and do
not represent a full description of the archetype
characteristics.

2.4. Exploring the spatial configuration of
archetypes and their interaction between tiers
We assessed co-occurrence of archetypes of differ-
ent tiers by calculating their percentage overlap, and
thus illustrating the link between landscape types.
And landscapes and management systems. Addition-
ally, the configuration of archetypes in the landscape,
and the landscape context of individual archetypes,
will affect their ability to deliver ecosystem services;
for example if there is an aggregation of agricultural
archetypes it will likely affect the water quality of
freshwater archetypes, or smaller rivers and streams
in that area. The dispersion, or aggregation, of arche-
types will also impact the ability to deliver a bal-
ance portfolio of ecosystem services at different scales.
Multifunctional landscapes can be identified which
have a high dispersion of different archetypes, and
the potential, therefore, to deliver a range of ecosys-
tem services on the local level. To explore the con-
figuration of each archetype of each tier, its aggrega-
tion index (0–100) within an 11× 11 km sliding win-
dow was calculated [39]. This window size was large
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enough to capture multiple archetypes in each win-
dow so that interspersion could be calculated, while
also smoothing out the noise in spatial grain (other
window sizes were tried and revealed similar pat-
terns). We assessed archetype mixing by calculating
an Interspersion Index (The ‘Interspersion and Jux-
taposition Index’ in [65]) within the sliding window
for each tier (for windows containing at least three
archetypes. Landscapes with fewer than three were
assigned a value of zero) [39, 65]. We also calculated
the archetype difference index within the sliding win-
dow for each tier as the mean of the Euclidean dis-
tances between all pairs of the archetype codebooks
for cells within the sliding window. Non-farmed areas
were ignored for Tiers 2 and 3, and did not contribute
to the calculation of these indices. The Archetype dif-
ference and interspersion indices were scaled between
0 and 1 and summed to give an archetype diversity
index, as functional difference and interspersion rep-
resent the variation in composition and configura-
tion respectively [53], and contribute to the overall
diversity of land systems.

3. Results

3.1. Landscape and agricultural management
archetypes across GB
Examination of elbow plots (figure S1), identification
of candidate cluster sets and comparison of consist-
ency led to the formation of 16 (SOM grid of 8 × 2)
and 15 (5 × 3) Tier 1 and 2 archetypes, respectively,
for GB. For Tier 3, 12 (4× 3) archetypes were derived
for England, and 8 (2 × 4) for Wales. Across 1000
SOM iterations for the creation of Tier 1 archetypes,
999 runs produced a consistent set of archetypes,
where one node per iteration could be assigned to one
of 16 groupings. For Tier 2 archetype generation, 969
iterations produced a consistent set of archetypes. For
Tier 3 archetypes, 847 and 760 of 1000 iterations were
consistent for England and Wales, respectively.

Tiers 1 and 2 captured distinctive patterns of
groupings in soils, climate, land cover and features
(figures 1, S2 and S3). Some archetypes, especially
in Tier 1, are characterised by high values of one
or two variables and captured rarer land types (e.g.
open coastal landscapes; table S1), but the majority
are comprised ofmore diverse variable combinations,
especially in Tier 2 [73].

Farm management archetypes described patterns
in land use and management characteristics separ-
ately for England and Wales (figure 2). These arche-
types were also more likely to be comprised of com-
binations of many variables (figures S4 and S5).

Euclidean distance (in multi-variable space) val-
ues ranged widely (figure 3). The most isolated, rural
or built-up areas had the highest distance values
from their assigned archetypes (figure 3), indicating
unusual landscape types for which the archetype set
is a relatively poor descriptor. Tables S1–S4 illustrate

a summary of mean distances, and average certainty
of archetype assignment for each archetype within
each tier.

3.2. Interactions between farmed landscape and
farmmanagement tiers
Broad landscape (Tier 1) archetypes were generally
covered by several Tier 2 farmed landscape arche-
types (figure S6(A)); with an average of 34% (6.5
SD) of each Tier 1 archetype covered by the Tier 2
archetypewithwhich itmost commonly co-occurred.
Tier 2 archetypes were often found predominantly
within one or two Tier 1 landscapes (figure S6(B));
an average of 63% (20 SD) of each Tier 2 archetype
occurred within the Tier 1 archetype with which it
most commonly co-occurred. The ten most common
co-occurrences of Tier 1 and 2 archetypes covered
53% of agricultural land area.

In England, Tier 2 archetypes were covered by a
range of Tier 3 archetypes (figures 4(A) and S7). An
average of 32% (21%–48%) of each Tier 2 archetype
was covered by the Tier 3 archetype with which it
most commonly co-occurred. Similarly, different Tier
3 archetypes were spread across each Tier 2 archetype
(figure 4(B)); an average of 31% (21%–47%) of each
Tier 3 archetype occurred within the Tier 2 arche-
type where it was most often found. The ten most
common co-occurrences of Tier 2 and 3 archetypes
covered 31% of agricultural land area (figure S8).

In Wales, Tier 2 landscapes were more associated
with particular management archetypes (figures 5(A)
and S8); with an average of 54% (18%–100%) of each
Tier 2 archetype covered by a single Tier 3 arche-
type. Management archetypes were also mostly asso-
ciated with a limited number of farmed landscapes
(figure 5(B)); with an average of 53% (32%–88%)
of each Tier 3 archetype found within one Tier 2
landscape. In Wales, 62% of the farmed land area
was covered by the 10 most dominant combinations
(figure S8).

3.3. Spatial patterns in landscape and agricultural
management archetypes
Tier 1 archetypes showed varying degrees of spatial
aggregation (table S1; figure S8(A)). Tier 2 archetypes
were generally less, and less variably, spatially aggreg-
ated (table S2; figure S8(B)).WithinTier 3, archetypes
generally had less variable aggregation indices in Eng-
land (figure S8(C); table S3), and higher aggregation
indices in Wales (figure S8(D); table S4).

The differing levels of aggregation led to varying
archetype diversity across GB. Across Tier 1 and 2,
landscapes (11 × 11 km) surrounding cells on the
edges of more semi-natural archetypes (e.g. moun-
tains and coasts) had the highest average difference
values (Figures S9(A) and (B), whereas areas with
the highest spatial interspersion of archetypes were
in regions of mixed farming, semi-natural areas and
around large cities (figures S10(A) and (B)). When
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Figure 1. Landscape archetypes across GB. (A) Tier 1 broad landscape archetypes (B) Tier 2 farmed landscape archetypes (note
that Tier 2 archetypes are only defined for 1 km cells with agricultural Tier 1 archetypes; non-farmed land is in grey).

Figure 2. Farm management archetypes. (A) Tier 3 farm management archetypes derived for England. (B) Tier 3 farm
management archetypes derived for Wales. Tier 3 archetypes are only defined for 1 km cells with agricultural Tier 1 archetypes;
non-farmed land is in grey.

these two measures were combined, the highest spa-
tial diversity of archetypes (figures 6(A) and (B))
were similarly around coasts, edges of large cities
and areas where there are large changes in landscape
character.

For Tier 3 archetypes in England and Wales,
the edges of areas of similar archetype composition
had high archetype difference indices (figures S9(C)
and (D)), whereas farm management in areas sur-
rounding other types of land use (e.g. surround-
ing large cities, forests and upland areas) had higher
levels of interspersion (figures S10(C) and (D)). The
resulting highest levels of diversity in farm manage-
ment occurred in areas surrounding other land uses
and areas of transition between farm management
archetypes (figures 6(C) and (D)).

4. Discussion

4.1. Insights and implications for sustainable land
use
Archetypes of farming landscapes and practises
provide a simple, robust basis for a wide variety of
analyses, by reducing multiple complex sources of
variation into typologies.

One of the benefits of the non-nested derivation
of archetypes is that multiple archetypes in one tier
can occur within a single archetype of another tier.
The relationships found between archetype tiers can
thus be used to distinguish themanagement strategies
associated with particular landscapes. For example,
Tier 2 archetypes with more semi-natural habitats
predominantly coincide with livestock management
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Figure 3. The closeness of the data profile of each 1 km cell to the codebook of its assigned archetype, calculated as Euclidean
distance values between the input data values of 1 km cells and the centre values for those data for the cell’s assigned archetype, for
each of the three tiers (A) Tier 1; (B) Tier 2; and Tier 3 for (C) England and (D) Wales.

Tier 3 archetypes, which could be targeted for meas-
ures to restore these landscapes, a key policy pri-
ority in many areas [74–76]. Similarly, some arable
and pasture Tier 2 landscapes are characterised by
the presence of conservation features, e.g. hedgerows
and protected areas [76–78], so improvements to
these features could be targeted within the mixed and
dairy farming management archetypes with which
they most often co-occur. In other cases, the occur-
rence of a single Tier 3 archetype across multiple
Tier 2 archetypes may help indicate widely applic-
able systems. For example, some more mixed man-
agement Tier 3 archetypes occurred across many
landscape archetypes. Mixed management styles can
be associated with transitions to more sustainable
farming [18], so the lack of association with spe-
cific Tier 1 or 2 archetypes suggests that these mixed
Tier 3 archetypes are less dependent on specific land

conditions and could be applied in many different
landscapes.

The spatial structure of the archetypes is also
informative; archetype diversity identifies more var-
ied land systems at the wider scale, which have been
associated with beneficial environmental outcomes
[17, 79, 80]. Areas with a high diversity of different,
interspersed landscapes but a narrow range of man-
agement archetypes can be candidates for diversific-
ation of management, whilst less diverse, aggregated
landscapes with a range of management archetypes
could be examined to assess the viability of imple-
menting more diverse farming practise in other parts
of the country. Spatially interspersed, diverse wider
land systems, for example those north and north west
of London, are also more likely to be able to deliver a
wider variety of co-ordinated land uses and ecosystem
services at the local scale. The non-nested tiers also
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Figure 4. The co-occurrence of Tier 2 archetypes (rows) with Tier 3 archetypes (columns) in England. (A) The percentage of the
total area of each Tier 2 archetype covered by each Tier 3 (rows sum to 100%). (B) The percentage of the total area of each Tier 3
archetype covered by each Tier 2 (columns sum to 100%). Tier 2 types are calculated across GB and Tier 3 types are calculated
across England.

mean that one tier effectively defines the opportunity
space for transitions between archetypes of another
tier. The diversity of Tier 3 archetypes within a given
Tier 2 landscape is of particular interest as this repres-
ents the existing opportunity space for landmanagers
to adapt within the same constraints to achieve bet-
ter environmental outcomes. However, it is import-
ant to note that archetypes characterise the main
axes of existing variation and so more desirable, but
currently rare or non-existent, management systems
will not be represented. Although this analysis does

not consider socio-economic barriers, it provides
a framework for exploring potential trajectories of
change. This is particularly relevant in GB for land
management policy developments following the UK’s
exit from the EU. Specifically within the Landscape
Recovery scheme of the new Environmental Land
Management scheme (ELMs), archetypes could con-
tribute towards understanding how coordination can
be achieved across landscapes by defining the range of
plausible farm systems (Tier 3) within landscapes of
similar environmental constraints (Tier 2) [81]. The
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Figure 5. The co-occurrence of Tier 2 archetypes (rows) with Tier 3 archetypes (columns) in Wales. (A) The percentage of the
total area of each Tier 2 archetype covered by each Tier 3 archetype. (B) The percentage of the total area of each Tier 3 archetype
covered by each Tier 2 archetype. Tier 2 types are calculated across GB and Tier 3 types are calculated across Wales.

distances of specific 1 km cells from their assigned,
and alternate, archetypes could then indicate which
cells have greatest potential for transitioning to other
landscape and management types, or to identify the
opportunities for specific beneficial transitions e.g.
afforestation to create more wooded landscapes, or
farmland with more areas of woody semi-natural
habitat, a major goal of current national policy [7]
including habitat creation goals in the UK 25 year
environment plan [82].

There is also potential to directly link arche-
types with their environmental performance, and

thus demonstrate their validity empirically and for
application in decision making [63, 83]. Cells of the
same archetype can be compared on their environ-
mental performance, and the reasons for the variation
explored. Further research is assessing this by com-
paring the sustainability and ecosystem service deliv-
ery profiles of archetypes, leading to identification of
pathways to sustainable farming systems [84].

4.2. Robustness and limitations
The data-driven SOM approach is useful in providing
an objective classification of land use systems [85, 86]
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Figure 6. The archetype diversity index (combined archetypal difference and interspersion) of each of the three tiers of
archetypes. (A) Archetype diversity of broad Tier 1 landscapes in GB. (B) Archetype diversity of farmed Tier 2 landscapes.
Archetype diversity of Tier 3 farm management archetypes in (C) England, and (D) Wales. Archetype diversity indices were
calculated by summing the scaled (0–1) averaged difference (Euclidean distance) and interspersion indices of archetypes within
an 11× 11 km sliding window.

based on clusters of co-occurring traits. We have also
been able to assess their internal validity through
measures of within-archetype variation, and the con-
sistency of their production [83]. An inevitable part
of capturing these dominant patterns, however, is
that national-level variation may not always fully
capture regional and local contexts, which should
be considered when interpreting [28] and using the
archetypes in practice. Consultation with stakehold-
ers in specific regions would help to elucidate where
regional variations differ from the national level, and
how the maps generated at a 1 km scale could be
downscaled [10, 87].

Areas that were less well described by the arche-
types can be identified by their higher Euclidean
distance values, indicating that they were in some

way unusual [10, 11]. Therefore, care is needed in
interpretation of the archetypes assigned to these
areas. However, the ability to highlight the unique-
ness of such areas may be advantageous.

The validity of archetype design depends on the
attributes selected [83]. We were unavoidably lim-
ited by the availability and resolution of input data.
Some habitats and features, such as small woods,
fall below the spatial resolution of national extent
datasets such as LCM2015. Additionally, important
components of management practise, such as till-
age and fertiliser use, were not available. Some vari-
ables included in the third tier of archetypes were
only available at the larger 10 km scale, and may not
fully capture 1 km variation. This could have affected
the spatial patterning of Tier 3 archetypes. However
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aggregation indices for Tier 3 archetypes were not
especially high, and so while fewer archetypes might
occur in some landscapes, there is no indication that
interpolation had driven systematically high levels of
spatial aggregation. Data collection timescales could
also have affected results if shifts in policies ormarkets
caused changes in agriculture across that time. How-
ever, as most data were from 2010 to 2015 we do not
expect this to have significantly affected the results.

5. Conclusions

We have revealed major drivers, spatial patterns and
interrelationships of differences in broad landscapes,
farming landscapes and farm management systems
for GB. Examining the major groupings of farming
systems and how these relate to landscape can help
to target different land management strategies, and
assess their likely impact on management and land-
scape elements of farms. The archetypes we have cre-
ated form a valuable dataset for future research into
the delivery of multiple outcomes, and the design and
application of sustainable land use planning, from
incentivising changes in farmer behaviour to policy
drivers of large-scale land use change.

Data availability statement

The archetypes produced by this analysis will be
made available as spatial datasets on the Envir-
onmental Information Data Centre: https://doi.org/
10.5285/3b44375a-cbe6-468c-9395-41471054d0f3. R
scripts are available on Github: https://github.com/
cecilyg/Archetype_SOM.
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