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Abstract: Tropical deforestation continues at alarming rates, with profound impacts on
ecosystems, climate, and livelihoods, prompting renewed commitments to halt it. While it is
well established that agriculture is a dominant driver of deforestation, rates and mechanisms
remain disputed and often lack a clear evidence base. We synthesize the best available pan-
tropical evidence to provide clarity on the ways that agriculture drives deforestation.
Although most (90-99%) deforestation across the tropics 2011-2015 was driven by
agriculture, only 45-65% of deforested land became productive agriculture within a few
years. Therefore, ending deforestation likely requires combining measures to create
deforestation-free supply chains with landscape governance interventions. We highlight key
remaining evidence gaps, including deforestation trends, commodity-specific land-use
dynamics, and data from dry forests and across Africa.

Teaser: A Review disentangles the numbers behind agriculture-driven deforestation and
explains the different forms it can take.

Print page summary:
Background

Agricultural expansion is a primary cause of tropical deforestation and, therefore, a key
driver of greenhouse gas emissions, biodiversity loss and the degradation of ecosystem
services vital to the livelihoods of forest-dependent and rural people. However,
agriculture-driven deforestation can take many forms, from the direct expansion of
pastures and cropland into forests, to more complex or indirect pathways. A clear
understanding of the different ways in which agriculture drives deforestation is essential
for designing effective policy responses. To address this need, we provide a review of the
literature on pan-tropical agriculture-driven deforestation and synthesize the best
available evidence to quantify dominant agricultural land-use changes relating to
deforestation. We consider the policy implications of this assessment, especially for
burgeoning demand-side and supply-chain interventions seeking to address deforestation.

Advances

New methods and data have advanced our understanding of deforestation and subsequent
land uses. Still, only a handful of studies estimate agriculture-driven deforestation across
the whole tropics. While these studies agree that agriculture is the dominant land use
following forest clearing, their estimates of pan-tropical rates of agriculture-driven
deforestation during the period 2011-2015 vary greatly between 4.3 and 9.6 Mha/y, with
our synthesized estimate being 6.4—8.8 Mha/y. This apparent uncertainty in the amount of
agriculture-driven deforestation can be disentangled by distinguishing between the
different ways in which agriculture contributes to deforestation: we find that while the
overwhelming majority (90-99%) of all tropical deforestation occurs in landscapes where
agriculture is the dominant driver of tree-cover loss, a smaller share (45—-65%) of
deforestation is due to the expansion of active agricultural production into forests.
Multiple lines of evidence show that the remainder of agriculture-driven deforestation
does not result in the expansion of productive agricultural land, but instead is due to
activities such as speculative clearing, land tenure issues, short-lived and abandoned
agriculture, and agriculture-related fires spreading to adjacent forests.

Different land uses and commodities often interact to drive deforestation. However,
pasture expansion is the most important driver by far, accounting for around half of the
deforestation resulting in agricultural production across the tropics. Oil palm and soy



Accepted version. The definitive version was published in Science, (2022-09-09),
doi: 10.1126/science.abm9267

cultivation together account for at least a fifth, and six other crops—rubber, cocoa, coffee,
rice, maize, and cassava—Iikely account for a majority of the remainder, with large
regional variations and higher levels of uncertainty.

Outlook

This review points to three key areas where a stronger evidence base would advance
global efforts to curb agriculture-driven deforestation. First, consistent pan-tropical data
on deforestation trends are lacking. This limits our ability to assess overall progress on
reducing deforestation and account for leakage across regions. Second, excepting soy and
oil palm, the attribution of deforestation to forest-risk commodities is often based on
coarse-grained agricultural statistics, outdated or modeled maps, or local case studies.
Third, uncertainties are greatest in dry and seasonal tropics and across the African
continent in particular.

This assessment highlights that while public and private policies promoting
deforestation-free international supply chains have a critical role to play, their ability to
reduce deforestation on the ground is fundamentally limited. One-third to one-half of the
agriculture-driven deforestation does not result in actively-managed agricultural land.
Moreover, the majority—approximately three-quarters—of the expansion of agriculture
into forests is driven by domestic demand in producer countries, especially for beef,
cereals and much of the deforestation across the African continent. These data suggest
that the potential for international supply-chain measures to help reduce tropical
deforestation is more likely to be achieved through interventions in deforestation-risk
areas that focus on strengthening sustainable rural development and territorial
governance.

Agriculture-driven deforestation

Possible mechanisms
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Agriculture contributes to deforestation in many, often interacting, ways. Most tropical
deforestation occurs in landscapes where agriculture is the dominant driver. Part of this
agriculture-driven deforestation results in agricultural production (left) meeting domestic and
export demand. However, agriculture-driven deforestation also occurs without expansion of
managed agricultural land through several mechanisms (right). Incomplete agricultural
records also explain a share of that deforestation.
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Main Text: Deforestation continues at high rates, mainly in the tropics (/-4), and is one of
the largest drivers of greenhouse gas emissions, biodiversity loss and the degradation of
ecosystem services (5). While deforestation is driven by many interrelated processes (6),
expanding agricultural land use—including cropland, pastures, and tree crops—is the primary
direct cause of tropical deforestation (7-9).

Currently there is unprecedented attention on curbing tropical deforestation, with renewed
commitments to reduce deforestation at the climate COP26 in 2021, upcoming
negotiations at the COP15 for the Convention on Biological Diversity and strengthened
commitments and legislative proposals from governments (/0-12), companies (13, 14),
and financial institutions (/5). Emerging policies often focus upon eliminating
deforestation from international supply chains of agri-food commodities such as palm oil,
soybeans, and beef. With the adequacy of past pledges having received damning
assessments (e.g., in the New York Declaration on Forests 5-year assessment in 2019),
largely due to lack of funding and implementation, it is crucial that renewed investment is
guided by the best available evidence on agriculture-driven deforestation. The targeting of
limited resources needs to be based on a clear understanding of the scale of the problem,
its location, and the relative importance of different drivers.

Yet, at present, policies are being designed and evaluated against a backdrop of
widespread uncertainty regarding our understanding of the links between agriculture and
deforestation. The focus on agricultural supply-chain policies is commonly premised on
statements that agricultural expansion and production drive 80% of tropical deforestation,
a number appearing in everything from policy proposals (e.g., by the EU (/0) and the UK
(16)), to high-profile research (e.g., /7), and communications from NGOs and
international organizations (e.g., Rainforest Alliance (/8), Greenpeace (/9)). This 80%
number frequently appears as fact, often without referencing the original source,
Hosonuma et al. (20), or understanding its meaning and limitations. In 2012, the
referenced study gave a much-needed “first inventory of what countries identify as
relevant and important drivers” (27). However, data sources and methods for identifying
deforestation and subsequent land uses have since improved considerably (1, 2, 7, 22-25).
At this critical juncture of the fate of the world's tropical forests, it is essential to take
stock of our current understanding of the role agriculture plays in driving deforestation,
identifying key data and knowledge gaps.

Here, we aim to provide such a synthesis to disentangle the key rates and mechanisms of
agriculture-driven deforestation, organized around three central questions. What is our
current understanding of: (1) the rates and trends in deforestation across the tropics? (i)
The role of agriculture in driving deforestation, both in terms of the direct expansion of
productive agricultural land and more broadly regarding the links between agriculture and
land-use dynamics (e.g., land speculation)? And (iii), the relative importance of different
forest-risk commodities in driving deforestation, and to which extent their production is
linked to international trade? We assess our ability to address these questions in different
regions, clarify the inherent challenges in quantifying the role of agriculture in driving
tropical deforestation, and consider the practical implications of existing knowledge for
science and policy.

Agriculture and deforestation

The drivers, or causes, of deforestation can be examined in many ways (26, 27), and
multiple drivers often interact (6, 9). This review focuses on agriculture-driven
deforestation, here defined broadly as deforestation for which agriculture, whether
directly or indirectly, is a cause (Box 1). Importantly, agriculture-driven deforestation is
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not limited to the direct expansion of commodity production into forests. We review
recent pan-tropical assessments of deforestation drivers (table S1) and complement this
with a literature search of national-level estimates for eleven countries with the highest
deforestation rates (28). We harmonized datasets to the same set of 87 tropical and
subtropical countries (henceforth: the “tropics™), covering most of Latin America, Africa
south of the Sahara, and South & Southeast Asia (28) (fig. S1) and focus on the time
period of 2011-2015.

Deforestation rates and trends

Estimating deforestation rates across the tropics presents both conceptual and technical
challenges. First, there is no single way to distinguish between forests and non-forests,
nor between deforestation and forest degradation, so different studies and monitoring
systems rely on different definitions (29-31). Second, while remote sensing is useful for
monitoring forest changes in terms of land cover, not all aspects of deforestation—
including its underlying drivers—can be observed from satellites, and technical and
practical constraints result in imperfect data (e.g., dealing with cloud cover) (29, 30).
Forest loss estimates therefore differ between studies (fig. S2), both because of
measurement uncertainties (32) and because they strive to measure different things.

We define deforestation as “a persistent conversion of natural forest to any other land use,
such as agriculture or human settlements, or to tree plantations.” (Box 1). This definition
aligns with the aims of many policies focused on the loss of natural forests and
concomitant losses of biodiversity, carbon stocks and other ecosystem services, and
builds Accountability Framework initiative’s definition (33). There is currently no pan-
tropically consistent, spatially-explicit dataset that quantifies deforestation as defined
above, though Vancutsem et al. (2) comes close for tropical moist forests (28). Therefore,
this review combines data from different sources to derive estimates in line with that
definition.

The two main global data sources on forest loss, used by a majority in the policy and
research communities, are the Global Forest Change (GFC) dataset based on annual,
remote-sensing based measures of tree-cover loss (TCL) (7)., and the Food and
Agriculture Organization (FAQO)’s Forest Resources Assessment (FRA) which reports
deforestation rates at 5-10 year intervals (3). Many recent pan-tropical assessments of
deforestation drivers rely partly on GFC. A key challenge for assessing deforestation
based on the GFC data is that while all deforestation is in principle captured by tree-cover
loss, not all tree-cover loss (a land-cover change) constitutes deforestation in terms of a
persistent change in land use away from natural forest (/, 28) (Fig. 1A). In particular,
tree-cover loss includes clearings within tree plantations, severe forest degradation, and
rotational cycles of shifting cultivation (/, 7). The FRA uses a more restrictive definition
of deforestation than the one used here, where conversion of natural forest to forestry
plantation is not considered deforestation. Its usefulness for assessing deforestation
drivers is limited as the data are compiled at national-level only and are collected from
country reports based on a variety of methods, including remote sensing and inventories
(34).

For 2011-2015, GFC tree-cover loss rates averaged 10.6 Mha/y in the tropics, while the
FAO FRA 2020 estimates deforestation to be 10.7 Mha/y (Fig. 1B), despite the latter
applying a more restrictive definition and primarily reporting net (not gross) deforestation
for many countries. These aggregated numbers mask considerable regional differences,
especially for Africa, where FRA deforestation is estimated at 4.4 Mha/y, while tree-
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cover loss amounts to 2.8 Mha/y (Fig. 2 and table S3). For some countries, these
differences are striking; for India, the FRA (gross) deforestation rate (0.67 Mha/y; based
on remote sensing (3)) far exceeds the GFC tree-cover loss (0.10 Mha/y). Additionally,
the two main datasets show opposing pan-tropical trends between 2001-2010 and 2011
2020, with an increase from 9 to 12 Mha/y in GFC tree-cover loss (/), compared to a
decrease from 14 to 10 Mha/y in FRA deforestation rates (3) (Fig. 1B). While
discrepancies in rates are expected as approaches differ in how they define “forests” and
“deforestation” (see more discussion in (/, 2, 32, 35)), the fact that GFC tree-cover loss
and the FRA deforestation data report a difference in the overall direction of the trend is
more puzzling.

Uncertainties in trends arise due to several methodological and conceptual challenges,
which must be taken into account for drawing conclusions about trends in tree-cover loss
or deforestation based on the GFC and FAO FRA datasets, e.g., Curtis et al. (7), Carter et
al. (32), Goldman et al. (36), Pendrill et al. (37), Nguyen and Kanemoto (38).

The increasing trend in GFC tree-cover loss presents two main challenges for evaluating
temporal trends in deforestation. First, the GFC methodology has become more effective
at detecting small and temporary forest disturbances—part of which could be more
adequately characterized as forest degradation rather than deforestation—post-2011 and
especially post-2015 (39, 40) both due to changes in the methodology and increased
quality and volume of Landsat satellite data. Caution is thus needed when trying to
compare tree-cover loss trends between the pre- and post-2011 or -2015 time periods (28,
39, 40). Second, this effect is enhanced by the growing importance of forest degradation,
which has increased in many parts of the tropics in recent years due to the combined
effects of climate change, fires, forest fragmentation and unsustainable timber extraction
(2, 41, 42).

For the FRA 2020 deforestation data “relatively few countries and territories have
reliable data over the [full] period” (43). There has been some evidence that “countries
with lower capacities in the past had the tendency to overestimate the area of forest loss”
(44). In recent years, the data sources have improved for many tropical countries (34, 43),
potentially leading to inconsistencies with older data of lower quality. The decreasing
trend in the FRA deforestation rates may thus, in part, result from overestimates and
uncertainties in earlier years (though decelerating deforestation is also found in the
preliminary (global) results from the Remote Sensing Study accompanying the FRA 2020
).

Overall, we thus find that consistent pan-tropical data on deforestation trends is lacking,
challenging our ability to assess if and where progress is being made.

Agriculture-driven deforestation

There are currently only a handful of pan-tropical estimates of the importance of
agriculture in deforestation (7, 8, 20, 32, 37, 45) (table S1), all of which agree that
agriculture is the dominant land use following deforestation. Estimates of deforestation
drivers, e.g., the relative importance of agriculture and of different commodities, are
intrinsically less reliable in the most recent years, because time is needed to reveal
whether the cleared land will be used for production (and, if so, for what) or allowed to
regenerate. Typically, the use of the cleared land is assessed within at least two to four
years after forest clearing, though the precise number of years varies between studies
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(from one year and up to two decades) depending on method and data availability (28).
For these reasons, we focus our analysis here on the period 2011-2015.

For that period, three studies provide pan-tropical estimates of agriculture-driven
deforestation (fig. S3). One (Carter et al. (32)) assumes a constant fraction of
deforestation being agriculture-driven, based on pre-2010 data from other studies (De Sy
et al. (8)) and Hosonuma et al. (20)). The other two, despite relying on the same GFC
tree-cover loss data (1), provide vastly different estimates of agriculture-driven
deforestation, ranging from 4.3 Mha/y (Pendrill et al. (37)) up to 9.6 Mha/y (Curtis et al.
(7)) (Fig. 1B and table S4). The variation arises because of methodological differences
and because estimates describe different aspects of deforestation and the role of
agriculture therein.

By combining these two assessments, Curtis et al. (7) and Pendrill et al. (37), with
ancillary data (28), we estimate total agriculture-driven deforestation across the tropics to
be 6.4-8.8 Mha/y (Fig. 1A). As detailed below, this range reflects uncertainties of how
much tree-cover loss due to shifting agriculture constitutes deforestation, as opposed to
cyclical crop-fallow rotations. With total deforestation ranging between 6.5 and 9.5
Mhaly (table S3), this implies that the vast majority (c.90-99%) of tropical deforestation
occurs in landscapes where agriculture is the dominant driver of forest loss (28).

The Pendrill et al. (37) data suggest a much smaller share of tropical deforestation
resulting in agricultural production, in the range ¢.45-65% of our total tropical
deforestation estimate (likely at the higher end (28)). Pendrill ef al. (37) estimate this by
employing a land-balance model to attribute GFC tree-cover loss to expanding cropland
and pastures. They evaluate the expansion of cropland and pastures primarily based on
national agricultural statistics (FAOSTAT (46)); with subnational data for Brazil and
Indonesia). A key source of uncertainty in the Pendrill et al. (37) assessment comes from
its reliance on FAOSTAT-recorded agricultural areas. The quality of these data varies
considerably between countries and data are often imputed or estimated rather than
reported (Table 1)(46). This can lead to underestimation of the significance of agriculture
as a deforestation driver for countries that are slower to (or simply do not) update their
statistics and where the self-reporting by countries incompletely capture some agricultural
activities (e.g., shifting cultivation). The Pendrill et al. (37) estimate of 4.3 Mha/y of
deforestation resulting in agricultural production should therefore be considered a
conservative estimate (28).

In contrast, Curtis et al. (7) assess the dominant direct drivers of tree-cover loss in 10-by-
10 km grid cells using decision-tree models trained on high-resolution imagery in Google
Earth. Dominant drivers of GFC tree-cover loss are divided into five classes: commodity-
driven deforestation (5.19 Mha/y; primarily for agriculture), shifting agriculture (4.37
Mhaly), forestry (0.93 Mha/y), wildfire (0.02 Mha/y) and urbanization (0.02 Mha/y).

For assessing agriculture-driven deforestation, the Curtis et al. (7) approach presents two
key challenges. First, it does not fully distinguish which of the GFC tree-cover loss is
deforestation. Some of the dominant drivers of tree-cover loss correspond to deforestation
(i.e., commodity-driven deforestation and urbanization), while others do not (i.e.,
wildfires potentially resulting in regrowth). Still, the large remainder—i.e., shifting
agriculture and forestry—can reflect both the expansion of these systems into natural
forests (i.e., deforestation), as well as regular rotations in stable shifting agriculture
systems, plantations, or managed forests, which does not constitute deforestation under
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most definitions (including the one adopted here). Second, the Curtis et al. (7) approach
allocates all tree-cover loss in each grid cell to a single dominant (defined as >50%)
driver of tree-cover loss for the whole time period (2001-2020), ignoring drivers that are
not dominant. Therefore, even in the grid cells where commodity-driven deforestation or
shifting agriculture is the dominant driver of tree-cover loss, not all the tree-cover loss is
necessarily directly driven by agriculture. The Curtis et al. (7) estimate is thus a metric of
deforestation occurring in landscapes where agriculture is the dominant direct driver of
forest loss (rather than only deforestation resulting in agricultural production per se).

This metric deviates conceptually from our definition of agriculture-driven deforestation,
as remote sensing data can never unambiguously distinguish deforestation indirectly
driven by agriculture from drivers that are co-located, but causally uncoupled. However,
drivers of deforestation often interact (6, 9, 47), so in these landscapes where most
deforestation is directly due to agriculture, evidence from multiple studies suggest that
agriculture typically contributes indirectly also to much of the deforestation that is
directly driven by other factors (6, 48). For example, in agricultural deforestation
frontiers, even if logging or urbanization is the direct driver of some deforestation, it is
typically indirectly linked to agriculture, such as where land is logged first but with
prospects of converting it to agriculture, which may or may not materialize (49-51), or
where urbanization is connected to the inflow of laborers into agriculture (52). The share
of deforestation in pixels where Curtis et al. (7) classify agriculture as the dominant
driver, but which is causally disconnected from agriculture, is therefore likely to be very
small. Hence, we take the metric of deforestation occurring in landscapes where
agriculture is the dominant direct driver of forest loss as the best-available proxy for
estimating agriculture-driven deforestation.

Curtis et al. (7) put deforestation occurring in landscapes where agriculture is the
dominant driver in the range of 5.19 Mha/y (commodity-driven deforestation only) to
9.47 Mha/y (sum of commodity-driven deforestation and shifting agriculture) (Fig. 2).
We narrowed this range down to 6.4—8.8 Mha/y (28), by excluding tree-cover loss in tree
plantations (53) and by including deforestation in primary forests (54) and deforestation
resulting in agricultural production (based on Pendrill et al. (37))(fig. S4).

Our analysis suggests a large discrepancy (2.0-4.5 Mha/y) between the deforestation
resulting in agricultural production (>4.3 Mha/y) and the overarching category of
agriculture-driven deforestation (6.4—8.8 Mha/y) (Figs. 1A and 3). This discrepancy is
present across all three continents in our country sample, totaling 1.0-2.0 Mha/y in Latin
America, 0.0-1.3 Mha/y in Africa, and 1.1-1.2 Mha/y in Asia (Fig. 3), though
uncertainties abound and part of the discrepancy is likely due to unrecorded agricultural
areas.

The discrepancy reflects the complex role of agriculture as a driver of tropical
deforestation and indicates that a around one-third to one-half of agriculture-driven
deforestation does not result in recorded agricultural land (though it might be used for
other purposes). This is consistent with regional and pan-tropical remote-sensing studies
finding large tracts of unused land following forest loss (8, 24, 28, 55, 56), including a
pan-tropical estimate that 20-30% of agriculture-driven tree-cover loss in the period
2015-2019 showed some shrub or forest regrowth by 2020 (57).

There are several mechanisms explaining this large share of agriculture-driven
deforestation without expansion of agricultural production. One such mechanism is land
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speculation, often linked to unclear or contested tenure. This process has been
documented for several Latin American countries, including the Brazilian Amazon (58,
59) and Costa Rica (60), where expectations about future agricultural rents—fueled by
planned road infrastructure improvements, uncertainties around future forest conservation
policies and the existence of large tracts of undesignated public land—Iead to speculative
clearing. Other social processes, such as imitation (cf. 61, 62), create crop booms and
potential busts (63). This can lead to land being cleared anticipatively but not
subsequently being taken into production because the market conditions deteriorate or
due to failed operations or diminishing economic viability. For instance, land cleared for
speculation in the Brazilian Amazon is typically put under extensive pasture, where
animal stocking rates are very low; these pastures are commonly degraded and abandoned
within relatively short time periods (64-66). Deforestation can also be used to strengthen
tenure claims, where laws link land rights to clearing or use (67, 68). Moreover, conflicts
over land tenure often contribute to deforestation in contested forest frontiers, in excess of
clearings purely for productive agriculture (69, 70). The extent of land with unclear and
contested tenure is not precisely quantified pan-tropically but shown to be very large in
some countries (71).

Land degradation can also lead to land abandonment, or maintenance of the land at very
low levels of productivity, possibly because the deforested land was not suitable to begin
with (72, 73), or because of deforestation-driven changes in local climate (74), inadequate
management and lack of know-how, or cultural or structural barriers (66, 75).

Another mechanism through which agriculture contributes to deforestation without
resulting in productive agricultural land in the near term is from fires started in
agricultural lands that spread to adjacent forest areas, leading to forest degradation and, in
some cases, complete deforestation. Almost all fires in tropical moist forests are due to
human activities (42) including to clear forests for new agriculture and as a land
management tool (e.g., for weed control and nutrient mobilization) in already-cleared
agricultural areas (42). This frequently leads to fires spreading into adjacent forest areas,
as documented in Brazil (76), the Miombo (77), and Indonesia (78).

Attributing deforestation to commodities and consumers
The evidence on pan-tropical rates of deforestation attributed to cropland, pasture and
associated commodity production in more recent years primarily stems from only two
approaches: Pendrill et al. (37) and Goldman et al. (36). Two other studies have also
quantified the role of agricultural commodity production in driving deforestation(38, 45),
but these primarily cover time periods before 2010 and are thus not discussed in detail
here. Pendrill ef al. (37) is the most comprehensive in terms of commodity coverage, with
annual data on deforestation followed by pasture and 155 crops, assessed primarily at
national level. Given its lack of spatial detail, that method does not unequivocally
establish whether these land uses expanded directly on cleared forest land or if they
indirectly displaced other land uses into the forest (37). Goldman et al. (36) attribute
deforestation to commodities by overlaying GFC tree-cover loss classified as commodity-
driven deforestation or shifting agriculture (from Curtis et al. (7)) with recent spatially-
explicit extent maps for oil palm, soy, rubber and pasture for a subset of countries, as well
as older, coarse maps for pasture, cocoa and coffee. The coarse estimates are far more
uncertain (than those based on recent maps) for two main reasons. First, all tree-cover
loss classified as dominated by commodity-driven deforestation or shifting agriculture is
assumed to constitute deforestation resulting in agricultural production, which risks over-
allocating tree-cover loss as deforestation assigned to commodities. Second, it assumes
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that the relative shares of commodity area, and thus share of deforestation, in each grid
cell remained stable since the year 2000 for pasture and 2010 for crops. This is unlikely to
hold, especially in rapidly changing deforestation frontiers.

It is well established that cattle pasture expansion is the single most important
deforestation driver by far, alone accounting for around half of the deforestation resulting
in agricultural production (36, 37). Still, the two available pan-tropical datasets differ
considerably in the estimated extent of deforestation attributed to the expansion of
pastures (1.9 compared with 2.7 Mha/y, with the lower value from Pendrill et al. (37) and
the higher from Goldman et al. (36). Most of the deforestation due to the expansion of
pastures is found in South America (c.1.2 and 2.1 Mha/y) (Fig. 2), particularly in Brazil.
This region has robust data on pasture-driven deforestation at the national or biome-level
(table S5). Attributing deforestation to pasture is especially challenging (28) because of
its complex dynamics with other drivers (e.g., land speculation and crops (58, 79-81));
additionally, pastures can be difficult to distinguish from other land covers based on
remote sensing because they may appear spectrally similar to cropland or natural
vegetation (82, 83) and because pastures and their definitions vary considerably (84, 85).

Following pasture, the next most important land uses are oil palm and soy cultivation,
together accounting for at least a fifth of the deforestation resulting in agricultural
production (36, 37). Their importance is reflected in the large number of country or
biome-wide assessments of these crops (table S5) (28). Deforestation attributed to these
crops is highly concentrated regionally, in South America for soy and in Southeast Asia
for oil palm (Fig. 2, table S6), in particular in Indonesia. Pan-tropical estimates are also
the most reliable for these two crops (Table 1), though precise estimates can still differ
from, and between, national-specific studies (e.g., for Indonesia (28)), underscoring the
value of having multiple data sources.

The cultivation of six other crops—rubber, cocoa, coffee, rice, maize, and cassava—
account for a majority of the remaining deforestation resulting in agricultural production
(28, 36, 37)). However, the evidence is currently lacking to confidently estimate their
significance or changes in this over time (37), and country-level assessments are largely
missing (table S5). For these crops, the data are limited or of poor quality (Table 1) and
both pan-tropical approaches rely heavily on agricultural statistics. Statistical records are
unreliable for cocoa and coffee cultivation (86), with further uncertainties as these crops
can be shade-grown, in which case their expansion into natural forest can be difficult to
detect using remote sensing, and they are also often grown together with other crops in
agroforestry systems (87-89). Records for staple crops are frequently based on estimates
and may underestimate harvested areas in subsistence or smallholder contexts due to
minimum harvested area criteria in records (90).

Many of the crops discussed above are important export crops—including soybeans, palm
oil, rubber, coffee, and cacao—and international trade has been identified as a key driver
of deforestation since the 2000s (89, 971-93). Three pan-tropical studies assess
deforestation associated with trade in commodities: Nguyen and Kanemoto (38), Cuypers
et al. (45) and Pendrill et al. (37). The first two are not discussed further as their
deforestation data are primarily for the pre-2010 time period.

The role of international demand in driving deforestation differs depending on how far
downstream international supply chains the analysis extends (94). A physical trade
model, which traces deforestation embodied in raw or lightly processed agricultural

10



Accepted version. The definitive version was published in Science, (2022-09-09),
doi: 10.1126/science.abm9267

commodities, suggests that 20-25% of all deforestation resulting in agricultural
production is linked to exports (37)(fig. S5). This average, however, hides substantial
variation across countries and regions (fig. S6): soybeans, palm oil, and cash crops (e.g.,
rubber, coffee, cocoa) are primarily destined for export markets, while beef and cereals
are typically consumed domestically. An economic, multi-regional input-output model,
which traces deforestation all the way to final consumption, raises the share of
commodity-driven deforestation linked to international demand to around 35% (37)(fig.
S5). Thus, despite the remaining limitations and uncertainties in data and current trade
models, there is convincing evidence that domestic demand remains a primary underlying
driver of deforestation resulting in agricultural production.

While the numbers presented here provide a big-picture indication of the most important
forest-risk commodities, commodities often interact in driving deforestation.
Deforestation can also be followed by several successive agricultural land uses (28). For
example, soy expansion in one place has been linked to pasture expansion in others in
South America (79, 81), while timber harvesting is often a precursor to deforestation, for
instance, to oil palm expansion in Indonesia (49, 95). Such concurrent and interacting
drivers of forest degradation and deforestation are poorly evaluated in continental-scale
assessments, which can lead to an overly simplified focus on addressing drivers in
isolation (47, 96). Additionally, data is largely lacking on the legality of the deforestation
and production (97), or whether the actors involved are small- or large holders and
whether they are producing for subsistence or marketed demand (98-100).

Moreover, we have not assessed non-agricultural deforestation drivers. Logging and
demand for wood products (e.g., timber and pulp), charcoal, and fuelwood are, alongside
agricultural expansion, key direct drivers of deforestation and, even more so, of
degradation (6, 55, 101, 102). While deforestation due to the expansion of tree plantations
is estimated by Goldman et al. (36) and Pendrill et al. (37) (0.1 Mha/y and 0.8 Mhaly,
respectively, with the former only covering eight countries), deforestation due to logging
and timber extraction that sometimes occurs in conjunction with and facilitates
agriculture expansion (49, 50, 95) is not comprehensively quantified at the pan-tropical
level.

Urbanization, mining, and energy infrastructure like hydropower dams are relatively
minor direct drivers of deforestation from a pan-tropical perspective—together, they
amounted to just 2% of the land uses following forest loss across the (sub-)tropics
between 1990 and 2000 (8), although they can be important direct drivers locally; e.g.,
gold mining is a dominant direct cause of deforestation in Guyana (/03) and in Madre de
Dios in Peru (104). However, the indirect impacts of these drivers can be considerable
(71, 105-107). A study of the Brazilian Amazon found that deforestation indirectly
induced by mining was 12 times larger than the direct deforestation occurring within
mining concessions (/08).

Improving the evidence base

Our findings point to three key data gaps in our understanding of tropical deforestation
and its links to agriculture. Overcoming these gaps can considerably strengthen the
evidence base to help accelerate global efforts to curb agriculture-driven deforestation—
both in the design of policy responses and in evaluating their effectiveness.
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First, the lack of consistent pan-tropical data on deforestation still hampers our ability to
assess overall deforestation trends and thus the net impacts of interventions to reduce
deforestation while accounting for leakage across regions and biomes (109-111).
Improvements in deforestation data are needed in three main areas, to i) encompass both
dry and wet tropics, ii) provide estimates of deforestation that go beyond tree-cover loss
and satisfy the commonly-held definition of a persistent conversion of natural forest to
any other land use, and iii) ensure that estimates are consistent across regions and over
time. Data on deforestation trends could be improved in several ways to help meet these
requirements, including by improving contextual data on tree plantations and shifting
agriculture to systematically filter out such temporary tree-cover loss from the GFC data
(1); or, e.g., expanding the Vancutsem et al. (2) approach to the dry tropics. Furthermore,
deforestation area metrics alone are a crude proxy for the multiple social-ecological
impacts, which vary significantly between places (30). Improved quantification of these
impacts remains needed.

Second, to improve our understanding of the relationships between agricultural drivers
and forest loss, and to inform both territorial and supply-chain measures directed at
specific commodities, a concerted effort is needed to improve the coverage, quality, and
frequency of data on pastures and crops that are replacing forests for all regions where
significant deforestation occurs. In contrast to deforestation data, data on drivers need not
be pan-tropical, as commodity-specific deforestation frontiers are typically concentrated
in specific regions and require responses tailored to their context (/ /7). Regional-level
datasets that can cover the majority of a given commodity, e.g., soy across South America
and oil palm in Southeast Asia, play a key role as, being built on regional knowledge,
they are typically not just more accurate but also more regionally- and policy-relevant,
e.g., in terms of land use and management characterization (//2). Currently, however,
only oil palm (/13) and soy (25) are mapped for most production areas in the tropics (36).
The attribution of deforestation and conversion to most forest-risk commodities,
especially outside of Brazil and Indonesia, therefore relies on agricultural statistics at a
very coarse—often national—scale, on local case studies, or on single-year, modeled
maps that are often outdated, potentially leading to misattribution. Despite the fact that
pastureland is by far the most prominent driver of deforestation, our understanding of
pasture extent is particularly poor, as large-scale assessments outside of South America
rely on (often unofficial) agricultural statistics or on a global pasture map for the year
2000 (28).

Important recent advances in land-use mapping include multiple biome-scale initiatives
such as MapBiomas (7 14); sample-based monitoring tools such as CollectEarth (/15);
and efforts to combine wall-to-wall satellite monitoring and sample-based approaches,
including to build confidence in temporal trends in deforestation (4, 23-25, 116, 117).
Future advances can include improving the collection and organization of sub-national
agricultural statistics and further leveraging advances in remote-sensing data and methods
(8, 22).

Third, there is an urgent need to invest in spatially and temporally explicit assessments of
agriculture-driven deforestation tailored to the dry tropics and to deforestation frontiers in
Africa, with a focused effort to better characterize deforestation in smallholder shifting
agriculture (e.g., (/00)). Uncertainties around the nature, extent, and drivers of
deforestation linked to agriculture are unevenly distributed, as the quality of the data used
and the performance of the methods vary between countries and biomes (/, 2, 7, 32,
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36)(Table 1). Overall, our understanding of agriculture-driven deforestation is
systematically poorer in dry forests and wooded savannas, and across the African
continent, in contrast with Latin America and the humid tropics. There are several reasons
for this: First, there is a general neglect of land-use change research in Africa (9), where,
additionally, the capacity of agencies to compile data on agricultural production is
particularly limited (718, 119). Our literature search found comparatively fewer studies
on recent agriculture-driven deforestation in Africa (n = 6), compared to Latin America (n
= 27) and Asia (n = 26) (table S5). Tropical dry forests are also less researched than wet
forests (116, 120). Second, remote-sensing mapping of forests and agricultural land cover
and their changes is generally more difficult in heterogeneous landscapes, e.g., where tree
cover and canopy structure varies, and where smallholder and shifting agriculture results
in small, irregularly-shaped and temporally dynamic patches of cultivated land
interspersed with natural vegetation (/, 121, 122). These challenges are exacerbated by
difficulties in discriminating vegetation types for intermediate levels of tree cover, such
as in savannas, shrublands and sparsely forested woodlands, which are more prevalent on
the African continent (30, 77, 116).

This disparity in our understanding of the dry and seasonal tropics compared to the wet
tropics (Table 1) is particularly striking given that about one-third of all tropical dry
forests and woodlands are in active deforestation frontiers (56). Further emphasis on
deforestation in the dry and seasonal tropics would also challenge the disproportionate
prioritization of international conservation funding towards moist forest biomes (/23).

Conclusions

The synthesis of current data on agriculture-driven deforestation provided here challenges
conventional wisdom and has profound implications for policy. The central insight from
our review is the distinction—and discrepancy—between agriculture-driven deforestation
and deforestation resulting in agricultural production. While as much as 90-99% of
deforestation occurs in landscapes where agriculture is the main driver of tree-cover loss,
only 45-65% of deforestation can be attributed to the expansion of actively-managed
cropland, pasture or tree crops. The implications of this discrepancy are wide-ranging for
efforts to curb deforestation and to mitigate climate change. The most recent global
carbon budget indicates a stagnation or decline in global emissions from land-use change,
due most notably to reduced tropical cropland expansion (/24). However, that assessment
does not account for forest degradation or the large share of deforestation not resulting in
agricultural production identified here. The discrepancy also highlights two essential
conclusions that can shape more effective policy responses to deforestation.

First, while public and private policies promoting deforestation-free international supply
chains have a key role to play (96, 125), their direct effectiveness in reducing
deforestation is fundamentally limited given that (i) international demand represents only
a quarter of total deforestation resulting in agricultural production, and (ii) one third to
one half of agriculture-driven deforestation does not result in productive agricultural land.
Additionally, most supply-chain interventions to date have been focused on direct
sourcing and are restricted in their ability to address products associated with
deforestation that enter supply chains through intermediaries (/26). International supply-
chain interventions can, in principle, help address some of the indirect ways agriculture
drives deforestation (e.g., by discouraging speculative clearings (/27)). However, tackling

13



Accepted version. The definitive version was published in Science, (2022-09-09),
doi: 10.1126/science.abm9267

deforestation linked with domestic demand as well as the underlying drivers of
agriculture-driven deforestation more broadly, such as land-tenure insecurities and
conflicts, likely requires broader land governance and rural development interventions
(125, 128). Tenure reform, land zoning, regulatory reform and enforcement, and
extension services supporting farmers, all have an important role to play in slowing
agriculture-driven deforestation (125, 128, 129). Many of these approaches would likely
benefit from closer partnerships between demand and supply-side actors and the scaling
up of deforestation-free supply chains to deforestation-free regions and sectors. There is
an urgent need to identify and leverage the mechanisms by which demand-side supply-
chain policies, including zero-deforestation commitments, can go beyond their immediate
impacts and help motivate and catalyze broader changes in territorial governance. This
remains a key research frontier.

Second, to effectively reduce deforestation, interventions need to address the systemic
interdependencies between the expansion of different commodities, requiring a much
stronger focus on more comprehensive, landscape-level approaches. The most prominent
example of this is pasture expansion, which is tightly linked to soy expansion and land
speculation across Latin America. An excessive focus on individual commodities, which
characterize many current policy initiatives, risks undermining the potential to avoid
widespread leakage and deliver positive reductions in deforestation on the ground.

The unprecedented focus on forest conservation and nature-based climate solutions in the
aftermath of the UNFCCC COP 26 and heading into the UN Biodiversity COP 15
provides a critical moment to ensure that urgent efforts to tackle deforestation are guided
and evaluated by an evidence base fit for purpose as this review sets out.

Box 1. Key terms for disentangling agriculture-driven deforestation.

Natural forest: A forest that “resembles—in terms of species composition, structure and
ecological function—one that is or would be found in a given area in the absence of
major human impact” (33). Aside from primary and intact forests, natural forest also
includes regenerated (second-growth) forests and partially-degraded forests, provided
they fulfill the definition above (33). As no comprehensive, pan-tropical map of natural
forests currently exists, most studies approximate their extent.

Deforestation: A persistent conversion of natural forest to any other land use, such as
agriculture or human settlements, or to tree plantations.

Agriculture: Agriculture includes cropland, pastures and tree crops, but not forestry
(excluding timber, pulp and paper).

Agriculture-driven deforestation: Deforestation for which agriculture, directly or
indirectly, is a cause. This includes both deforestation resulting in agricultural
production and agriculture-driven deforestation without expansion of agricultural
production. Agriculture-driven deforestation does not necessarily mean that agriculture is
the only, or main, cause of deforestation; for example, deforestation may be directly
driven by the demand for timber, alongside the demand for agricultural expansion (49, 50,
95) and indirect, or underlying, drivers always play a role (6, 27).
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Deforestation resulting in agricultural production: Deforestation that can be attributed
to the expansion of land under active agricultural production systems.

Agriculture-driven deforestation without expansion of agricultural production:
Deforestation occurring in landscapes where agriculture is the dominant driver of forest
loss, but that does not result in recorded, productive, and actively-managed agricultural
land. This can be due to several mechanisms and is distinct from forest degradation or
other tree-cover loss in the sense that the forest has been fully cleared and there are signs
of other land uses, though in practice the boundary can be hard to draw.
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Fig. 1. Tree-cover loss, deforestation and agriculture-driven deforestation. (A) A
conceptual diagram visualizing the concepts of tropical tree-cover loss, deforestation,
agriculture-driven deforestation, and deforestation resulting in agricultural production, nested
from the broadest to the narrowest concept. The area of each circle is scaled by the estimated
extent, though the ranges are not represented, so for deforestation and agriculture-driven
deforestation the extent is approximated. (B) Studies vary considerably in their estimated
extents (millions of hectares per year) and trends, reflecting uncertainties and conceptual
differences. The data on tree-cover loss (TCL) are from GFC (updated from Hansen et al.
(1)); on deforestation from the FAO FRA (3) and Carter et al. (32); on agriculture-driven
deforestation updated from Curtis et al. (7), Carter et al. (32), and on deforestation resulting
in agricultural production updated from Pendrill ez al. (37). Abbreviations used: “def” =
deforestation, “agr.” = agriculture. In all figures, the data have been aligned to the same set of
87 (sub-)tropical countries.
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Fig. 2. Estimates of tropical deforestation and its agricultural drivers. The average
extents (2011-2015) of TCL by driver (data from Hansen et al. (1) and Curtis et al. (7),
where TCL driven by agriculture falls under Shifting agriculture and Commodity-driven
deforestation) and of deforestation attributed to agricultural commodities (data from Goldman
et al. (36), Pendrill et al. (37)) and international trade (data from Pendrill ef al. (37)).
Commodities followed by “*” are not quantified by Goldman et al. (36). FAO FRA (3)
deforestation rates are included for comparison. Abbreviations used: “TCL” = tree-cover loss,
“def” = deforestation, “agr.” = agriculture, “prod.” = production.
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Fig. 3. The ways in which agriculture contributes to deforestation differ between
regions. Agriculture-driven deforestation (based on Curtis et al. (7)) includes deforestation

resulting in agricultural production (based on Pendrill et al. (37)) as well as agriculture-driven
deforestation without expansion of agricultural production, which can occur through several

potential mechanisms. Incomplete records of agricultural area and production might also

explain a share of that deforestation, which should thus be attributed to certain land uses and

commodities if monitoring systems improve. Deforestation resulting in agricultural

production can, in turn, be attributed further to certain land uses and commodities (based on

Pendrill et al. (37) and Goldman et al. (36)), and to export or domestic demand (based on
Pendrill et al. (37)).
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Table 1. Data availability for assessing deforestation resulting in agricultural production. Deforestation rates (total and for major
post-forest loss land-uses, in Mha/y) for the eleven countries with the highest rates of deforestation in the period 2011-2015, and quality
of the underlying driver data (cell shading). Estimates are from Pendrill et al. (37) (P), Goldman et al. (36), or other studies (O) identified
in the literature review and where national-level estimates for the time-period 2011-2015 could be extracted from the source (28).

Defore- Maize, rice,
station rate Cropland Pasture Soybeans Oil palm Rubber  Cocoa Coffee cassava
P O P G OO P G O P G ©O P G P G P G P P P

Latin America
Brazil 1.5-22 0.46 JONON 0.75 1.1 [0H8) 0.27 [0:22) 01065056 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.11 0.01 0.01
Paraguay 0.36—0.38 0.11 0.14 0.14 0.08 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.00
Argentina  (.28—0.33 0.00 0.00 0.13 0.00 [0.08 0.00 0.00 0.00 0.00 0.00
Bolivia 0.20—0.24 0.02 0.04 [054 0.00 [0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Africa:
DR Congo 0,37_0,84- 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.08 0.12|
Angola 0.18 0.02 10.18 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
Madagascar  ().07—0.26 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Mozambique ~ 0.17 0.00 [0:18 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Asia:
Indonesia 1.2-13 0.64 [0IS80M§ 0.09 0.03 0.00 0.01 0.39 [0HI5] 051450124 0.04 0.06 0.01 0.05 0.00 0.03 0.03 0.07 0.00
Malaysia 0.25—0.26 0.07 0.00 0.01 0.00 0.00 0.05 [0316]0.08 " 0.01 0.05 0.00 0.00 10.00 0.00 0.01 0.00
Myanmar  (.14—0.24 0.06 0.01 0.06 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
2 Brazil (/30), Indonesia (55, 114)
b Brazil (131)

¢Brazil (80, 132, 133)

dIndonesia (55, 114, 134, 135); Malaysia (136, 137)

Def. rate (Mhaly)

0 0.1 0.3 o Data quality classification:

Recent multitemporal extent maps of high resolution (<=30 m or vector) and/or accuracy.

Recent (>2012), single year extent maps of high spatial resolution (<=30 m or vector).

Official subnational agricultural statistics (recent & multitemporal, but not spatially explicit).

Official national-level agricultural statistics (recent & multitemporal, but not spatially explicit).

Based on unofficial national-level agricultural statistics (e.g., imputed by the FAO) or on older, coarse-resolution maps.
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Materials and Methods

S1 Geographic and temporal scope of the study

This paper focuses on (sub-)tropical deforestation, as this is where almost all of the
deforestation for agriculture, or farming, here including cropland, pastures and tree crops, occurs
(7). The set of 87 included countries, to which all numbers have been aligned, account for 98%
(10.6 Mha/y out of 10.8 Mha/y) of the total (sub-)tropical tree-cover loss and 51% (10.6 Mha/y
out of 21.0 Mhaly) of total global tree-cover loss (TCL) (/). Some of the studies do not cover the
complete 87-country set (table S2), but the exclusion of these countries is not expected to have
any significant impact for comparing the results between the studies, as the missing countries all
have very low (or zero) rates of GFC tree-cover loss or FAO Forest Resources Assessment
(FRA) deforestation. For the multiple-region input-output (MRIO) trade model results from
Pendrill et al. (37), (138), it was not possible to provide results only for the harmonized set of 87
countries, because of its regional aggregation. The differences resulting from this are expected to
have a negligible impact on the overall results.

S2 Deforestation rates and trends—datasets and challenges

In the analyses presented here, we define tropical deforestation as the deforestation of both
humid and dry natural forests, across the subtropics and tropics (pan-tropics), constrained to a set
of 87 countries.

The two main global data sources on deforestation and forest loss assessed are the FAO Forest
Resources Assessment (3) and the Global Forest Change (GFC) tree-cover loss dataset (/)
(available for download from https://fra-data.fao.org/ and
https://earthenginepartners.appspot.com/science-2013-global-forest respectively). These datasets
differ in method, update frequency, and crucially also on the type of loss they portray, resulting
in considerable differences in estimates of both the magnitude of loss and trends (fig. S2)'.

Both the FRA and the GFC dataset definitions of forest and loss diverge somewhat from the
definition of deforestation used in this synthesis (Box 1). The FRA focuses on land-use change,
1.e., deforestation is only recorded if the tree-cover loss results in a change of land use from
forestry towards agriculture or other land-uses (urban, etc.), but not if tree cover is expected to
regenerate or 1f the land is replanted so that the land remains under forestry use (/39). Therefore,
conversion from a natural forest to a tree plantation, including for timber, pulp and rubber, is not
considered deforestation by the FRA.

In contrast, the GFC tree-cover loss dataset focuses on land-cover change (where forests are
defined primarily by their biophysical characteristics, such as tree height and canopy cover,
measured by satellite remote sensing), which includes disturbances within existing forest stands.
That is, the GFC dataset identifies tree-cover loss, defined as: “a stand-replacement disturbance
or the complete removal of tree cover canopy [within pixels of 30-m resolution]” (/). This
implies that not all tree-cover loss constitutes deforestation. For example, tree-cover loss
includes harvesting of tree crops, clearing within tree plantations as part of normal forestry
practices, and losses from fire and logging patches (/). These do not—at least in the initial
stages—constitute deforestation. However, forest degradation is frequently a precursor of
deforestation (2) and, e.g., if a forest has been burned and does not recover, we consider this de
facto deforestation, despite an absence of a conversion to a formal land use (this is consistent
with the deforestation definition in the Accountability Framework (33)). By contrast, forest

! For an accessible overview of these differences, see https://www.wri.org/insights/insider-global-forest-watch-and-
forest-resources-assessment-explained-5-graphics.
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degradation typically refers to disturbances within a natural forest that reduce its capacity to
deliver ecosystem services, while the area remains as forest, with such disturbances including
logging, fire, fragmentation, and the unsustainable collection of fuelwood and other forest
products. The boundaries between forest degradation and deforestation are not clear cut, as
severe degradation may impede regeneration even absent any other formal land use, resulting in
de facto deforestation.

We would thus expect the total amount of deforestation to be lower than the amount of tree-
cover loss and in the main paper, we also distinguish tree-cover loss (TCL) from deforestation
(Box 1), with the GFC data providing estimated extents of tree-cover loss rates. We focus
primarily on GFC tree-cover loss data (and its trends) as this is the main source used for
agriculture-driven deforestation assessments. Many recent estimates of agriculture-driven
deforestation use the GFC tree-cover loss dataset, as it provides annual maps at a 30-m resolution
that can be summarized at different scales (rather than just national or coarser). This allows for
clearer connections to the tree-cover loss drivers and more accurate assessments of the impacts
of loss (on, e.g., carbon emissions and biodiversity loss).

There are also a few additional large-scale assessments of recent deforestation rates, which
deviate somewhat from the definition of deforestation used in this synthesis. Carter et al. (32)
estimate country-level deforestation rates by creating a weighted average of four sources (the
FAO FRA 2015; GFC tree-cover loss (/); Kim et al. (140), and a 2012 Remote Sensing Survey
from FAO and JRC), depending on their estimated uncertainty for each country (for five year
time periods between 1990 and 2015). At the time of writing (March 2022), a new Remote
Sensing Survey complementing the FRA 2020 is under preparation (4). Vancutsem et al. (2)
provide comprehensive maps of tropical moist forest extents and deforestation rates (as well as
forest degradation and recovery/regrowth, and dynamics over time; 1990-2019). As this is a
recently released dataset, it has not yet been used in assessments of agriculture-driven
deforestation. However, it will undoubtedly be a valuable source for future assessments of
deforestation drivers because it has high spatial and temporal detail and distinguishes
deforestation and forest degradation. Unlike the GFC tree-cover loss data, it does not, however,
cover tropical dry forests.

The uncertainties in the GFC tree-cover loss data, and the disagreement between the
deforestation datasets, are largest in Africa (/, 2, 35). These uncertainties propagate to Curtis et
al. (7); Pendrill et al. (37) and Goldman et al. (36), which are all based on GFC tree-cover loss
data.

For remotely-sensed estimates of tree-cover loss, such as the GFC tree-cover loss data, the
conceptual challenges of defining forest loss include selecting appropriate thresholds on canopy
cover (30) and patch size forests prior to loss (29, 141), as well as how much these need to be
reduced to count as a loss (31, 142).

The minimum canopy-cover thresholds used to define forests prior to loss by the pan-
tropical assessments of agriculture-driven deforestation (7, 8, 32, 36, 37) vary somewhat:
between 10% and 30% (similar to the FAO minimum canopy cover threshold of 10% (139) and
the range of 10%—-30% allowed in UNFCCC’s REDD+ process (/43)). This is not expected to be
a big source of discord between these sources; In the GFC tree-cover loss data, the difference is
small between a >10% and a >30% canopy-cover threshold: the global average GFC tree-cover
loss is estimated at 22.2 Mha/y with a >10% threshold compared with 20.6 Mha/y with a >30%
threshold (2001-2020) (7). (A >50% threshold gives an average global tree-cover loss rate of
just under 18 Mha/y (7).)
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The minimum forest patch size also varies between the pan-tropical assessments of
agriculture-driven deforestation: from a single Landsat pixel (30 m by 30 m—around 0.1 ha) in
Curtis et al. (7), Pendrill et al. (37) and Goldman et al. (36), between >0.1 and >0.5 ha in Carter
et al. (32), and up to >5 ha in De Sy et al. (8). This can have a non-negligible impact on
measures of deforested area (141, 144).

Most of the studies used in this analysis thus use a minimum canopy-cover threshold
between 10% and 30% and a minimum span between 0.1 and 5 hectares. Some other ecosystems,
not typically referred to as “forests”, such as varyingly wooded savannas, can be partially
included in this definition.

The FAO FRA 2020 deforestation rates presented throughout this paper for the 87 countries
were calculated by using the FRA deforestation rate (3) where available. Otherwise, the FAO
FRA (3) “Forest area net change” value was used if this was negative (i.e., net deforestation) or
set to zero if this was positive (i.e., net afforestation). For the 2011-2015 time period, the FAO
FRA 2020 total deforestation is estimated to be 10.7 Mha/yr. This exceeds the total estimated
extent of GFC tree-cover loss, despite the FAO FRA 2020 applying a more restrictive definition
of deforestation and only reporting net (not gross) deforestation for some countries. The
uncertainty-weighted deforestation rates found by Carter et al. (32) of 9.8 Mha/y are also high;
this partly reflects the fact that the FAO FRA (2015) is one of the major data inputs to the
analysis by Carter et al. (32).

Additionally, the datasets show diverging trends, with an increase from 9 to 12 Mha/y in
GFC tree-cover loss (/), compared to a decrease from 14 to 10 Mha/y between the 2001-2010
and 2011-2020 in FRA deforestation rates (FRA 2020) (3). The diverging trends may in part
relate to an increased contribution of forest degradation detected in the GFC tree-cover loss data,
but also points to considerable uncertainties in the trends, discussed further in the next section.
This mirrors discrepancies in both rates and trends of tropical deforestation between the FAO
FRA and remote sensing studies (/45). The range of estimates of tropical deforestation rates for
the 1980-90s (145, 146) also implies that it is hard to ascertain a long-term trend in tropical
forest loss.

For a more limited subset of countries and forests (specifically, disturbances within tropical
moist forests, for the 33 countries within our set that had at least 4 Mha of tropical moist forest
cover), Vancutsem et al. (2) found around 4 Mha/y of deforestation (in their approach, “direct
deforestation”, defined as “full removal of trees within a few months”) and 5 Mha/y of forest
degradation (there defined as “a disturbance in the tree cover canopy that is visible from space
over a short time period (less than 2.5 years).”’) The deforestation rates in tropical moist forest
from Vancutsem et al. (2) generally declined 2000-2010, before increasing again between 2010
and 2016, and subsequently declining overall (fig. S2).

Consistent pan-tropical data on deforestation trends is lacking due to several
methodological and conceptual challenges. First, at a more general level, the GFC tree-cover loss
(1), the FRA deforestation (3) and Vancutsem et al. (2) differ in the type of forest loss they
assess and in their coverage of humid and dry forests, with none of them comprehensively
describing the trends in deforestation sought here. Second, these approaches may therefore
capture differently distinct trends in different kinds for forest loss over time. While it is beyond
the scope of this study to fully assess the reasons for why the GFC tree-cover loss data and the
FRA deforestation rates show diverging trends, in addition to the increased sensitivity of GFC
tree-cover loss to forest degradation and inconsistencies in the FRA deforestation rates over time,
their diverging trends are likely in part related to changes in the relative proportions of different
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kinds of tree-cover loss over time: As not all tree-cover loss constitutes deforestation (neither as
assessed in this paper, nor as FAO FRA deforestation), an increase in the “non-deforestation”
proportion of tree-cover loss may be part of the explanation, as this would lead to an increase in
the rates of tree-cover loss without a concomitant increase in FRA deforestation rates. This can
involve multiple dynamics, such as:

a) Expansion of tree plantations at the expense of natural forests. Accelerating
trends of tree plantations would show up in GFC as tree-cover loss when plantations
expand over natural forests. Conversely, they would not appear as deforestation in
FRA or would even appear as an increase in forest cover when plantations expand
into non-forested areas (see more in (/47)).

b) Inconsistencies in assessing importance of shifting agriculture as a driver of
forest loss. Shifting agriculture systems would show up as tree-cover loss in GFC
but not necessarily in FRA deforestation, depending on country methodologies and
decisions. Moreover, the attribution of shifting agriculture to deforestation estimates
depends on whether the shifting agricultural system is expanding or remaining in
rotations.

¢) Increases in the share of agriculture-driven deforestation without expansion of
agricultural production.

d) Increased natural disturbances, such as forest loss from wildfires, floods or
landslides.

S3 Agriculture-driven deforestation—pan-tropical datasets and uncertainties

Table S1 provides an overview of pan-tropical assessments of agriculture-driven
deforestation, including the types of drivers they assess, a brief summary of their methods, scope
and resolution, as well as details on key limitations and data access details where applicable, and
kinds of questions each study helps address. Table S4 presents the extent of agriculture-driven
deforestation from all of these sources, more or less harmonized to the same set of 87 countries
(discrepancies are detailed in table S2). The main sources used to derive the estimated ranges in
this paper are Curtis et al. (7). and Pendrill et al. (37)*. Additional details on these datasets and how
the estimated ranges presented in the main paper were derived are described in the next section. De Sy et
al. (8), Cuypers et al. (45) and Carter et al. (32) also provide useful estimates of agriculture-
driven deforestation (fig. S3 and table S4), but were not used further to inform the estimated
ranges of agriculture-driven deforestation in the main paper due to their limited temporal scope:
De Sy et al. (8) is available only until 2005, Cuypers et al. (45) only until 2008, and Carter et al.
(32) assume a constant fraction of agriculture-driven deforestation based on pre-2010 data from
De Sy et al. (8) and Hosonuma et al. (20) (table S1).

The most commonly cited number in this context—that around 80% of deforestation is
caused by expanding agriculture—is based on Hosonuma et al. (20) and also presented in
Kissinger et al. (21). The 80% number is occasionally also attributed to FAO’s State of the
World’s Forests (SOFO) 2016 (148), as it presents an adaptation of the Hosonuma et al. (20)
data. Lawson (/49) also builds partly on the approach and data from Hosonuma et al. (20).

Hosonuma et al. (20) provides a very coarse estimate of the share of deforestation attributed
to drivers, based on quantitative data for only 12 countries (covering around half of the

2Updated versions of both datasets are used, see table S1 for details.
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deforestation), combined with qualitative estimates for 34 countries and extrapolation to 46
countries lacking driver estimates.

There are also a few recent studies assessing drivers for large parts of the tropics. For South
America, Zalles et al. (24) assess conversions from natural land to pasture, cropland and
plantations. The conversions are assessed annually from 1985 to 2018 at 30-m resolution, based
on Landsat remote sensing data. Also, for Latin America, Graesser et al. (150) mapped the
sources (in 2001) of cropland and pasture (in 2013) across Latin America, based on coarser
(MODIS) remote sensing data. For Brazil and of the Amazon, Chaco, Pampa and the Atlantic
Forest, the MapBiomas initiative assesses land-cover changes every year between 1985 and
2020, distinguishing between pasture, temporary crops and permanent crops (//4). There is also
a MapBiomas product for Indonesia.

For seven countries in Southeast Asia, Tenneson et al. (117) assessed land cover (and use)
in the years 2000 and 2015, using visual interpretation of a stratified random sample. While their
year 2000 map distinguishes just natural forest, tree crops, or other land cover (based on 30-m
resolution Landsat data), their year 2015 map provides highly detailed land use categories
(distinguishing multiple crops). Their comparison between these two maps indicates that 9.4
Mha (60%) of the 15.8 Mha cleared between 2000 and 2015 supported some crops in 2020.

For six countries in the Congo Basin, Tyukavina et al. (35) assessed direct deforestation
drivers, including small- and large-scale agriculture, for every year between 2000 and 2014.
Their study was based primarily on 30-m resolution Landsat data, supplemented by very high
(<1-2.5 m) resolution satellite imagery from Google Earth and SPOT (35).

For a more long-term perspective, Winkler et al. (151) combine agricultural statistics with
multiple remotely-sensed land cover maps to reconstruct changes to forest, cropland and
pasture/rangeland between 1960 and 2019 across the globe.

S4 Estimating the ranges of deforestation and agriculture-driven deforestation

Building on the critical examination of the pan-tropical assessments (summarized in table
S1), we synthesize the best available evidence from these studies to derive estimates of recent
(2011-2015) (i) total tropical deforestation, (ii-a) total tropical deforestation due to the
expansion of agricultural production and (ii-b) total tropical agriculture-driven deforestation, and
(iii) the share of tropical deforestation linked to agriculture.

S4a Main datasets used

Multiple datasets were used to narrow down likely estimated ranges of deforestation and
agriculture-driven deforestation. The main sources used are Curtis et al. (7) and Pendrill et al.
(37), both relying on the same GFC tree-cover loss data (/). Aside from that, however, the
methods used by the two studies differ significantly and can be seen as describing different
aspects of the role of agriculture in driving deforestation. This section thus provides some
additional details primarily on Curtis ef al. (7) and Pendrill et al. (37) focusing on their
uncertainties and how their methods relate to the operationalization of the concepts of
agriculture-driven deforestation (primarily Curtis et al. (7)) and the narrower deforestation
resulting in agricultural production (Pendrill et al. (37)) (Box 1).

Pendrill ez al. (37) can be seen as an estimate of deforestation resulting in agricultural
production employing a land-balance model to attribute GFC tree-cover loss to expanding
cropland and pastures. The net expansion of cropland and pastures is primarily based on national
agricultural statistics (FAOSTAT (46), and subnational data for Brazil and Indonesia).
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Additionally, their gross expansion is estimated by supplementing this with remotely-sensed data
on gross changes in grassland (as a proxy for pastures) and cropland (/52)(which is based on
ESA Climate Change Initiative (CCI) land cover data).

There are two key sources of uncertainty inherent in the Pendrill et al. (37) approach. The
first source of uncertainty is its assumption that the agricultural land uses expanding at the
national (or subnational) level are the drivers of deforestation. However, the method does not
unequivocally establish whether these land uses expanded directly on cleared forest land or if
they, rather, indirectly “pushed” other land uses into the forest (37). This may lead to some
overestimation of deforestation resulting in agricultural production, but—as most agricultural
expansion comes at the expense of other agricultural land uses or of forests (23, 24, 150, 153)—
this source of uncertainty is more likely to affect the relative attribution between different
agricultural land uses (37). That is, this first source of uncertainty is more likely to apply to the
attribution between cropland and pasture, and between different crops, than to the attribution
between agriculture and other land uses (such as infrastructure) (37). The second key source of
uncertainty comes from its reliance on attributing forest loss to the expansion of cropland and
pastures (and subsequently crops) according to FAOSTAT-recorded agriculture. This can lead to
underestimation in countries that are slower to update their statistics and where the self-reporting
by countries incompletely captures some agricultural activities (e.g., shifting cultivation). The
data quality can also vary considerably between countries, and, in many instances, the data are
imputed or estimated rather than reported directly by the countries themselves (the overall
accuracy of the FAOSTAT data has not been assessed, though it is described as “reasonably
accurate” (46)). There have also been some indications of a discrepancy between cropland
expansion and harvested area expansion reported in FAOSTAT. The global increase in harvested
area is more than three times that of the increase in cropland area (2002-2016), which likely
cannot be fully explained by increased double- or triple cropping or decreasing fallows (154).
For the countries where cropland area expansion is underestimated in FAOSTAT, the Pendrill et
al. (37) approach likely underestimates the deforestation resulting in agricultural production
(particularly due to cropland expansion).

We then assess agriculture-driven deforestation as deforestation occurring in landscapes
where agriculture is the dominant driver of forest loss using the Curtis et al. (7) data, which
identifies the dominant driver of GFC tree-cover loss (at 10-km resolution, i.e., within 10 km by
10 km grid cells) based on five classes: commodity-driven deforestation, shifting agriculture,
forestry, wildfire and urbanization. Commodity-driven deforestation primarily includes “/...J
conversion of forest and shrubland to a nonforest land use such as agriculture (including oil
palm) [...]” (7), although it also includes some conversion to mining and energy infrastructure
(expected to be at low rates). Shifting agriculture is “defined as small- to medium-scale forest
and shrubland conversion for agriculture that is later abandoned and followed by subsequent
forest regrowth” (7).

S4b Estimating the total tropical deforestation rates

We constrain the likely range of total tropical deforestation primarily by using the Curtis et
al. (7) and ancillary datasets to assess lower and higher estimates of where the GFC tree-cover
loss is likely to be permanent deforestation versus temporary tree-cover loss (e.g., rotational
clearings in shifting cultivation systems, or in plantations or managed forests).

For the main deforestation range estimate, the GFC tree-cover loss data were split into three
categories: (i) deforestation, (i7) not deforestation, or (ii/) unknown mix of persistent
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deforestation and temporary tree-cover loss. This gives a lower estimate on deforestation equal to
category (i), and a higher estimate equal to categories (i) plus (iif). This split was done based
largely on Curtis et al. (7) classification of the dominating drivers of GFC tree-cover loss,
together with a few complementary data sources (fig. S4). First, any tree-cover loss occurring
within primary forest extents (54) was categorized as deforestation (category (i)). Second, to help
constrain the higher estimate and refine the ranges further, we used data on tree plantation extent
(53) to identify additional tree-cover loss that is likely not deforestation (category (ii)), because it
occurred within existing plantations. Third, the remaining tree-cover loss was split based on the
Curtis et al. (7) tree-cover loss dominant drivers, based on the following assumptions:
commodity-driven deforestation and urbanization typically constitute deforestation
(corresponding to our category (i) above); (large) wildfire is not deforestation (category (ii)
above); and tree-cover loss driven by forestry and shifting agriculture constitutes a mix of
deforestation and temporary forest loss (category (iii) above). Finally, the lower estimate was
adjusted to reflect the assumed minimum amount of agriculture-driven deforestation at the
country level (detailed further in the next subsection). Put together, this analysis results in an
estimated range of 6.5-9.5 Mha/y of total deforestation in our set of 87 tropical and subtropical
countries for the period 2011-2015.

The second step above—identifying tree-cover loss within existing tree plantations—
required a couple of steps, as the time period of interest here (2011-2015) pre-dates the tree
plantation data (which best represent plantation extents 2013-2015). We, therefore, first
calculate the average share of tree-cover loss occurring within tree plantations 2015-2020 for
each country and Curtis ef al. (7) driver class. We then assume that this share is the same for the
2011-2015 time period (in doing this, we are thus assuming that there is no major change in the
relative rates of tree plantation expansion, harvesting or other drivers between the two time
periods). This share is then multiplied with the tree-cover loss amounts (per country and driver
class) for 2011-2015 to obtain an estimate of how much tree-cover loss occurred within already
existing plantations, thus allowing us to assign those amounts to category (i7). For example, if in
country X, 20% of 2015-2020 tree-cover loss driven by forestry (GFC/Curtis et al. (7)) occurred
within already existing tree plantations (SDPT), and there was on average 1 000 ha/y of tree-
cover loss driven by forestry (GFC/Curtis ef al. (7)) between 2011 and 2015, then we would
assume that—of those 1 000 ha/y—200 ha/y (20% of 1 000 ha/y) was not deforestation and 800
h/y would remain in the unknown/mix category (iii).

The definition of deforestation in the FAO FRA differs from the main definition used in this
paper, primarily in that conversion from a natural forest to a tree plantation is not considered as
deforestation in the FRA, as the land remains under forestry use and thus assumed to regrow
(139). Applying this definition to the GFC tree-cover loss and Curtis et al. (7) above would mean
that no tree-cover loss driven by forestry would count as deforestation, irrespective of whether it
was originally primary forest. This would reduce the estimate of total deforestation by 0.1 Mha/y
on the lower estimate and 0.7 Mha/y on the higher estimate.

S4c Estimating agriculture-driven deforestation and deforestation resulting in agricultural
production

The likely range of agriculture-driven deforestation depends on the interpretation. We make
a distinction between “deforestation resulting in agricultural production” and the overarching
“agriculture-driven deforestation” (Box 1).
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For our 87-country set, Pendrill et al. (37) find a total of 4.3 Mha/y of deforestation
resulting in agricultural production in 2011-2015. This can be considered a conservative
estimate due to uncertainties in the agricultural statistics used.

Agriculture-driven deforestation is primarily quantified as a higher and lower estimate
based on Curtis ef al. (7). This range is derived using the same approach as for the total
deforestation rate range described above, but exclusively focusing on the agriculture-related tree-
cover loss driver classes: commodity-driven deforestation and shifting agriculture. As a first step,
a low estimate value is the amount of commodity-driven deforestation (excluding the amounts
estimated to have occurred within existing plantations), as well as tree-cover loss dominated by
shifting agriculture in what was previously primary forest. The higher estimate additionally
includes all tree-cover loss occurring in areas where loss is dominated by shifting agriculture.
This results in a range of 5.5-8.8 Mha/yr. In a second step, the low estimate based on Curtis et
al. (7), Harris et al. (53), Turubanova et al. (54) is compared with the estimated rate of
deforestation resulting in agricultural production in each country (based on Pendrill et al. (37)).
The highest of these two values is used to gain an improved estimate of the overall lower
estimate of agriculture-driven deforestation, though capped at the total of commodity-driven
deforestation and shifting cultivation. That is, for each country, we used whichever value was
largest of: (a) the low estimate value based on Curtis et al. (7); and (b) the value by Pendrill et al.
(37), unless this exceeded the sum of commodity-driven and shifting agriculture forest loss from
Curtis et al. (7) (which occurs in some instances due to the difference in canopy cover threshold
in the underlying deforestation data employed by Curtis et al. (7) and Pendrill et al. (37)) in
which case the latter estimate was used. For most countries, the low estimate value based on
Curtis et al. (7) is used, although the Pendrill ef al. (37) value is used for several countries,
especially in Africa where most tree-cover loss is classified as driven by shifting agriculture by
Curtis et al. (7). This results in an overall lower estimate of 6.4 Mha/y (including more than
twice as much agriculture-driven deforestation in Africa, compared with the low estimate value
based on Curtis et al. (7): 1.3 Mha/y compared with 0.6 Mha/y). As noted, this improved
estimate is also used for deriving the lower estimate of the deforestation rate.

Put together, this analysis results in a range of 6.4—8.8 Mha/y of total agriculture-driven
deforestation and a range of 6.5-9.5 Mhaly of total deforestation in our set of 87 tropical and
subtropical countries for the period 2011-2015. Our synthesized estimate range of agriculture-
driven deforestation is narrowest (2.2-2.3 Mha/y) in Asia and widest in Africa (1.3-2.7 Mhaly);
Latin America lies in between, with the highest estimate of agriculture-driven deforestation (2.9—
3.8 Mhal/y). Table S4 compares these rates with different pan-tropical studies across different (5-
year) time periods and continents. Results per country are presented in table S7.

Carter et al. (32) similarly estimate the amount of deforestation driven by agriculture to 7.6
Mha/y in 2011-2015, though this is based on an assumed constant fraction of agriculture-driven
deforestation over time (out of the deforestation rates), based on data for an earlier time period
(table S1).

S4d Estimating the share of agriculture-driven deforestation

To estimate the likely range of the share of deforestation driven by agriculture, we again
distinguish between the share of “deforestation resulting in agricultural production” and the share
of “agriculture-driven deforestation”.

The share of deforestation resulting in agricultural production is estimated by dividing the
Pendrill et al. (37) estimate (4.3 Mha/y) by the lower and higher estimates of total deforestation
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derived above (6.5 and 9.5 Mhaly, respectively), resulting in a range of ~45—65%. The share
likely lies in the higher end of that range, as the lower value of 45% would require much of the
tree-cover loss attributed to shifting agriculture by Curtis et al. (7) to be net-expansion (i.e.,
constitute deforestation, rather than rotational clearing) which was not captured by the Pendrill e?
al. (37) dataset. This, in turn, would require a massive underestimation (of up to 3 Mha/y) of
cropland area expansion in FAO statistics, primarily in Africa (as this is where most tree-cover
loss is classified as shifting agriculture).

For the share of deforestation linked with agriculture, both the numerator (total
deforestation linked with agriculture) and the denominator (total deforestation) contain
considerable uncertainties. These uncertainties, however, somewhat neutralize each other when
calculating the ratio between these two quantities, as the amount of total deforestation depends
greatly on the estimated amount of deforestation linked with agriculture. Indeed, it is not
reasonable to arbitrarily compare the lower estimate of agriculture-driven deforestation by the
higher estimate of total deforestation, or vice versa, as both estimates vary with the assumption
of how much of the tree-cover loss dominated by shifting agriculture constitutes permanent
deforestation (i.e., the numerator and denominator are not independent, but co-vary, and thus
only estimates using the same assumption should be compared). To calculate the lower estimate
share of agriculture-driven deforestation, we, therefore, use the overall/improved lower rate of
agriculture-driven deforestation (6.4 Mha/y) as the numerator, and the denominator is the sum of
this and high estimate of forestry deforestation (0.7 Mha/y) (i.e., 6.4 Mha/y agriculture-driven
deforestation divided by 7.1 Mhal/y of total deforestation). To calculate the higher estimate of the
share, we conversely assume the higher rate of agriculture-driven deforestation (8.8 Mha/y) and
the minimum estimate of forestry deforestation (0.1 Mha/y) (i.e., 8.8 Mha/y agriculture-driven
deforestation divided by 8.9 Mha/y of total deforestation). Tree-cover loss driven by urbanization
(0.02 Mhaly) is assumed to constitute deforestation in both estimates. This results in a range of
between 90-99% of deforestation linked with agriculture.

S5 Assessing the broader role of agriculture in deforestation

Our analysis suggests a large discrepancy (2.0—4.5 Mha/y) between deforestation occurring
in landscapes where agriculture is a dominant driver and the deforestation resulting in
agricultural production. Part of this discrepancy is likely due to unrecorded agricultural areas,
and additionally, a small part of this can be attributed to non-agricultural commodities, such as
mining and oil operations, the effect of these on forest cover is largely indirect (see, e.g., (108)).
This implies that a substantial share of deforestation occurring in landscapes where agriculture is
the dominant driver does not result in productive agricultural land. This is consistent with both
regional and pan-tropical remote-sensing studies examining land use following tree-cover loss
and finding large tracts of unused land.

De Sy et al. (8), analyzing the follow-up land-use after deforestation in the period 1990—
2000, find that other land (comprising bare land, grassland, shrubland or other wooded land)
amounted to 10.8 Mha, with this land-class accounting for 6.8%, 15.5% and 30.1% of post-
deforestation land-use in Latin America, Africa and Asia respectively. Zalles et al. (24) estimate
land-use transitions across Latin America over three decades (1985-2018), finding that land
without any sign of human land-use is the second most common post-deforestation land class
(after pasture), amounting to about 20 Mha of former forest land. Similarly, for Indonesia, Austin
et al. (55) find that conversion to grassland and shrubland without signs of agricultural activity
was the second most common land-class following forest loss (after oil palm plantations),
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constituting a total of 1.8 Mha and a fifth of all forest loss in the study period. For the Chaco,
Baumann et al. (155), found that around a quarter to a third of the deforestation resulted in land that was
not used or abandoned for a while.

While clearly prevalent, unused deforested land is not included as a driver in the
classification by Curtis et al. (7), which focuses on “dominant drivers” within a landscape,
meaning that tree-cover loss without subsequent human land-use is included in another
(“active”/not unused) tree-cover loss driver classes (e.g., commodity-driven deforestation and
shifting agriculture). With agriculture being the dominant identified driver of tree-cover loss
across the tropics, most of the unused deforested land is likely occurring in landscapes where
agriculture is the dominant driver.

S6 Attributing deforestation to commodities
S6a Pan-tropical estimates of deforestation attributed to commodities

Currently, only four pan-tropical studies quantify the role of multiple individual agricultural
land uses (e.g., pasture or crops, producing one or multiple commodities) in driving
deforestation: Pendrill et al. (37), Goldman et al. (36), Nguyen and Kanemoto (38) and Cuypers
et al. (45).

These studies use different perspectives to approach the challenge of attributing
deforestation to specific agricultural land uses—e.g., individual crops or pasture—in the face of
the considerable data limitations on the extent and temporal changes of specific agricultural land
uses. The first two studies, Pendrill et al. (37) and Goldman et al. (36), are described briefly in
the main text. Nguyen and Kanemoto (38) use a similar approach and underlying datasets as the
Goldman et al. (36) coarse approach to attribute tree-cover loss to 42 crops for an earlier time
period (2006—2010), and their results are thus subject to the same uncertainties and limitations.
Cuypers et al. (45) use a national level land-use transition model (using FAO FRA 2010
deforestation data and agricultural statistics), though this only covers the time period 1990-2008
and is thus not discussed further.

There are also several studies covering specific commodities and regions. A few recent and
prominent examples include Song et al. (25), Tenneson et al. (117), and Henders et al. (156).
Song et al. (25) provide annual maps (2000-2019) of soybean expansion at 30-m resolution for
all of South America (which was also used by Goldman et al. (36) for soy), a combination of
sample field data and satellite data (Landsat and MODIS). Tenneson et al. (117) identify
deforestation followed by a number of crops, including oil palm, rubber, coffee, tea and coconut,
for seven countries in Southeast Asia. Henders et al. (156) attribute deforestation to beef, palm
oil and soybeans in seven countries, based on a literature review of remote sensing studies,
supplemented by agricultural statistics on area expansion of commodity production (using simple
assumptions on the association between deforestation and agricultural expansion).

S6b National-level estimates of deforestation attributed to commodities

While the numbers presented here are primarily averages for the whole (sub-)tropics and by
continent, the specific agricultural land uses driving deforestation vary considerably between
countries and continents (36, 37, 45). What is a major driver at the pan-tropical scale can differ
markedly from the drivers in a specific country.

To complement the pan-tropical datasets, we therefore conducted a literature search for
national-level estimates of deforestation resulting in agricultural production in general, and
specifically for the commodities identified as most important at the pan-tropical level by
Goldman et al. (36) or Pendrill et al. (37): pasture, soybeans, oil palm, rubber, cocoa, coffee,
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corn, rice and cassava. We limited the search to eleven countries identified as having the highest
absolute rates of deforestation in the 2011-2015 period: Brazil, Paraguay, Argentina, Bolivia in
Latin America; DR Congo, Angola, Madagascar, Mozambique in Africa; and Indonesia,
Malaysia, Myanmar in Asia. We also limited the search to studies in English published in 2015
or later, presenting data on agriculture-driven deforestation post-2010 (in concordance with the
time period analyzed using the pan-tropical data). We searched Web of Science, using the
following search string for title and abstract:

deforestation
AND
(Brazil OR Paraguay OR Argentina OR Bolivia OR Congo OR Angola OR Madagascar OR
Mozambique OR Indonesia OR Malaysia OR Myanmar)
AND
(agriculture OR pasture OR soy* OR “oil palm” OR “palm oil” OR rubber OR cocoa OR coffee OR
maize OR corn OR rice OR cassava)

The search yielded 557 hits, which were screened in the title and abstract for studies that
quantified deforestation due to agricultural (cropland and pasture) expansion. We further
excluded studies (based on full text) that did not present original analyses (e.g., review studies)
or that did not quantify actual deforestation areas due to the queried land-uses (e.g., scenario
analyses or econometric studies of deforestation drivers). The list of included studies (n = 49)
was then checked by the full author team and studies fulfilling the inclusion criteria missed by
the search were added (n = 10). Table S5 displays the complete list of studies included.

The list displays a clear geographical concentration, with comparatively little evidence on
agricultural-driven deforestation in Africa (n = 6), compared to the Asian (n = 26) and Latin
American (n = 27) countries. In particular, evidence for Latin America seems markedly better,
with the existence of a handful of biome-wide assessments, e.g., for the Gran Chaco, Cerrado
and the Brazilian Amazon. In terms of commodities, oil palm plantations are covered by most
studies (n = 25) concentrated (but not limited to) Indonesia and Malaysia, followed by pastures
(n = 12) and soybeans (n = 9), all in Latin America. It is also worth to note that aside from Brazil
and Indonesia, there are few comprehensive (wall-to-wall) studies of commodity-driven
deforestation even for the countries with high deforestation rates included in this analysis, though
the countries in Latin America are relatively well covered by continental or biome-wide (e.g.,
Gran Chaco) assessments.

Where presented in the studies, we also extracted country-level data on deforestation
attributed to the different post-deforestation land-uses included in the review (cropland, pasture,
and the eight individual crops) for the period 2011-2015, with results presented in Table 1. That
1s, data pertaining to a larger temporal (e.g., average over 2001-2015) or spatial (i.e., biome wide
assessments, without results being broken down by country) scales were not included. This
implies that the underlying data availability is somewhat better than what is depicted in Table 1,
especially for some regions and biomes (e.g., the Gran Chaco of South America). For Brazilian
soy and Malaysian oil palm we combined data from sub-national analyses (Amazon and Cerrado
biomes for Brazil; peninsular and insular Malaysia) from different studies in order to provide a
country-level estimate.
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S6c¢c Combined evidence on deforestation attributed to commodities

The pan-tropical datasets suggest that pasture expansion alone accounts for around half of
the deforestation resulting in agricultural production (c.1.9-2.7 Mhal/y out of at least 4.3 Mha/y;
with the lower value from Pendrill ef al. (37) and the higher from Goldman et al, henceforth).

While both datasets (Goldman et al. (36), Pendrill et al. (37)) agree on pasture being the
single most important driver of tropical deforestation by far, they differ considerably in the
estimated extent of deforestation attributed to the expansion of pastures. This can partly result
from discrepancies in estimates of pasture area based on land use classification methods and
definitions (85). For pasture, the largest differences between Pendrill et al. (37) and Goldman et
al. (36) are found in Brazil (c.0.8 by Pendrill ef al. (37) compared with c.1.1 Mha/y Goldman et
al. (36)) and Paraguay (c.0.1 compared with 0.3 Mha/y, by Pendrill et al. (37) and Goldman et
al. (36), respectively). For Brazil, the Goldman e al. (36) estimate is likely the more accurate, as
it is based on overlapping the tree-cover loss data with 30-m maps of recent (2018) pasture
extents (from Lapig) (36). They are both also similar to a sample-based approach by Tyukavina
et al. (157) (using visual interpretation of Landat images and high-resolution GoogleEarth
imagery), finding around 0.5-0.7 Mha/y (2011-2013), of human clearing for pasture in the
Brazilian Legal Amazon (i.e., not all of Brazil). These rates are also similar to, albeit somewhat
lower than, those found by zu Ermgassen et al. (131), which find less than 0.5 Mha/y between
2011 and 2015 (of which around half in the Amazon and half in the Cerrado), though this is
based on the year of pasture expansion, rather than the year of deforestation, and estimates in the
preceding years (2005-2010) are somewhat higher: between 0.5 and 1 Mha/y. The estimates by
zu Ermgassen et al. (131) are found by crossing Lapig pasture maps with deforestation rates
from INPE (i.e., the same pasture maps as used by Goldman et al. (36), but different
deforestation data). The MapBiomas (collection 6.0; Souza et al. (114)) estimate of deforestation
due to pasture expansion is considerably higher: 2.5 Mha/y for Brazil (of which 1.1 Mha/y in the
Amazon). For Paraguay, both estimates are uncertain: the Goldman et al. (36) estimate is based
on pasture extents in the year 2000, whereas the Pendrill et al. (37) approach is based on the
expansion of pastures (at the national level) from FAOSTAT, which for Paraguay has been
calculated or manually estimated by FAO since the last “data reported on country official
publications or web sites (Official) or trade country files” in 2003 (46). Similar data quality
caveats apply to, e.g., Argentina, Bolivia and Mozambique (46), which are also some of the
countries with bigger differences (each around 0.1 Mha/y difference) between the two pan-
tropical datasets.

Oil palm and soy are also important drivers of tropical deforestation: oil palm caused, on
average, around (0.5-)0.7 Mha/y and soy (0.4—)0.4 Mha/y (Pendrill ef al. (37) in parentheses; the
main value is based on the Goldman et al. (36) detailed approach). For both these commodities,
the estimate from Goldman et al. (36) is likely the best pan-tropical estimate, as it is based on
their detailed approach for these commodities (for soy, using spatially and temporally explicit
extents in South America (from Song et al. (25)), and for oil palm, using a pan-tropical
plantation map put together from several datasets (36)). Differences between Pendrill et al. (37)
and Goldman et al. (36) are larger for earlier (pre-2011) years (table S6).

For oil palm in Indonesia, the pan-tropical estimates are twice as high as those found by
Indonesia-specific studies by Austin et al. (55), Noojipady et al. (135) and Gaveau et al. (134)
(both around 0.2 Mha/y in the Indonesia-specific studies compared with 0.4 Mha/y in both the
pan-tropical estimates). Austin et al. (55) used visual interpretation of high-resolution remote
sensing imagery (complemented by Landsat) to determine the land cover following a stratified
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sample of GFC tree-cover loss events (within primary forests). For the period 2011-2015, Austin
et al. (55) found 0.14 Mha/y in oil palm plantations, though oil palm is likely also part of small-
scale mixed plantations and large-scale plantations (where the species could not be determined),
which amount to an additional 0.12 Mha/y together (55). Noojipady et al. (135) mapped oil palm
plantations combining a number of different sources and overlaid with GFC tree-cover loss data,
arriving at an estimate of annual deforestation for oil palm expansion of 0.24 Mha/y in the period
2010-2015. Gaveau et al. (134) found 0.17 Mha/y of deforestation for industrial oil palm
plantations and 0.04 Mha/y in smallholder oil palm plantations (average 2011-2015), based on
GFC tree-cover loss (/) within natural forests and oil palm maps based visual interpretation of
high-resolution (<2 m resolution) and Landsat (30-m resolution) remote sensing.

Despite both the Pendrill ez al. (37) and Goldman et al. (36) datasets indicating that oil palm
expansion is also a key driver of recent deforestation in Malaysia, we find no national-level
estimates of this in our literature review (see table S5). However, by combining the estimates of
oil palm-driven deforestation in Peninsular Malaysia by (/58) and in the Malaysia Borneo by
(137), we estimate that just over 0.05 Mh/y of forests were converted to oil palm plantations in
the 2010-2015 period. This estimate is similar to that of Pendrill ez al. (37) (0.05 Mha/y), but
only a third of that of Goldman et al. (36) (0.16 Mha/y) for the same time period.

Rubber, as well as some less commonly discussed forest-risk commodities—maize, rice,
and cassava—that are staples in many parts of the world where they are grown also contribute
significantly to deforestation in the tropics (/38, 159). The limited available data indicate that
they together account for at least 0.9 Mha/y, or an additional fifth of the deforestation resulting in
agricultural production (Pendrill et al. (37) indicate for maize (0.3 Mha/y), rice (0.2 Mha/y) and
cassava (0.2 Mha/y); Goldman et al. (36) for rubber, 0.2 Mha/yr). Hurni and Fox (/60) estimated
deforestation for rubber in Mainland Southeast Asia, the major hotspot of rubber expansion, at
~0.4 Mha/y over 2001-2014, while Tenneson et al. (117) suggest a lower estimate of ~0.05
Mhaly. For an earlier time period (2006-2010), Nguyen and Kanemoto (38)—which is based on
a similar approach as the Goldman et al. (36) coarse approach—ascribe twice as much
deforestation to maize, rice and cassava as Pendrill et al. (37). The Nguyen and Kanemoto (38)
data are likely an overestimate as it counts all GFC tree-cover loss within existing shifting
agriculture as deforestation. However, Pendrill ef al. (37) may underestimate the deforestation
due to the expansion of these crops, especially where they are produced for subsistence or in
small agricultural holdings: some countries apply minimum criteria, e.g., on crop harvested area,
to include them in the FAOSTAT agricultural statistics (90), which are used by Pendrill ef al.
(37) to assess their expansion.

Cocoa and coffee account for between 0.1 and 0.3 Mha/y together in the pan-tropical
assessments (Pendrill ef al. (37), Goldman et al. (36)). They typically receive a high level of
attention as key forest-risk commodities, likely due to the commercial and international demand
for these commodities compared to staple crops like maize, rice and cassava. The approach from
Pendrill ez al. (37) is likely to underestimate deforestation driven by cocoa and coffee, as these
crops are known to have a stable net area in some countries while still having gross area changes
(expansion in some places and contraction in others), which would not show up in the national-
level agricultural statistics used. For coffee, some deforestation occurs as a result of coffee areas
relocating in adaptation to climate change (going higher in altitudes) or in response to new
demands such as high-quality or sustainability-certified coffee (/617). For cocoa, especially in
West Africa, but also in Southeast Asia, important dynamics involve smallholders leaving behind
exhausted cocoa plantations to establish fresh plantations in forests as well as in-migration of
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prospective cocoa farmers into remaining forest areas (/62-164). Some of the disused plantations
might revert to forest, while some are reutilized for other crops and tree crops (162, 163). In
contrast, the (coarse) approach from Goldman et al. (36) potentially overestimates cocoa and
coffee-driven deforestation, due to the assumption that all GFC tree-cover loss driven by shifting
agriculture (or commodity-driven deforestation) is deforestation and subsequently assuming that
this deforestation is proportionally distributed to a commodity based on its prevalence within a
grid cell. (For example, if a 10 km by 10 cell had 1000 ha of GFC tree-cover loss driven by
shifting agriculture or commodity-driven deforestation, and 50% of the cell's agricultural land
was cocoa in the year 2010, then Goldman et al. (36) attributes 500 ha of tree-cover loss to
cocoa.) This can lead to overestimates where tree-cover loss driven by shifting agriculture
reflects recurring rotations within stable shifting agriculture systems rather than deforestation.
Conversely, in new frontiers (e.g., expansion into 10 km by 10 km cells which were not
estimated to have any cocoa or coffee in 2010), Goldman et al. (36) might underestimate their
role.

For cocoa and coffee, both pan-tropical estimates (Pendrill et al. (37), Goldman et al. (36))
rely heavily on agricultural statistics (Goldman et al. (36) do this indirectly via the use of
MapSPAM (165)), which unreliably record cocoa and coffee (86). For instance, compared to a
recent remote sensing estimate of 2019 cocoa extent in Cote d’Ivoire and Ghana (166),
FAOSTAT overestimates harvested area by 30% (4.8 Mha in FAOSTAT compared with 3.7
Mha in Abu et al. (166)) in the former, but underestimates the area by 30% in the latter (1.5 Mha
in FAOSTAT compared with 2.2 Mha in Abu et al. (166)), though it should be noted that the
user’s accuracy of the remote-sensing estimate was only 62% so this remote-sensing based area
estimates should not be considered a fully adequate comparison.

For the remainder of commodities, the evidence is sparse at the pan-tropical scale. Pendrill
et al. (138) provide estimates for all commodities within FAOSTAT, primarily based on
national-level data. This can lead to misattribution where the crops expanding at the national
level are not the same as what is expanding where deforestation occurs Pendrill et al. (37).
Comprehensively identifying which crops are expanding into forests requires maps of crop
extents and their changes (at least for the areas where deforestation has occurred) (e.g., as is done
for soy across South America by Song et al. (25)), though subnational statistics on extents could
also help.

S6d Uncertainties: data, mapping challenges, and concurrent drivers

In terms of drivers, the largest—pasture expansion—also contributes most to the
uncertainty. Pasture expansion is one of the more difficult deforestation drivers to quantify for
two key reasons: it is difficult to map and has complex dynamics with other deforestation
drivers.

Mapping pastures is difficult for a couple of reasons, making global pasture extents and
their changes are highly uncertain (84, 85). These reasons affect both agricultural statistics and
spatially explicit maps of pasture extents. First, pasture mapping is complicated, conceptually,
because the term pasture can encompass a diverse range of systems (84, 85). Some studies (e.g.,
167) distinguish between pastures (typically with higher densities and periodically cultivated
vegetation) and rangelands (typically with lower livestock densities and more native vegetation),
though this distinction is not consistently used, e.g., in remotely-sensed datasets on land cover
(85). In HYDE 3.2, for example, Klein Goldewijk et al. (167) estimate that there are around 3.2
billion hectares of grazing land, of which around 0.8 billion hectares constitute pasture. How
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pasture is defined and measured can thus have a large impact on the resulting numbers (85).
Second, pasture mapping is challenging because pastures in some biomes, such as savannahs,
can be indistinguishable from cropland or natural vegetation in mainstream remote sensing
approaches (due to spectral similarities between classes)(82, 83). These difficulties are likely part
of the explanation for why the data availability is particularly dire for global pasture extents:
most global land cover and use datasets do not specifically distinguish pasture (at best, providing
separate classes for grassland and agriculture) (85, 152, 168) and the only dedicated global
pasture map (/19) is available only for the year 2000. (Livestock population densities for the
year 2010 are available at 10-km resolution in the Gridded Livestock of the World (/69) but
would require additional assumptions to be converted into a pasture map.)

Pasture also interacts with other drivers of deforestation. Whilst clear that pasture expansion
is the single most common land use following deforestation, the conversion of forest into pasture
is in many places often not driven explicitly and exclusively by the demand for cattle products.
Pasture clearing is sometimes associated with capital investments, land speculation or land
claims, rather than the need to expand pasture, per se; so, although the post-deforestation land
use may be pasture (not rarely of low intensity, in these cases), the demand for cattle may not be
the main driver (58, 79). Additionally, conversion for pastures is often coupled to the demand for
other commodities: In South America, soy frequently expands into previous pasture areas, which
(a) are often low in intensity and productivity and (b) have often been deforested at an earlier
stage (24, 25, 130), reflecting a more complex set of causality. This includes so-called “indirect
land-use change”, where the expansion of a land use (e.g., soy) into pasture, indirectly increasing
pressure to convert forest to pasture elsewhere (51, 79, 170), some of which may be occurring as
a form of leakage in response to Brazil’s Soy Moratorium (80, 171). However, there is also
increasing evidence that pasture and soy are interconnected through capital and actors, indicating
that deforestation for soy and pasture may not be inherently separable; thus, understanding the
interactions between these often-connected drivers can be crucial to designing effective policies
(81, 172). This common joint causality between pasture and soy makes it challenging to put neat
numbers on one or the other, especially in cases where both soy and cattle meat from pasture
have been produced on a piece of recently deforested land. This can cause attribution challenges
when estimates of deforestation need to avoid double-counting, though in some contexts it might
be relevant to attribute deforestation jointly to both soy and pasture (as both sectors can have a
part to play if the aim is to reduce deforestation).

For crops, establishing the links between deforestation, agricultural land uses and specific
crops at the pan-tropical level is severely hampered by the lack of maps on their extents and
changes over time. Although large progress is being made for some crops, such as soy in South
America (25), crop types are also particularly difficult to validate without (often costly) ground-
based assessments (/73, 174).

Instead, the pan-tropical studies (Goldman et al. (36), Pendrill et al. (37), Nguyen and
Kanemoto (38)) rely directly on agricultural statistics (mostly at the national level) or on already
old maps of crop extents from the MapSPAM initiative, which also rely on agricultural statistics
(165). The MapSPAM initiative collects and disaggregates agricultural statistics into maps
(currently available globally for 2000, 2005 and 2010). The maps are available at 10-km
resolution (in contrast, tree-cover loss is assessed at 30-m resolution); however, the input crop
statistics are generally only available at the national level (/65). This means that the quality of
the attribution of deforestation to different crops is currently hampered also by the limited quality
of agricultural statistics for many countries, especially in Africa (46, 90, 119). This applies to all
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approaches using agricultural statistics (primarily FAOSTAT) either through direct use (e.g.,
Pendrill ef al. (37)) or indirectly, e.g., via the MapSPAM crop maps (e.g., the Goldman et al.
(36) coarse approach and Nguyen and Kanemoto (38)).

To capture the sequences of land uses and commodities following deforestation, and better
distinguish the direct and indirect land-use changes, requires consistent time-series data covering
major crops (accounting also for multiple harvests) and pasture area. Both wall-to-wall and
sample-based approaches, as well as combinations thereof, can be useful for this. Sample-based
approaches can be valuable for several reasons including: (1) when relying on very-high
resolution imagery (e.g., from Planet and in GoogleEarth), they can help to monitor aspects that
are hard to detect in medium-scale imagery (such as pastures and small-scale land use) (115,
175) (ii) they can be done with local teams and know-how, bottom-up, helping capacity building
and legitimacy of the data (4, /15), and (ii1) they allow, at aggregated geographic scales, for
validating temporal trends of land-cover transitions derived from spatially explicit maps as well
as producing unbiased estimators of area of land-cover classes with known uncertainty, provided
a suitable sampling design is used (/76). However, sample-based approaches rely a lot on
manual labor, making them costly, potentially more difficult to update (174, 177). In many cases,
the sampling schemes are typically dense enough for allowing statistics at global, continental,
and often national scales, but not necessarily subnational scales (4, 23-25). This limits their use
for, e.g., for understanding internal land use dynamics within a country; for linking with
subnational trade data (as is done by Trase.earth); and for detecting (emerging) hotspots.
Therefore, and for transparency and many policy- and land-management purposes, people often
prefer wall-to-wall maps (7, 178). Wall-to-wall approaches also use samples for training, testing
and accuracy assessments used (176, 179), and it is also common to combine wall-to-wall and
more pronounced sample-based approaches, e.g., (23-25). The choice of approach is therefore
less a discussion of one or the other, but rather an issue of efficiently using the available data and
expertise in a way that is suitable for the intended use. Machine-learning advances can mobilize
data with higher spatial and temporal resolutions to enable easier creation of wall-to-wall maps
of land uses, including specific crop types (22).

Another set of uncertainties lies in the methods for establishing which crops were
responsible for the deforestation. The pan-tropical estimates discussed here focus primarily on
the agricultural land uses following deforestation (sometimes called post-deforestation land use,
e.g., (8)). This entails an assumption that the land use following deforestation is the main cause
of interest (for other purposes, other parts of the causal chain may be more interesting, such as
more indirect/underlying drivers) (6, 27). However, it is not always unequivocal which crop (or
pasture) caused the deforestation (even if the data were perfect), as several successive land uses
may follow on a single piece of land during the years after a forest was cleared. This means that
there are many potential ways of attributing deforestation to crops; for example to: (i) the land
use immediately after deforestation (e.g., if there is no crop the year after deforestation, no crop
will be considered as driving deforestation); (ii) the first agricultural land use after deforestation
(e.g., rice or pasture, even if it is just done with the intention of transitioning the land for later
soy cultivation, as is common in South America (25, 170); or to oil palm after several years of
degraded land following deforestation, which is common in Indonesia (1/37); (iii) the agricultural
land use after a chosen time period (sometimes called lag time, allocation period, etc.), often
aimed at allowing sufficient time for the “intended” land use to be established and identified
(e.g., if in the first 2 years the land use is pasture, which is then followed by soy for the
foreseeable long-term, then the time frame might be chosen so that soy will be identified as the
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driver); or (iv), to each of the successive land uses (e.g., to both pasture and soy in the previous
example), either by splitting the “responsibility” or counting them both as responsible for the
deforestation (i.e., double-counting). The resulting numbers can thus reveal different drivers,
each potentially reflecting different parts of the causality. Similar challenges arise for crops that
are double- or triple-cropped (as is increasingly common, especially in Brazil (/80)).

Most scientific pan-tropical and continental-level studies attributing deforestation to crops
(and pasture) use some version of (iii) above. That is, they identify the subsequent land use based
on what expands or is established in previously forested areas within a fixed number of years,
usually at least two to four years, e.g., Goldman et al. (36), Pendrill et al. (37) and Song et al.
(25). Accounting for successive land uses is often hampered by lack of time-series data or maps
(though Song et al. (25) are able to distinguish between “direct” and “latent” soy gain
deforestation, based on whether gain occurred within or after three years). The choice of time lag
is thus adapted to the data availability and typically based on general crop dynamics (either for
crops in general, as done by Pendrill et al. (37), or adapted to specific crops, as done by Goldman
et al. (36) in their detailed approach). These “fixed” time lags introduce some additional
uncertainty: although they are chosen based on observed typical time lags, the time lags still vary
between crops, pastures and places, and potentially also from case to case and over time (25, 80,
137).

The crop attribution should, in general, be considered as higher uncertainty than the
estimates of agriculture-driven deforestation because these uncertainties compound. (The pan-
tropical crop attribution approaches all rely on some estimate of agriculture-driven deforestation,
except for the commodities covered by the Goldman et al. (36) detailed approach). Additionally,
concurrent and interacting drivers of deforestation are generally poorly considered in current
pan-tropical/continental scale assessments of deforestation drivers (47).
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Fig. S1. Map of the 87 countries included in the harmonized country set (indicated in dark
gray).

Not all the included studies cover the complete 87-country set (table S2). The complete set was
used for GFC/Hansen et al. (1), Curtis et al. (7) and Hosonuma et al. (20). The Pendrill et al.
(37) estimate is missing data for Cape Verde. The Carter et al. (32) estimate is missing six
countries: Cape Verde, Lesotho, Solomon Islands, Eswatini, Trinidad and Tobago, and Vanuatu.
The De Sy et al. (8) estimate misses 17 countries: Cuba, Dominica, Dominican Republic, Haiti,
Jamaica, Saint Lucia, Saint Vincent and the Grenadines, Trinidad and Tobago, Pakistan,
Singapore, Solomon Islands, Vanuatu, Burundi, Cape Verde, Gambia, Guinea-Bissau and
Rwanda. For Goldman et al. (36), the country availability varies by commodity. The Nguyen and
Kanemoto (38) data miss Cape Verde, Lesotho, Pakistan and Singapore.
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Fig. S2. Pan-tropical estimates of tree-cover loss and deforestation.

Estimated extents and trends of (sub-)tropical tree-cover loss and deforestation (in millions of
hectares per year) vary between studies. This reflects uncertainties as well as conceptual
differences. The data on tree-cover loss (TCL) are from global forest change (GFC) (Hansen et
al. (1)); on deforestation from the FAO FRA 2020 (3), Carter et al. (32); De Sy et al. (8) and
Vancutsem et al. (2). The FRA deforestation and the Carter et al. (32) deforestation data are
averages over 5—10-year time periods. Abbreviations used: “def” = deforestation, TMF =
Tropical Moist Forest. The data have been aligned to the same set of 87 (sub-)tropical countries
(minor exceptions listed in table S2), except for the data from Vancutsem et al. (2) data. The
Vancutsem et al. (2) data covers disturbances only within tropical moist forests and is presented
just for the 33 countries within our set with at least 4 Mha of tropical moist forest cover.
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Fig. S3. Pan-tropical estimates of agriculture-driven deforestation.

Estimated extents and trends of agriculture-driven deforestation (in millions of hectares per
year), assessed and defined in somewhat ways (table S1). The data on agriculture-driven
deforestation are from Curtis et al. (7), Carter et al. (32), De Sy et al. (8) and Hosonuma et al.
(20), and on deforestation resulting in agricultural production from Pendrill et al. (37). The
Carter et al. (32), De Sy et al. (8) and Hosonuma et al. (20) data are averages over 5—10-year
time periods. Abbreviations used: “agr” = agriculture, “def” = deforestation.
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Fig. S4. Estimating the likely range of deforestation.

Schematic visualization of how we estimated the likely range of deforestation from the GFC
tree-cover loss data. The GFC tree-cover loss data were split into three categories: (1)
deforestation, (ii) not deforestation, or (iii) a mix of persistent deforestation and temporary tree-
cover loss. These splits were based on maps of primary forest extents (54), existing tree
plantations (53) and the Curtis et al. (7) dominant drivers of tree-cover loss (urbanization,
commodity-driven, shifting agriculture and forestry). Finally (not shown), the lower estimate was
adjusted to reflect the assumed minimum amount of agriculture-driven deforestation at the
country level.
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Fig. S5. Deforestation embodied in commodity production.

Amount of deforestation embodied in commodity production that is consumed in the country or
region of production (Domestic) versus in other countries (Export), for major tropical regions
(left-hand side y-axis), as well as the average share of embodied deforestation that is linked to
international demand (black line; right-hand side y-axis), over the period 2005-2018. Data is
Pendrill et al. (138) (which presents updated estimates of deforestation embodied in trade using
the same approach as (37)) and results are shown for the two trade models used: the monetary
multiregional input-output model (EXIOBASE (/81), top) and the physical trade model (Kastner
(182), bottom) (both using a five-year amortization period for this analysis). Note that the results
from the models are not directly comparable, due to methodological choices: The physical trade
model considers the place of consumption roughly to be where products are physically consumed
as food or as intermediate inputs in, for example, industrial processes (/82), whereas the MRIO
additionally includes embodied deforestation initially utilized domestically and subsequently
exported in different forms, such as protein, biodiesel, as well as more indirectly, e.g., in services
(181). This implies that the higher export share estimated by EXIOBASE does not reflect a
higher trade share of agricultural commodities. Additionally, EXIOBASE has a much coarser
regional resolution, implying that intra-regional trade for much of the tropics (e.g., between
countries in tropical Asia) is not accounted for. Hence, the shares would likely be somewhat
different with a different choice of MRIO (such as GTAP or Eora, which have higher regional
resolution) or with different methodological (and conceptual) choices in the physical trade
model. These differences in methodological approaches imply that the results will be suitable for
different purposes and reflect different understanding of how international trade drives
deforestation (94).
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Fig. S6. Country-level distribution of the exported share of deforestation embodied in
commodity production.

By commodity groups and major tropical regions for the period 2011-2015, based on a physical
trade model (/82). Data is taken from Pendrill et al. (138). The boxplots are based on country-
year values within each region and represent the median, first and third quartiles, with whiskers
showing the maximum and minimum values (though extending no further than 1.5 times the
interquartile range; black dots indicate outliers). The blue colored circles show the weighted
average export share for the physical trade model (/82)), and the yellow circles show the average
export share for the multiregional input-output model EXIOBASE (no boxplots for this model,
as its regional aggregation implies there are only a couple of data points per region). The fact that
the average export share for the physical model is typically higher (by margin) than the median
share, reflects the fact that major producers of each commodity tend to export larger shares. As
noted above (fig. S5), the results from the two models are not directly comparable, due to
differences in system boundaries and model structure.
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Table S1. An overview of the main pan-tropical datasets on agriculture-driven

deforestation.

Source

Scope & resolution

Summary of method and key limitations

Curtis et al. (7)

Updated data
access: Global
Forest Watch

Original source:

2001-2020
Annual

Global

Spatial resolution:
gridded (10-km)

Drivers assessed: commodity-driven deforestation,
shifting agriculture, forestry, wildfire and urbanization.

Method summary: Estimates the dominant driver of tree -
cover loss in each 10 km by 10 km grid cell. Uses
regional decision tree models trained on high-resolution
imagery in Google Earth to classify drivers based on input
data on tree-cover loss and regrowth, forest type (pre-
2006), fires, and population.

Overall accuracy: 89%.

Limitations: The shifting agriculture and forestry classes
primarily contain non-deforestation tree-cover loss but
may in certain cases contain deforestation. The shifting
agriculture class does not distinguish net deforestation
over time (when clearing outweighs regrowth), and the
forestry class cannot determine when forestry activity is
expanding into areas not previously used for forestry.
Assesses only a single, main (>50%) driver in each 10 km
by 10 km grid cell for the whole time period, so may
underestimate especially small, fragmented and varying
causes of forest loss (e.g., “natural” wildfire losses in
tropics may be missed because fires in the tropics are
often a precursor to agricultural expansion). The wildfire
class does not distinguish between wildfires started
naturally (e.g., lighting) versus an anthropogenic source
(e.g., spark from utility, campfires).

“Shifting agriculture” (covering essentially all Africa)
obviously includes some marketed production, so the
classification mixes type of production (commodity/not),
scale, and land-use systems (permanent / shifting). The
class is primarily defined by the presence of significant
regrowth following loss.

Example of questions that particularly useful for:
¢ How much tree-cover loss occurs in landscapes
where agriculture is the dominant driver of loss?
e Where is agriculture the dominant driver of tree-
cover loss?
o Where is tree-cover loss likely to be permanent
deforestation versus temporary loss?
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Source

Scope & resolution

Summary of method and key limitations

Original source:
Carter et al. (32)

19902015
S5-year averages

Pan-tropical (91
countries)

Spatial resolution:
National

Drivers assessed: Agriculture-driven deforestation.

Method summary: National deforested area (A), derived
from a weighted average of harmonized deforestation
datasets, was multiplied with an agriculture-driven
deforestation fraction taken from Hosonuma et al. (20)
and De Sy et al. (8). This paper also further derived
emissions from agriculture-driven deforestation and
associated uncertainties.

Limitations:

The fraction of agriculture-driven deforestation was
assumed constant over the time period (only deforested
area was variable). Additionally, the limitations of the
original fraction data sources apply (8, 20). The weighted
average of deforested area might not reflect the actual
trend.

Example of questions that particularly useful for:
o (Method for) best estimate of emissions from
national agriculture-driven deforestation to
compare trends in space and time.

¢ Quantification of uncertainty associated with best

estimate, and with variety of input datasets.

¢ Recommendations for use/selection of data and
further improvements on the estimation of
emissions from agriculture-driven deforestation.

40



Source

Scope & resolution

Summary of method and key limitations

Original source:
De Sy et al. (8)

1990-2000 &
20002005
10- and 5-year
averages

Pan-tropical

Spatial resolution:
Systematic sampling
design of 10 by 10 km
squares. Square
sampling unit
subdivided in similar
LUC areas (polygons)
of at least 5 ha

Drivers assessed: Mixed agriculture, large-scale crop,
small-scale crop, tree crops, pasture, infrastructure, other
land use, water (land use following deforestation used as
a proxy for direct drivers).

Method summary: Visual interpretation of high-resolution
imagery of land use following deforestation. The Remote
Sensing Survey of the Global Forest Resources
Assessment 2010 of FAO (FAO FRA-2010 RSS) (FAO
and JRC 2012) was used as input to identify deforestation
areas. The FAO FRA-2010 RSS used a systematic
sampling design with sample units (SU) of 10 by 10 km.
Each SU was segmented into delineated areas
(polygons) with a target minimum mapping area (MMU) of
5 ha.

Limitations: Limited temporal availability (1990-2005) that
will not be extended because of the labor-intensive
method for driver assessment (visual interpretation) and
underlying deforestation dataset (FAO FRA 2010) that will
likely not be updated systematically. The rather coarse
systematic sampling design only allows aggregation to
larger regional scales (e.g., continental). Extensive land
uses (e.g., rangelands) are difficult to assess so are often
categorized as “other land use”.

Example of questions that particularly useful for:

o Assessment of land use following deforestation
with high thematic detail (e.g., large-scale versus
small-scale cropland).

o Comparative analysis of spatial and temporal
dynamics of direct deforestation drivers on a
regional and continental scale.
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Source

Scope & resolution

Summary of method and key limitations

Original source:
Pendrill et al.

(37)

Updated data
access: (138)

Version used
here: v.1.1

20012017
Annual

Tropics & subtropics
Spatial resolution:

National (sub-national
Brazil & Indonesia)

Drivers assessed: Pasture (cattle meat, leather), 100+
crops and wood products from tree plantations (land use
following deforestation used as a proxy for direct drivers)
Separates domestic and international trade, countries of
consumption.

Method summary:

Estimates how much tree-cover loss (Hansen et al. (1)) is
followed by expanding cropland (and crops), pasture and
tree plantations, using primarily agricultural statistics in a
land balance model.

The analysis is performed at the national level (except for
Brazil and Indonesia) and depends on assumptions about
predominant land-use transitions.

Limitations:

The (primarily) national scale of analysis implies that
deforestation is attributed to the land uses and crops
expanding at the national level and thus does not clearly
separate direct and indirect drivers of deforestation, i.e.,
between the land uses (e.g., a crop) directly expanding
on cleared forest land versus those expanding in other
parts of the country (potentially indirectly “pushing” other
land uses into the forest). Interacting commodity and
land-use drivers, and successive land-use transitions
over time are only cursorily dealt with.

Relies largely on agricultural statistics (primarily
FAOSTAT) for identifying which land uses and crops are
expanding. It is thus sensitive especially to how well year-
on-year variations are reported (e.g., in many cases, the
data show constant numbers over consecutive recent
years, especially for countries in Africa).

Example of questions that particularly useful for:

o Deforestation for agriculture: amount of
deforestation driven by (primarily) net expansion
of agriculture.

o Key forest risk commodities (FRCs): the amount
and share of agricultural-driven deforestation due
to different FRCs.

e Trade in embodied deforestation: e.g., the
amount and share of deforestation related to
domestic versus export demand; and the amount
of embodied deforestation and key commodities
“imported” by a country of consumption.
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Source

Scope & resolution

Summary of method and key limitations

Original source:

Hosonuma et
al. (20),

Kissinger et al.

(21)

2000-2010
10-yr average

Tropics & subtropics

Spatial resolution:
National

Drivers assessed:
Agriculture (commercial), Agriculture (subsistence),
Mining, Infrastructure, Urban expansion.

Method summary:

A coarse estimate of the share of deforestation attributed
to drivers, based on a limited set of quantitative data,
combined with qualitative estimates and extrapolation.

Limitations: Largely based on data self-reported by
countries as part of REDD+ readiness. Quantitative
estimates were used only for 12 countries, covering just
under half of the forest loss. The remaining deforestation
driver estimates are based on qualitative estimates of
drivers (e.g., if drivers A> B > C, then A=1/2, B =1/3, C=
1/6) for 34 countries, subsequently extrapolated to an
additional 46 countries.

Example of questions that particularly useful for:
¢ Relative importance of deforestation drivers for
different continents and forest transition phases.
¢ National-level data availability on drivers.
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Source

Scope & resolution

Summary of method and key limitations

Original source:
Goldman et al.
(36)

Updated data
access: Global
Forest Watch

2001-2015(+)
Annual

Global (mostly)

Spatial resolution:
subnational

Drivers assessed: Seven commodities (Palm oil, Soy,
Cattle meat, Wood Fiber, Cocoa, Coffee, and Rubber).

Method summary: Estimates where tree-cover loss
(Hansen et al. (1)) is followed by seven key forest risk
commodities, using the best available spatially explicit
data. Uses two approaches—one detailed and one
coarse—depending on whether detailed data are
available for subnational estimates.

Where available, the detailed approach is probably the
best available estimate of deforestation driven by these
commodities, using spatially explicit data on recent
commodity extents. However, the detailed approach is
limited to certain commodities and countries.

The coarse approach allocates all tree-cover loss within
the 10 km by 10 km grid cells identified by Curtis et al. (7)
as commodity-driven deforestation or shifting agriculture
to commodities based on their past area shares (of
agricultural land) within each grid cell.

Limitations: The coarse approach risks over-allocating
deforestation to commodities where the coarse grid cells
in the Curtis et al. (7) data might be hiding the
contribution of other drivers or where shifting agriculture
does not constitute deforestation. Additionally, it relies on
the assumption that the commaodity area shares did not
change from the year 2000 (pasture) / 2010 (crops) and
were equally likely to expand into forests, which may not
always hold for forest risk commodities, especially in
rapidly changing deforestation frontiers.

Oil palm is based entirely on the detailed approach, while
Coffee and Cocoa are based only on the coarse
approach. Rubber and wood fiber are only assessed for a
handful of countries (based exclusively on the detailed
approach). The rest of the commodities are based on a
mix of the two approaches: e.g., pasture uses the detailed
approach only for Brazil, while soy uses a detailed
approach for all of South America.

Data post-2015 are currently only preliminary and likely
underestimates.

Example of questions that particularly useful for:
e How much deforestation is linked to specific
commodities?
o Where are national and subnational hot spots of
deforestation linked to specific commodities?
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Source

Scope & resolution

Summary of method and key limitations

Original source:
Cuypers et al.
43)

1990-2008

In two time periods:
1990-2000 and 2000—
2008

Global

Spatial resolution:
National

Drivers assessed: Primary sectors and commodities,
separates domestic and international trade, countries of
consumption.

Method summary: Uses a national-level land-use
transition model, applying constraints to attribute forest
conversion (net deforestation and afforestation) from the
FAO FRA 2010 to changes in agriculture (and
subsequently crops), built-up land and other land
(according to FAOSTAT) in proportion to their increased
land demand. Depends on assumptions about land-use
transitions.

Limitations:

Limited temporal availability (only up to 2008) and
resolution (as the deforestation data is only available as
averages over 5-10 year time periods). Like for the
Pendrill et al. (37) approach, the national level of the
model does not allow for separating the direct and indirect
drivers of deforestation. It also relies largely on FAOSTAT
agricultural statistics for identifying which land uses and
crops are expanding. It is thus sensitive to how well year-
on-year variations are reported.

Example of questions that particularly useful for:

o Key forest risk commodities (FRCs): the amount
and share of agricultural-driven deforestation due
to livestock and different crops.

e Trade in embodied deforestation, especially to
the EU.
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Table S2. The 87 countries included in the harmonized country set in this analysis.

List includes the continent division used, as well as deviations from this set, i.e., on which
countries are missing from De Sy et al. (8) and Carter et al. (32) and on which countries were
included from Vancutsem et al. (2). The complete 87-country set was available in and used for
GFC/Hansen et al. (1), the FAO FRA 2020 deforestation rates (3) (after complementing reported
deforestation rates with “Forest area net change” rates), Curtis et al. (7) and Hosonuma et al. (20).
Only Cape Verde was missing from Pendrill ef al. (37). Nguyen and Kanemoto (38) missed only
Cape Verde, Lesotho, Pakistan, and Singapore. For Goldman et al. (36), the country availability
varies by commodity.

ISO Country name Continent De Sy et Carter et Vancutsem
al. (8) al. (32) etal. 2)
AGO Angola Africa Included
ARG Argentina Latin America
BGD Bangladesh Asia
BLZ Belize Latin America
BEN Benin Africa
BTN Bhutan Asia
BOL Bolivia Latin America Included
BWA Botswana Africa
BRA Brazil Latin America Included
BFA Burkina Faso Africa
BDI Burundi Africa Missing
KHM  Cambodia Asia Included
CMR Cameroon Africa Included
CpV Cape Verde Africa Missing  Missing
CAF Central African  Africa Included
Republic
TCD Chad Africa
CHL Chile Latin America
COL Colombia Latin America Included
COG Congo Africa Included
CRI Costa Rica Latin America
CIv Cote d’Ivoire Africa Included
CUB Cuba Latin America  Missing
COD DR Congo Africa Included
DMA  Dominica Latin America  Missing
DOM  Dominican Latin America  Missing
Republic
ECU Ecuador Latin America Included
SLV El Salvador Latin America
GNQ Equatorial Africa
Guinea
ETH Ethiopia Africa
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ISO Country name Continent De Sy et  Carter et Vancutsem
al. (8) al. (32) etal. 2)
GAB Gabon Africa Included
GMB  Gambia Africa Missing
GHA Ghana Africa Included
GTM Guatemala Latin America Included
GIN Guinea Africa
GNB Guinea-Bissau  Africa Missing
GUY Guyana Latin America Included
HTI Haiti Latin America  Missing
HND Honduras Latin America
IND India Asia Included
IDN Indonesia Asia Included
JAM Jamaica Latin America  Missing
KEN Kenya Africa
LAO Laos Asia Included
LSO Lesotho Africa Missing
LBR Liberia Africa Included
MDG  Madagascar Africa Included
MWI Malawi Africa
MYS Malaysia Asia Included
MLI Mali Africa
MEX Mexico Latin America Included
MOZ Mozambique Africa
MMR  Myanmar Asia Included
NAM  Namibia Africa
NPL Nepal Asia
NIC Nicaragua Latin America Included
NGA Nigeria Africa Included
PAK Pakistan Asia Missing
PAN Panama Latin America Included
PNG Papua New Asia Included
Guinea
PRY Paraguay Latin America
PER Peru Latin America Included
PHL Philippines Asia Included
RWA  Rwanda Africa Missing
LCA Saint Lucia Latin America  Missing
VCT Saint Vincent Latin America  Missing
and the
Grenadines
SEN Senegal Africa
SLE Sierra Leone Africa
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ISO Country name Continent De Sy et  Carter et Vancutsem
al. (8) al. (32) etal. 2)

SGP Singapore Asia Missing

SLB Solomon Asia Missing ~ Missing

Islands

SOM Somalia Africa

ZAF South Africa Africa

LKA Sri Lanka Asia

SDN Sudan Africa

SUR Suriname Latin America Included

SWZ Eswatini Africa Missing

TZA Tanzania Africa

THA Thailand Asia Included

TLS Timor-Leste Asia

TGO Togo Africa

TTO Trinidad and Latin America  Missing  Missing

Tobago

UGA Uganda Africa

URY Uruguay Latin America

VUT Vanuatu Asia Missing ~ Missing

VEN Venezuela Latin America Included

VNM  Viet Nam Asia Included

/ZMB Zambia Africa

ZWE Zimbabwe Africa
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Table S3. Estimated extents of tree-cover loss (TCL) and deforestation.

The estimates are from several large-scale assessments (in millions of hectares per year; 5-year
averages). The data are from this synthesis (where L = lower estimate and H = higher estimate)

and from (/-3, 8, 32) and have been harmonized to the same set of 87 countries (minor

discrepancies are detailed in table S2). The data from Vancutsem et al. (2) are for a more limited

subset of forests (only TMF = tropical moist forests) and only 33 of the 87 countries.

Abbreviations used: D+D = Deforestation plus degradation, Def = Deforestation and Deg =
Degradation. (Note that the definitions vary).

Deforestation (various definitions)

TCL

Disturbances of

TMF

This FAO Carter De Sy | Hanse | Vancutsem et al.
T FRA etal etal. |netal | (2) (only 33 f’f the

2020 32) & ) 87 countries)
Year L H D+D Def Deg
_ 2000-2005 13.8 9.3 10.3 80 121 57 64
g 20062010 13.8 9.9 93 85 39 46
5 2011-2015 6.5 95 107 9.8 106 87 4.1 4.6
2016-2020 9.6 14.1 89 3.1 5.8
2001-2005 4.2 2.5 3.7 1.3 23 06 1.7
8§ 20062010 4.2 3.2 1.8 17 06 1.1
ﬁ 2011-2015 1.3 2.7 4.4 4.0 28 23 1.0 1.2
2016-2020 4.3 42 24 08 1.6
2001-2005 2.2 1.5 1.4 1.7 41 18 23
= 20062010 2.2 1.7 28 32 15 1.6
< 2011-2015 22 2.7 2.6 1.8 34 34 1.6 1.8
20162020 2.0 35 23 07 1.6
< 2001-2005 7.3 5.3 5.2 50 56 33 24
g -% 20062010 7.3 5.0 47 37 1.8 1.8
S € 20112015 29 42 3.7 4.1 44 3.0 14 1.6
< 20162020 33 65 41 1.6 26
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Table S4. Estimated rates of agriculture-driven deforestation from pan-tropical studies.

Rates are summarized across different time periods and continents (in millions of hectares per
year; 5-year averages). The data are from this synthesis (where L = lower estimate and H =

higher estimate) and (7, 8, 20, 32, 37). Abbreviations used: “agr.” =
deforestation, “prod” = production, TCL = tree-cover loss, “com. def.” = commodity-driven

Agriculture, “def.” =

deforestation.
Agr.- Def.
driven r(-esulting Other estimates of agr.iculture-driven
def. in agr. deforestation
prod.
This Pendrill et Curtis ef al. (7) Carter DeSy Hoson
e al. (37) (TCL- driven by etal etal. uma et
agriculture) 32) &) al. (20)
Year Shifting
Com.
L H def. agr. +
com. def.

= 2001-2005 4.8 4.4 7.1 7.5 8.2 11.7
§ 2006-2010 4.2 4.9 8.3 7.8 11.7

O 2011-2015 64 8.8 4.3 5.2 9.6 7.6
s 2001-2005 0.8 0.0 1.2 1.6 2.8 3.1
£ 2006-2010 1.3 0.0 1.7 2.2 3.1

< 20112015 13 2.7 13 00 2.7 2.7
- 2001-2005 0.6 1.4 1.5 1.1 0.9 1.6
g 2006-2010 0.9 2.3 2.5 1.1 1.6

2011-2015 22 23 1.1 2.8 3.0 1.2
< 2001-2005 34 3.0 4.5 4.8 4.6 7.1
= & 2006-2010 2.0 2.6 4.2 4.5 7.1

S £ 2011-2015
< 29 38 1.9 24 3.9 3.7
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1364
1365
1366

Table SS. Studies quantifying agriculture resulting in agricultural production at the

national level.

Comprehensive list of studies identified by the literature review. The review covered the eleven
countries with the highest identified rates of deforestation and searched for estimates of
deforestation due to expanding cropland, pastures, or key commodities.

Post-forest land- Time
Reference Countries Geographical scope use period
Latin America:
I83) Argentina Formosa Agricultural land ~ 2001-2008,

2010-2015
(184) Argentina, Gran Chaco biome Cropland, pasture ~ 2010-2017
(185) Bolivia & Gran Chaco biome Soybeans 2000-2012
(186) Paraguay Gran Chaco biome Cropland, pasture ~ 1976-2012
(187)* Argentina, Sub-Andean South America Cropland 1990-2014
(188) Bolivia, National (wall-to-wall) Cropland, pasture  2001-2011
(25) Brazil & National (wall-to-wall) Soybeans 2000-2019
24)* Paraguay National (sample-based) Cropland, pasture ~ 1985-2018
(189) Bolivia Chapare region Cropland 1986-2018
(190) Brazil Para state Oil palm 2006-2014
(191) Para state Oil palm 2010-2018
(192) Apui, Amazonas state Agriculture 1982-2016
(193) Paraiba Valley, Sao Paulo Cropland, pasture ~ 1985-2011
state

(194) Mato Grosso state Soybeans 2009-2016
(195) National (sample-based) Oil palm <2014
(80) Amazon & Cerrado biomes Soybeans 2006-2013
(196) Mato Grosso state Cropland, pasture, 2001-2014

soybeans
(197) Mato Grosso state Pasture, soybeans  2001-2016
(198) MATOPIBA region Cropland, pasture, 1990-2017

soybeans
(132)* Cerrado biome Soybeans 2003-2015
(199) Novo Progresso, Para state Pasture 1985-2012
(200) Mato Grosso state Pasture, soybeans  2001-2017
(14)* National (wall-to-wall) Cropland, pasture ~ 1985-2017
157) Legal Amazon Cropland, pasture ~ 2001-2013
(130)* National (wall-to-wall) Cropland 2000-2014
(133) Amazon & Cerrado biomes Soybeans 2006-2017
(131) National (wall-to-wall) Pasture 2000-2017
Africa:
(201) Angola South-central Angola Cropland 1989-2013
(202) South-central Angola Cropland 1989-2014
(35)* DR Congo National (sample-based) Agriculture 2001-2014
(203) Madagascar ~ North-eastern region Rice 1995-2011
(204)* Mozambique Northern Mozambique Cropland 2001-2017
(205)* National (wall-to-wall) Cropland 2000-2016
* Additional studies, not identified through the systematic literature review.

Post-forest land- Time
Reference Countries Geographical scope use period
Asia:
(2006) Indonesia Sumatra, Kalimantan, Papua  Oil palm 1995-2015
(55) National (sample-based) Cropland, oil 2001-2016
palm
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(207)
(208)
(134)
(209)
(210)
(135)
11)
(49)
212)
(137)
(213)
(214)
215)
(216)
(17)*

(217)

218)
(158)

(219)
(220)
(221)
(222)

(223)
(160)

Indonesia,
Malaysia

Indonesia,
Myanmar
Indonesia,
Malaysia,
Myanmar
Malaysia

Myanmar

Lubuk Kertang mangrove
forest, North Sumatra
North Sumatra

National (wall-to-wall)
North Central Timor
Sambas regency, West
Kalimantan

National (wall-to-wall)
Deforestation hotspot sample
Bungo & Merangin, Jambi
province

National (wall-to-wall)

Borneo

Borneo

Peatlands in Malaysia,
Sumatra & Kalimantan
Peninsular Malaysia &
Sumatra

Malaysia, Sumatra &
Kalimantan (sample-based)
National (sample-based)

Mangrove forests (wall-to-
wall)

North Selangor Peat Swamp
Forest
Peninsular Malaysia

Peninsular Malaysia
Peninsular Malaysia
District of Beaufort, Sabah
Mangrove forests

Shan state
Shan state

Oil palm

Oil palm
Oil Palm
Cropland, rice
Oil palm

Oil palm
Cropland
Oil palm

Cropland, oil
palm

Oil palm

Oil palm
Cropland, oil
palm
Cropland, oil
palm

Oil palm

Oil palm, rubber,
coffee, rice
Oil palm, rice

Oil palm, rice

Cropland, oil
palm, rubber

Oil palm, rubber
Oil palm

Oil palm, rubber
Oil palm, rubber,
rice

Corn

Cropland, rubber,
coffee

1996-2016
1990-2015
2001-2019
2000-2015
1990-2013
2002-2014
2018

1988-2013
1990-2012
2000-2015
2000-2017
1990-2015
2000-2015
2001-2016
2000-2015

2000-2012

1989-2016

2010-2015

1988-2012
1988-2012
1985-2012
1996-2016

2001-2019
2001-2014

* Additional studies, not identified through the systematic literature review.

52



Table S6. Pan-tropical estimates of deforestation due to specific agricultural land uses.

Commodities marked with an asterisk (*) are not included in the Goldman et al. (36) dataset.
"Other commodities" include all other agricultural commodity land uses assessed by the
respective studies (these differ between the studies). Achieving precise estimates of the
importance of different agricultural land uses for total agricultural-driven deforestation remains
fraught with uncertainty.

Continent Driver Years Pendrill Goldman Nl(g;g:rl:lﬁg)d
etal. 37) etal. (36)

(38

2001-2005 2.9 3.1

Overall Pasture 2006-2010 1.9 3.0
20112015 1.9 2.7
2001-2005 0.2 0.5

Overall Oil palm 20062010 0.5 0.9 0.8
20112015 0.5 0.7
2001-2005 0.6 0.7

Overall Soy 20062010 0.2 0.5 0.4
20112015 0.4 0.4
2001-2005 0.2

Overall Maize* 20062010 0.3 0.7
20112015 0.3
2001-2005 0.2

Overall Rice* 20062010 0.2 0.4
20112015 0.2
2001-2005 0.1

Overall Cassava* 20062010 0.2 0.4
20112015 0.2

Overall Cocoa 2001-2005 0.1 0.1
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Continent Driver Years Pendrill Goldman ng:g:;llsz)d
etal. 37) etal. (36)

(38)
20062010 0.1 0.1 0.2
20112015 0.0 0.2
2001-2005 0.0 0.1
Overall Rubber 20062010 0.0 0.2
20112015 0.1 0.2
2001-2005 0.0 0.1
Overall Coffee 2006-2010 0.0 0.1 0.1
20112015 0.0 0.1
2001-2005 0.6
Overall Other commodities®* 2006-2010 0.8 3.1
20112015 0.6
2001-2005 24 2.8
Latin America Pasture 20062010 1.5 2.5
20112015 1.2 2.1
2001-2005 0.0 0.0
Latin America Oil palm 2006-2010 0.0 0.0 0.1
20112015 0.0 0.0
2001-2005 0.6 0.7
Latin America Soy 20062010 0.2 0.5 0.3
20112015 0.4 0.4
2001-2005 0.1
Latin America Maize* 20062010 0.1 0.4
2011-2015 0.1

54



Pendrill

Goldman

Nguyen and

Continent Driver Years etal. 37) etal. (36) Kanemoto
(38)
2001-2005 0.1
Latin America Rice* 20062010 0.0 0.1
20112015 0.0
2001-2005 0.0
Latin America Cassava*™ 2006-2010 0.0 0.1
20112015 0.0
2001-2005 0.0 0.0
Latin America Cocoa 20062010 0.0 0.0 0.1
2011-2015 0.0 0.0
2001-2005 0.0 0.0
Latin America Rubber 20062010 0.0 0.0
20112015 0.0 0.0
2001-2005 0.0 0.1
Latin America Coffee 20062010 0.0 0.1 0.1
2011-2015 0.0 0.0
2001-2005 0.2
Latin America Other commodities* 2006-2010 0.2 1.4
20112015 0.1
2001-2005 0.1 0.1
Asia Pasture 20062010 0.1 0.1
20112015 0.1 0.2
2001-2005 0.2 0.5
Asia Oil palm
20062010 0.4 0.9 0.7
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Pendrill

Goldman

Nguyen and

Continent Driver Years etal. 37) etal. (36) Kanemoto
(38)

20112015 0.4 0.6
2001-2005 0.0 0.0

Asia Soy 20062010 0.0 0.0 0.0
20112015 0.0 0.0
2001-2005 0.0

Asia Maize* 20062010 0.0 0.1
20112015 0.1
2001-2005 0.1

Asia Rice* 20062010 0.1 0.2
20112015 0.1
2001-2005 0.0

Asia Cassava* 2006-2010 0.0 0.0
20112015 0.0
2001-2005 0.0 0.0

Asia Cocoa 20062010 0.0 0.0 0.0
20112015 0.0 0.1
2001-2005 0.0 0.1

Asia Rubber 20062010 0.0 0.2
20112015 0.1 0.1
2001-2005 0.0 0.0

Asia Coffee 20062010 0.0 0.0 0.0
20112015 0.0 0.0

Asia Other commodities* 2001-2005 0.1
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Pendrill

Goldman

Nguyen and

Continent Driver Years etal. 37) etal. (36) Kanemoto
(38)

20062010 0.1 0.8
2011-2015 0.2
2001-2005 0.4 0.2

Africa Pasture 2006-2010 0.4 0.3
20112015 0.6 0.4
2001-2005 0.0 0.0

Africa Oil palm 2006-2010 0.0 0.0 0.0
2011-2015 0.0 0.0
2001-2005 0.0 0.0

Africa Soy 20062010 0.0 0.0 0.0
2011-2015 0.0 0.0
2001-2005 0.1

Africa Maize* 20062010 0.2 0.2
20112015 0.1
2001-2005 0.0

Africa Rice* 20062010 0.1 0.1
2011-2015 0.1
2001-2005 0.0

Africa Cassava*™ 2006-2010 0.1 0.2
20112015 0.2
2001-2005 0.0 0.1

Africa Cocoa 20062010 0.0 0.1 0.1
20112015 0.0 0.1
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Pendrill

Goldman

Nguyen and

Continent Driver Years etal. 37) etal. (36) Kanemoto
(38)

2001-2005 0.0 0.0

Africa Rubber 20062010 0.0 0.0
20112015 0.0 0.0
2001-2005 0.0 0.0

Africa Coffee 20062010 0.0 0.0 0.0
20112015 0.0 0.0
2001-2005 0.2

Africa Other commodities®* 2006-2010 0.5 0.9
20112015 0.3
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Table S7. Country-level estimates of total deforestation rates and agriculture-driven
deforestation.

Expressed as annual averages over the period 2011-2015. For an explanation for how the ranges
(low/high) are calculated, see the Materials and Methods above.

Total deforestation Agriculture-driven

(Mha/y) deforestation (Mha/y)

Continent Country Low High Low High

Latin America  Argentina 0.28 0.33 0.27 0.31

Belize 0.01 0.02 0.01 0.02

Bolivia 0.20 0.24 0.20 0.24

Brazil 1.55 2.22 1.54 2.01

Chile 0.01 0.10 0.01 0.01

Colombia 0.14 0.17 0.14 0.17

Costa Rica 0.00 0.01 0.00 0.01

Cuba 0.00 0.01 0.00 0.00

Dominica 0.00 0.00 0.00 0.00

Dominican Republic 0.01 0.01 0.01 0.01

Ecuador 0.01 0.04 0.01 0.04

El Salvador 0.00 0.00 0.00 0.00

Guatemala 0.02 0.06 0.02 0.05

Guyana 0.01 0.01 0.01 0.01

Haiti 0.00 0.00 0.00 0.00

Honduras 0.03 0.04 0.03 0.04

Jamaica 0.00 0.00 0.00 0.00

Mexico 0.06 0.18 0.05 0.17

Nicaragua 0.01 0.04 0.01 0.04

Panama 0.00 0.02 0.00 0.02

Paraguay 0.36 0.38 0.36 0.38

Peru 0.14 0.19 0.14 0.19

Saint Lucia 0.00 0.00 0.00 0.00

Saint Vincent and the Grenadines 0.00 0.00 0.00 0.00

Suriname 0.01 0.01 0.01 0.01

Trinidad and Tobago 0.00 0.00 0.00 0.00

Uruguay 0.00 0.00 0.00 0.00

Venezuela 0.04 0.08 0.04 0.07
1368
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Total deforestation

Agriculture-driven

(Mha/y) deforestation (Mha/y)

Continent Country Low High Low High
Africa Angola 0.18 0.18 0.18 0.18
Benin 0.00 0.00 0.00 0.00
Botswana 0.00 0.00 0.00 0.00
Burkina Faso 0.00 0.00 0.00 0.00
Burundi 0.00 0.00 0.00 0.00
Cameroon 0.04 0.08 0.04 0.08
Cape Verde 0.00 0.00 0.00 0.00
Central African Republic 0.01 0.04 0.01 0.04
Chad 0.00 0.00 0.00 0.00
Congo 0.02 0.05 0.02 0.05
Cote d’lvoire 0.09 0.18 0.09 0.18
DR Congo 0.37 0.84 0.37 0.84
Equatorial Guinea 0.00 0.01 0.00 0.01
Eswatini 0.00 0.00 0.00 0.00
Ethiopia 0.02 0.03 0.02 0.03
Gabon 0.02 0.03 0.02 0.03
Gambia 0.00 0.00 0.00 0.00
Ghana 0.01 0.07 0.01 0.06
Guinea 0.02 0.10 0.02 0.10
Guinea-Bissau 0.01 0.01 0.01 0.01
Kenya 0.01 0.01 0.01 0.01
Lesotho 0.00 0.00 0.00 0.00
Liberia 0.04 0.12 0.03 0.12
Madagascar 0.07 0.26 0.07 0.26
Malawi 0.01 0.01 0.01 0.01
Mali 0.00 0.00 0.00 0.00
Mozambique 0.17 0.17 0.17 0.17
Namibia 0.00 0.00 0.00 0.00
Nigeria 0.05 0.05 0.04 0.04
Rwanda 0.00 0.00 0.00 0.00
Senegal 0.00 0.00 0.00 0.00
Sierra Leone 0.01 0.12 0.01 0.12
Somalia 0.00 0.00 0.00 0.00
South Africa 0.01 0.02 0.01 0.01
Sudan 0.00 0.00 0.00 0.00
Tanzania 0.12 0.16 0.11 0.15
Togo 0.00 0.00 0.00 0.00
Uganda 0.02 0.05 0.02 0.05
Zambia 0.04 0.09 0.04 0.09
Zimbabwe 0.01 0.01 0.01 0.01
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1370

Total deforestation

Agriculture-driven

(Mha/y) deforestation (Mha/y)

Continent Country Low High Low High
Asia Bangladesh 0.00 0.01 0.00 0.00
Bhutan 0.00 0.00 0.00 0.00
Cambodia 0.16 0.17 0.16 0.16
India 0.03 0.10 0.02 0.02
Indonesia 1.25 1.31 1.23 1.25
Laos 0.15 0.20 0.14 0.16
Malaysia 0.25 0.26 0.24 0.24
Myanmar 0.14 0.24 0.13 0.18
Nepal 0.00 0.00 0.00 0.00
Pakistan 0.00 0.00 0.00 0.00
Papua New Guinea 0.04 0.08 0.04 0.08
Philippines 0.04 0.05 0.04 0.04
Singapore 0.00 0.00 0.00 0.00
Solomon Islands 0.01 0.01 0.01 0.01
Sri Lanka 0.00 0.01 0.00 0.00
Thailand 0.05 0.11 0.04 0.05
Timor-Leste 0.00 0.00 0.00 0.00
Vanuatu 0.00 0.00 0.00 0.00
Viet Nam 0.09 0.12 0.09 0.11
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