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Abstract
Pure squamous cell carcinoma (SCC) is the most common pure variant form of bladder cancer, found in 2–5% of
cases. It often presents late and is unresponsive to cisplatin-based chemotherapy. The molecular features of these
tumours have not been elucidated in detail. We carried out whole-exome sequencing (WES), copy number, and
transcriptome analysis of bladder SCC. Muscle-invasive bladder cancer (MIBC) samples with no evidence of squa-
mous differentiation (non-SD) were used for comparison. To assess commonality of features with urothelial car-
cinoma with SD, we examined data from SD samples in The Cancer Genome Atlas (TCGA) study of MIBC. TP53
was the most commonly mutated gene in SCC (64%) followed by FAT1 (45%). Copy number analysis revealed
complex changes in SCC, many differing from those in samples with SD. Gain of 5p and 7p was the most com-
mon feature, and focal regions on 5p included OSMR and RICTOR. In addition to 9p deletions, we found some
samples with focal gain of 9p24 containing CD274 (PD-L1). Loss of 4q35 containing FAT1 was found in many
samples such that all but one sample analysed by WES had FAT1 mutation or deletion. Expression features
included upregulation of oncostatin M receptor (OSMR), metalloproteinases, metallothioneins, keratinisation
genes, extracellular matrix components, inflammatory response genes, stem cell markers, and immune response
modulators. Exploration of differentially expressed transcription factors identified BNC1 and TFAP2A, a gene
repressed by PPARG, as the most upregulated factors. Known urothelial differentiation factors were down-
regulated along with 72 Kruppel-associated (KRAB) domain-containing zinc finger family protein (KZFP) genes.
Novel therapies are urgently needed for these tumours. In addition to upregulated expression of EGFR, which has
been suggested as a therapeutic target in basal/squamous bladder cancer, we identified expression signatures that
indicate upregulated OSMR and YAP/TAZ signalling. Preclinical evaluation of the effects of inhibition of these
pathways alone or in combination is merited.
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Introduction

In Europe and the United States, �60–70% of bladder
tumours are classified as urothelial carcinoma (UC).
The remainder have components of mixed morphology
or are pure variants [1], of which pure squamous cell
carcinoma (SCC) is the most common (2–5%) [2].
Squamous differentiation (SD) is also the most com-
mon variant in tumours with mixed morphology [3].

The majority of SCC are moderately or poorly differ-
entiated [1], most are muscle-invasive bladder cancers
(MIBC) at presentation, and they are more common in
females [4,5]. Due to relatively small numbers, there
have been no large randomised studies to guide treat-
ment and there are limited data on the effects of spe-
cific treatments. Studies of registry data indicate
reduced overall survival in bladder SCC compared to
conventional UC [6–8] and suggest that for non-
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metastatic SCC, radical cystectomy achieves better
outcomes than radiotherapy [9,10]. Some evidence for
a benefit from preoperative radiotherapy is reported
[11] but not from neoadjuvant chemotherapy
[5,12,13]. Thus, there is an urgent need for novel
approaches to therapy.
The molecular features of pure SCC of the bladder

have not been extensively studied. Upregulated protein
expression of EGFR; p53 [14]; cytokeratins 5, 6,
7, and 14; and loss of cytokeratin 20 and uroplakin II
expression [15] are reported. Targeted sequence analy-
sis of 17 pure SCC identified common mutations in
TP53, PIK3CA, FBXW7, and CDKN2A and copy num-
ber gains that included MYC (8q), BIRC3 (11q), and
EGFR (7p) [16]. It is unclear to what extent pure SCC
and UC with SD share genomic features or whether
there is heterogeneity in tumours of mixed histology.
A single study that reported mutation, copy number,
and expression data from separate regions of UC and
SD described both concordance and divergence in
profiles [17].
To increase the understanding of pure bladder SCC

and provide an improved basis for examination of
components of tumours with mixed histology, we have
carried out whole-exome sequencing (WES), genome-
wide DNA copy number analysis, and transcriptome
analysis of a series of pure SCC samples. We made
comparisons with conventional UC with no SD (non-
SD) and data from UC with SD from The Cancer
Genome Atlas (TCGA) analysis of MIBC [18].

Materials and methods

Patients and samples
Clinical samples and associated clinical data were sou-
rced from the Leeds Multidisciplinary Research Tissue
Bank (REC reference: 20/YH/0103). All patients pro-
vided written consent. Cold cup biopsies were snap-
frozen and stored in liquid nitrogen and the remainder
of the sample embedded in paraffin for diagnostic
assessment. These samples included 24 pure SCC and
18 conventional MIBC with no SD, designated as
‘non-SD’.

DNA and RNA extraction and molecular analysis
Genomic DNA was isolated from frozen tissue sec-
tions comprising at least 70% of tumour cells using a
QIAamp DNA Mini Kit (Qiagen, Manchester, UK) or
a Gentra PureGene Tissue Kit (Qiagen, Manchester
UK). DNA was extracted from venous blood samples

using a Nucleon BACC DNA Extraction Kit (Cytiva,
Little Chalfont, UK) or by salt precipitation.
WES was carried out on tumour and paired

leucocyte DNA using the SureSelect Human All Exon
V6 Kit (Agilent Technologies Ltd, Stockport, UK).
Low-pass whole-genome sequencing was used to
assess copy number alterations. Total RNA was iso-
lated from frozen tissue sections and analysed using
Affymetrix Human Transcriptome 2.0 microarrays
(ThermoFisher Scientific, Warrington, UK). Further
details are given in Supplementary materials and
methods. Twenty-one pure SCC samples underwent
copy number analysis, 16 transcriptome analysis, and
11 whole-exome analysis. Transcriptome analysis
alone was carried out on the 18 non-SD samples (sup-
plementary material).

Statistical analysis
Group comparisons of candidate genes used the
Mann–Whitney test. Results are reported without cor-
rection for multiple testing. A significance level of
0.05 was used. Pearson and Spearman correlation ana-
lyses to evaluate the relationships between copy num-
ber and gene expression were carried out using Partek
Genomics Suite (St. Louis, MO, USA).

Transcriptome analysis
The R2: Genomics Analysis and Visualization Plat-
form (http://r2.amc.nl) was used for data visualisation,
data mining, and analysis of transcriptome data. Gene
Ontology (GO, biological processes) and KEGG path-
way enrichment analysis was performed using the
Database for Annotation and Integrated Discovery
(DAVID) v6.8. Gene Set Enrichment Analysis v3.0
was carried out using all genes run against gene sets in
the Hallmarks database (v7.1). Details are given in
Supplementary materials and methods.

Results

We identified 24 pure SCC samples collected between
2002 and 2012. As reported previously [7,9], there
was a significant skew towards female patients (M:F
ratio 0.75:1). Three samples contained large
populations of infiltrating immune cells and insuffi-
cient tumour cells for analysis. The remaining 21 sam-
ples were used for copy number analysis and sufficient
RNA was extracted for transcriptome analysis of 16.
Expression data from 18 non-SD MIBC samples were
used for comparison. For WES, 10 samples were used
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directly and one was enriched for tumour cells by
microdissection. Samples and analysis platforms are
described in supplementary material. Expression,
mutation, and copy number data from the TCGA study
of MIBC [18] were used for comparison.

Mutational profile and signatures
WES generated a mean coverage of 91�, with 90%
being >30�. We identified 8,108 somatic mutations
(7,068 single-nucleotide variants [SNVs] and 1,040
indels). A total of 4,279 were non-synonymous (mean
and median rates of 8.85 and 7.55 per Mb, respec-
tively). Samples contained an average of 364 (175–
488) SNVs and 25 indels (9–18; one outlier with 150).
Synonymous, missense, and loss-of-function mutations
(nonsense, frameshift, or mutations in the invariant
dinucleotide at splice junctions) showed averages of
90 (41–137), 231 (116–295), and 48 (27–176) per
sample, respectively.
C>T transitions (48%) and C>G transversions

(25%) dominated (supplementary material, Figure S1A).
Assessment of the 30 single base substitution (SBS)
signatures described in the Catalogue of Somatic
Mutations in cancer (COSMIC) (http://cancer.sanger.
ac.uk/cosmic/signatures) (supplementary material,
Figure S1B) identified two subsets, one dominated by
the two APOBEC signatures SBS2 and SBS13 (sup-
plementary material, Figure S1C) that are the most
common signatures in bladder cancer overall. In four
tumours lacking an APOBEC signature, SBS1, 5, 6,
14, and 15 were enriched. The tumour with a very
large number of indels (1,552) was dominated by
SBS6 and SBS15 that are associated with defective
mismatch repair and associated with small indels at
mononucleotide repeats (supplementary material,
Figure S1C). Indeed, 130 of 150 indels were deletions,
which involved deletion of a single nucleotide (70% A
or T) in 108 cases.
The TCGA analysis of MIBC included 42 samples

with mixed urothelial and SD and 3 pure squamous
tumours, the remainder designated here as ‘non-SD’
[18]. Mutational patterns of the SD samples showed
no differences from the pure SCC samples
analysed here.
We identified non-synonymous mutations in

15 genes in ≥3 pure SCC samples (Figure 1). TP53
was the most frequently mutated followed by FAT1.
KMT2C, KMT2D and LRP1B, and RYR2 showed
inactivating mutations or missense mutations with
predicted impact. CHUK, which encodes IκΒ kinase a
(IKKa) that is involved in the NFκΒ signalling path-
way, showed inactivating mutations. We examined

mutation frequencies in the TCGA samples. Notably,
FAT1 mutations were less frequent in both SD and
non-SD TCGA samples (18 and 12%, respectively)
than in pure SCC (45%). TP53 and RYR2 mutations
were also less frequent in MIBC overall (48 and 18%,
respectively) and showed no differences between SD
and non-SD samples. SD samples showed fewer
ARID1A mutations (p = 0.04) and more STAG2,
CDKN2A, and NFE2L2 mutations (p = 0.03, 0.004,
and 0.01, respectively) than non-SD samples (supple-
mentary material, Figure S2). In pure SCC, we found
one missense mutation in STAG2 and two in NFE2L2,

Figure 1. Mutations identified from whole-exome sequences of
pure bladder SCC. Bars at the top indicate the number of somatic
mutations detected in each sample.
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both of which were scored as damaging by SIFT [19]
and significant by CRAVAT [20], indicating that these
are likely functional.

Copy number alterations
Complex patterns of DNA copy number alteration
have been reported in other squamous carcinomas
[21]. Here, the mean fraction of genome altered was
34.0% (range 0.28–66.6%, median 40.5%) with no
gender-related difference (supplementary material,
Table S1). Regions on 37 chromosome arms showed
alterations in ≥25% of samples (Figure 2A). Signifi-
cant regions (supplementary material, Table S1)
included losses on 3p, 4p, and 8p, and gains on 5p,
7p, 8q, and 20, as reported in other SCC [22–28].
Focal regions of high-level gain included regions on

6p, 7p, 12q, and 13q (supplementary material,
Table S2). Gains of 5p and 7p were the most common
(57 and 62%, respectively). Two tumours shared a dis-
crete region of gain (5p13.3 - p13.1; chr5:
32,805,224-42,345,448) that contains OSMR and
RICTOR. All samples with gain of 5p included TERT
(5p15.33). Amplicons on 7p in two samples included
EGFR, and this region was gained in eight
cases (38%).
Nineteen focal regions of deep but not homozygous

loss were identified, 11 of which showed broader dele-
tion in ≥25% of cases (supplementary material,
Table S2). Loss of 9p is common in bladder tumours,
with CDKN2A/ARF identified as the major target.
Here, loss included CDKN2A in 7/21 cases, two of
which contained an inactivating mutation. Interest-
ingly, 9p gains were also common (6/21) and in three
cases, a focal region (9p24.3 - p24.1) included CD274
(PDL-1) (supplementary material, Figure S3). Loss of
4p and/or 4q was detected in 48%. Distal 4q contains
FAT1 (4q35.2). Assessment of 4q35.2 copy number
and mutation data revealed that 10 out of 11 samples
examined by WES had deletion, mutation, or both
(Table 1), suggesting that loss of function of FAT1 is
a critical event in these tumours.
We compared copy number data from pure SCC

and TCGA samples with SD (Figure 2B). This identi-
fied lower frequencies of gains of 5p, 6p, 7p, 12p,
14, 19, and Xq; losses of 3p, 4p, 4q, 9q, 10q, and 22;
and a higher frequency of losses of the CDKN2A
region on 9p in SD samples. Loss of 8p and gain of
8q were similar in SD and pure SCC (45 and 54% of
SD cases, and 52 and 48% of pure SCC samples,
respectively), similar frequencies to those reported in
MIBC overall [29,30]. Fi
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Transcriptional features
Alignment of expression data with copy number pro-
files identified 16 genes including CD44 (11p) whose
expression followed DNA copy number changes (sup-
plementary material). We examined mRNA expression
levels of markers of luminal and basal/squamous sub-
types of bladder cancer and genes differentially
expressed in other SCC tissues in SCC and non-SD
MIBC (Figure 3). As expected, SCC samples
expressed higher levels of transcription factors (TFs)
involved in squamous cell fate and differentiation, ker-
atins, and other markers of the basal/squamous sub-
type of bladder cancer. TFs and genes that are
involved in terminal differentiation of normal
urothelial cells that are expressed in luminal subtypes
of UC were expressed at low levels. Genes involved
in the structure and function of the stratified epithe-
lium, intercellular desmosome junction proteins, small
proline-rich proteins, and serine protease inhibitors
were highly elevated. SCC were also enriched for
markers of epithelial-to-mesenchymal transition
(EMT) and immune markers, and expressed low levels
of claudins. Examination of tyrosine kinase receptor
expression highlighted higher levels of EGFR and
lower levels of ERBB2 and ERBB3 relative to non-
SD MIBC (Figure 3).
Comparison of SCC and non-SD samples identified

2,359 differentially expressed genes (DEGs). Similar
to other SCC types, high levels of oncostatin M recep-
tor (OSMR), multiple matrix metalloproteinases, and
metallothionein genes were detected (supplementary
material, Table S3). Gene Set Enrichment Analysis
(GSEA) of Hallmark gene sets revealed enrichment of
TNF-alpha signalling via NFκΒ, EMT, reduced KRAS
signalling, inflammatory response, apical junction, and
apoptosis in SCC samples (supplementary material,
Figure S4). GO analysis of the 2,359 DEGs identified
biological processes category GO:0043066 (negative
regulation of apoptotic process) enriched in pure SCC

in addition to categories related to keratinisation,
extracellular matrix (ECM), structural constituents of
the cytoskeleton, and inflammatory response. Biologi-
cal processes associated with genes downregulated in
SCC included fatty acid beta-oxidation, lipid homeo-
stasis, peroxisome organisation, and oxidation–
reduction process (supplementary material, Table S3
and Figure S5). KEGG pathway analysis of
upregulated DEGs highlighted pathways involving
proteoglycans, ECM–receptor interaction, focal adhe-
sion, and protein digestion and absorption, and analy-
sis of downregulated genes highlighted pathways
involving the peroxisome, PPAR signalling, fatty acid
metabolism, and glutathione metabolism (supplemen-
tary material, Table S3).
To assess overlapping and enriched gene expression

features of pure SCC and tumours with mixed squa-
mous and urothelial components (SD MIBC), we com-
pared expression data for SD and non-SD MIBC from
the TCGA study [18]. This identified 3,751 DEGs
(supplementary material, Table S3), including 1,188
that were differentially expressed between pure SCC
and non-SD samples. Differences were less striking
than those between pure SCC and non-SD samples
(supplementary material, Figure S6).
MIBCs with SD in the TCGA data set were also

enriched for GO categories associated with
keratinisation, structural constituents of the cytoskele-
ton, ECM, inflammatory response, and negative regu-
lation of apoptotic process (supplementary material,
Table S3). Fatty acid beta-oxidation and lipid homeo-
stasis were also downregulated in SD MIBC. G2/M
transition of the mitotic cell cycle (GO:0000086) was
enriched in SD MIBC, but not in pure SCC (supple-
mentary material, Table S3). Biological processes
relating to peroxisome organisation and oxidation–
reduction were not detected. GSEA analysis of the
TCGA data set identified five Hallmark gene sets
enriched only in the SD samples (p < 0.01):
mTORC1 signalling, p53 pathway, G2/M checkpoint,
hypoxia, and glycolysis. Apoptosis was enriched in
the TCGA SD MIBC samples but was non-significant
(p = 0.05) (supplementary material, Table S3 and
Figure S7).
We examined the expression of EGFR and its

ligands in both data sets. AREG, EREG, HBEGF,
TGFA, and EPGN were all upregulated in squamous
compared to non-squamous samples. BTC was
expressed at higher levels in non-squamous samples
and EGF was not differentially expressed in either data
set (supplementary material, Figure S8).
The transcriptional drivers of SD are not well

defined. We assessed the expression of 1,639 human

Table 1. Deletion and mutation of FAT1 in bladder SCC
Sample Deletion of FAT1 region (4q35.2) Mutation

491 Yes –

697 No –

780 Yes –

1014 Yes p.W3660*
1207 Yes p.V862Qfs*11; p.I861N
1241 Yes –

1552 Yes –

1789 Yes –

2067 No p.D1536Y
2159 Yes p.R548L
2188 No p.Q1244*; p.S1315L
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Figure 3. Differential gene expression of key gene sets in pure SCC and MIBC without SD (non-SD). P values: ****p < 0.0001, ***p <
0.001, **p < 0.01, *p < 0.05.
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TFs [31] and found 120 highly significantly differen-
tially expressed (p < 0.0001) (28 higher and 92 lower)
in pure SCC compared to non-SD samples (Figure 4
and supplementary material, Table S4). The most sig-
nificantly upregulated TF in SCC was basonuclin
1 (BNC1) (p = 9.02E-11), a gene expressed in the
basal layer of squamous epithelia. Compatible with

this, GO analysis of genes positively associated with
BNC1 expression identified ‘cornification’ (GO:70268)
as the most significant category (p = 5.5E-50). BNC1
is a direct transcriptional target of TP63 [32] and TP63
and BNC1 mRNA levels were strongly correlated
(Pearson r = 0.74), although no relationship of TP63
expression with the common gains on 3q28 was

Figure 4. Heatmap showing z-scores for transcriptional regulators in pure SCC and MIBC without SD (non-SD). Expression of 1,639 tran-
scriptional regulators was assessed and DEGs with p < 0.0001 are shown. Box plots show mean, 25th and 75th percentiles, and mini-
mum and maximum values. Mann–Whitney test. ****p < 0.0001.
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apparent. TFAP2A, previously identified as down-
regulated following PPARG activation in a cell line
model [33], was the second most upregulated TF
(Figure 4). Many of the TFs identified are upregulated
in other squamous cancer types. Interestingly, 73 TFs
expressed at lower level in SCC were zinc finger pro-
teins, most of which are Kruppel-associated (KRAB)
domain-containing zinc finger family protein (KZFP)
genes [34]. Of these, 57 map to chromosome 19. We
examined the expression of these DEGs in the TCGA
data set and found similar up- or down-regulation in
SD samples and in tumours of the basal/squamous sub-
type that lacked morphological features of SD com-
pared to all others (supplementary material, Table S4
and Figure S9).

Oncostatin M receptor (OSMR)
The high frequency of 5p gain including focal regions
of gain or amplification that contained the IL6 family
receptor OSMR suggested that this may be an impor-
tant driver of bladder SCC. OSMR heterodimerises
with IL6ST and IL31RA and transduces OSM and
IL31 signalling via these dimers [35]. A feed-forward
loop has been reported in cervical SCC in which OSM
via OSMR stimulates the production of OSM, OSMR,
and STAT3 resulting in a range of pro-oncogenic phe-
notypes [36]. We identified significantly upregulated
expression of OSMR, OSM, IL31RA, and STAT3, but
not IL6ST, suggesting signalling via OSMR:IL31RA
heterodimers (Figure 5A). STAT3 and OSMR levels
were correlated in SCC samples (Pearson r = 0.48;
p = 0.05) and in MIBC overall (Pearson r = 0.66;
p < 0.0001). OSMR also binds activated EGFR [37].
EGFR was upregulated (Figure 5A) and there was cor-
relation between EGFR and OSMR expression in SCC
(Pearson r = 0.529; p = 0.03) and MIBC overall
(Pearson r = 0.64; p < 0.0001). OSM, which is impli-
cated in driving inflammatory responses, was corre-
lated with an acute inflammatory gene signature
(GO:0002526) in SCC samples (Pearson r = 0.633;
p = 0.0085).
Similar relationships of OSMR:STAT3 and OSMR:

EGFR were present in the TCGA SD versus non-SD
samples (r = 0.65 and 0.48, respectively; p < 0.0001
for both). In the TCGA data set, expression levels in
the 3 pure SCC, 42 SD samples, and 105 other sam-
ples classified as basal/squamous showed strong
upregulation of OSMR and STAT3 compared to all
other subtypes, although some other samples also had
elevated expression. EGFR was also higher in these
groups, although fewer samples exhibited highly ele-
vated expression (Figure 5B). These results suggest a

major role for OSMR in MIBC with SD or basal/squa-
mous classification.

YAP signalling
Our finding of frequent mutations and deletions of
FAT1 suggested a tumour suppressor role in bladder
SCC. In Drosophila, fat regulates Hippo signalling and
its loss of function upregulates downstream yap signal-
ling [38]. Where mutational inactivation or copy num-
ber loss is common, FAT1 is implicated as a tumour
suppressor, whereas an oncogenic role has been
reported in other cancers [39–43], suggesting that cel-
lular context is critical. Thus, loss of function in gli-
oma cells and immortalised astrocytes is reported to
upregulate a range of β-catenin targets, with no effect
on YAP/TAZ targets [44], whereas in other human
tumours, loss of function is linked to inactivation of
the Hippo pathway and upregulation of YAP/TAZ tar-
gets [45,46].
Here, we identified changes in SCC that indicated

inhibition rather than activation of Wnt/β-catenin sig-
nalling, including upregulation of the inhibitory
secreted frizzled-related genes SFRPs 1, 2, and 4;
AXIN1; and CTNNBI2P1, a protein that interferes
with β-catenin–T-cell factor (TCF) interaction [47].
Downregulated genes included BMP1 and activin
membrane bound receptor (BAMBI) whose knock-
down has been reported to inhibit Wnt/β-catenin sig-
nalling [48], frizzled 4 (FZD4), FZD5, their co-
receptor LRP5, and β-catenin itself (CTNNB1) (sup-
plementary material, Figure S10).
We examined genes and gene signatures [49,50]

upregulated by YAP/TAZ signalling [51–53]. The
widely reported YAP/TAZ targets CYR61 (CNN1)
and CTGF (CNN2) were strongly upregulated. TAZ
(WWTR1) and EGFR, a YAP/TAZ target, showed
upregulation, the latter driven in part by DNA copy
number gains as indicated above. TEAD4 and JUN,
which as part of AP-1 acts with YAP/TAZ/TEAD
complexes at enhancers [54], were upregulated and
NUAK2, a YAP/TAZ activator [55], was upregulated
(Figure 5C).
YAP and TAZ have major influences on cell pheno-

type. In addition to effects on proliferation, they drive
phenotypic plasticity, including conversion of differen-
tiated cells to stem cells, and influence EMT and
immune response modifiers. Clear indications of these
effects were apparent. There was upregulation of
CD44, CD47, GLI1, and STAT3, markers of bladder
cancer stem cell populations [56,57]. SOX9, which is
implicated in YAP/TAZ-mediated induction of
stemness in other cell types [58], and KLF4, a required
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TF in iPS reprogramming [59] and transcriptional part-
ner of YAP/TAZ [60], were also upregulated (supple-
mentary material, Figure S11A,B).
Genes implicated in the modulation of immune

response were upregulated. YAP/TAZ can directly
regulate PD-L1 (CD274) via TEAD-binding sites in
the enhancer region of PD-L1 [61–63]. Here, expres-
sion was higher in SCC than in non-squamous MIBC
(supplementary material, Figure S11C). YAP signal-
ling is also implicated in the recruitment of myeloid-
derived suppressor cells (MDSCs) that secrete suppres-
sive cytokines that inhibit T cell activation and induce
regulatory T cells. We examined the expression of
15 tumour-associated factors implicated in recruitment,
differentiation, and activity of MDSCs [64] and found
13 were upregulated (supplementary material,
Figure S11C). Together, these data indicate a
YAP/TAZ-associated immunosuppressive state. The
same profiles were upregulated in TCGA SD samples,
although many non-SD samples showed similar pro-
files (supplementary material, Figure S12).
We also examined genes reported to respond to

FAT1 downregulation. In oesophageal carcinoma
cells, knockdown of FAT1 leads to downregulation of
E-cadherin (CDH1) and upregulation of N-cadherin
(CDH2) [65], and in breast cancer loss of FAT1 leads
to upregulated CDK6 [46], alterations that were pre-
sent here (Figure 5D). Overall, these data suggest that
loss of FAT1 function is a major mechanism of
YAP/TAZ activation in bladder SCC.

Discussion

We report the first whole-exome sequences of pure
SCC of the bladder. This confirms the high frequency
of TP53 mutation previously reported from targeted
sequencing [16,66]. We identified mutations in several
genes reported to be mutated in other types of SCC.
FAT1 mutation, also found in lung and oesophageal
SCC [22,67], was the second most common mutation
and this together with the finding of deletion of distal
4q in other samples implicates FAT1 loss in >90% of
samples. As FAT1 mutation is significantly less

frequent in MIBC with SD, our data suggest that its
loss of function may be a prerequisite for the develop-
ment of pure squamous tumours. RYR2, a gene not
included in previous targeted sequencing studies of
bladder SCC, encodes a large protein that as a homo-
tetramer forms a calcium channel located in the endo-
plasmic reticulum. It is highly expressed in heart and
brain, and germline mutations are associated with car-
diac arrhythmias. Inactivating mutations have been
reported in several cancers including lung SCC where
40% of cases in the TCGA study had mutation [23].
In head and neck cancer, both mutation and promoter
methylation have been identified [68] and links of
mutation to tumour mutation burden and high expres-
sion levels of immune checkpoint proteins have been
made [69]. CHUK mutations are reported in several
SCC types [70,71], suggesting that our finding of
inactivating mutations is significant. Further examina-
tion of these genes in bladder SCC is now merited.
We identified several regions of common copy num-

ber alteration, some of which appear different from
those found in MIBC with SD. Notable differences
included gain of 5p including OSMR and of 7p includ-
ing EGFR. Large regions of gain in SCC within which
no clear candidate genes were identified include 19q
and 20q. As several regions of the genome showed
very similar frequencies of alteration, this suggests that
differences in tumour cell content in this and the
TCGA study did not mask key differences.
Transcriptional features of pure SCC included

upregulated keratinisation, ECM reorganisation,
inflammatory response and negative regulation of apo-
ptosis, and downregulation of genes involved in the
glutathione-dependent antioxidant system, PPAR sig-
nalling, and fatty acid beta-oxidation in the peroxi-
some. As expected, transcriptional regulators known to
be involved in urothelial differentiation and/or luminal
phenotype (PPARG, GATA3, FOXA1, and ELF3)
were strongly downregulated. In bladder tumour cells,
PPARG together with FOXA1 and GATA3, can affect
re-programming from SD to a more luminal pheno-
type [72].
BNC1 was the most highly expressed TF. This is

compatible with its expression in the basal layer of
stratified squamous epithelia and its role in driving

Figure 5. OSMR and YAP signalling in pure bladder SCC and other subtypes. (A) Expression of OSMR, OSM, IL31RA, STAT3, and EGFR in
pure SCC and MIBC without SD (non-SD). (B) Heatmap showing the expression of OSMR, STAT3, and EGFR according to subtypes identi-
fied in the TCGA study of MIBC [18]. (C) Heatmap showing the expression of YAP/TAZ target genes in SCC and non-SD MIBC.
(D) Comparison of expression of YAP signature, CDH1, and CDK6 in SCC and non-SD MIBC. Box plots show mean, 25th and 75th percen-
tiles, and minimum and maximum values. Mann–Whitney test. P values: ****p < 0.0001,***p < 0.001, **p < 0.01.
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keratinocyte proliferation [73]. It is a direct transcrip-
tional target of TP63 [32] and its expression was
strongly correlated with TP63 expression. TFAP2A, a
TF shown previously to be downregulated following
PPARG activation in cell line models and to be
upregulated in the basal/squamous subtype of MIBC
and regions of SD in bladder tumours of mixed mor-
phology [33], was the second most upregulated
TF. As ectopic expression of TFAP2A can induce
expression of TP63 in cell lines [33], it may represent
a key regulator of TP63 in these tumours. EGFR sig-
nalling, which was upregulated in SCC samples, is
also implicated in regulating TP63 and may play a role
[74]. Interestingly, in contrast to a previous report that
KLF4 is upregulated in bladder tumour cell lines in
response to a PPARG agonist [33], we found KLF4
levels to be significantly higher in SCC and also in the
basal/squamous subtype of MIBC. This is also con-
trary to the finding that TP63 represses KLF4 in nor-
mal keratinocytes [75] and suppresses SD in a mouse
model of oral SCC [76]. Its expression and role in
SCC appear to differ widely in other tissue types,
reported as a major positive transcriptional regulator in
head and neck SCC [77] as found here but with low
expression in cutaneous SCC [77].
Of the 92 downregulated transcriptional regulators

in SCC, 73 were zinc finger proteins, 70 of which are
KRAB-ZNFPs. These belong to a large family that
provide a major defence system to limit the
mobilisation of transposable elements within the
genome [78] and their expression is closely correlated
with the expression of endogenous viral sequences in
tumours [79]. They also interact with, or regulate
many other proteins and contribute to a wide range of
biological processes [80]. When bound to DNA,
KRAB-ZNFPs recruit chromatin modifiers that can
induce heterochromatin formation. This may suggest
that there is a relative genome-wide hypomethylation
in SCC compared to other MIBC. Importantly, one of
the downregulated genes identified here, ZNF30, has
been identified as a proadipogenic regulator that acti-
vates PPARG and several other genes we found down-
regulated (AHNAK, PLAUR, COL11A1, and CDK6)
[81]. Downregulation of individual KRAB-ZNFPs has
been reported in other squamous tumours [82–84].
Our data suggest coordinated regulation of a signifi-
cant proportion of the family in bladder SCC with a
direct link to cellular differentiation state via PPARG.
As reported previously in bladder SCC [16,85], the

basal/squamous subtype of MIBC [86], and in UC
with SD [87,88], we found upregulated expression of
PD-L1 (CD274) and confirmed a previous finding of
amplification of the gene [66] in some pure SCC. We

also confirm upregulated expression of EGFR in these
and SD tumours [89,90].
In addition to the suggestion that many of these

tumours may respond well to EGFR and immune
checkpoint inhibitors, our data highlight two novel
potential approaches to therapy. Gain or amplification
of 5p and increased expression of OSMR, its ligand
OSM, and binding partner IL31RA signalling via
which is known to upregulate STAT3 suggest that this
signalling pathway acts as a critical oncogenic driver.
Inhibition of the pathway in cervical SCC and ovarian
cancer models using antibodies to OSMR has shown
significant inhibition of STAT3 activation [36,91].
Thus, we suggest that inhibition of OSMR or OSM
might be effective in bladder SCC. Breakthrough ther-
apy designation was granted in 2020 for vixarelimab,
a monoclonal antibody directed at OSMR for the treat-
ment of the chronic inflammatory condition prurigo
nodularis-associated pruritis. However, there is no
published information on this drug and efficacy in
cancer-related models is unknown.
Finally, our data implicate FAT1 as a tumour sup-

pressor in bladder SCC, with a strong relationship of
its loss to upregulated YAP/TAZ signalling and its
effects including stem cell phenotype and immunosup-
pressive state. YAP can influence sensitivity to EGFR
inhibition [92,93] and chemosensitivity [94], and can
influence PD-L1 expression [61,93,95]. In patient-
derived xenograft models of bladder cancers with SD,
it has been shown to protect from cisplatin-induced
DNA damage [96]. Thus, it may represent an impor-
tant target in bladder SCC and basal/squamous sub-
type tumours. However, as we show a potential
relationship to OSMR signalling and multiple relation-
ships and feedback loops have been reported between
expression of YAP1, NUAK2, EGFR, and PD-L1
[53,55,61,93,95,97,98], cell type specific functional
studies will be required to establish optimal therapeutic
combinations.
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