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In contrast to interacting systems, the
ground state of free systems has a highly
ordered pattern of quantum correlations,
as witnessed by Wick’s decomposition.
Here, we quantify the effect of interactions
by measuring the violation they cause on
Wick’s decomposition. In particular, we
express this violation in terms of the low
entanglement spectrum of fermionic sys-
tems. Moreover, we establish a relation
between the Wick’s theorem violation and
the interaction distance, the smallest dis-
tance between the reduced density ma-
trix of the system and that of the optimal
free model closest to the interacting one.
Our work provides the means to quantify
the effect of interactions in physical sys-
tems though measurable quantum correla-
tions.

1 Introduction

Free fermion systems are trivially integrable and
thus are described by an extensive number of con-
served quantities. The corresponding conserva-
tion laws dictate a particular structure to their
energy and entanglement spectra [14, 28]. More-
over, these spectra are given in terms of a number
of parameters that grows only polynomially with
respect to system size. When interactions are in-
troduced these conserved quantities cease to ex-
ist giving rise to energy or entanglement spectra
that, in general, are described by an exponen-
tial number of parameters [24]. This complexity
makes interacting systems hard to investigate and
qualitatively understand.

Jiannis K. Pachos: J.K.Pachos@leeds.ac.uk
Chrysoula Vlachou: chrysoula.vlachou@lx.it.pt

Despite their complexity, interacting systems
are responsible for a wide variety of interesting
phenomena, such as the fractional quantum Hall
effect [13, 31, 35], the emergence of anyonic quasi-
particles [12, 23], many-body localisation [22] and
quantum many-body scars [37]. Many of these
phenomena can be efficiently described in terms
of a small number of emerging degrees of free-
dom. The simplest such scenario is the case where
the presence of interactions transforms a system
into a free or nearly free system [24]. Identify-
ing the free degrees of freedom enables the effi-
cient description of the system in terms of very
few parameters that only grow polynomially with
respect to its size. Moreover, the emergence of
freedom in interacting systems determines their
thermalisation properties, the ballistic/diffusive
propagation of quenches and the nature of their
quasiparticle excitation [24]. Surprisingly, there
are many interacting systems that, even if they
appear to be strongly interacting, they behave
effectively as almost free in the thermodynamic
limit [15], such as the Ising model in transverse
and longitudinal field [36] or the XYZ model [17].

In order to identify the “freeness" of interact-
ing systems we need a measurable quantity that
can reveal if an interacting system is effectively
behaving as free, either theoretically or in exper-
iments. To this end several measures have been
put forward to identify the emergence of free be-
haviour [36]. Here, we propose to employ the vi-
olation of Wick’s theorem [40] that is written in
terms of expectation values [27] which can be in
principle measured experimentally, see [30]. If the
violation is very small then the system behaves
as almost free. The violation of Wick’s theorem
was previously observed even in non-interacting
systems [3]; therein, the authors study the non-
equilibrium dynamics of many-body systems, and
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witness the violation of Wick’s theorem due to
connected density correlations in the initial state.
On the other hand, in our work Wick’s violation
is employed to provide diagnostics for the ground
state of a static system. We also express the vi-
olation of Wick’s theorem in terms of a few low-
entanglement energies of the ground state. This
provides a simple physical way to interpret the
distribution of the few lowest entanglement spec-
tra of a system in terms of the applicability of
Wick’s theorem.

In a different vein, various quantities from
quantum information and information geometry
have been used in the study of many-body sys-
tems in different contexts: from detecting the
presence of phase transitions [7, 19, 20, 39, 41]
to characterizing many-body correlations [1, 5, 9,
10, 34, 38] and describing the dynamics of such
systems [2, 4, 21]. Along these lines, we also relate
the violation of Wick’s theorem to the interaction
distance [36], a quantum information-theoretical
quantity that manifests the extent of interactions
in the quantum correlations of a system. The
interaction distance is the trace distance between
the reduced density matrix of the system’s ground
state from the density matrix of the closest pos-
sible free system [16]. While the interaction dis-
tance is an optimal theoretical way to infer emer-
gent gaussianity, its relation to the Wick’s the-
orem violation provides an intuitive way to un-
derstand its properties and to experimentally es-
timate its value through measurements of quan-
tum correlations (e.g. [8, 11, 32, 33]), as one can
relate the operators of the original and the entan-
glement Hamiltonian [6, 29]. Along these lines, in
[17] one can find an example of applying our ap-
proach to the XYZ model in the simple case of
a system with only two fermionic modes. Here,
we go beyond, by presenting also the more physi-
cally relevant case of systems with any number of
fermionic modes. Moreover, the relation between
Wick’s violation and the interaction distance was
only sketched in the Supplemental Material of
[17], while here we present it in full detail and
with rigorous proofs. In other words, the current
article is the theoretical backbone the underpins
the numerical work in [17].

This paper is organised as follows: In Section
2 we consider systems of free fermions. In partic-
ular, in Subsection 2.1 we present their entangle-
ment spectra, and with respect to these we calcu-

late the expectation value of the density operator
of a fermionic mode. In Subsection 2.2 we present
Wick’s theorem and derive its form for such sys-
tems without interactions. In Section 3 we con-
sider systems of interacting fermions. In Subsec-
tion 3.1, we employ their entanglement spectra
to calculate the expectation values of density op-
erators involving one and two fermionic modes.
Furthermore, we define a quantity that evalu-
ates the violation of Wick’s theorem in interact-
ing systems, and depends on the expectation val-
ues of density operators involving one and two
fermionic modes. To illustrate our method, in
Subsection 3.1.1 we consider as an example the
simple case of a system of interacting fermions
with two fermionic modes, while in Subsection
3.1.2 we study the general case of a system with
N fermionic modes. In Subsection 3.2, we show
that the quantity we defined to indicate the vi-
olation of Wick’s decomposition can be bounded
from above by the interaction distance. Finally,
in Section 4 we present a summary of our results
and point out directions of future work.

2 Free fermions

We start by studying the behaviour of free
fermions. We identify the pattern of quantum
correlations exhibited by the ground state of free
fermion systems expressed in terms of its entan-
glement spectrum. In particular, we review the
applicability of Wick’s theorem for determining
two-point correlation functions. This presenta-
tion will help us to subsequently define measures
that quantify the deviation from free-spectra pat-
terns when interactions are present.

2.1 Expectation values and entanglement
spectra of free fermions

Consider a free fermion system in its ground
state, |ψ0〉, and its bipartition in subsystems
A and B. The reduced density matrix ρ =
trB(|ψ0〉〈ψ0|) can be expressed as a thermal state

ρ = e−HE

Z
, (1)

where HE is the entanglement Hamiltonian and
Z the corresponding partition function, given as
Z = Tr(e−HE ). Since the fermionic model is free,
its entanglement Hamiltonian is also free [29], and
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can be given in terms of N fermionic eigenoper-
ators ai, a

†
i associated to N fermionic modes, as

HE =
N∑
i=1

εia
†
iai, (2)

where εi are the single-mode entanglement en-
ergies for i = 1, . . . , N . Note that we can ab-
sorb the partition function Z in HE by shift-
ing the overall energy by E0 6= 0, i.e. HE =
E0 +

∑N
i=1 εia

†
iai, as in Ref. [36]. Equivalently,

we can write (2) in terms of the correspond-
ing single-mode density operators n̂i = a†iai for
i = 1, . . . , N , as

HE =
N∑
i=1

εin̂i. (3)

The entanglement spectrum of HE for a mode k
is given by

Ek =
N∑
i=1

εini, (4)

where ni = 0, 1 are the eigenvalues of n̂i. For a
density matrix ρ as in (1), the expectation value
of the single-mode density operator n̂k for some
mode k is

〈n̂k〉ρ = Tr(n̂kρ). (5)

To introduce our notation and techniques em-
ployed in later sections, let us explicitly calcu-
late 〈nk〉ρ following well-established steps. Let
us start with the partition function for the state
ρ as given in (1). As the terms of HE in (2) com-
mute with each other we can write the partition
function as

Z = Tr

(
N∏
i=1

e−εin̂i

)
=

N∏
i=1

 1∑
ni=0

e−εini


=

N∏
i=1

(
1 + e−εi

)
, (6)

where the trace is calculated with respect to the
two possible values of the occupation number,
ni = 0, 1, of each fermionic mode i. The expec-
tation value of the single-mode density operator
for some mode k becomes

〈n̂k〉ρ = Tr

(
n̂k
e−HE

Z

)
= 1
Z
Tr
(
n̂ke
−
∑N

i=1 εin̂i

)
= 1
Z
Tr
[
− ∂

∂εk

(
e−HE

)]
= − 1

Z

∂Z

∂εk
. (7)

By employing (6) we obtain

〈n̂k〉ρ = 1
1 + eεk

, (8)

i.e., the expectation value of the density for the
k−th eigenmode in terms of the single-mode en-
tanglement energy, εk.

2.2 Wick’s theorem for free fermions
In the case of free-fermion systems Wick’s the-
orem provides the means to calculate the ex-
pectation values of many-mode density opera-
tors in terms of the expectation values of fewer-
mode density operators. Let i, j be two fermionic
modes. Then, the general form of Wick’s the-
orem for the two-mode density operator n̂in̂j =
a†iaia

†
jaj with respect to the reduced density ma-

trix, ρ, of the ground state is

〈a†iaia
†
jaj〉ρ = 〈a†iai〉ρ〈a

†
jaj〉ρ − 〈a

†
ia
†
j〉ρ〈aiaj〉ρ + 〈a†iaj〉ρ〈aia

†
j〉ρ. (9)

If we choose ai to be the eigenoperators
of the entanglement Hamiltonian HE from (2)
the above equation simplifies to 〈a†iaia

†
jaj〉ρ =

〈a†iai〉ρ〈a
†
jaj〉ρ, as the last two expectation values

in the RHS of (9) are necessarily zero with re-
spect to the ground state of the diagonalised HE .
In terms of the corresponding density operators
this can be written as

〈n̂in̂j〉ρ = 〈n̂i〉ρ〈n̂j〉ρ. (10)

Note that Wick’s theorem when applied to non-
interacting systems, it is usually expressed in
terms of operators with respect to the original
Hamiltonian of the system, while here we apply
it to the mode-density operators of the entangle-
ment Hamiltonian. One can show that the den-
sity operators of the entanglement Hamiltonian
can be expressed in terms of the density oper-
ators of the original Hamiltonian (see [6, 29]),
and thus, verify that the form of Wick’s theo-
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rem that we use is also valid. This decomposi-
tion of the two-mode density operators in the re-
spective single-mode density operators is a result
of the absence of interactions, dictating a trivial
pattern of quantum correlations between the two
fermionic modes.

3 Interacting fermionic systems
We now investigate the behaviour of quantum
correlations for interacting fermionic systems.
Initially, we want to express the expectation val-
ues of density operators for a single mode and
for two modes as a function of the entanglement
spectra following the same methodology as in the
free case. This will help us determine the viola-
tion of Wick’s theorem, and employ it, in turn,
to quantify the effect of interactions in terms of
the interaction distance.

3.1 Expectation values and entanglement
spectra of interacting fermions
For an interacting fermionic system we expect
that in general the entanglement Hamiltonian of
its ground state is also interacting. We assume
that H int

E is diagonal in some basis of eigenopera-
tors ai and a

†
i . AsH

int
E is diagonal it is necessarily

expressed in terms of density operators n̂i = a†iai.
The simplest first term we can write down is the
free term given by (2). The simplest interaction
is the Coulomb-like two-mode density operator.
More complicated higher order interactions are
also possible, but we expect the corresponding
correlators to be negligible for generic Hamiltoni-
ans. Hence, the simplest diagonal entanglement
Hamiltonian, H int

E , can be expressed as

H int
E =

N∑
i=1

εin̂i +
N−1∑
i=1

N∑
j=2;j>i

εijn̂in̂j + · · · , (11)

where εij are the two-mode entanglement energies
of H int

E . The ellipsis in (11) refers to terms com-
prising more than two modes. As a result, the
entanglement spectrum of H int

E is given by

Ek =
N∑
i=1

εini +
N−1∑
i=1

N∑
j=2;j>i

εijninj . (12)

Note that εij contributes to Ek only if both
modes i and j are populated, signalling the in-
teraction between them. For weak interactions

it is expected that the two-mode energies εij are
much smaller than the single-mode energies, i.e.
|εij | � |εi|.

We can express the expectation value of the
single-mode density operator n̂k as a function of
the corresponding single-mode entanglement en-
ergy εk, as

〈n̂k〉ρ = 1
Z
Tr
(
n̂ke
−
∑N

i=1 εin̂i−
∑N−1

i=1

∑N

j=2;j>i
εij n̂in̂j

)
= − 1

Z

∂Z

∂εk
. (13)

Furthermore, the expectation value of the two-
mode density operator n̂kn̂l can be analogously
expressed as a partial derivative with respect
to the corresponding two-mode entanglement en-
ergy εkl, as

〈n̂kn̂l〉ρ = − 1
Z

∂Z

∂εkl
. (14)

For a free system an equivalent expression to (14)
does not exist, as Wick’s theorem given by (10)
directly provides the two-mode expectation value
in terms of single-mode densities. For the ground
state of an interacting system the expectation val-
ues of single and two-mode density operators are
in general unrelated. Hence, we define the viola-
tion of Wick’s theorem, W(ρ) as

W(ρ) := |〈n̂in̂j〉ρ − 〈n̂i〉ρ〈n̂j〉ρ|, (15)

in order to quantify the effect interactions have
on the ground state quantum correlations of the
system. In the following, we will first deter-
mine its value in terms of the entanglement spec-
trum for the simple entanglement Hamiltonian of
two interacting fermionic modes. Second, we will
consider a system with any number of fermionic
modes and we will employ adequate assumptions
to derive approximate expressions for 〈n̂k〉ρ and
〈n̂kn̂l〉ρ, which can be used to evaluate W(ρ).

3.1.1 The two-mode case

Using (13) and (14) we can calculate the violation
of Wick’s decomposition as defined in (15) for an
interacting system of fermions with any number
of modes. Here, we present a simple example il-
lustrating it for the case where the entanglement
Hamiltonian has only two interacting fermionic
modes. In this case (11) becomes

H int
E = ε1n̂1 + ε2n̂2 + ε12n̂1n̂2. (16)
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The entanglement spectrum of H int
E is given by

E0 = 0, E1 = ε1, E2 = ε2, E12 = ε1 + ε2 + ε12.
The partition function is

Z = Tr
(
e−H

int
E

)
=

1∑
n1=0

1∑
n2=0

e−ε1n1−ε2n2−ε12n1n2

= 1 + e−ε1 + e−ε2 + e−ε1−ε2−ε12 , (17)

or, written in terms of the entanglement energies,
Z = 1 + e−E1 + e−E2 + e−E12 . By employing (13)
we have that the expectation value 〈n̂1〉ρ is given
by

〈n̂1〉ρ = − 1
Z

∂Z

∂ε1

= 1 + eE12−E1

1 + eE12−E1 + eE12−E2 + eE12
, (18)

and analogously for 〈n̂2〉ρ. By employing (14) we
find that the expectation value 〈n̂1n̂2〉ρ is given

by

〈n̂1n̂2〉ρ = − 1
Z

∂Z

∂ε12

= 1
1 + eE12−E1 + eE12−E2 + eE12

. (19)

Using (18) and (19) we can determine the vio-
lation of Wick’s decomposition, W(ρ), given by
(15) as

W(ρ) =

∣∣∣1− eE12−E1−E2
∣∣∣

(1 + eE12−E1 + eE12−E2 + eE12)2 . (20)

Clearly, for non-interacting systems E12 = E1 +
E2 which gives W(ρ) = 0.

3.1.2 The many-mode case

In the general case of a system with N fermionic
modes, finding closed formulas for 〈n̂k〉ρ and
〈n̂kn̂l〉ρ (and, in turn, for W(ρ)) is a tedious
task. One way to simplify the calculation is to
assume that the interactions are weak, i.e. the
two mode energies εij are much smaller in mag-
nitude than the single-mode energies εk for any
modes i, j, k ∈ {1, 2, . . . , N}. We can, then, ap-
proximate 〈n̂k〉ρ and 〈n̂kn̂l〉ρ keeping only terms
up to first order in εij . The single-mode density
operator is given by

〈nk〉ρ = e−εk

Z

1∑
ni=0

1∑
nj=0

 N∏
i=1;i 6=k

e−εini

1−
N−1∑

i=1;i 6=k

N∑
j=2;{j>i,j 6=k}

εijninj −
N−1∑

i=1;i<k
εikni −

N∑
i=2;i>k

εkini

 ,
(21)

where Z is given by (30), and the two-mode den-
sity operator by

〈nknl〉 = e−εk−εl

Z

N∏
i=1;i 6=k,l

(1 + e−εi), (22)

where Z is given by (33) (for a detailed deriva-
tion see Appendix A). The above expressions can,
then, be used along with (15) to compute W(ρ).

In the following we will relate the violation of
Wick’s decomposition with the interaction dis-
tance, that optimally identifies the interactive-
ness of a fermionic system.

3.2 Violation of Wick’s theorem for interacting
fermions and its relationship with the interaction
distance

Inspired from quantum information, a measure
to define the effect of interactions on the ground-
state correlations of a system is the interaction
distance, DF (ρ) [36]. The interaction distance
measures the distance between the ground state
quantum correlations and the closest pattern of
correlations of a system of free fermions. To de-
fine DF (ρ) we consider the ground state |ψ〉 and
the reduced density matrix ρ = TrB(|ψ〉〈ψ|) ob-
tained from a bipartition of the system in A and
its complement B. The interaction distance of a
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state ρ is then given by

DF (ρ) = min
σ∈F

1
2Tr(ρ− σ), (23)

where Tr(ρ−σ) is the trace distance between two
quantum states ρ and σ. The minimisation is
over all states σ in the manifold F of all possible
free density matrices. In the presence of interac-
tions, the spectrum of the entanglement Hamil-
tonian that determines the quantum correlations
between A and B, can deviate from the pattern of
the spectra of free-fermion systems, given in (4).
Hence, DF (ρ) quantifies how interacting a state
ρ is by means of how far it is from the closest
possible free state.

Similar to the violation of Wick’s decompo-
sition, the interaction distance can successfully
identify if free-fermion behaviour can emerge out
of a strongly interacting system by means of the

corresponding entanglement spectra [17, 18, 24–
26, 36]. However, there is no direct way to mea-
sure DF in the laboratory. On the other hand,
the violation of Wick’s theorem, W, is given in
terms of expectation values of observables that
can, in principle, be determined in an experi-
ment. Below, we relate the violation of Wick’s
theorem for an interacting system with the in-
teraction distance of its ground state. This rela-
tion will facilitate the physical interpretation of
the interaction distance as well as its estimation,
without the need for the optimisation procedure
in the definition procedure required in (23).

We now demonstrate that the violation of
Wick’s decomposition W(ρ) is upper bounded
by the interaction distance, DF (ρ). To begin
with, note that for a free state σ, we know that
〈n̂in̂j〉σ − 〈n̂i〉σ〈n̂j〉σ = 0. We then have

W(ρ) =
∣∣〈n̂in̂j〉ρ − 〈n̂in̂j〉σ − 〈n̂i〉ρ〈n̂j〉ρ + 〈n̂i〉σ〈n̂j〉σ

∣∣. (24)

By employing the Cauchy-Schwarz inequality, we have

W(ρ) ≤
∣∣〈n̂in̂j〉ρ − 〈n̂in̂j〉σ∣∣+ ∣∣〈n̂i〉ρ (〈n̂j〉ρ − 〈n̂j〉σ)

∣∣+ ∣∣ (〈n̂i〉ρ − 〈n̂i〉σ) 〈n̂j〉σ
∣∣

≤
∣∣Tr [n̂in̂j(ρ− σ)]

∣∣+ ∣∣〈n̂i〉ρ∣∣ · ∣∣Tr [n̂j(ρ− σ)]
∣∣+ ∣∣Tr [n̂i(ρ− σ)]

∣∣ · ∣∣〈n̂j〉σ∣∣. (25)

Writing the state ρ − σ in its diagonal basis as
ρ − σ =

∑
z sz |sz〉 〈sz|,1 we have that for any

mode k

Tr [n̂k(ρ− σ)] =
∑
z

sz 〈sz|n̂k|sz〉

≤ max
z
〈sz|n̂k|sz〉

∑
z

sz

= ‖n̂k‖
∑
z

sz = ‖n̂k‖
∣∣Tr(ρ− σ)

∣∣,
(26)

1In general, the states ρ and σ are not necessarily diag-
onal in the same basis. We consider, though, such states,
because in what follows we will use the interaction dis-
tance, which is the minimum distance between the in-
teracting state and the manifold of free states. In other
words the state σ is the free state closest to ρ. For this
optimization the two states must commute, i.e., they are
indeed diagonal in the same basis (for details, see [36] and
[24]).

where we define ‖n̂k‖ to be the largest eigenvalue
of n̂k, i.e. ‖n̂k‖ = 1, the maximum population of
the fermionic mode. (26) holds for any free state
σ that commutes with ρ, thus it also holds for the
optimal free state determined by the optimisation
procedure in the evaluation of DF (ρ). Therefore,
from (26) and (23) we get

Tr [n̂k(ρ− σ)] ≤ 2DF (ρ), (27)

see also [25]. Hence, from (25),(26) and using
|〈n̂k〉ρ,σ| ≤ 1, for all σ, ρ and k, we obtain

W(ρ) ≤ 6DF (ρ). (28)

Hence, the violation of Wick’s decomposition,
W(ρ), is bounded from above by the interac-
tion distance, DF (ρ). Recent investigations have
shown that the numerical values of W(ρ) and
DF (ρ) are often almost identical [17]. This tight
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relation provides a practical way to estimate the
interaction distance in terms of simple expecta-
tion values that can be measured in the labora-
tory, see for example [30].

4 Conclusions and future work

In this paper we investigated systems of inter-
acting fermions and the effect interactions have
in their quantum correlations. The coupling of
interactions gives only very crude means of a sys-
tem’s “interactiveness". To overcome this we con-
sidered the effect interactions have on the quan-
tum correlations of a system. We analysed the vi-
olation of Wick’s decomposition, a common tool
used in free systems to decompose high-order cor-
relations in terms of low-order ones. Specifically,
Wick’s theorem can be applied to systems of free
fermions to decompose ground state expectation
values of two-mode density operators into expec-
tation values of single-mode density operators.
For systems of interacting fermions such a decom-
position does not hold. It is exactly the extent of
this violation that we used here to quantify the ef-
fect of interactions between the fermionic modes.

Our analytic investigation was carried out in
terms of the entanglement spectra, thus offering
the possibility to translate our findings to quan-
tum information language. In particular, we ex-
pressed the violation of Wick’s decomposition in
terms of few low-entanglement spectra that faith-
fully reproduce the dominant correlations in the
system. In addition, we related the violation of
Wick’s decomposition to the interaction distance,
which is an optimal measure of “interactiveness"
in terms of quantum correlations.

While both, the violation of Wick’s decompo-
sition W(ρ) and the interaction distance DF (ρ),
can be theoretically seen as serving the same pur-
pose, the relationship we derived can be very use-
ful in practice. The violation W(ρ) is given in
terms of expectation values of observables that
can in principle be measured in the laboratory,
see for instance [30]. Nevertheless, we do not
know if W(ρ) is optimal in identifying the “in-
teractiveness" of a system. On the other hand,
DF (ρ) is defined as the optimal measure of “in-
teractiveness". Nevertheless, it lacks a relation to
observables, making it hard to relate it to experi-
ments. Here we establish a tight relation between
these two quantities that can facilitate the theo-

retical and experimental investigation of physi-
cally relevant models, as it was numerically veri-
fied in [17] for the XYZ model in the simple case
of two fermionic modes.

Having linked the violation of Wick’s decom-
position, W, to the entanglement energies, one
could go further to relate it to other quantities
associated to the entanglement spectrum, such
as the entanglement entropies [2, 21, 34] or al-
ternatives presented in [4]. Along these lines W
could possibly be useful to infer other features
of many-body systems, such as their integrability
or the lack of it. Besides the interaction distance,
one could try to relate W with different quanti-
ties in order to find different – possibly tighter
– bounds. Further theoretical work could consist
of applying our approach to interacting bosons or
spin systems. Also, one could use our study to ex-
perimentally infer the effect of interactions in the
groundstate correlations of fermionic systems.
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A Appendix

To simplify the presentation for a system of interacting fermions that has many modes, we make the
assumption of weak interactions, that is the two-mode energies εij , ∀i, j are much smaller in magnitude
than the single-mode energies εi,∀i. Recall from the main text that we also assume that our Hamil-
tonian only contains terms involving at most two different modes. We will derive the corresponding
expressions keeping only up to first order terms in εij .

Consider a system that has in total N modes. To calculate 〈nk〉ρ for any k, we first write the
Hamiltonian by isolating the terms involving the k-th mode, that is

H int
E = εknk +

N∑
i=1;i 6=k

εini +
N−1∑

i=1;i 6=k

N∑
j=2;{j>i,j 6=k}

εijninj +
N−1∑

i=1;i<k
εiknink +

N∑
i=2;i>k

εkinkni. (29)

For weak interactions where |εij | � |εk|, ∀i, j, k, we can keep terms only up to first order in εij . We
approximate the partition function Z for H int

E given by (29) to be

Z =
1∑

ni=0

1∑
nj=0

 N∏
i=1;i 6=k

e−εini

1−
N−1∑

i=1;i 6=k

N∑
j=2;{j>i,j 6=k}

εijninj


+ e−εk

1∑
ni=0

1∑
nj=0

 N∏
i=1;i 6=k

e−εini

1−
N−1∑

i=1;i 6=k

N∑
j=2;{j>i,j 6=k}

εijninj −
N−1∑

i=1;i<k
εikni −

N∑
i=2;i>k

εkini

 , (30)

where the summation over nk = 0, 1 has already been done, while the summations over the ni and nj
populations still need to be performed. The expectation value 〈nk〉ρ = − 1

Z
∂Z
∂εk

, where the numerator
is expanded to first order in εij , can then be written as

〈nk〉ρ = e−εk

Z

1∑
ni=0

1∑
nj=0

 N∏
i=1;i 6=k

e−εini


×

1−
N−1∑

i=1;i 6=k

N∑
j=2;{j>i,j 6=k}

εijninj −
N−1∑

i=1;i<k
εikni −

N∑
i=2;i>k

εkini

 , (31)

where Z is given by (30).
Analogously, for the expectation value 〈nknl〉ρ we write the Hamiltonian by isolating the terms

involving the k-th and l-th modes, as

H int
E = εknk + εlnl + εklnknl +

N∑
i=1;i 6=k,l

εini +
N−1∑

i=1;i 6=k,l

N∑
j=2;{j>i,j 6=k,l}

εijninj

+
N−1∑

i=1;{i<k,i6=l}
εiknink +

N∑
i=2;{i>k,i6=l}

εkinkni +
N−1∑

i=1;{i<l,i6=k}
εilninl +

N∑
i=2;{i>l,i6=k}

εlinlni. (32)

Note that without loss of generality we assume k < l. Assuming again weak interactions and keeping
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terms only up to first order in εij , εik, εki, εil, εli, εkl, we can write the partition function Z as

Z =
1∑

ni=0

1∑
nj=0

 N∏
i=1;i 6=k,l

e−εini

1−
N−1∑

i=1;i 6=k,l

N∑
j=2;{j>i,j 6=k,l}

εijninj


+ e−εk

 N∏
i=1;i 6=k,l

e−εini

1−
N−1∑

i=1;i 6=k,l

N∑
j=2;{j>i,j 6=k,l}

εijninj −
N−1∑

i=1;i<k
εikni −

N∑
i=2;{i>k,i6=l}

εkini


+ e−εl

 N∏
i=1;i 6=k,l

e−εini

1−
N−1∑

i=1;i 6=k,l

N∑
j=2;{j>i,j 6=k,l}

εijninj −
N−1∑

i=1;{i<l,i6=k}
εilninl −

N∑
i=2;i>l

εlinlni


+ e−εk−εl

 N∏
i=1;i 6=k,l

e−εini

1− εkl −
N−1∑

i=1;i 6=k,l

N∑
j=2;{j>i,j 6=k,l}

εijninj −
N−1∑

i=1;i<k
εikni

−
N∑

i=2;{i>k,i6=l}
εkini −

N−1∑
i=1;{i<l,i 6=k}

εilni −
N∑

i=2;i>l
εlini

 , (33)

where the summations over nk, nl = 0, 1 have been done already, while the summations over the ni
and nj populations still need to be performed. The expectation value 〈nknl〉 = − 1

Z
∂Z
∂εkl

, where the
numerator is expanded to first order in εij , εik, εki, εil, εli, εkl takes the rather simple form

〈nknl〉 = e−εk−εl

Z

N∏
i=1;i 6=k,l

(1 + e−εi), (34)

where Z is given by (33). Using (31) and (34) we can derive the expressions for the violation of Wick’s
decomposition W(ρ), given by (15), for systems with many modes.
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