
This is a repository copy of Instruction Complexity in implicit-execution architectures: 
orthogonality, optimisation, and VLSI design.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191014/

Version: Accepted Version

Conference or Workshop Item:
Crispin-Bailey, Christopher orcid.org/0000-0003-0613-9698 and Sotudeh, Reza (1997) 
Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and 
VLSI design. In: International Conference on Mathematical Modelling and Scientific 
Computing, 01 Jul 1995. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design  

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R 

 

 

 
 

Instruction complexity and implicit execution architectures: 

orthogonality, optimization, and VLSI-Design.  
 

Chris Bailey and Reza Sotudeh 

 

University of Teesside, 

Borough Road, Middlesbrough, 

TS1 3BA,  United Kingdom 

 

Email: c.bailey@tees.ac.uk 

 

ABSTRACT 
 

With the rapid emergence of Java as a machine independent programming environment, the stack-based 

processor model has entered a renaissance of interest after a long period of indifference from the general 

research community. The implicit execution mode employed in Java byte-code interpretation demands 

optimal execution of code on a stack-based virtual (or physical) machine model.  

 

One efficient solution is to utilise a stack-based microprocessor paradigm in which the associated native 

code mirrors the semantics of the object byte-code. This approach already has a past-history that spans the 

era of ALGOL through to present day FORTH-Engine implementations. However, the development of 

virtual and/or native semantic content of these environments has suffered a haphazard evolution, influenced 

more by convenience than by formalised concepts of stack-oriented execution. As a result, instruction-set 

schemes for stack based processing models have suffered from a lack of orthogonality that suits human 

programmers, but complicates automated code generation and optimisation.  

 

In this paper, we propose a classification scheme, a scaleable and symmetrical model for stack 

manipulation, which allows the degree of instruction complexity to be specified and the orthogonality of 

those functions to be visualised.  

 

Using a virtual machine simulator, VHDL models of CPU designs, and analysis of synthesised VHDL 

models, we show that the effects of varied degrees of instruction complexity have a clear and quantifiable 

impact on program efficiency, system performance, and VLSI logic characterisation.  

 

 

INTRODUCTION 
 

Stack machines, processors which employ an implicitly addressed operand stack in place of an explicitly 

addressed register-file, offer fast interrupt handling, minimal parameter passing overheads, and very high 

code density. Whilst mainstream acceptance has never featured significantly in this class of architecture, 

recent attention has been brought to focus by the sudden arrival of JAVA technology. Previous 

developments in this area have often been driven by the requirements of human programmers, and attempts 
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to 'optimise' instruction set efficiency by adding special instructions. Whilst this may make life easier for 

hand coding and allows semantic mapping of source code, such as FORTH, onto machine level 

instructions, it does not possess any formal structure or substance upon which to classify or evaluate such 

architectures, or their performance.  

 

Quantitative assessment demands identifiable and expressable terms to define architectural complexity, and 

comparative studies are hindered when each architecture appears to be unique. Existing architectures such 

as FRISC3 (Hayes 1989), ShBoom (Turley 1996a), and PicoJava (Turley 1996b) appear poles apart in 

many respects, yet have much commonality.  

 

In this paper we evaluate instruction set features common to many stack processors, and thus expose a 

method of classification that permits the degree of complexity of a stack architecture to be specified in 

simple numerical terms. We are then able to identify a sub-classification of stack manipulation operators 

that distinguishes functionality, and consequently present a scaleable and orthogonal model which permits 

quantitative studies of performance-versus-complexity for the stack-architecture paradigm. 

.  

Through the use of code optimisation tools, architectural simulators, and VHDL logic synthesis, this paper 

presents a series of  evaluations that identify trade-offs for code optimisation, execution efficiency, and 

CPU logic latency, as a function of architectural complexity. In doing so we are able to evaluate 

complexity as a hardware/software trade-off, and present an evaluation for overall performance of a stack-

based processor system. 

 

 

MODERN STACK PROCESSOR SCHEMES 
 

Mainstream stack processor technology falls into two groups, the 'FORTH engines' developed to serve the 

needs of real-time embedded systems, and the new JAVA architectures, that are rapidly being adopted in 

network computers, set-top boxes, and so-on (Turley 1996a).  In spite of continued FORTH development, 

the stack manipulations that are provided therein have remained relatively stable, reflecting the human-

oriented approach to interpreted source-code construction. Typical stack manipulations that are found in 

stack processor instruction sets are represented below. 

 

 Dup   (duplicate top of stack),   Drop  (pop and discard top stack item) 

 Swap  (exchange two top items)  Rot    (circulate top three items) 

 Over   (copy 2nd item to top)   Tuck   (push copy of top under second item) 

 

Java technology is primarily driven by the Java Virtual Machine model, in which a very small set of stack 

manipulations are offered. The Java virtual machine provides only five single-word operations:- 

  

 Dup  (duplicate top item)  Pop  (drop topmost item)  

 DupX1 (duplicate top, place under 2nd)  Swap  (exchanged top 2 items) 

 DupX3 (duplicate top, place under 3rd ) 

 

Whilst FORTH and Java virtual machines augment their basic schemes with double-word operations, such 

that dup2X1 in the Java-VM duplicates two topmost items rather than one, an efficient architecture would 

provide a word-length that makes such double operations infrequent and potentially redundant where a 

RISC approach is being adopted. We therefore concentrate upon single cell operators only in this paper.  
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Silicon implementations of the Java VM 

model are further limited in practice. 

ShBoom for instance provides only 

Dup, Drop, Rev (revolve 3 stack items), 

and XCG (Exchange two top stack 

items) It is interesting to note that 

ShBoom's stack manipulators are more 

characteristic of a FORTH engine than 

a Java influenced design in spite of its 

current marketing.  

 

When one chooses to analyse the stack 

operators that are available to a series 

of machines, as shown in Table 1, it 

becomes apparent that a philosophy of 

orthogonality and scaleability is conspicuous by its absence. However, it can be seen from Table 1 that 

there appears to be no agreement upon the requirements for effective stack manipulation. In the absence of 

any method of architectural classification, the issue of  relative performance evaluation is quite complex.  

 

 

A NEW CLASSIFICATION TECHNIQUE FOR STACK MANIPULATIONS 
 

Having identified a need for a clearer understanding of stack manipulations, a demographic projection of 

instructions in terms of degree-of-complexity was visualised, in which an operation which requires 

hardware access only to the topmost item would be classified as being of degree-1, whilst a degree-4 

operation would require hardware access to the 4th item in the operand stack.  

 

By presenting this classification as an expanding shell of 'degrees of complexity', the authors are able to 

present the 'bulls-eye diagram' concept of Fig. 1, where operators which are efficiently implemented in 

current FORTH engines are plotted. It can be seen that generally, the FORTH operators are restricted to 

the 3rd degree, and not in a uniform fashion. Applying the same technique to the Java VM model yields 

Fig. 2.  Comparing Fig.1 and Fig.2, suggests that FORTH has evolved orthogonal attributes whilst the 

Java VM has adopted scaleability. This is quite logical if one considers the manual/automated code 

generation styles which they pertain to in practice.  

 

 

 Java VM FORTH FRISC-3 ShBoom 

Dup         

Drop         

Nip          

Drop 2nd         

Drop 3rd         

Drop 4th         

Over         

Tuck         

DupX3         

Swap           

Rotate 3          

Rotate 4         
 

TABLE 1, Stack Manipulations for selected models 
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Fig.1 FORTH Operators  

classified by  Degree of Complexity 
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Fig. 3 - Instruction groups for FORTH and  

JAVA VM Combination. 
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Fig.2,  Java VM Operators  

Classified by Degree of Complexity 
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Fig. 4 - Newly proposed scaleable and 

orthogonal instruction scheme. 

 

A SCALEABLE AND ORTHOGONAL STACK MANIPULATION SCHEME 
 

Whilst there is a clear distinction between orthogonality and scaleability, it has to be asked why should we 

not combine both attributes, and in doing so what would the consequences be ?. To answer such questions 

it was necessary to further develop the presented model of stack processor characterisation. It proved 

possible to categorise stack-manipulation operations into four groups - each with a particular yet inter-

related function. By combination of the FORTH and JAVA VM models, the bulls-eye diagram of Fig.3, is 

arrived at, highlighting the four groups.  

 

The functional groups are classed as follows: 'Preserve' forces a copy of the current TOS (top-of-stack) to 

be placed at the specified position in the stack,  'Retrieve' copies an item from a specified position in the 

stack, and thus has an oppositional relationship to Preserve. 'Rotate' causes circulation of stack cells to the 
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specified depth, effectively bringing an item to the top of stack, whilst 'Discard' operators permit an 

identified stack cell to be removed. Examination of Fig.3 indicates that there are unexploited areas of the 

instruction scheme and it is apparent that, once filled, these extra operations would complete a scaleable 

and orthogonal scheme for stack manipulation. Such a scheme is presented in Fig. 4, with revised 

nomenclature for operators in each class. Thus, in Fig. 4, we find a scaleable and orthogonal instruction set 

scheme for stack manipulations, which is both uniform and quantifiable in terms of complexity.  

 

 

COMPLEXITY VERSUS CODE OPTIMISATION 
 

Now that a basis for quantifying complexity 

has been introduced, it is possible to explore the 

performance trade-offs that relate to the 

presented scaleable and orthogonal scheme. 

Here we will consider the impact of varying 

degrees of instruction-set complexity upon the 

ability to perform code optimisation, and also 

evaluate the implications for CPU logic latency 

in each case.  

 

Local-variable optimisation techniques have 

recently been developed to reduce the excessive 

use of operand reloading that takes place due to 

the inherently destructive action of stack-based 

computation. This has allowed recovery of 

ground lost to mainstream architectures, which 

have had the advantage of  register optimisation 

(Chow 1984). Recent studies suggest that gains 

delivered are significant (Koopman 1992, 

Bailey 1995a, Maierhofer 1997).  

 

There now seems to be growing evidence that  

comprehensive studies which showed stack 

processor technology at a disadvantage (based 

on the state of research at that time), are now in 

need of review (Flynn 1992, Bailey 1996). 

 

Local-variable optimisation relies upon stack 

manipulation to copy  items currently at the top 

of stack, to points further down the stack space, 

where they can be retrieved or allowed to 'float' 

to the top of stack through natural stack movement. This eliminates the need to reload short-term-invariant 

operands which are consumed during destructive computation. 

 

It has now been proven that results are significantly affected by the degree of complexity found in the stack 

manipulation scheme being utilised (Bailey 1995b). The trade-off between architectural complexity and 

successes of  code optimisation is presented in Fig. 6. Although the trend of Fig. 6 shows increasing 

architectural complexity driving enhanced optimisation, a diminishing return is also apparent which 
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Fig. 5, Example of  Variable Scheduling. 
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Fig. 6, Local optimisation versus Complexity. 
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suggests that gains are unlikely to be significant beyond the 4th degree. This can be blamed upon the scope 

of Koopman's technique to allow optimisation only within basic block boundaries (i.e. intra-block 

optimisation). New developments such as 'inter-block scheduling' are expected in the next few years, and 

will no doubt make better use of deeper stack space. Gains for larger degrees of complexity will no-doubt 

become significant enough to warrant further investigation at that point.  

 

 

HARDWARE TRADE-OFFS : COMPLEXITY VERSUS LATENCY  
 

The majority of recent work has concentrated upon the effectiveness of the scheduling algorithms in dealing 

with the occurrence of local-variables in stack-based code. Research has extended this work to include the 

effect upon execution time, using hypothetical or specific machine architectures (Bailey 1996, Maierhofer 

1997). However, there are no previous examples of examination of processor logic latency, and its 

contribution to performance as a function of varying degrees of complexity. Perhaps this is not surprising 

in some respects - without scaleability and orthogonality, such a study would struggle to apply terms of 

reference in any generalised way. But here we are been able to apply our newly proposed scaleable and 

orthogonal stack manipulation scheme to this problem, and evaluate machine complexity in terms of logic 

latency and gate utilisation.  

 

When one examines the instruction scheme proposed in Fig. 4, it becomes apparent that the number of 

stack manipulation operators increases in a roughly linear fashion from a non-zero baseline as the degree of 

complexity is increased. An architecture with a single degree-of-complexity would have only two operators, 

dup and drop. A 2nd degree architecture has six operators, a 3rd degree architecture has 11, and a 4th 

degree yields 16 instructions (See Fig 7). 
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Careful examination of Fig. 8 reveals an interesting mathematical characteristic. Apart from the unexpected 

implication that increased complexity can be accommodated by progressively reducing logic penalties[1], it 

appears that the increase in logic gate utilisation approximates to Equation. 1.   

                                                        
[1] Addittional complexity does not add much 'new logic' into the system at each increment, since the VHDL optimisation tools 

make full use of recombination of existing logic. This explains the diminishing penalty.  
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It might be thought that more complexity is better, 

after all Eqn 1 suggests that an architecture with a 

degree of 8 only increases logic utilisation by 6% 

compared to that of a 4th degree architecture.  

However, an overriding concern of greater 

significance has yet to be considered in our 

analysis;- the impact of logic latency.  

 

 

Taking measurements for ALU propagation from source to destination cells in the hardware stack, we find 

that logic latency increases in a non-uniform manner as complexity is increased. This is illustrated in Fig. 

9. What was not initially suspected, was that latency would increase in a stepped fashion, such that changes 

from degree 1-to-2 or 3-to-4 have little effect upon propagation delays in the synthesised circuits.  

 

We feel that this can be explained when one 

considers the multiplexing requirements to select an 

operand from the top of stack, where an odd number 

of selections results in a redundant opportunity for 

an additional data path to be multiplexed. The 

redundant opportunity is exploited when the 

complexity is increased to the next level, with only 

small additional increments due to miscellaneous 

decoding effects of each additional sub-set of 

instructions to the scheme.   

 

The stepping effect, and our suggested explanation, 

implies that a step will also be seen when moving 

from 4th to 5th degrees, but that the next step will 

not be observed until moving to a degree of 9, due to 

the Log2 nature of the synthesised multiplexing-

hierachy, where n levels can handle 2n selections.  

 

 

OVERALL PERFORMANCE  
 

In our previous work we have sought to evaluate optimisation techniques in the context of a holistic system 

view, taking into account not only the gains introduced by applying optimisation techniques, but the 

penalties that those techniques have upon other aspects of system behaviour such as stack-caching and 

memory bandwidth (Bailey 1995b). This evaluation has allowed us to produce detailed mathematical 

models through which to explore stack-processor behaviour (Bailey 1995a). We have also found that the 

best expectations for such optimisation techniques are tempered by the degradation of other key system 

characteristics, but overall performance had indicated a clear gain in execution time as a result.  

 

It is now possible to combine the final factor into the analysis and quantify the full impact of architectural 

complexity against overall system performance, without ignoring interacting elements such as code 

optimisation and stack cache behaviour, complexity and speed. In our earlier work we presented overall 


n=d

n=1

2(1-n)

   
 

Eqn. 1,  Gate utilisation as a function of  

architectural complexity. 

Where d = chosen degree of complexity. 
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Fig. 9,  Critical path latency, as a function of 

complexity. 
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execution-time profiles for a number of benchmarks, including stanford-mips benchmarks[2].It was found 

that overall performance gains could be as large as 25 % for relative execution time, with a couple of cases 

where performance was made worse (Fig. 10).    

 

Once the identified increase in CPU cycle times is 

included in the analysis, the true overall 

performance is somewhat worse than expected. Our 

results have indicated that whilst 1st and 2nd degree 

architectures perform exactly as expected from the 

previous study, attempts to increase complexity in 

order to support more aggressive optimisation have 

a large cost. Instead of larger benefits, the gains are 

slashed (by the impact of logic latency) to the mid 

90 % range, offering very little for all the effort 

invested in hardware and software optimisation. 

Table 2 summarises the data for utilisation, latency 

and relative performance.  

 

One positive note of caution has to be stressed at 

this point. UTSA exploits only 56 core instructions, 

and would no-doubt have a larger base-line critical 

path latency if a more comprehensive 'commercially 

viable' instruction set architecture were developed. 

Perhaps in a fuller UTSA implementation the 

impact of increased complexity would be smaller 

overall . 

 

 

CONCLUSIONS 
 

Undoubtedly, the issue of performance in stack 

processor systems has become more complicated in 

recent years, but the need for clear terms of 

reference, and quantitative assessment has never 

been greater. Our results show that complex issues 

such as hardware-software trade-offs can be 

tackled, and successfully investigated, but indicate 

that some optimisation techniques may not be as 

good as previously thought. Future research must 

simplify and clarify the science of stack processor 

technology in order to understand and enhance the 

actual technology  and techniques employed. 
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 d=1 d=2 d=3 d=4 

Gate Utilisation 1.0 1.45 1.69 1.80 

Logic Latency 1.0 1.01 1.35 1.36 

Overall Perf. 1.0 0.95 1.14 1.12 

TABLE 2, utilisation, latency, and performance 
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