
This is a repository copy of Instruction Complexity in implicit-execution architectures:
orthogonality, optimisation, and VLSI design.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191014/

Version: Accepted Version

Conference or Workshop Item:
Crispin-Bailey, Christopher orcid.org/0000-0003-0613-9698 and Sotudeh, Reza (1997)
Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and
VLSI design. In: International Conference on Mathematical Modelling and Scientific
Computing, 01 Jul 1995.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R

Instruction complexity and implicit execution architectures:

orthogonality, optimization, and VLSI-Design.

Chris Bailey and Reza Sotudeh

University of Teesside,

Borough Road, Middlesbrough,

TS1 3BA, United Kingdom

Email: c.bailey@tees.ac.uk

ABSTRACT

With the rapid emergence of Java as a machine independent programming environment, the stack-based

processor model has entered a renaissance of interest after a long period of indifference from the general

research community. The implicit execution mode employed in Java byte-code interpretation demands

optimal execution of code on a stack-based virtual (or physical) machine model.

One efficient solution is to utilise a stack-based microprocessor paradigm in which the associated native

code mirrors the semantics of the object byte-code. This approach already has a past-history that spans the

era of ALGOL through to present day FORTH-Engine implementations. However, the development of

virtual and/or native semantic content of these environments has suffered a haphazard evolution, influenced

more by convenience than by formalised concepts of stack-oriented execution. As a result, instruction-set

schemes for stack based processing models have suffered from a lack of orthogonality that suits human

programmers, but complicates automated code generation and optimisation.

In this paper, we propose a classification scheme, a scaleable and symmetrical model for stack

manipulation, which allows the degree of instruction complexity to be specified and the orthogonality of

those functions to be visualised.

Using a virtual machine simulator, VHDL models of CPU designs, and analysis of synthesised VHDL

models, we show that the effects of varied degrees of instruction complexity have a clear and quantifiable

impact on program efficiency, system performance, and VLSI logic characterisation.

INTRODUCTION

Stack machines, processors which employ an implicitly addressed operand stack in place of an explicitly

addressed register-file, offer fast interrupt handling, minimal parameter passing overheads, and very high

code density. Whilst mainstream acceptance has never featured significantly in this class of architecture,

recent attention has been brought to focus by the sudden arrival of JAVA technology. Previous

developments in this area have often been driven by the requirements of human programmers, and attempts

Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R

to 'optimise' instruction set efficiency by adding special instructions. Whilst this may make life easier for

hand coding and allows semantic mapping of source code, such as FORTH, onto machine level

instructions, it does not possess any formal structure or substance upon which to classify or evaluate such

architectures, or their performance.

Quantitative assessment demands identifiable and expressable terms to define architectural complexity, and

comparative studies are hindered when each architecture appears to be unique. Existing architectures such

as FRISC3 (Hayes 1989), ShBoom (Turley 1996a), and PicoJava (Turley 1996b) appear poles apart in

many respects, yet have much commonality.

In this paper we evaluate instruction set features common to many stack processors, and thus expose a

method of classification that permits the degree of complexity of a stack architecture to be specified in

simple numerical terms. We are then able to identify a sub-classification of stack manipulation operators

that distinguishes functionality, and consequently present a scaleable and orthogonal model which permits

quantitative studies of performance-versus-complexity for the stack-architecture paradigm.

.

Through the use of code optimisation tools, architectural simulators, and VHDL logic synthesis, this paper

presents a series of evaluations that identify trade-offs for code optimisation, execution efficiency, and

CPU logic latency, as a function of architectural complexity. In doing so we are able to evaluate

complexity as a hardware/software trade-off, and present an evaluation for overall performance of a stack-

based processor system.

MODERN STACK PROCESSOR SCHEMES

Mainstream stack processor technology falls into two groups, the 'FORTH engines' developed to serve the

needs of real-time embedded systems, and the new JAVA architectures, that are rapidly being adopted in

network computers, set-top boxes, and so-on (Turley 1996a). In spite of continued FORTH development,

the stack manipulations that are provided therein have remained relatively stable, reflecting the human-

oriented approach to interpreted source-code construction. Typical stack manipulations that are found in

stack processor instruction sets are represented below.

 Dup (duplicate top of stack), Drop (pop and discard top stack item)

 Swap (exchange two top items) Rot (circulate top three items)

 Over (copy 2nd item to top) Tuck (push copy of top under second item)

Java technology is primarily driven by the Java Virtual Machine model, in which a very small set of stack

manipulations are offered. The Java virtual machine provides only five single-word operations:-

 Dup (duplicate top item) Pop (drop topmost item)

 DupX1 (duplicate top, place under 2nd) Swap (exchanged top 2 items)

 DupX3 (duplicate top, place under 3rd)

Whilst FORTH and Java virtual machines augment their basic schemes with double-word operations, such

that dup2X1 in the Java-VM duplicates two topmost items rather than one, an efficient architecture would

provide a word-length that makes such double operations infrequent and potentially redundant where a

RISC approach is being adopted. We therefore concentrate upon single cell operators only in this paper.

Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R

Silicon implementations of the Java VM

model are further limited in practice.

ShBoom for instance provides only

Dup, Drop, Rev (revolve 3 stack items),

and XCG (Exchange two top stack

items) It is interesting to note that

ShBoom's stack manipulators are more

characteristic of a FORTH engine than

a Java influenced design in spite of its

current marketing.

When one chooses to analyse the stack

operators that are available to a series

of machines, as shown in Table 1, it

becomes apparent that a philosophy of

orthogonality and scaleability is conspicuous by its absence. However, it can be seen from Table 1 that

there appears to be no agreement upon the requirements for effective stack manipulation. In the absence of

any method of architectural classification, the issue of relative performance evaluation is quite complex.

A NEW CLASSIFICATION TECHNIQUE FOR STACK MANIPULATIONS

Having identified a need for a clearer understanding of stack manipulations, a demographic projection of

instructions in terms of degree-of-complexity was visualised, in which an operation which requires

hardware access only to the topmost item would be classified as being of degree-1, whilst a degree-4

operation would require hardware access to the 4th item in the operand stack.

By presenting this classification as an expanding shell of 'degrees of complexity', the authors are able to

present the 'bulls-eye diagram' concept of Fig. 1, where operators which are efficiently implemented in

current FORTH engines are plotted. It can be seen that generally, the FORTH operators are restricted to

the 3rd degree, and not in a uniform fashion. Applying the same technique to the Java VM model yields

Fig. 2. Comparing Fig.1 and Fig.2, suggests that FORTH has evolved orthogonal attributes whilst the

Java VM has adopted scaleability. This is quite logical if one considers the manual/automated code

generation styles which they pertain to in practice.

 Java VM FORTH FRISC-3 ShBoom

Dup

Drop

Nip

Drop 2nd

Drop 3rd

Drop 4th

Over

Tuck

DupX3

Swap

Rotate 3

Rotate 4

TABLE 1, Stack Manipulations for selected models

Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R

dup

swap rot

-rot

nip
drop

2 pick
over

tuck

21 3 4 degree

Fig.1 FORTH Operators

classified by Degree of Complexity

dup

swap rot

-rot

nip

drop

2 pick
over

tuck

preserve

discard

retrieve

rotate

21 3 4 degree

dupX3

Fig. 3 - Instruction groups for FORTH and

JAVA VM Combination.

dup

swap

pop

dupX1

21 3 4 degree

dupX2

Fig.2, Java VM Operators

Classified by Degree of Complexity

copy1

rsd2 rsu3

rsd3

drop1

copy3

copy2

tuck2

discard

rotate

drop2

drop3
tuck3

tuck4
drop4

copy4
rsd4

rsu4

degree21 3 4

retrieve

preserve

Fig. 4 - Newly proposed scaleable and

orthogonal instruction scheme.

A SCALEABLE AND ORTHOGONAL STACK MANIPULATION SCHEME

Whilst there is a clear distinction between orthogonality and scaleability, it has to be asked why should we

not combine both attributes, and in doing so what would the consequences be ?. To answer such questions

it was necessary to further develop the presented model of stack processor characterisation. It proved

possible to categorise stack-manipulation operations into four groups - each with a particular yet inter-

related function. By combination of the FORTH and JAVA VM models, the bulls-eye diagram of Fig.3, is

arrived at, highlighting the four groups.

The functional groups are classed as follows: 'Preserve' forces a copy of the current TOS (top-of-stack) to

be placed at the specified position in the stack, 'Retrieve' copies an item from a specified position in the

stack, and thus has an oppositional relationship to Preserve. 'Rotate' causes circulation of stack cells to the

Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R

specified depth, effectively bringing an item to the top of stack, whilst 'Discard' operators permit an

identified stack cell to be removed. Examination of Fig.3 indicates that there are unexploited areas of the

instruction scheme and it is apparent that, once filled, these extra operations would complete a scaleable

and orthogonal scheme for stack manipulation. Such a scheme is presented in Fig. 4, with revised

nomenclature for operators in each class. Thus, in Fig. 4, we find a scaleable and orthogonal instruction set

scheme for stack manipulations, which is both uniform and quantifiable in terms of complexity.

COMPLEXITY VERSUS CODE OPTIMISATION

Now that a basis for quantifying complexity

has been introduced, it is possible to explore the

performance trade-offs that relate to the

presented scaleable and orthogonal scheme.

Here we will consider the impact of varying

degrees of instruction-set complexity upon the

ability to perform code optimisation, and also

evaluate the implications for CPU logic latency

in each case.

Local-variable optimisation techniques have

recently been developed to reduce the excessive

use of operand reloading that takes place due to

the inherently destructive action of stack-based

computation. This has allowed recovery of

ground lost to mainstream architectures, which

have had the advantage of register optimisation

(Chow 1984). Recent studies suggest that gains

delivered are significant (Koopman 1992,

Bailey 1995a, Maierhofer 1997).

There now seems to be growing evidence that

comprehensive studies which showed stack

processor technology at a disadvantage (based

on the state of research at that time), are now in

need of review (Flynn 1992, Bailey 1996).

Local-variable optimisation relies upon stack

manipulation to copy items currently at the top

of stack, to points further down the stack space,

where they can be retrieved or allowed to 'float'

to the top of stack through natural stack movement. This eliminates the need to reload short-term-invariant

operands which are consumed during destructive computation.

It has now been proven that results are significantly affected by the degree of complexity found in the stack

manipulation scheme being utilised (Bailey 1995b). The trade-off between architectural complexity and

successes of code optimisation is presented in Fig. 6. Although the trend of Fig. 6 shows increasing

architectural complexity driving enhanced optimisation, a diminishing return is also apparent which

Fetch B

Fetch A

Add

Fetch B

Divide

Standard Stack Code

Instructions 5

Memory Ref.3

Fetch B

Dup (Preserve B)

Fetch A

Add

Swap (Retrieve B)

Divide

Optimised Stack Code

Instructions 6

Memory Ref.2

Fig. 5, Example of Variable Scheduling.

60

65

70

75

80

85

90

95

100

None 1-reg 2-reg 3-reg 4-reg

Degree of Optimisation

L
o
c
a
l

V
a
r
ia

b
le

 R
e
fs

.

Fig. 6, Local optimisation versus Complexity.

Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R

suggests that gains are unlikely to be significant beyond the 4th degree. This can be blamed upon the scope

of Koopman's technique to allow optimisation only within basic block boundaries (i.e. intra-block

optimisation). New developments such as 'inter-block scheduling' are expected in the next few years, and

will no doubt make better use of deeper stack space. Gains for larger degrees of complexity will no-doubt

become significant enough to warrant further investigation at that point.

HARDWARE TRADE-OFFS : COMPLEXITY VERSUS LATENCY

The majority of recent work has concentrated upon the effectiveness of the scheduling algorithms in dealing

with the occurrence of local-variables in stack-based code. Research has extended this work to include the

effect upon execution time, using hypothetical or specific machine architectures (Bailey 1996, Maierhofer

1997). However, there are no previous examples of examination of processor logic latency, and its

contribution to performance as a function of varying degrees of complexity. Perhaps this is not surprising

in some respects - without scaleability and orthogonality, such a study would struggle to apply terms of

reference in any generalised way. But here we are been able to apply our newly proposed scaleable and

orthogonal stack manipulation scheme to this problem, and evaluate machine complexity in terms of logic

latency and gate utilisation.

When one examines the instruction scheme proposed in Fig. 4, it becomes apparent that the number of

stack manipulation operators increases in a roughly linear fashion from a non-zero baseline as the degree of

complexity is increased. An architecture with a single degree-of-complexity would have only two operators,

dup and drop. A 2nd degree architecture has six operators, a 3rd degree architecture has 11, and a 4th

degree yields 16 instructions (See Fig 7).

0

2

4

6

8

10

12

14

16

Degree

1

Degree

2

Degree

3

Degree

4

Instruction

Count

FIG. 7,

Stack Operators Vs complexity

0

20

40

60

80

100

120

140

160

180

Degree

1

Degree

2

Degree

3

Degree

4

Gate Count Logic Count Change

FIG. 8,

Logic Gate Utilisation Vs Complexity

Careful examination of Fig. 8 reveals an interesting mathematical characteristic. Apart from the unexpected

implication that increased complexity can be accommodated by progressively reducing logic penalties[1], it

appears that the increase in logic gate utilisation approximates to Equation. 1.

[1] Addittional complexity does not add much 'new logic' into the system at each increment, since the VHDL optimisation tools

make full use of recombination of existing logic. This explains the diminishing penalty.

Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R

It might be thought that more complexity is better,

after all Eqn 1 suggests that an architecture with a

degree of 8 only increases logic utilisation by 6%

compared to that of a 4th degree architecture.

However, an overriding concern of greater

significance has yet to be considered in our

analysis;- the impact of logic latency.

Taking measurements for ALU propagation from source to destination cells in the hardware stack, we find

that logic latency increases in a non-uniform manner as complexity is increased. This is illustrated in Fig.

9. What was not initially suspected, was that latency would increase in a stepped fashion, such that changes

from degree 1-to-2 or 3-to-4 have little effect upon propagation delays in the synthesised circuits.

We feel that this can be explained when one

considers the multiplexing requirements to select an

operand from the top of stack, where an odd number

of selections results in a redundant opportunity for

an additional data path to be multiplexed. The

redundant opportunity is exploited when the

complexity is increased to the next level, with only

small additional increments due to miscellaneous

decoding effects of each additional sub-set of

instructions to the scheme.

The stepping effect, and our suggested explanation,

implies that a step will also be seen when moving

from 4th to 5th degrees, but that the next step will

not be observed until moving to a degree of 9, due to

the Log2 nature of the synthesised multiplexing-

hierachy, where n levels can handle 2n selections.

OVERALL PERFORMANCE

In our previous work we have sought to evaluate optimisation techniques in the context of a holistic system

view, taking into account not only the gains introduced by applying optimisation techniques, but the

penalties that those techniques have upon other aspects of system behaviour such as stack-caching and

memory bandwidth (Bailey 1995b). This evaluation has allowed us to produce detailed mathematical

models through which to explore stack-processor behaviour (Bailey 1995a). We have also found that the

best expectations for such optimisation techniques are tempered by the degradation of other key system

characteristics, but overall performance had indicated a clear gain in execution time as a result.

It is now possible to combine the final factor into the analysis and quantify the full impact of architectural

complexity against overall system performance, without ignoring interacting elements such as code

optimisation and stack cache behaviour, complexity and speed. In our earlier work we presented overall

n=d

n=1

2(1-n)

Eqn. 1, Gate utilisation as a function of

architectural complexity.

Where d = chosen degree of complexity.

0

20

40

60

80

100

120

140

Degree

1

Degree

2

Degree

3

Degree

4

Cycle

Time %
CPU Latency

Fig. 9, Critical path latency, as a function of

complexity.

Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R

execution-time profiles for a number of benchmarks, including stanford-mips benchmarks[2].It was found

that overall performance gains could be as large as 25 % for relative execution time, with a couple of cases

where performance was made worse (Fig. 10).

Once the identified increase in CPU cycle times is

included in the analysis, the true overall

performance is somewhat worse than expected. Our

results have indicated that whilst 1st and 2nd degree

architectures perform exactly as expected from the

previous study, attempts to increase complexity in

order to support more aggressive optimisation have

a large cost. Instead of larger benefits, the gains are

slashed (by the impact of logic latency) to the mid

90 % range, offering very little for all the effort

invested in hardware and software optimisation.

Table 2 summarises the data for utilisation, latency

and relative performance.

One positive note of caution has to be stressed at

this point. UTSA exploits only 56 core instructions,

and would no-doubt have a larger base-line critical

path latency if a more comprehensive 'commercially

viable' instruction set architecture were developed.

Perhaps in a fuller UTSA implementation the

impact of increased complexity would be smaller

overall .

CONCLUSIONS

Undoubtedly, the issue of performance in stack

processor systems has become more complicated in

recent years, but the need for clear terms of

reference, and quantitative assessment has never

been greater. Our results show that complex issues

such as hardware-software trade-offs can be

tackled, and successfully investigated, but indicate

that some optimisation techniques may not be as

good as previously thought. Future research must

simplify and clarify the science of stack processor

technology in order to understand and enhance the

actual technology and techniques employed.

REFERENCES

[2] Modifications were made only to circumvent limitations in our compiler tools, such as handling multi-

dimensional arrays as single dimensional arrays.

 (Bailey 1995a) Bailey, C., Sotudeh, R. 'The Effects of Intra-

Block Scheduling in a Stack Processor

None 1-cell 2-cell 3-cell 4-cell

Image

Life

Towers

Bsort

Sieve
Matrix

60

70

80

90

100

110

R
e
la

ti
v
e
 e

x
e
c
u
ti

o
n
 T

im
e
 (

%
)

Degree of Optimisation

Fig. 10 Execution time Vs complexity.

1 2 3 4

Latency

Overall

Expected60

70

80

90

100

110

120

130

R
el

at
iv

e
ex

ec
u

ti
o

n
 t

im
e

(%
)

Degree of Complexity

Fig. 11, Overall Execution Time, with CPU

latency

 d=1 d=2 d=3 d=4

Gate Utilisation 1.0 1.45 1.69 1.80

Logic Latency 1.0 1.01 1.35 1.36

Overall Perf. 1.0 0.95 1.14 1.12

TABLE 2, utilisation, latency, and performance

Instruction Complexity in implicit-execution architectures: orthogonality, optimisation, and VLSI design

Accepted for publication in the Journal of Mathematical Modelling and Scientific Computing, Volume 8, 1998, Bailey, C., Sotudeh, R

Environment'. Proc. Rochester Forth Conference,

Rochester, USA, June 1995.

(Bailey 1995b) Bailey, C., Sotudeh, R., (1995). 'Trade-

offs for Memory Bandwidth Reduction in Stack

Processor Design', Proc. of the 10th ICMCM,

Boston, USA, July 1995.

(Bailey 1996) Bailey, C. 'Optimisation techniques for

stack-based architectures'. Ph.D. Thesis, July

1996, University of Teesside, Middlesbrough,

UK.

(Chow 1984) Chow, F., Hennesey, J., (1984). 'Register

Allocation by Priority-Based Coloring'. Proc. of

ACM SIGPLAN 1984 Symp. on Compiler

Construction, SIGPLAN Notices, Vol. 19, No. 6,

pp 222-232.

(Hayes 1989) Hayes, J., R., and Lee, S., C., 'The

architecture of the SC32 Forth Engine'. JFAR.

(Flynn et al. 1992) Flynn, M., J., and Mulder, H., M.,

(1992). 'Processor architecture and data

buffering'. IEEE Trans. on computers, Vol. 41,

No. 10, October 1992, pp 1211- 1222.

(Koopman 1992) Koopman, P. 'A preliminary exploration

of optimised stack code generation'. Proc.1992

Rochester Forth Conference.

(Maierhofer 1997) Maierhofer, M, Ertl, A. 'Optimised

Stack Code'. Deutche Forth-Tagung, 1997.

(Turley 1996a) Turley, J. 'New embedded CPU goes

ShBoom'. Microprocessor Report, April 15,

1996, Vol 10, No 5, pages 1, 6-10.

(Turley 1996b) Turley, J, 'Sun Reveals First Java

Processor Core'. Microproc. Report, Oct. 28,

1997, p28-31.

