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ABSTRACT 

 

This paper presents an experiment to quantify stack behaviour during execution of a range of 

complementary programs.  Through better understanding of stack behaviour,  further optimisations can 

be made, not only improving stack machine efficiency, but perhaps influencing future designs both in 

RISC and CISC technologies. 

 

Mainstream technology has always been dominated by explicitly addressed register file architectures, 

with two clear philosophies predominant. The CISC school of thought demands complex instruction 

sets to reduce the semantic gap : 'More work for less code'.  On the flip-side of the coin, RISC 

proponents believe  simplicity and speed will succeed, even if more instructions are executed. The 

'Stack machine' alternative, has been pushed to the back of the queue in terms of research and 

development. 

 

Stack machines abandon traditional register file concepts, and with them, the need for register 

addressing in program code.  Instead, operands are, by default, found at the top of stack. The benefits 

of reducing instruction size and functional complexity offer potential for comparable performance to 

that of RISC and CISC architectures. Quantitative assessment of stack behaviour will clearly  

demonstrate statistical and probabilistic examples of stack actions, helping to guide future designs.  

 

 

KEYWORDS 

 

stack machines, forth engines, stack behaviour, profiling, simulation, buffering, caching, bus 

bandwidth.  

 

 

INTRODUCTION 

 

Intel's recent introduction of the Pentium microprocessor is an illustration of the evolutionary forces at 

work in the field of microprocessor design. Its roots lie firmly in the CISC family of processors, and is 

a result of progressive enhancement of a successful design. RISC technology, meanwhile, has enjoyed a 

rapid growth in applications once thought to be exclusively CISC territory. 

 

Both RISC and CISC use explicit register file access to minimise external bus dependency, thus sharing 

a common ancestry. But many embedded systems designers now see an alternative that offers a very 

attractive combination of  high performance and low gate count within a simple well-defined 

architecture.  
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The Stack Machine Philosophy 

 

Basic stack machines have a simplicity which cannot be rivalled by RISC architecture. Whilst avoiding 

the penalties of  a very small instruction set, semantic content is maintained. Yet hardware is reduced 

significantly. Reduced gate counts aid optimisation of layout for speed rather than size, and release 

space for on-chip resources, such as cache and interfacing support, hence minimising external 

interconnect delays for increased performance at the system level. 

 

Abandoning the familiar explicitly addressed register file concept  releases the stack machine from the 

burden of decoding register addressing information, and eliminates the need for register address fields. 

Thus, a theoretically higher operating frequency for both the decode and execute logic is realisable 

without a reduction in instruction flexibility. 

 

A simplified stack architecture (Fig. 1) generally consists of  two top-of-stack registers, which 

implicitly provide one or two operands for ALU actions, the result being fed back to 'TOS', whilst the 

new secondary operand is replaced from the stack space (which may be partly buffered on chip).  

 

Although stack machines allow memory words to 

be utilised as primary or secondary operands for 

the ALU data sources, the reduction in operand 

addressing offers considerable simplification of 

hardware, without necessarily causing a 

proportional reduction in performance.   

 

Much research has been done in the field of stack 

architecture, and it is clear that performance can 

be greatly enhanced by careful design of on chip 

stack buffering (Koopman, 1989; Flynn, 1992; 

Stanley et al, 1985). Buffering logic is an 

inherently simpler bus traffic minimisation 

strategy than an explicitly addressed register file, 

or caching in the data path.  

 

 

At the University of Teesside, the computer architecture research group is involved in the design of  a 

stack architecture for embedded systems applications, optimised for execution of 'C' code. (Bailey, 

1993). It was considered essential to explore behaviour of machine stacks, whilst executing a collection 

of programs, and identifying the best approach toward optimising on chip support for stack oriented 

computation. An initial study of four programs was performed to provide a basis for more detailed 

work planned.  

 

 

PERFORMANCE FACTORS 

 

Definition of machine stack behaviour embodies many complex attributes, each of which has its own 

implications for machine performance and behaviour, and each dependant upon the machine 

architecture's interaction with the executing program. Critical factors for stack machine performance 

are outlined below. 
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Fig. 1. Simple Stack Machine Diagram 
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Stack Size  

 

Of the various stack attributes, the size of computation stack(s) during program execution is of 

particular importance. The size of a machine stack varies dynamically with program execution, with 

short term fluctuations and long term trends. No two programs are the same in this respect. However, 

the general behaviour of smaller programs bear similarities to sub-procedures within larger programs. 

When the number of intermediate products exceed the number of on chip storage elements then machine 

performance suffers, as the overhead of managing a 'virtual register set' becomes significant. This is 

manifested as 'stack spilling' on a stack machine, or register spilling/swapping on a register file 

architecture. 

 

Functional  Specialisation  

 

Functional specialisation of the stack hardware also has a bearing upon performance issues, which is 

apparent from the graphs of Fig. 2, Fig. 4, and in many of the results presented here. The behaviour of 

the 'data-stack' primarily used for computational elements, and that of the 'Return-stack', used for 

return addresses and loop counters, may be quite different. Hence any optimised design may have to 

take into account the individuality of each on-chip resource- a fact which has been ignored in many 

such studies. 

 

A more representative qualification of stack 

magnitude would be a statistical probability 

function, based upon as wide a sample of 

programs as possible, to give both behavioural 

scope, and generalised modelling.  Knowledge of 

the general stack-size probability allows a 

machine architect to gauge the correct amount of 

on chip resources to be allotted for intermediate 

products. 

 

The correct sizing of register file, or 'stack 

buffer' in the case of a stack machine, will 

reduce memory traffic significantly. But 

performance gains should not be assumed to 

exhibit linear proportionality: a program which 

maintains a stack depth of 100 or less elements for 80% of program execution, would not achieve a 

doubling in performance if a buffer size were similarly doubled from 100 to 200 elements.  

 

 

Dynamic Stack Modulation 

 

We have seen that a probabilistic assessment of stack size can give static evaluation of the needs of a 

stack buffering mechanism which would apply to a typical program viewed as a whole. But this does 

not reflect the dynamic changes taking place within the program stacks during execution. 

 

The data and return-stacks display an overall trend in terms of size during program execution. However 

a high frequency 'stack noise' component of stack movement (data-stack in Fig. 4. for instance) can be 

quantified by processing of profiled program data to reveal a probability of stack depth fluctuation of 

'n' elements. These short term changes may be positive for stack growth or negative for contraction 

(zero represents constant depth). 
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Fig. 2. Typical stack size probability functions for 

Fibonacci recursion 



Quantitative Assessment of Machine-Stack behaviour for better Computer Performance  

Accepted for publication in Journal of Mathematical Modelling and Scientific Computing, Volume 4, 1994, Bailey, C., Sotudeh, R. 

A graph of relative frequencies of stack depth 

fluctuation is shown in Fig. 3.  We chose a 

composite plot of the data-stack behaviour in 

this case, representing the combined behaviour 

of four programs studied.  

 

The 'atomic' fluctuation probability shows the 

effect of single instructions, whilst the 

culminative plot indicates frequency of stack 

depth 'runs'- sequences of pops or pushes, with 

intervening static depth regions permitted. 

Hanoi is also individually plotted for 

comparison. 

 

The results for unbounded stack-depth 

fluctuations would seem to be approximately predictable from the atomic depth fluctuation 

measurements. However, there is reason to suggest that stack-depth change is not a simple 'random 

walk' function, as assumed by Hasagawa et al, (1985), but may have an element of code specific 

behaviour (Note Hanoi, around the region in Fig. 3. for a depth change of -1 or -2, for instance). This 

had previously been suspected from studies by  (Hayes 1989), and may also be observed in Fig. 4. The 

composite results described tend to dampen this subtle effect, where the overall behaviour of the stack 

appears to conform to a simple probability model, but when small portions of the program are 

examined in detail, there is a likelihood of a run of pops or pushes being more significant than expected.  

 

Again, the individuality of separate stacks must be respected. The data-stack, whose main role is as a 

'virtual register set', tends to be highly modulated, whilst the Return-stack tends to be more subdued, as 

its primary use is storage of return addresses and loop operands- generally active at 'basic block' 

boundaries. This may be observed in Fig. 4. 

 

Programs with moderately sized procedures 

should tend to create 'bursts' of activity on the 

return-stack, whilst the data-stack changes 

continuously. This is blurred somewhat in reality 

by the tendency of programmers to shuffle data 

between the data and return-stacks, which may 

be confirmed by study of instruction execution 

frequencies (Koopman, 1989). A third stack for 

activation records (a likely option for stack 

machines), provides a further functional 

specialisation. 

 

 

 

Buffer and Memory Coherency 

 

The nature of computation (on a stack machine in particular), causes the 'top of stack' elements to 

exhibit a high degree of dynamism, whilst the 'deep stack' elements tend to remain invariant over short 

time scales at least. Hence, when a machine stack is monitored during execution of a program, it is not 

surprising to note that some stack elements are altered quite frequently, whilst others are less active. 

This can be inferred from the execution frequencies of profiled programs, and has been observed in our 

simulations. 
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Activity Spectrum of Top-of-Stack Elements 

 

A study of the occurrence of changes in buffer contents would provide a model for evaluating buffer 

strategies, and guide the 'tuning' of algorithmic parameters. Quantifying those alterations is relatively 

straightforward. Program profiles are produced recording changes detected in stack elements after each 

and every atomic operation. They may then be tabulated to reveal an 'activity spectrum'.   

 

Programs which heavily rely on stack 

manipulations such as 'swap', 'rot', and 'Dswap', 

which exchange two, three, or four stack elements 

respectively, will show an activity spectrum which 

extends across several stack elements. Inefficient 

'Roll' stack manipulation extends activity beyond 

those 'shallow' stack elements into deep stack 

territory.  

 

The example in Fig. 5. shows the relative 

frequency of change for stack elements during the 

execution of 'Towers of Hanoi'.  If this were a 

general result, it would appear desirable to 

optimise hardware activities associated with those 

top three or four elements, which is in fact common practice in stack machine design,  minimising the 

need for multi-port 'register file techniques'  for on chip stack buffers. 

In reality, the coherency of a given stack buffer element at any moment must take into account the 

movement of elements within a buffer. An element may move back and forth within the buffer as the 

stack grows and contracts, according to the buffer strategy used. A true assessment of coherency must 

take into account this interaction, which requires simulation of  buffer elements with profiled program 

data. The impact of cycle stealing and tagging on buffer coherency, in combination with the underlying 

buffering policy, have  significant effects upon memory traffic,(Stanley et al, 1985). A comprehensive 

study would be required in order to assess the interactive behaviour of such mechanisms. 

 

 

SCOPE OF ASSESSMENT 

 

In order to have a complete understanding of machine stack behaviour, it is clearly necessary to study a 

large, and wide-ranging set of programs.  The data and information presented in this paper is based on 

a small sample of programs of limited scope, and as such, cannot be claimed to be definitive. The 

studies performed so far are intended as an initial investigation of stack behaviour. 

 

The initial study examined 'Fibonacci recursion', the '8-queens' problem, the '7 Towers of Hanoi', and 

Eratosthenes 'Sieve', implemented in FORTH. The program listings may be found in [Code,a-d]. Three 

of the programs are recursive, whilst 'Sieve' is iterative. This biases the results somewhat, but ensures 

fairly aggressive exercise of both Data and Return-stacks. 
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Fig. 5. Relative probability of change for top  

of stack elements  (subject: Towers of Hanoi) 



Quantitative Assessment of Machine-Stack behaviour for better Computer Performance  

Accepted for publication in Journal of Mathematical Modelling and Scientific Computing, Volume 4, 1994, Bailey, C., Sotudeh, R. 

Quantifying Techniques 

 

The initial study was performed with a number 

of simple measurement tools developed by the 

research group. The program to be studied was 

first loaded into a customised Forth interpreter 

[MPE] - a 'FORTH Profiler', which then 

executed the program whilst outputting 

execution statistics to data files for later 

processing and trace-driven buffer simulation. 

The final aspect of the quantitative assessments 

discussed in this paper relates to the role of 

buffering in stack related traffic management, 

which can be reduced significantly. 

 

Fibonacci Recursion :  Data and Return-stack 

depths were measured for the Fibonacci 

recursion, calculating the 22nd Fibonacci 

number. The Fibonacci series consists of a 

numerical progression, where each new number 

is the sum of the previous two Fibonacci 

numbers. This was implemented with a simple 

doubly-recursive algorithm which repeatedly 

calls itself until solved. 

 

 

As can be seen from the graph Fig. 6., the data-stack depth has a well-defined probability distribution, 

with approximately 75% of  stack depth within a range of  5 values. The return-stack, which has a 

skewed distribution, also spends 70 to 80 % of its time within a 5 value range.  

 

8-Queens :   The '8-queens' profile reveals a similar story for the data-stack to that of 'Fibonacci'. A 

definite probability distribution is visible (Fig. 7.). But the return-stack behaviour is clearly of a 

completely different nature to that of the Fibonacci recursion- another case of functional specialisation. 

The complex return-stack activity of '8-queens' can be explained when the program code is examined. 

The '8-Queens' program studied consists of 6 procedures, with dynamic basic block sizes ranging from 

2 to 14 instructions, and operates recursively. The return-stack activity is a mixture of nested procedure 

calls, program looping, and recursion. As such, '8-Queens' is more typical of general program 

behaviour than Fibonacci.  

 

Towers Of Hanoi :  The Towers of Hanoi program 

shows an almost opposite behaviour to that of  '8-

queens' in terms of stack depth. Here the return-stack 

is a clear probability distribution, whilst the data-

stack is a broadly spread out distribution curve 

augmented by second order activities. (Fig. 8.). 

   The broad spread of data-stack depth indicates that 

towers in this particular implementation, maintains a 

very large set of intermediate values on the data-

stack until resolving the computation. The program 

contains graphical output routines using ASCII 

characters, and this would account for some of the 

spread in data-stack size. 
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Fig. 6.  Stack depth probabilities for '22nd 

Fibonacci Recursion'. 
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Sieve Of Eratosthenes :   The SIEVE program was solved iteratively, and has no procedural 

modularity. As a monolithic program block, which utilises loop structures without recursive methods of 

computation.  the return-stack activity is virtually nil in terms of depth analysis. The data-stack action 

is also very simple in comparison to the other programs surveyed.  

 

 

RESULTS 

 

It is clear from examination of even this small set of 

programs, that stack depth is highly program 

dependent. A general model for stack depth would 

not be at all accurate if based on the small set of 

programs surveyed here. A large sample of 

programs would be more representative, but could 

only hope  to be accurate for the application area 

targeted. 

 

 

Composite Model, Culminative Effects 

 

A general model of stack behaviour may be derived 

by combination of the stack size change 

characteristics of the set of programs profiled. The 

graphs of Fig.10, illustrate this. Combination of the 

results reveals that the data-stack has a 

predisposition to remain static, although this is 

much less pronounced than the return-stack.  

 

The two stacks together remain static for at least 50% of instructions executed. This is not because they 

are not in use, but can be partially attributed to the fact that a number of operations consume as many 

stack operands as they generate. 'Load', for example, takes a single address from the stack, and replaces 

it with a single data item fetched from memory.  

 

Design strategies may be influenced by these results. The data-stack buffer, with its wider range of size 

changes, may benefit more readily (if at all) from set-associative-cache or cut-back-k-buffer strategies 

for example, but the return-stack may not offer improvement enough in performance to justify devoting 

silicon  

to such a concept. 

The data-stack buffer behaviour is more dynamic than the return-stack, and has a breadth of change 

which is related to the amplitude of stack noise, described previously. The noise amplitude is of the 

order of three or four elements, which agrees with the temporal attributes of Fibonacci for example 

(Fig. 4). 

 

 

Prediction of Stack Behaviour from 'Atom' Depth Fluctuations 

 

When similar composite models are plotted (Fig. 11) for the atomic operator effects upon stack depth 

(the modulation observed for single isolated machine operations), we find that the vast majority of 

larger depth changes are caused by repeated sequences of single stack reducing or expanding 

operations, with minimal occurrence of  large stack depth excursions attributed to single operations. 

The probability of a stack depth change of 'n' in a given number of cycles, may be approximated by 
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using probability theory with the Fig.ures used to 

plot these graphs. For example, the probability of a 

stack growth of 1 word in a single instruction is 

0.376 (37%) as derived from the atomic depth 

change graph data. But the absolute probability of 

two consecutive instructions both causing stack 

growth of 1 (a depth growth of two) may be 

calculated approximately as: 

 

         ( Pgrw1 x Pgrw1 ) +  ( Pgrw2 x Pstatic )  

 or :  

         (0.37 x 0.37) + (0.005 x 0.27) = 0.14 (14%) 

 

The stack machine design being considered by the 

research group allows up to three instructions to be 

executed for a single overlapped instruction word 

fetch (Bailey, 1993a). This leaves only two free bus 

cycles to accommodate stack spills without penalty. 

 

The probability of  more than two stack spills or 

fills in three cycles may be assessed from the 

model:  

 

      Prob of at least 2 spill or fill   = 35.49% 

      Prob of  >  two   spill or fill = 12.25% 

 

Clearly the CPU will have maximum permissible bus demands for 35% of machine cycles, and will 

require extra stack management cycles for 12% of cycles, which entails stalling the ALU for a cycle- an 

undesirable situation.  

The solution is to implement on-chip buffering. A RISC machine might adopt an overlapping register 

window approach while CISC technology might use cache.  But the stack machine utilises the far 

simpler 'stack buffer' concept to alleviate such performance bottlenecks.  

 

 

STACK BUFFER SIMULATIONS 

 

The stack traffic in a un-buffered stack machine would be about 70% in total, roughly 30% each for 

spills and fills (if the program set sampled were representative). But by adding a buffering mechanism 

to the stack traffic path we may reduce the bus traffic to less than 1% even with a small buffer (16 to 

32 elements), This is discussed in the remaining pages of the paper. (See also Koopman, 1989; Hayes; 

Hayes et al, 1989; Fraeman et al, 1987) 

 

On-chip buffering effectively implements a special case of the Harvard architecture. Any access 

accommodated by the stack buffers will not necessitate an access to main memory, hence the main 

memory buses are available for overlapped instruction fetches, and explicit data transfers such as loads 

and stores. Provided the buffer does not 'miss' frequently when accessed, then there are effectively two 

separate bus paths for data or program code transfer, and the penalties of stack spilling are minimised 

as a result. Three buffering algorithms were chosen for simulation, each being quite different. One was 

an artificial algorithm chosen to assess potential improvement from a worst-case scenario viewpoint. 

The other two were practical algorithms which have been investigated or used previously. 
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Fig. 11.   Stack depth change for individual 

operations (Atoms). 
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Demand Fed Buffer 

 

When the buffer is full, the bottom element is pushed into main memory. Only when the buffer becomes 

empty is a read from memory resultant for stack contraction (Koopman, 1989). Once emptied the 

buffer will not fill up again until new data is created or pushed onto the stack. This results in very poor 

coherency between memory and buffered elements, since almost all buffer elements are 'new' data not 

previously resident in main memory stack space. 

 

 

Cut Back k Buffering 

 

The Cut-back-K algorithm is well understood  and has been mathematically studied (Hasagawa et al, 

1985). The basic principle is to write or read more data than is demanded, in order to diminish the 

future demands for memory transfers. The basic demand fed algorithm described, can be modified to 

perform a 'read in' of 'k' stack elements when the buffer is empty, rather than just a single element. 

Similarly, a full buffer condition would result in 'k' elements being spilled to memory, to create more 

potential 'free growth space' in the stack buffer. 

 

 

Simple Buffer 

 

The final algorithm maintains a permanently full 

buffer potentially reducing 'buffer misses' for 

random (arbitrary) stack element access. A push 

or pop always demands a memory transfer 

unless the stack is small enough to be retained 

completely in the buffer. This is clearly not 

going to reduce memory transfers, but can be 

justified when cycle stealing, and write back 

tagging are used with the buffer, improving 

performance and allowing favourable 

comparisons with other algorithms.  

 

Minimisation of 'buffer misses' for arbitrary 

stack access might compensate for the worse 

buffer spilling performance, particularly in an 

architecture which utilises the stack for 'virtual 

register file' techniques. 

 

 

RELATIVE PERFORMANCES 

 

The graphs in Fig. 12 and 13, illustrate a 

performance comparison for the three basic 

algorithms discussed above, showing basic data-stack performance, and  optimised performance, 

respectively. A single program , '8-Queens' is shown here. Although all four programs were studied, a 

composite model of such a small program set would only confuse the issue. Return-stack simulations 

were also performed. Of the three basic algorithms given in Fig. 12 and 13, the simple buffer algorithm 

is the worst performer, which is not surprising since it performs no buffering as such (gains are only 

made as the buffer becomes larger than the stack). The 'cut back k' strategy, with k=4, provides slightly 

better performance but is inefficient compared with the third, 'demand fed' algorithm. 
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Fig. 12. Data-stack:  Basic algorithms  
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 Fig. 13. Data-stack:  Optimised algorithms 
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Once a full optimisation strategy is applied to the algorithms, the performance of each algorithm is 

altered considerably,  a 75% reduction of 'simple buffer' traffic, and almost 50% reduction in the 

demand fed buffers memory traffic are shown in Fig 12 & 13. Now  we find that Cut-back-K has 

improved a little, but the 'demand fed' and 'simple buffer' strategies are almost equalised in performance 

terms (Fig. 13). 

 

It is interesting to consider that an unoptimised approach would lead a designer to choose the demand 

fed buffer for obvious reasons. But, when optimisation is applied, it is possible to choose demand fed or 

simple buffer strategies depending upon other (now relatively more significant) factors. 

 

In the case of the return-stack analysis, a similar 

situation arises, but in this case, the simple buffer 

provides marginally better performance than the 

demand fed approach, which reinforces the earlier 

comments about functional specialisation.  The next 

set of graphs show the individual effects of adding 

cycle stealing, write back tagging, and a combined 

approach, to each of the basic algorithms.  

 

The results indicate the differing aspects of memory 

traffic optimised by each enhancement. Write back 

tagging naturally reduces buffer write behaviour. 

Cycle stealing tends to improve read behaviour, but 

at the cost of worse write performance. Only by 

combining the operations, do the full benefits of 

each approach become attainable. 

 

In some cases it can be seen that write back tagging 

offers little improvement, in conjunction with 

demand fed buffering for example (Fig. 14c). This 

is because of the method used for the underlying 

buffer algorithm, which is not sympathetic to the 

write back tagging strategy. In other cases we see 

that cycle stealing does not (in isolation) offer 

significant improvements (Fig. 14b for instance).  

 

By increasing the number of valid elements present 

in a buffer with cycle stealing, the chance of an 

empty buffer reduces, but at the same time a full 

buffer condition is more likely. So we see a 

reduction in memory reads, but increased memory 

writes, depreciating the potential for improvement. 

 

Clearly cycle stealing, or write back tagging can 

not be applied arbitrarily to any algorithm in 

isolation and respond with constant results. 

However, the combination of the two enhancements allows 'the best of both worlds'.  

 

It is notable that the cycle stealing mechanism actually increases stack 'spills' or writes to memory. Our 

investigations have attempted to completely fill the buffer when cycle stealing is applied. However it 

has been suggested that optimum stack buffer capacity would maintain a small 'breathing space', (an 
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empty region of several elements),  the size of which would be sympathetic with the stack noise 

amplitude,  and hence accommodate momentary stack depth changes within this region. 

 

CONCLUSIONS 

 

By studying a small set of programs, the research group has not provided a definitive assessment of 

stack behaviour. However, the study is a step toward a more comprehensive study, which is the next 

stage of our research strategy, and has helped to set the scene for more complex analysis. Only by 

understanding the demands of truly representative programs can performance penalties be identified, 

and solutions provided. 

 

The wider aims of the research are to develop a highly optimised 32-bit stack machine, starting from 

basics without inheriting the specialisations of 'Forth Engines'. Implementation and simulation tools 

provided by a full VHDL design route will allow advanced concepts to be modelled. A synthetic 

benchmark would have many advantages to offer in respect to such architectural assessments.  

 

Finally, the aim of the buffer simulations has been successful, in that the workspace management 

overheads (stack management in this case), have been shown to be reduced very significantly, by use of 

relative simple optimisation techniques, making the stack machines standing amongst the competition of 

RISC and CISC technology more realistic.  

 

The stack machine philosophy offers minimal silicon outlay, and yet achieves respectable levels of 

performance in the appropriate environments. It is no accident that aspects of stack machine strategy 

are now finding their way into architectures such as the Pentium (Alpert et al, 1993).  By careful 

application of optimisation techniques it should be possible to prove that stack machines are no longer 

an exotic 'FORTH spin-off',  but a real and valid concept, worthy of serious development and research.  
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