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Abstract
In this paper, we explore a recently emerged approach to the problem of quantisation
based on the notion of quantisation ideals. We explicitly prove that the nonabelian
Volterra together with the whole hierarchy of its symmetries admits a deformation
quantisation. We show that all odd-degree symmetries of the Volterra hierarchy admit
also a non-deformation quantisation. We discuss the quantisation problem for peri-
odic Volterra hierarchy including their quantum Hamiltonians, central elements of
the quantised algebras, and demonstrate super-integrability of the quantum systems
obtained. We show that the Volterra system with period 3 admits a bi-quantum struc-
ture, which can be regarded as a quantum deformation of its classical bi-Hamiltonian
structure.

Keywords The quantum Volterra equation · Quantum integrability · Super integable
systems · Non-deformation quantisation · Quantised algebra
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1 Introduction

The problem of quantisation has a century long history. In 1925, inspired by Heisen-
berg’s commutation relations between coordinates and momenta [1], namely,
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q̂n p̂m − p̂mq̂n = i�δn,m, q̂nq̂m − q̂mq̂n = 0,

p̂n p̂m − p̂m p̂n = 0, n, m = 1, . . . , N , (1)

Dirac proposed the concept of quantum algebra and noticed that in the limit � → 0
the commutators of observables are proportional to their Poisson brackets in classical
mechanics [q̂n, p̂m] → i�{qn, pm}. He raised the issue of consistency of the commu-
tation relations (1) with each other and with the equations of motion for a finite Plank
constant � �= 0 [2]. In fact, Dirac proposed the problem of non-commutative deforma-
tions of multiplication on Poisson manifolds that is presently an active research area.
Important results in this direction have been obtained by Kontsevich [3]. Witten, in
his recent lectures [4], pointed out that due to “the operator ordering problem, there
is no natural, general procedure to quantise a classical system”, and described some
partial remedies to this problem. The general problem of quantisation is still open.

Recently, a fresh approach to the quantisation problem was proposed in [5]. It is
proposed to start from a dynamical system defined on a free associative algebra A
with a finite or infinite number of multiplicative generators. The dynamical system
defines a derivation ∂t : A �→ A. By quantisation, it is understood a reduction in the
dynamical system on A to the system defined on a quotient algebra AI = A�I over
a two-sided ideal I ⊂ A satisfying the following properties:

(i) the ideal I is ∂t–stable, that is, ∂t (I) ⊂ I;
(ii) the quotient algebra AI admits an additive basis of normally ordered monomials.

In [5], an ideal satisfying the above two conditions is called a quantisation ideal , and
AI is called a quantised algebra.

The condition (i) is crucial. The reduction in a dynamical system corresponding to
the derivation ∂t to the quotient algebra AI is well defined if and only if the ideal is
∂t–stable.

The second condition (ii) enables one to define commutation relations between
any two elements of the quotient algebra and uniquely represent elements of AI in
the basis of normally ordered monomials (similar to a normal ordering in quantum
physics). Finitely generated algebras, admitting a Poincaré–Birkhoff–Witt basis, and
their quotients, satisfy the condition (ii). They have a wide range of applications, and
share somepropertieswith the commutative polynomial rings (see [6, 7] and references
in).

Any finitely generated associative algebra can be presented as (is isomorphic to)
a quotient of a free associative algebra over a suitable two-sided ideal. For example,
Dirac’s quantum algebra is a quotient of the free algebra C〈q1, p1, . . . , qN , pN 〉 over
the two-sided ideal generated by the commutation relations (1).

We emphasise that quantisation proposed in [5] guarantees the consistency of the
“commutation relations” with each other and with the equations of motion (resolving
the issue raised by Dirac) and the associativity of the non-commutative multiplication
in the quantised algebra (which potentially could be an issue in the deformation quanti-
sation). This new approach also results in examples of non-deformation quantisations.

In order to apply this method of quantisation to a classical dynamical system with
commutative variables, one needs to lift it to a system on a nonabelian free associative
algebra. Such lifting is not unique (on the quantum level it has been noted already by
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Dirac [2] and highlighted by Witten in his lectures [4]). The guiding principle here is
to preserve the most important properties of the classical system in the lifted one. For
example, integrable systems admit hierarchies of symmetries andwewould like to have
this property for the corresponding systems defined on a free associative algebras and
for the quantised systems as well. Fortunately many integrable systems admit such
liftings [8–12], and can be quantised by the method proposed in [5]. Recently, the
hierarchies of stationary Korteweg de–Vries equation and Novikov’s equations have
been quantised using the method of quantisation ideals [13].

In this paper, we study the quantisation problem for the integrable nonabelian
Volterra system

∂t1(un) = �K (1), K (1) = un+1un − unun−1, n ∈ Z (2)

and its hierarchy of symmetries. Here � ∈ C is a constant which can be set to be equal
to 1 by the re-scaling un → �un . In the classical (commutative) case system (2) was
introduced by Zakharov et al. for the description of the fine structure of the spectra of
Langmuir oscillations in a plasma [14]. Its integrability and Lax representation were
discovered by Manakov [15] and independently by Kac and van Moerbeke [16]. The
nonabelian version of the system (2), with variables un(t1) taking values in a free
associative algebra, was studied by Bogoyavlensky [17].

The Volterra system (2) is the first member of the infinite hierarchy of commuting
symmetries

∂t� (un) = K (�)(un+�, . . . , un−�), � = 1, 2, . . . , n ∈ Z,

where K (�)(un+�, . . . , un−�) are homogeneous polynomials of degree � + 1 which
can be found explicitly [12]. The second member of the hierarchy

∂t2(un) = K (2) = un+2un+1un + u2
n+1un + un+1u2

n

− u2
nun−1 − unu2

n−1 − unun−1un−2 (3)

is givenby the cubic polynomial. It canbe straightforwardly verified that ∂t2 (∂t1(un)) =
∂t1(∂t2(un)), and thus, (3) is a cubic symmetry of (2).

In the new approach, the quantisation problem for equation (2) reduces to the
problem of finding two-sided ideals in the free associative algebraA = C〈un ; n ∈ Z〉
generated by an infinite number of non-commuting variables such that the above
conditions (i) and (ii) are satisfied. It is obvious that the ideal I generated by the
infinite set of polynomials

I = 〈unum − ωn,mumun ; n, m ∈ Z, ωn,m ∈ C
∗〉 (4)

satisfies the condition (ii) for any choice of the parameters ωn,m = ω−1
m,n . In [5], it was

stated that the ideal I satisfies the condition (i) if and only if

ωn,n+1 = ω−1
n+1,n = ω, ωn,m = 1 if |n − m| ≥ 2.
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Thus, the quantisation ideal suitable for the Volterra system (2) is

Ia =〈{unun+1−ωun+1un ; n ∈Z} ∪ {unum −umun ; |n − m|>1, n, m ∈Z }〉, (5)

leading to the commutation relations

unun+1 = ωun+1un, unum = umun if |n − m| ≥ 2, n, m ∈ Z (6)

in the quotient algebra A�Ia . It was verified by direct computations that the ideal
Ia is invariant with respect to derivations defined by a few first symmetries of the
Volterra hierarchy and conjectured that it is also true for the whole hierarchy. In this
paper, we give an explicit proof for the above conjecture (Theorem 9). The ideal Ia

corresponds to a deformation quantisation. In the limit ω → 1, it leads to the classical
commutative case.

It was claimed in [5] that the cubic symmetry of the Volterra system, Eq. (3), admits
two distinct quantisations ideals of the form (4). The first one coincideswithIa defined
by (5), while the second one is

Ib = 〈{unun+1 − (−1)nωun+1un ; n ∈ Z} ∪ {unum + umun ; |n − m| > 1, n, m ∈ Z}〉 . (7)

Note that the quantisation corresponding to the ideal Ib is not a deformation of a
commutative or Grassmann algebra. It is a new and non-deformation quantisation of
Eq. (3) with the commutation relations

unun+1 = (−1)nωun+1un, unum + umun = 0 if |n − m| ≥ 2, n, m ∈ Z (8)

in the quotient algebra A�Ib. The ideal Ib given by (7) is not invariant with respect
to the Volterra system (2), and thus, it is not suitable for its quantisation. In [5], it was
claimed that the ideal Ib is invariant with respect to a first few odd degree symmetries
of the Volterra equation. In this paper, we prove that the ideal Ib (7) is a quantisation
ideal for all odd degree members of the Volterra hierarchy (Theorem 14).

In the quantum theory, we replace real valued commutative variables un by Her-
mitian elements. Their commutation relations are defined by the quantisation ideal,
which should be stable with respect to the Hermitian conjugation (Definition 3). In
the case of the ideals Ia and Ib, it implies that ω = e2i�, where � is an arbitrary real
parameter, an analogue of the Plank constant, and i2 = −1.Moreover, in the quantised
equations of the Volterra hierarchy, we should introduce the factors ei�� which make
the right-hand side of the equations self-adjoint, that is,

∂t� (un) = ei��K (�)(un+�, . . . , un−�), � = 1, 2, . . . , n ∈ Z. (9)

123



Quantisations of the Volterra hierarchy Page 5 of 38 94

In the algebra AIa with commutation relations (6), the quantised Volterra equation
and its symmetry can be represented in the Heisenberg form

∂t1(un) = ei�K (1) = i

2 sin(�)
[H1, un], (10)

∂t2(un) = e2i�K (2) = i

2 sin(2�)
[H2, un], (11)

where

H1 =
∑

k∈Z

uk, H2 =
∑

k∈Z

(u2
k + uk+1uk + ukuk+1).

In the algebraAIb with commutation relations (8), the first member of the quantised
Volterra sub-hierarchy of odd degree symmetries has the same Heisenberg form (11).
Moreover, in the case of the algebra AIb we have H2 = H2

1 , which is not true for the
algebra AIa .

The quantisation of the Volterra system was studied by Volkov and Babelon in
the frame of the quantum inverse scattering method [18, 19]. In the paper by Inoue
and Hikami [20], the commutation relations (6) as well as a first few Hamiltonians
of the classical and quantum Volterra hierarchy were found using ultra-local Lax
representation and R–matrix technique. Our alternative approach does not rely on
the existence of a Lax or Hamiltonian structures, and it enables us to reproduce the
results presented in [20] and to find a non-deformation quantisation (8) for odd degree
members of the Volterra hierarchy which is new and rather surprising.

The Volterra equation and its hierarchy admit periodic reductions with arbitrary
positive integer period M ∈ N. The periodic reduction is the identification un+M =
un for all n ∈ Z. It reduces the infinite system of equations (2) to a system of M
equations on a finitely generated free algebra AM = C〈u1, . . . , uM 〉. The problem of
quantisation of the periodic Volterra hierarchies is discussed in Section 4. In particular,
we show that the Volterra system with period 3 admits bi-quantum structure, which is
a quantum analogue of its bi-Hamiltonian structure in the classical case. In the case
M = 4, we obtain three possible quantisations, and show that the obtained quantised
systems are super-integrable, whose first integrals and central elements are explicitly
presented.

2 Integrable nonabelian Volterra hierarchy

In this section we introduce some basic notations required for this paper and present
the Volterra hierarchy on a free associative algebra in an explicit form.

Let A = C〈un ; n ∈ Z〉 be a free associative algebra generated by an infinite
number of non-commuting variables. There is a natural automorphism S : A �→ A,
which we call the shift operator, defined as

S : a(uk, . . . , ur ) �→ a(uk+1, . . . , ur+1), S : α �→ α, a(uk, . . . , ur ) ∈ A, α ∈C.
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Thus, A is a difference algebra. Let T denote the antiautomorphism of A defined by

T (uk) = u−k, T (a · b) = T (b) · T (a), T (α) = α, a, b ∈ A, α ∈ C.

The involution T is a composition of the reflection in the alphabet index uk �→ u−k

and the transposition of the monomials. For example:

T (uu1 + u4u1u−3u−2) = u−1u + u2u3u−1u−4.

A derivation D of the algebra A is a C–linear map satisfying Leibniz’s rule

D(αa + βb) = αD(a) + βD(b), D(a · b) = D(a) · b + a · D(b), a, b ∈ A, α, β ∈ C.

Thus, a derivation D can be uniquely defined by its action on the generators and
D(α) = 0, α ∈ C.

A derivationD is called evolutionary if it commutes with the automorphism S. An
evolutionary derivation is completely characterised by its action on the generator u
(we often write u instead of u0), that is,

D(u) = a and D(uk) = Sk(a), a ∈ A.

Thus, it is natural to adopt the notation Da , such that Da(u) = a, for an evolutionary
derivation with the characteristic a. A commutator of evolutionary derivationsDa,Db

is also the evolutionary derivation [Da,Db] = Dc with the characteristic c = Da(b)−
Db(a), which is called theLie bracket of the elements a and b. Evolutionary derivations
form a Lie subalgebra of the Lie algebra of derivations of A.

Assuming that the generators uk depend on t ∈ C, we can identify an evolutionary
Da with an infinite system of differential difference equations

∂t (un) = Da(un) = Sn(a), n ∈ Z.

Therefore, we can say that ∂t (u) = a defines a derivation of A.
The Volterra system (2) defines the derivation ∂t1 : A �→ A,which commutes with

the automorphism and anti-commute with the involution T , i.e.

S · ∂t1 = ∂t1 · S, T · ∂t1 = −∂t1 · T .

The differential difference system (3) defines another evolutionary derivation ∂t2 com-
muting with S and anti-commuting with T . Evolutionary derivations commuting with
∂t1 are symmetries of the Volterra system. It can be straightforwardly verified that
[∂t1, ∂t2 ] = 0, and thus, Eq. (3) is a symmetry of the Volterra system.

It is well known that the Volterra system has an infinite hierarchy of commuting
symmetries. They can be found using Lax representations both in commutative [15]
and non-commutative [17] cases, or the recursion operators [12, 21]. Remarkably,
the explicit expressions for generalised symmetries of the Volterra system (2) can be
presented in terms of a family of nonabelian homogeneous difference polynomials
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[12], which is inspired by the polynomials in the commutative case discovered in [22,
23].

Let us assume that the generators uk of the free associative algebra A depend on
an infinite set of “times” t1, t2, . . . . It follows from Casati and Wang [12] that the
hierarchy of commuting symmetries of the Volterra system (2) can be written in the
following explicit form

∂t� (u) = S(X (�))u − uS−1(X (�)), � ∈ N , (12)

where the (noncommutative) polynomials X (�) are given by explicit formulae

X (�) =
∑

0≤λ1≤···≤λ�≤�−1

⎛

⎝
→�∏

j=1

uλ j +1− j

⎞

⎠ . (13)

Here
∏→�

j=1 denotes the order of the values j , from 1 to � in the product of the non-

commutative generators uλ j +1− j . For example, we have X (1) = u and

X (2) = u1u + u2 + uu−1; (14)

X (3) = u2u1u + u2
1u + uu1u + u1u2 + u3 + uu−1u

+ u1uu−1 + u2u−1 + uu2−1 + uu−1u−2. (15)

Note that T (X (�)) = X (�), and thus, we have T · ∂t� = −∂t� · T for all �. Clearly, we
get the Volterra equation (2) when � = 1 and the system (3) when � = 2.

3 Quantisation ideals of the Volterra equation and its symmetry

In this section, we prove the statements on quantisation ideals for the Volterra equation
(2) itself and its symmetry (3) stated in [5].

Let I ⊂ A be a two-sided ideal generated by the infinite set of polynomials fi, j :

I = 〈fi, j ; i < j, i, j ∈ Z〉, fi, j = ui u j − ωi, j u j ui , (16)

where ωi, j ∈ C
∗ are arbitrary non-zero complex parameters. Given an ideal I, we

denote the projection on the quotient algebra by πI : A → A/I. The quotient algebra
A�I has an additive basis of standard normally ordered monomials

ui1ui2 · · · uin ; i1 ≥ i2 ≥ · · · ≥ in, ik ∈ Z, n ∈ N.

Indeed, in A�I any polynomial can be represented in this basis by recursive replace-
ments unum → ωn,mumun if m > n in the monomials. Thus, the condition (ii) for the
ideal I is satisfied. The condition (i) imposes constraints on the structure constants
ωn,m of the ideal.
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Proposition 1 The ideal I (16) is invariant with respect to the Volterra dynamics (2)
if and only if

ωn,n+1 = ω0,1, ωn,m = 1 if m − n ≥ 2, n, m ∈ Z.

Denoting ω0,1 = ω, we arrive to the commutation relations (6) and the ideal Ia given
by (5).

Proof Let us differentiate fi, j (i < j) by the derivation ∂t1 associated with the Volterra
equation (2). We have

∂t1

(
fi, j

) = ui+1ui u j − ui ui−1u j + ui u j+1u j − ui u j u j−1

−ωi, j (u j+1u j ui − u j u j−1ui + u j ui+1ui − u j ui ui−1).

We project this equation on the quotient algebra and require

0 = πI

(
∂t1(fi, j )

) = ωi, j (ωi+1, j − 1)u j ui+1ui + ωi, j (1 − ωi−1, j )u j ui ui−1

+ωi, j (ωi, j+1 − 1)u j+1u j ui + ωi, j (1 − ωi, j−1)u j u j−1ui , (17)

where we use the conventionωi,i = 1.When j > i +2, the fourmonomials u j+1u j ui ,
u j ui ui−1, u j ui+1ui and u j u j−1ui are linearly independent. Thus, πI

(
∂t1(fi, j )

) = 0
if and only if all their coefficients vanish since ωi, j �= 0. This leads to

ωi+1, j = ωi−1, j = ωi, j+1 = ωi, j−1 = 1.

Hence, we must have ωi, j = 1 whenever i + 1 < j . Using this result, it follows from
(17) that

0 = πI

(
∂t1(fi,i+2)

) = ωi,i+2(ωi+1,i+2 − ωi,i+1)ui+2ui+1ui .

This implies that all the ωi,i+1 are equal to each other. Let ω = ωi,i+1. It remains to
check that (17) is valid for j = i + 1. Indeed,

πI

(
∂t1(fi,i+1)

) = ω(1 − ωi−1,i+1)ui+1ui ui−1 + ω(ωi,i+2 − 1)ui+2ui+1ui = 0,

and we proved the statement. 
�
Proposition 2 The ideal I (16) is invariant with respect to the dynamical system (3),
i.e. ∂t2(u) = S(X (2))u − uS−1(X (2)) only in two cases:

(a) ωn,n+1 = ω, ωn,m = 1 if m − n ≥ 2, n, m ∈ Z;
(b) ωn,n+1 = (−1)nω, ωn,m = −1 if m − n ≥ 2, n, m ∈ Z,

where ω ∈ C
∗ is an arbitrary non-zero complex parameter.

Thus, Eq. (3) admits the same quantisationA�Ia (5) as the Volterra system. Addi-
tionally, it admits the quantisation with the ideal Ib (7), which is not invariant with
respect to the Volterra system (2). The latter quantisation is not a deformation of a
commutative system.
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Proof We differentiate fi, j (i < j) by the derivation ∂t2 defined by equation (3) and
project on the quotient algebra. When i + 2 ≤ j , we have

ω−1
i, j πI

(
∂t2 (fi, j )

)

= (ωi+1, j ωi+2, j − 1)u j ui+2ui+1ui + (ω2
i+1, j − 1)u j u

2
i+1ui

+ (ωi, j ωi+1, j − 1)u j ui+1u2
i − (ωi, j ωi−1, j − 1)u j u

2
i ui−1 − (ω2

i−1, j − 1)u j ui u
2
i−1

− (ωi−1, j ωi−2, j − 1)u j ui ui−1ui−2 + (ωi, j+1ωi, j+2 − 1)u j+2u j+1u j ui

+ (ω2
i, j+1 − 1)u2

j+1u j ui + (ωi, j ωi, j+1 − 1)u j+1u2
j ui − (ωi, j ωi, j−1 − 1)u2

j u j−1ui

− (ω2
i, j−1 − 1)u j u

2
j−1ui − (ωi, j−1ωi, j−2 − 1)u j u j−1u j−2ui , (18)

where we use the convention ωi,i = 1. If i + 3 < j all monomials in (18) are distinct
and one deduces from πI

(
∂t2(fi, j )

) = 0 that

ωi+1, jωi+2, j = ω2
i+1, j = ωi, jωi+1, j = ωi, jωi−1, j = ω2

i−1, j = ωi−1, jωi−2, j

= ωi, j+1ωi, j+2 = ω2
i, j+1 = ωi, jωi, j+1

= ωi, jωi, j−1 = ω2
i, j−1 = ωi, j−1ωi, j−2 = 1

It follows that ωi, j = ε for all i +1 < j where ε = ±1. Next let us look at ∂t2(fi,i+3).
When j = i + 3, (18) becomes

επI

(
∂t2 (fi,i+3)

) = ε(ωi+2,i+3 − ωi,i+1)ui+3ui+2ui+1ui ,

which leads to ωi,i+1 = ωi+2,i+3 for all i ∈ Z. So the ideal is invariant under the
automorphism S2. We now look at ∂t2(fi,i+2). Substituting j = i + 2 into (18), we
get

επI

(
∂t2(fi,i+2)

) = (ωi+1,i+2 − εωi,i+1)u
2
i+2ui+1ui

+ (ω2
i+1,i+2 − ω2

i,i+1)ui+2u2
i+1ui + (εωi+1,i+2 − ωi,i+1)ui+2ui+1u2

i ,

which vanishes if and only if ωi,i+1 = εωi+1,i+2. Combining all the constraints
obtained on ωi, j , we obtain the two cases listed in the statement. Finally, we check

ω−1
i,i+1πI

(
∂t2(fi,i+1)

) = (ωi,i+1ε − ωi+1,i+2)ui+2u2
i+1ui − (ωi,i+1ε − ωi−1,i )

ui+1u2
i ui−1 = 0.

Thus, we complete the proof. 
�
In Sect. 5, we will show that every member of the Volterra hierarchy (12) admits the
quantisationA�Ia (Theorem 9) and that every evenmember of the Volterra hierarchy

∂t2� (u) = S(X (2�))u − uS−1(X (2�)), � ∈ N

also admits the quantisation A�Ib (Theorem 14).
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In the classical commutative case, the variables un are usually assumed to be real
valued. Thus, in the quantum case they should be presented by self-adjoint operators
with respect to the Hermitian conjugation †.

Definition 3 The Hermitian conjugation † in algebra A is defined by the following
rules

u†
n = un, α† = ᾱ, (a + b)† = a† + b†, (ab)† = b†a†, un, a, b ∈ A, α ∈ C,

where ᾱ is the complex conjugate of α ∈ C.

The algebra A is Z2-graded as a linear space. It can be represented as a direct sum
of self-adjoint and anti-self-adjoint subspaces

A = A+ ⊕
A−, A+ = {a ∈ A ; a† = a}, A− = {a ∈ A ; a† = −a} .

The Hermitian conjugation † can be extended to the quantised algebra A�I if the
ideal I is †-stable: I† = I.

Proposition 4 The quantisation ideals Ia (5) and Ib (7) are †–stable if and only if
ω† = ω−1.

Proof Indeed, in the case of the ideal Ia we have

(unun+1 − ωun+1un)† = un+1un − ω†unun+1 = −ω†(unun+1 − (ω†)−1un+1un) ∈ Ia

⇔ ω† = ω−1.

In the case for Ib, the proof is similar. 
�
It suggests to represent ω = q2, q = ei�, where � ∈ R is a real constant (an

analog of the Plank constant). Thus (un+1un)† = unun+1 = q2un+1un . The quantum
Volterra hierarchy, which is consistent with the condition u†

n = un , can be presented
in the form

ut1 = q(u1u − uu−1), ut� = q�
(
S(X (2�))u − uS−1(X (2�))

)
, � ∈ N. (19)

Finally, we present the Volterra system and its first symmetry in the Heisenberg
form in the quotient algebras. In the algebra A�Ia with commutation relations (6),
the Volterra Eq. (2) and its symmetry (3) can be represented in the Heisenberg form

∂t1(un) = 1

q−1 − q
[H1, un], H1 =

∑

k∈Z

uk;

∂t2(un) = 1

q−2 − q2 [H2, un], H2 =
∑

k∈Z

(u2
k + uk+1uk + ukuk+1), (20)

where H1 and H2 are self-adjoint algebraically independent and commuting Hamil-
tonians [H1, H2] = 0 in A�Ia .
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The quantisation A�Ib with commutation relations (8) also enables us to present
Eq. (3) in the Heisenberg form

∂t2(un) = 1

q−2 − q2 [H2, un]. (21)

Note that in the quantised algebra A�Ib we have H2 = H2
1 and H†

2 = H2.

4 Periodic Volterra hierarchy

In the Volterra system (2), we can assume that the function un(t1) is periodical in
n with an integer period M ∈ N, that is, un = un+M , n ∈ Z. In this case, the
infinite dimensional system (2) reduces to the M-dimensional dynamical system on
AM = C〈u1, . . . uM 〉 = A/IM , where the ideal IM = 〈un −un+M ; n ∈ Z〉. The ideal
IM is obviously stable with respect to evolutionary derivations. We can take un, n =
1, . . . M as canonical representatives of the cosets uk + IM , k ∈ Z. The algebra AM

is a difference algebra with the induced automorphism S(uk) = u(k+1)mod M of order
M .

The hierarchy of symmetries (12) of the Volterra system (2) reduces to the hierarchy
of symmetries of the M-periodic system provided we count the subscript k in uk

modulo M . The cases M = 1, 2 lead to trivial equations.
In the case M = 3, the periodic Volterra system takes the form

∂t1(u1) = u2u1 − u1u3, ∂t1(u2) = u3u2 − u2u1, ∂t1(u3) = u1u3 − u3u2. (22)

It has an infinitely hierarchy of commuting symmetries:

∂t2(u1) = u2
1u3 + u1u3u2 + u1u2

3 − u2u2
1 − u2

2u1 − u3u2u1,

∂t3(u1) = u3
1u3 + u2

1u3u2 + u2
1u2

3 + u1u2u1u3 + u1u3u1u3 + u1u3u2
2

+ u1u3u2u3 + u1u2
3u2 + u1u3

3 − u2u3
1 − u2u1u2u1 − u2u1u3u1

−u2
2u2

1 − u3
2u1 − u2u3u2u1 − u3u2u2

1 − u3u2
2u1 − u2

3u2u1 ,

· · ·

For any M , the nonabelian Volterra hierarchy has a common first integral H =∑M
k=1 uk .
In the case of the finitely generated free algebra AM , we consider more general

inhomogeneous ideals IM ⊂ AM (than (4)) generated by the polynomials fi, j :

IM = 〈fi, j , 1 ≤ i < j ≤ M, i, j ∈ N〉,
fi, j = ui u j − ωi, j u j ui − σ r

i, j ur − ηi, j , (23)

where ωi, j �= 0, ωi, j , σ
r
i, j , ηi, j ∈ C and we use Einstein summation convention,

namely σ r
i, j ur denotes

∑M
r=1 σ r

i, j ur . In this section, we explore the quantisation prob-
lem for periodic reductions in the Volterra system and its cubic symmetry.
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4.1 Quantisation of the periodic Volterra system

Similar to what we did in Sect. 3, we are able to prove the following statement for the
periodic Volterra equation:

Theorem 5 A nonabelian periodical Volterra chain with period M admits a IM –
quantisation if and only if the following commutation relations hold:

M = 3 : unun+1 = αun+1un + β(u1 + u2 + u3) + η, n ∈ Z3; (24)

M = 4 : u1u2 = αu2u1 + βu2 + γ u1 − βγ, (25)

u1u3 = u3u1 − βu2 + βu4,

u4u1 = αu1u4 + βu4 + γ u1 − βγ,

u2u3 = αu3u2 + βu2 + γ u3 − βγ,

u2u4 = u4u2 − γ u3 + γ u1,

u3u4 = αu4u3 + βu4 + γ u3 − βγ ;
M ≥ 5 : unun+1 = αun+1un,

unum = umun, |n − m| > 1, n, m ∈ ZM . (26)

The constants α, β, γ, η ∈ C, α �= 0 are arbitrary.

Proof When M = 3, the ideal I3 is generated by three polynomials f1,2, f1,3 and f2,3.
We differentiate them by the derivation ∂t1 associated with the Volterra Eq. (22) and
project it on the quotient algebra. We have

πI3

(
∂t1 (f1,2)

) = ω1,2(ω1,3ω2,3 − 1)u3u2u1 +
(
σ 2
1,2 + ω1,2σ

2
1,3

)
u22 + (ω1,2ω1,3σ

1
2,3 − σ 1

1,2)u
2
1

+
(
ω1,2ω2,3σ

3
1,3 + ω2,3σ

3
1,2 + σ 3

1,2 − σ 2
1,2

)
u3u2

+
(
ω1,2ω1,3σ

3
2,3 + ω1,3σ

1
1,2 − ω1,3σ

3
1,2 − σ 3

1,2

)
u3u1

+ω1,2

(
ω1,3σ

2
2,3 + σ 1

1,3

)
u2u1 +

(
ω1,2σ

3
1,3σ

3
2,3 + σ 1

1,2σ
3
1,3 − σ 3

1,2σ
3
1,3 + σ 3

1,2σ
3
2,3

)
u3

+
(
ω1,2σ

3
1,3σ

2
2,3 + ω1,2η1,3 + σ 1

1,2σ
2
1,3 − σ 3

1,2σ
2
1,3 + σ 2

2,3σ
3
1,2 + η1,2

)
u2

+
(
ω1,2ω1,3η2,3 + ω1,2σ

3
1,3σ

1
2,3 + σ 1

1,2σ
1
1,3 − σ 3

1,2σ
1
1,3 + σ 1

2,3σ
3
1,2 − η1,2

)
u1

+
(
ω1,2σ

3
1,3η2,3 + σ 1

1,2η1,3 − σ 3
1,2η1,3 + σ 3

1,2η2,3

)
.

In the same way, we compute πI3

(
∂t1(f2,3)

)
and πI3

(
∂t1(f1,3)

)
. If I3 is preserved

under the derivation ∂t1 , all coefficients in these expressions should vanish, which
leads to an algebraic system for ωi, j , σ

r
i, j , ηi, j , 1 ≤ i < j ≤ 3 and r ∈ {1, 2, 3}. The

only nontrivial solution of this system is

ω1,2 = ω2,3 = 1

ω1,3
; σ r

1,2 = σ r
2,3 = −ω1,2σ

r
1,3, r = 1, 2, 3; η1,2 = η2,3 = −ω1,2η1,3,

which is the ideal presented in the statement by setting ω1,2 = α, σ 1
1,2 = β and

η1,2 = η.
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The proof of the statement for the casewhen M = 4 is similar, andwe do not present
it here. Let us now prove the last part of the statement concerning the case M ≥ 5.
The condition M ≥ 5 implies that un+2, un+1, un, un−1, un−2 are algebraically inde-
pendent inAM/IM for all n ∈ Z. In the quotient algebraAM/IM , πIM

(
∂t1(fi, j )

) = 0
for all i < j is equivalent to all terms with the same degree vanishing. We denote its
cubic terms as Q(3)

i, j . Note that the cubic terms of ∂t1(fi, j ) are

ui+1ui u j − ui ui−1u j + ui u j+1u j − ui u j u j−1

−ωi, j
(
u j+1u j ui − u j u j−1ui + u j ui+1ui − u j ui ui−1

)
. (27)

It is clear that Q(3)
n,n+1 = 0 if and only if ωn,n+2 = 1 for all n. We have

Q(3)
n,n+2 = (ωn+1,n+2 − ωn,n+1)un+2un+1un + (ωn,n+3 − 1)un+3un+2un

+ (1 − ωn−1,n+2)un+2unun−1,

which vanishes when ωn,n+3 = ωn−1,n+2 = 1 and ωn,n+1 = ωn+1,n+2. We set
ωn,n+1 = α.

Let k be the distance between i and j modulo M . If k > 2, the sets {i + 1, i, j},
{i, i − 1, j}, {i, j + 1, j} and {i, j, j − 1} are all distinct (elements are taken modulo
M). It follows from (27) that, for k > 2,

Q(3)
i, j = ωi, j ((ωi+1, j − 1)u j ui+1ui − (ωi−1, j − 1)u j ui ui−1)

+ωi, j ((ωi, j+1 − 1)u j+1u j ui − (ωi, j−1 − 1)u j u j−1ui )

implying that ωi+1, j = ωi, j+1 = 1 for all i and j . This leads to ωi, j = 1 for all i and
j . So far we have proved that ωn,n+1 = α for all n and ωi, j = 1 otherwise.
We are now ready to look at the rest terms in πIM

(
∂t1(fi, j )

)
. The condition

πIM

(
∂t1(fn,n+1)

) = 0 is equivalent to the following equation (we imply sums over
r ):

πIM

(
σ r

n,n+1(ur+1ur − ur ur−1)
) = πIM

(
σ r

n,n+1(un+1 + un+2)ur − σ r
n−1,n+1unur

)

+πIM

(
σ r

n,n+2ur un+1 − σ r
n,n+1ur (un + un−1)

)

+ ηn,n+1(un+2 + un+1 − un − un−1)

+ ηn,n+2un+1 − ηn−1,n+1un . (28)

In this expression, if we look at quadratic terms not containing ul , n − 1 ≤ l ≤ n + 2
as a factor, we get σ r

n,n+1 = 0 if r /∈ {n − 1, n, n + 1, n + 2}. We substitute them into

(28) and get σ n−1
n,n+1 = σ n+2

n,n+1 = 0 after comparing to the quadratic terms in its both
sides. We denote the sum over r of σ r

n−1,n+1ur by �n . The quadratic terms in (28)
becomes

0 = σ n+1
n,n+1u2

n+1 − σ n+1
n,n+1un+1un−1 + �n+1un+1

+σ n
n,n+1un+2un − un�n − σ n

n,n+1u2
n,
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which implies that �n is proportional to un and further leads to σ n+1
n,n+1 = σ n

n,n+1 =
�n = 0. Finally from the vanishing of linear terms in (28), we have ηn,n+1 = ηn,n+2 =
0. Thus, we have that for all n, fn,n+1 = unun+1 − αun+1un and fn,n+2 = unun+2 −
un+2un .

We will prove that fn,n+m = unun+m − un+mun for m > 2 by induction. Assume
that we have for all 2 ≤ l ≤ k that fn,n+l = unun+l − un+lun . We now compute
∂t1(fn,n+k). Using the induction assumption, we have

0 = πIM

(
∂t1(fn,n+k)

) = πIM (unun+k+1un+k − un+k+1un+kun

+un+kunun−1 − unun−1un+k)

= σ r
n,n+k+1ur un+k − σ r

n−1,n+kunur − ηn−1,n+kun + ηn,n+k+1un+k .

Thus, the coefficient σ r
n,n+k+1 should be zero whenever r is not n but also whenever

r is not n + k + 1 hence the σ ’s are identically zeros, from which it follows that
ηn,n+k+1 = 0. Hence, we conclude the induction and complete the proof. 
�

Note that the proof for the case M ≥ 5 can be directly generalised to the non-
periodic case which means that the ideal I is the only stable ideal for the nonabelian
Volterra flow within the class of ideals where fi, j has the form (23). This justifies our
choice of the ideal I (4) in the case of infinite Volterra chain (2).

4.2 Bi-quantum structure of the periodic Volterra systemwith period 3

In the classical commutative case, the M = 3 periodic Volterra system (22) is bi-
Hamiltonian [24]. There are two compatible Poisson brackets defined by

{un+1, un}0 = 1, {un, un+1}1 = un+1un, n ∈ Z3

such that a linear combination of the Poisson brackets, called a Poisson pencil,

{·, ·}κ = (1 − κ){·, ·}0 + κ{·, ·}1
is also a Poisson bracket for any choice of κ , i.e. the bracket {·, ·}κ is skew-symmetric
and satisfies the Jacobi identity. The system admits two first integrals

H1 = u1 + u2 + u3, H2 = u3u2u1, (29)

such that Eq. (22) with commutative variables can be written in a bi-Hamiltonian form

∂t1(uk) = {uk, H2}0 = {uk, H1}1, k ∈ Z3. (30)

These first integrals Poisson commute with each other, and moreover, H1 is in the
kernel of the first Poisson bracket (is a Casimir element), while H2 is in the kernel of
the second one

{uk, H1}0 = {uk, H2}1 = 0, k ∈ Z3.
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and Hκ = (1 − κ)H1 − κ H2 is a Casimir element of the bracket {·, ·}κ .
According to Proposition 4 and Theorem 5, the periodic Volterra system (22) on

the free algebra A3 admits a ∂t1 and † stable difference ideal Iθ,� = 〈 f (θ,�)
n ; n ∈ Z3〉,

generated by the polynomials

f (θ,�)
n = q−1unun+1 − qun+1un − iθ, n ∈ Z3, q = ei�,

depending on the two real parameters 0 ≤ � < π, θ ∈ R. Thus, we have a pencil of
quantised algebras A(θ,�) = A3�Iθ,�. Algebra A(θ,�) has a central element

H(θ, �) = sin(�)H2 + θ(2 + cos(2�))H1,

where the self-adjoint elements

H1 = u1 + u2 + u3, (31)

H2 =
∑

σ∈S3

uσ(1)uσ(2)uσ(3)

= 3(q2 + 1)u3u2u1 + iθ
(
(2q + q−1)(u1 + u3) − (q + 2q−1)u2

)
(32)

are first integrals for the quantum Volterra system

(un)t1 = q(un+1un − unun−1), n ∈ Z3. (33)

Moreover, system (33) in algebra A(θ,�) can be represented in the Heisenberg form

(un)t1 = i

2 sin �
[H1, un] = − i

2θ(2 + cos(2�))
[H2, un].

With twoquotient algebrasA(θ,0) andA(0,�), we associate the following bi-quantum
structure (a quantum deformation of the bi-Hamiltonian structure (30)) as follows:

choice of parameters θ �= 0, � = 0, q = 1 θ = 0, 0 < � < π, q = ei�

stable ideal in A3 Iθ,0 I0,�

quantised algebra A(θ,0) = A3�Iθ,0 A(0,�) = A3�I0,�

self-adjoint central element H1 = u1 + u2 + u3 H2 = 3(1 + q2)u3u2u1

the Heisenberg form of (33) (un)t1 = − i

6θ
[H2, un] (un)t1 = i

2 sin �
[H1, un]

More work is required to study the quantum periodic Volterra systems with M ≥ 4
(25), (26) as we did for M = 3 above, which is not included in this paper.
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4.3 Quantisation of periodic reductions in the cubic symmetry

In this section, we study the quantisation problem for periodical reductions in the
cubic symmetry (3). In the infinite case, this system admits two distinct quantisations
(Proposition 2).

We claim that:

1. In the case M = 3, the quantisation ideal (23) is generated by relations (24).
2. For odd M ≥ 5, the quantisation ideal (23) is generated by relations (26).
3. For even M ≥ 6, there are two distinct quantisations corresponding to the ideal Ia

generated by the relations (26) and Ib generated by relations

unun+1 = (−1)nωun+1un,

unum + umun = 0 if |n − m| ≥ 2, n, m ∈ ZM . (34)

The case M = 4 is exceptional, it admits three distinct quantisation ideals. One
quantisation ideal is generated by commutation relations (25), and the other two are
generated by homogeneous quadratic commutation relations. The periodical reduction
in the system (3) with the period M = 4 can be written in the form (Here we also add
the constant q2 following (19)):

∂t2un =q2
(

un+2un+1un +u2
n+1un + un+1u2

n −u2
nun+3−unun+3un+2−unu2

n+3

)
,

q = ei� (35)

where the lower index n ∈ Z4. In the free algebra A4 = C〈u1, . . . u4〉, we consider
the ideal I

I = 〈fi, j ; 1 ≤ i < j ≤ 4〉, fi, j = ui u j − ωi, j u j ui , (36)

generated by six homogeneous quadratic polynomials fi, j , which depend on six
nonzero constants ωi, j . The ideal I is ∂t2–stable if and only if ∂t2(fi, j ) ∈ I, 1 ≤
i < j ≤ 4. This is equivalent to the following system of equations on the parameters
ωi, j

ω2
2,4 = 1, ω2

1,4ω
2
3,4 = 1, ω2,3 = ω2,4ω3,4,

ω1,2 = ω1,4ω2,4ω
2
3,4, ω1,3 = ω1,4ω3,4. (37)

Solving the above system of equations, we obtain the following statement:
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Theorem 6 A nonabelian system (35) admits a I–quantisation of the form (36) if and
only if the six constants ωi, j take values as in one of four cases:

ω1,2 ω1,3 ω2,3 ω1,4 ω2,4 ω3,4

(a) : ω, 1, ω, ω−1, 1, ω;
(b) : ω, −1, −ω, −ω−1, −1, ω;
(c) : −ω, −1, ω, −ω−1, 1, ω;
(d) : −ω, 1, −ω, ω−1, −1, ω,

and ω = q2 = e2i�, where � ∈ R. Moreover, in each of the above four cases the
system (35) is a super-integrable quantum system.

The first and second solutions correspond to the cases (a) and (b) in Proposition
2. Solutions (c) and (d) are new; they are related by the automorphism S of A4 and
thus equivalent. The commutation relations in the case (a) can be extended by non-
homogeneous terms (25), while commutation relations (b)–(d) do not admit non-
homogeneous extensions.

Proof First note that the four cases listed in the statement correspond to the four
solutions of the system (37). It is obvious that in each case the ideal is †–stable if and
only if ω† = ω−1. Thus, we can set ω = e2i�, � ∈ R.

We now prove the super-integrability of the obtained system in each case. Let

H = u1 + u2 + u3 + u4,

which is a first integral for the quantum system (35) in all four cases. Moreover, in all
four cases the quantum system (35) for self-adjoint variables un can be written in the
same Heisenberg form (21):

∂t2(un) = i

2 sin(2�)
[H2, un], n ∈ Z4. (38)

In the case (a), corresponding to the quantisation of the Volterra system, the quanti-
sation ideal Ia is generated by the commutation relations between the variables uk as
follows:

u1u2 = ωu2u1, u1u3 = u3u1, u4u1 = ωu1u4,

u2u3 = ωu3u2, u2u4 = u4u2, u3u4 = ωu4u3. (39)

The algebra A4�Ia has two central elements

H1 = u3u1, H2 = u4u2.

Since the central elements of the algebra commute with the Hamiltonian, they are first
integrals of the system (38). The system of four Eq. (35) admits three commuting first
integrals, and therefore, it is super–integrable.
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In the case (b), the quantisation ideal Ib is generated by the commutation relations
between the variables uk as follows

u1u2 = ωu2u1, u1u3 = −u3u1, u4u1 = −ωu1u4,

u2u3 = −ωu3u2, u2u4 = −u4u2, u3u4 = ωu4u3. (40)

The dynamical system (35) on A4�Ib admits two first integrals

H1 = u3u1, H2 = u4u2.

Elements H1, H2 anti-commute with H , but H2, H1 and H2 commute with each
other. Thus, the system (35) is super–integrable on A4�Ib. Taking H1 and H2 as
Hamiltonians, we can find two commuting symmetries of the quantum Eq. (35) on
A4�Ib, i.e.

∂ξ (un) = [H1, un] = 2u3u1un, ∂η(un) = [H2, un] = 2u4u2un .

The algebra A4�Ib has three central elements

H = u4u3u2u1, H1 = u2
3u2

1, H2 = u2
4u2

2.

In the case (c), which is new, the quantisation ideal Ic is generated by the commu-
tation relations between the variables uk as follows:

u1u2 = −ωu2u1, u1u3 = −u3u1, u4u1 = −ωu1u4,

u2u3 = ωu3u2, u2u4 = u4u2, u3u4 = ωu4u3. (41)

The dynamical system (35) onA4�Ic admits the first integral H1 = u3u1 commuting
with H2. The algebra A4�Ic has two central elements

H1 = u2
3u2

1, H2 = u4u2.

The first integrals H2, H1 and H2 are obviously independent, and therefore, system
(35) on A4�Ic is super–integrable.

The last case (d) can be obtained from the case (c) by the cyclic permutation of the
variables {u1, u2, u3, u4} �→ {u2, u3, u4, u1}. 
�

In the case M = 5, the only ∂t2–stable ideal is defined by (26). The system admits
three commuting first integrals

H1 =
∑

k∈Z5

uk, H2 =
∑

k∈Z5

(u2
k + ukuk+1 + uk+1uk), H = u5u4u3u2u1,

whereH is a central element of the algebra. TheHeisenberg equations corresponding to
H1 and H2 result in the periodic Volterra system and its cubic symmetry, respectively.
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5 Quantisation of the nonabelian Volterra hierarchy

In this section, we extend Propositions 1 and 2 in Sect. 2 to the whole nonabelian
Volterra hierarchy. We show that the quantum ideal Ia (5) is invariant with respect to
every member of the hierarchy (12) (Theorem 9) and that the quantum ideal Ib (7) is
invariant with respect to every even member of the nonabelian Volterra hierarchy

∂t2� (u) = S(X (2�))u − uS−1(X (2�)), � ∈ N,

that is, odd degree symmetries of the nonabelian Volterra equation (Theorem 14).
We are going to use the explicit expressions given by (12) to prove these statements.

First we introduce some notations and definitions inspired by themonomials appearing
in X (l).

Let α = (α1, α2, . . . , αk) ∈ Z
k be a k-component vector. For each α ∈ Z

k , we
define the k-degree monomial uα = uα1uα2 · · · uαk . We denote the degree of α by
|α| = k. Conventionally, we write (α1 + 1, α2 + 1, · · · , αk + 1) as α + 1. Thus, we
have S i uα = uα+i for i ∈ Z. The number of variable ui in monomial uα is denoted by
ν(α, i). Similarly, we denote by ν(α,≥ i) the number of k ≥ i such that uk appears
in uα , counted with multiplicities. We say that two monomials uα and uβ are similar
written as α ∼ β if ν(α, i) = ν(β, i) for all i ∈ Z.

We introduce two sets of distinguished monomials, for k ≥ 1

Ak =
{
α ∈ Z

k
∣∣1 − k ≤ αk ≤ 0, k − 1 ≥ α1 ≥ 0, αi+1 + 1 ≥ αi , i = 1, ..., k − 1

}
;

Zk≥ =
{
α ∈ Z

k
∣∣αi+1 + 1 ≥ αi ≥ αi+1, i = 1, ..., k − 1

}
.

We say that a k-degree monomial uα is admissible if α ∈ Ak and is nonincreasing if
α ∈ Zk≥.

Using these notations, we can simply write the expression X (k) given by (13) as

X (k) =
∑

α∈Ak

uα. (42)

Given an ideal I, either Ia or Ib, the canonical projection πI : A → A/I acts on
X (k) as follows:

πI(X (k)) =
∑

α∈Ak∩Zk≥

PI
α (ω)uα,

where PI
α (ω) is the unique polynomial in Z[ω] such that for α ∈ Ak ∩ Zk≥,

PI
α (ω)uα = πI

⎛

⎝
∑

β∈Ak ,β∼α

uβ

⎞

⎠ . (43)
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We often write it as Pα(ω) if there is no ambiguity.

We say that two polynomials f , g ∈ A are I–equivalent denoted by f
I� g if

f − g ∈ I. Polynomials f and g are I equivalent if and only if πI( f ) = πI(g).

5.1 Quantisation of the Volterra hierarchy

In this section, we will prove that the ideal Ia defined by (5) is preserved by the
symmetry flows (12), for all � ∈ N.

To do so, we need to study the polynomials PIa
α (ω). Here we focus on the quantum

ideal Ia . For the sake of simplicity, we write the polynomials as Pα(ω), which are in
Z+[ω]. For example, we have

πIa (X (1)) = X (1) = u; πIa (X (2)) = X (2) = u1u + u2 + uu−1;
πIa (X (3)) = u2u1u + u2

1u + (1 + ω)u1u2 + u3 + (1 + ω)u2u−1

+u1uu−1 + uu2−1 + uu−1u−2.

This defines the polynomials Pα(ω), e.g. P(0,0,−1)(ω) = 1 + ω. In general, we prove
the following identity:

Proposition 7 Let α ∈ Zk≥. Then, we have

Pα(ω) + ων(α,0) Pα−1(ω) = Pα−1(ω) + ων(α,1) Pα(ω). (44)

Proof First note that this formula holds whenever α /∈ Ak or α − 1 /∈ Ak since for
α ∈ Zk≥, α ∈ Ak if and only if ν(α, 0) �= 0. If α /∈ Ak , then Pα(ω) = 0 and
ν(α, 0) = 0. Similarly, if α − 1 /∈ Ak , then Pα−1(ω) = 0 and ν(α, 1) = 0. Thus, the
formula holds in both cases.

We now assume that α ∈ Ak and α − 1 ∈ Ak . Consider the set Eα defined as

Eα =
{
β ∈ Z

k
∣∣β ∼ α, β1 ≥ 0, βk ≤ 1, βi ≤ βi+1 + 1, i = 1, ..., k − 1

}
.

We split Eα in two different ways by defining four subsets of Eα:

Aα = {β ∈ Eα | βk ≤ 0}, Bα = {β ∈ Eα | β1 ≥ 1},
Cα = {β ∈ Eα | βk = 1}, Dα = {β ∈ Eα | β1 = 0}.

It is clear that Eα = Aα ∪ Cα = Bα ∪ Dα , Aα ∩ Cα = ∅ and Bα ∩ Dα = ∅. We now
have

πIa

⎛

⎝
∑

β∈Eα

uβ

⎞

⎠ = πIa

⎛

⎝
∑

β∈Aα

uβ

⎞

⎠ + πIa

⎛

⎝
∑

β∈Cα

uβ

⎞

⎠

= πIa

⎛

⎝
∑

β∈Bα

uβ

⎞

⎠ + πIa

⎛

⎝
∑

β∈Dα

uβ

⎞

⎠ . (45)
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We are going to evaluate each term in it. Note that Aα = Ak is the set of all elements
equivalent to α. Thus, by definition (43), we have

πIa

⎛

⎝
∑

β∈Aα

uβ

⎞

⎠ = Pα(ω)uα. (46)

For any β ∈ Bα , we have β − 1 ∈ Ak and β − 1 ∼ α − 1 and thus

πIa

⎛

⎝
∑

β∈Bα

uβ

⎞

⎠ = SπIa

⎛

⎝
∑

β−1∈Ak ,β−1∼α−1

uβ−1

⎞

⎠

= S (Pα−1(ω)uα−1) = Pα−1(ω)uα. (47)

Let β ∈ Dα . There is βi > 0 for some 0 < i < k since β ∼ α and α − 1 ∈ Ak .
Assume that there are 0 < m ≤ k positive components at positions i1 ≤ i2 ≤
· · · ≤ im in β. Starting from i1, we find the first zero entry on the left of i1, that is,
l1 = max1≤ j≤i1−1

{
β j = 0

}
and move the components from l1 to i1 − 1 to the right

of i1 and obtain β1 with

β1
j = β j , 1 ≤ j ≤ l1 − 1; β1

l1 = βi1;
β1

j = β j−1, l1 + 1 ≤ j ≤ i1; β1
j = β j , i1 + 1 ≤ j ≤ k.

Forβ1,wefind thefirst zero entry on the left of i2, that is, l2 = maxl1+1≤ j≤i2−1

{
β1

j = 0
}

and move the components from l2 to i2 − 1 to the right of i2 and obtain β2. We repeat
this procedure for all positive components in β. Thus, we obtain a k-component vector
γ = βl ∈ Aα . This leads to

πIa

⎛

⎝
∑

β∈Dα

uβ

⎞

⎠ = πIa

⎛

⎝
∑

γ∈Aα

ων(β,1)uγ

⎞

⎠

= ων(α,1)πIa

⎛

⎝
∑

γ∈Aα

uγ

⎞

⎠ = ων(α,1) Pα(ω)uα. (48)

Similarly, let β ∈ Cα . There is βi ≤ 0 for some 0 < i < k since β ∼ α and α ∈ Ak .
For all nonpositive components, we move the first component being 1 on its right to
its left, taking with all the components of β on its left that are larger than 1. Thus, we
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obtain a k-component vector γ ∈ Bα . This leads to

πIa

⎛

⎝
∑

β∈Cα

uβ

⎞

⎠ = πIa

⎛

⎝
∑

γ∈Bα

ων(β,0)uγ

⎞

⎠

= ων(α,0)πIa

⎛

⎝
∑

γ∈Bα

uγ

⎞

⎠ = ων(α,0) Pα−1(ω)uα. (49)

We substitute (46)–(49) into (45), and thus, we obtain the required identity (44). 
�
In the same way as the proof of Proposition 7, we are able to show that

Pα+m(ω) + ων(α,−m) Pα+m−1(ω) = Pα+m−1(ω) + ων(α,1−m) Pα+m(ω) for allm ∈ Z.

(50)

This leads to the following statement:

Corollary 8 Let α ∈ Zk≥. There exists a nonzero rational function Rα(ω) ∈ Q(ω) such
that

Pα+m(ω) = Rα(ω)(1 − ων(α,−m)) for all m ∈ Z. (51)

Proof For α ∈ Zk≥, there exists l ∈ Z such that ν(α + l, 0) = ν(α,−l) �= 0. By
iterating (50), we get

Pα+m(ω)(1 − ων(α,−l)) = Pα+l(ω)(1 − ων(α,−m)) for allm ∈ Z.

Hence, choosing

Rα(ω) = Pα+l(ω)(1 − ων(α,−l))−1,

we obtain the required result. 
�
Theorem 9 The quantisation ideal Ia is stable with respect to every member of the
Volterra hierarchy ∂t� (u) = S(X (�))u − uS−1(X (�)), � ∈ N.

Proof We fix k and let uτ = Q(k) be the (k + 1)-degree symmetry of the Volterra
equation given by (12). Since S(I) = I, we only need to show that

πIa

(
∂τ (uum − ωδ1,m umu)

) = 0, m ∈ N.

This means that

πIa

(
Q(k)um + uQ(k)

m − ωδ1,m Q(k)
m u − ωδ1,m um Q(k)

)
= 0.
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We rewrite it in terms of X . Here we simply drop its upper index of X (k).

πIa

(
u Xm+1um − ωδ1,m Xm+1umu − uum Xm−1 + ωδ1,m um Xm−1u

+ X1uum − ωδ1,m um X1u − u X−1um + ωδ1,m umu X−1
) = 0. (52)

It is clear that, for any α ∈ Zk≥, we have

uuαum
Ia� ων(α,1)−ν(α,−1)uαuum,

umuαu
Ia� ωδ1,m ων(α,m+1)−ν(α,m−1)uαuum,

uumuα

Ia� ων(α,m+1)+ν(α,1)−ν(α,−1)−ν(α,m−1)uαuum .

Note that for all l ∈ Z, we have

πIa (Xl) = πIa (Sl X) = SlπIa (X) = Sl

⎛

⎜⎝
∑

α∈Zk≥

Pα(ω)uα

⎞

⎟⎠ =
∑

α∈Zk≥

Pα(ω)uα+l

=
∑

α∈Zk≥

Pα−l(ω)uα.

Here the sum is over all α ∈ Zk≥ including the ones not inAk . Hence, the left-handed
side of (52) becomes

∑

α∈Zk≥

(
Pα−m−1(ω) − Pα−m+1(ω)ων(α,m+1)−ν(α,m−1)

) (
ων(α,1)−ν(α,−1) − 1

)
πIa (uαuum)

+
∑

α∈Zk≥

(
Pα−1(ω) − Pα+1(ω)ων(α,1)−ν(α,−1)

) (
1 − ων(α,m+1)−ν(α,m−1)

)
πIa (uαuum)

For any α ∈ Zk≥, we need to check that the coefficient of πIa (uαuum) vanishes. Using
Corollary 8, it amounts to compute

(
1 − ων(α,m+1) − (1 − ων(α,m−1))ων(α,m+1)−ν(α,m−1)

) (
ων(α,1)−ν(α,−1) − 1

)

+
(
1 − ων(α,1) − (1 − ων(α,−1))ων(α,1)−ν(α,−1)

) (
1 − ων(α,m+1)−ν(α,m−1)

)
,

which equals zero after the simplification, and thus, we complete the proof. 
�

5.2 Non-deformation quantisation for all odd-degree Volterra symmetries

In this section, wewill prove that all odd-degree symmetries of the nonabelian Volterra
hierarchy admit the quantisation Ib, that is, the ideal Ib defined by (7) is preserved
by the symmetry flows (12) when � is even. We extend the automorphism S and the
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antiautomorphism T to the algebraA[ω] by letting S(ω) = T (ω) = −ω so that these
operators are well-defined on the quotient A/Ib.

The ideas guiding the proof essentially are the same as in the previous section with
the notable difference of the equivalence of Proposition 7, which is much harder in
this case.

As in the previous section, for an ideal Ib, we define uniquely Pα(ω) ∈ Z[ω] by
the canonical projection πIb : A → A/Ib acting on X (k). For example, we have

πIb (X (1)) = X (1) = u; πIb (X (2)) = X (2) = u1u + u2 + uu−1;
πIb (X (3)) = u2u1u + u2

1u + (1 + ω)u1u2 + u3 + (1 − ω)u2u−1

+ u1uu−1 + uu2−1 + uu−1u−2.

This leads to the polynomials Pα(ω), e.g. P(0,0,−1)(ω) = 1 − ω.
To prove that the ideal Ib defined by (7) is preserved by the symmetry flows Q(2k),

we first prove the equivalents of Proposition 7 only in this case for α ∈ Z2k≥ . We now
assume that α ∈ A2k and α − 1 ∈ A2k . In the same way as we prove Proposition 7,
we define the set Eα as

Eα =
{
β ∈ Z

2k
∣∣β ∼ α, β1 ≥ 0, β2k ≤ 1, βi ≤ βi+1 + 1, i = 1, ..., 2k − 1

}

and split E in two different ways by defining four subsets of Eα:

Aα = {β ∈ Eα | β2k ≤ 0}, Bα = {β ∈ Eα | β1 ≥ 1},
Cα = {β ∈ Eα | β2k = 1}, Dα = {β ∈ Eα | β1 = 0}.

It follows that

πIb

⎛

⎝
∑

β∈Eα

uβ

⎞

⎠ = πIb

⎛

⎝
∑

β∈Aα

uβ

⎞

⎠ + πIb

⎛

⎝
∑

β∈Cα

uβ

⎞

⎠

= πIb

⎛

⎝
∑

β∈Bα

uβ

⎞

⎠ + πIb

⎛

⎝
∑

β∈Dα

uβ

⎞

⎠ . (53)

We need to evaluate each term under the ideal Ib. Since Aα = A2k is the set of all
elements equivalent to α, it follows from (43) that

πIb

⎛

⎝
∑

β∈Aα

uβ

⎞

⎠ = Pα(ω)uα. (54)
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For any β ∈ B, note that β − 1 ∈ A2k and β − 1 ∼ α − 1 and thus

πIb

⎛

⎝
∑

β∈B

uβ

⎞

⎠ = πIbS

⎛

⎝
∑

β−1∈A2k ,β−1∼α−1

uβ−1

⎞

⎠

= Pα−1(−ω)Suα−1 = Pα−1(−ω)uα. (55)

We are now left to evaluate the terms for Dα and forCα , andwe do so in Propositions 10
and 11, respectively.

Proposition 10 Let uα = uμunuγ , where α = (μ, 0, · · · , 0, γ ) ∈ Z
2k≥ . Then we have

πIb

⎛

⎝
∑

β∈Dα

uβ

⎞

⎠ = (−1)ν(α,≥2)ων(α,1) Pα(ω)uα. (56)

Proof We divide μ and γ into n parts and denote each part by ai for μ and bi for γ ,
where i = 1, 2, · · · , n, such that �a = (a1, ..., an) ∼ μ and �b = (b1, ..., bn) ∼ γ .
Note that it is possible that the length of some a j (and/or b j ) is zero, in which case
we take the convention ua j = 1, |a j | = 0. Clearly we have

p = (0, b1, a1, 0, b2, a2 . . . , 0, bn, an) ∈ Dα; q = (a1, 0, b1, a2, 0, b2 . . . , an, 0, bn) ∈ Aα.

Thus, in the quotient algebra, we obtain

πIb

(
n∏

i=1

uubi uai

)
=

n∏

i=1

(−1)ν(ai ,≥2)+|ai ||bi |ων(ai ,1)uai uubi

= ων(μ,1)(−1)ν(μ,≥2)(−1)
∑n

i=1 |ai ||bi |
n∏

i=1

uai uubi .

We denote
∑n

i=1 |ai ||bi | by �a · �b and note that ν(μ, 1) = ν(α, 1) and ν(μ,≥ 2) =
ν(α,≥ 2). Hence,

πIb

⎛

⎝
∑

p∈Dα

u p

⎞

⎠ = πIb

⎛

⎝
∑

(�a,�b)

n∏

i=1

uubi uai

⎞

⎠

= ων(α,1)(−1)ν(α,≥2)πIb

⎛

⎝
∑

�a·�b=0mod 2

n∏

i=1

uai uubi −
∑

�a·�b=1mod 2

n∏

i=1

uai uubi

⎞

⎠

= ων(α,1)(−1)ν(α,≥2)πIb

⎛

⎝
∑

q∈Aα

n∏

i=1

uai uubi − 2
∑

�a·�b=1mod 2

n∏

i=1

uai uubi

⎞

⎠ .

123



94 Page 26 of 38 S. Carpentier et al.

Note that the first term gives us the required identity (56) using (54). Thus, we are left
to prove that

πIb

⎛

⎝
∑

�a·�b=1mod 2

n∏

i=1

uai uubi

⎞

⎠ = 0.

From now on, we identify a pair of vectors (�a, �b) with
∏n

i=1 uai uubi . Let

� = {(�a, �b), �a · �b = 1 mod 2}.

We split this set in two equal parts Y and Z after the following remarks. Let c be the
number of indices i such that |ai | and |bi | are both odd and d the number of indices
such that |ai | and |bi | are both even. When none of this is true, the parity of |ai | + |bi |
is odd.

Since the length of α is even , the parity of |μ| + |γ | is the same as n. Hence,

n =
n∑

i=1

|ai | + |bi | mod 2 = n − c − d mod 2,

which implies that c + d is even. Moreover, we know that �a · �b is odd, that is,

1 =
n∑

i=1

|ai ||bi | mod 2 = c mod 2.

Thus, we have that both c and d are odd.
Let I = {i1, ..., ic+d} be the set of indices i such that |ai | + |bi | is even (We know

that this set has cardinal c + d). Let l be minimal so that |ail | and |aic+d+1−l | have
different parity. Such l exists and is unique. Indeed, if it did not exist, we would have
|ail | ≡ |ail+c+d−1 | for all l implying that c and d are even.

We denote il by k(�a, �b) and ic+d+l−1 by m(�a, �b). However, in the sequel we will
abuse notation and simply write k and m, knowing that we have fixed the element
(�a, �b) in the set �. Based on these definitions, we put the pair (�a, �b) in the set Y if
|ak | is odd and we put it in Z if |ak | is even.

Let q ∈ Y and uq = ∏n
i=1 uai uubi . We are going to construct a bijective map

φ : Y �→ Z such that φ(uq)
Ib� −uq in the quotient algebra for all q ∈ Y . Define

φ(uq) = (ξm−1...ξk)(uq),

where the maps ξi are defined in Lemma 17 in Appendix. Thus, φ only transforms the
product from the block k to the block m, i.e.

∏m
i=k uai uubi .

By definition of the maps ξi , if we represent φ(uq) as (�c, �d) we see that ck and dk

will have even length and that cm and dm will have odd length. It means that φ(uq) is
an element of Z , but also that we still have k(φ(uq)) = k and m(φ(uq)) = m. That is
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because we have left the first k − 1 blocks and the last n − m blocks intact. Since the
values of k and m are unchanged by φ and that all the ξi ’s are bijections, it follows that

φ is a bijection as well. So it only remains to check that φ(uq)
Ib� −uq . By Lemma

17, we have

φ(uq)
Ib� (−1)ηuq

with

η = |bk | + |ak+1| + |bk+1| + 1 + |ak+2| + ... + |bm−1| + 1 + |am |

We know that |bk | = 1 mod 2 and |am | = 0 mod 2. Hence,

η = 1 +
m−1∑

i=k+1

(|ai | + |bi | + 1) mod 2 = 1 mod 2

since there is a even number of indices i for which |ai | ≡ |bi | between k and m. 
�
Below we give an example to illustrate this proposition.

Example 1 Let α = (1, 1, 0, 0, 0, -1). We write as α = 11000-1 for short. There are
18 elements in the set Aα . Indeed, to get an admissible monomial equivalent to α one
needs to pick an element in

{11000, 10100, 10010, 01100, 01010, 00110}

and an element in

{000 − 1, 00 − 10, 0 − 100}.

Under the ideal Ib, we have

Pα(ω) = 1 + 2ω2 + 2ω4 + ω6.

Similarly there are 18 elements in Dα since they are determined by the choice of an
element in {01100, 01010, 01001, 00110, 00101, 00011} and an element in {000 −
1, 00 − 10, 0 − 100}. So we have

πIb

⎛

⎝
∑

β∈Dα

uβ

⎞

⎠ = ω2 + 2ω4 + 2ω6 + ω8 = ω2Pα(ω),

which is consistent with (56) since ν(α,≥ 2) = 0 and ν(α, 1) = 2.
Following the line of Proposition 10’s proof, with this example we first give a full

description of the set �, then split it as � = Y ∪ Z . An admissible monomial is given
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by a partition of |a1| + |a2| + |a3| = 2 and a partition |b1| + |b2| + |b3| = 1. For this
monomial to be in �, we need |a1||b1| + |a2||b2| + |a3||b3| to be odd. It must be that
(|b1|, |b2|, |b3|) is one of (1, 0, 0), (0, 1, 0) and (0, 0, 1). Hence, there are 6 elements
in �:

� = {10 − 1100, 1010 − 10, 010 − 110, 01010 − 1, 10 − 1010, 10010 − 1},

where 3 elements belong to Y , namely

Y = {10−1100, 1010−10, 10−1010}.

For each element in Y , we first identify the blocks k and m, to remove a 1 and a −1
from the block k and to add them to the block m. We now write Z in the same order,
that is, Z = φ(Y ):

Z = {010-110, 01010-1, 10010-1}.

One can check that πIb (
∑

β∈� uβ) = 0 and πIb(
∑

β∈Y uβ) = −πIb (
∑

β∈Z uβ).

Proposition 11 Let uα = uμunuγ , where α = (μ, 0, · · · , 0, γ ) ∈ Z
2k≥ . Then, we have

πIb

⎛

⎝
∑

β∈Cα

uβ

⎞

⎠ = (−1)ν(α,≥0)ων(α,0) Pα−1(−ω)uα. (57)

Proof Note that β ∈ Cα if and only if T S−1(β) ∈ DT (α−1), where T is the antiauto-
morphism. Hence, we have

T S−1(Cα) = DT (α−1).

Moreover, by definition of the map T , it is clear that T (Aα−1) = AT (α−1). Using
these facts and Proposition 10, we obtain

∑

β∈Cα

uβ = ST

⎛

⎝
∑

β∈Cα

T S−1(uβ)

⎞

⎠ = ST

⎛

⎝
∑

β∈DT (α−1)

uβ

⎞

⎠

Ib� ST

⎛

⎝(−1)ν(T (α−1),≥2)ων(T (α−1),1)
∑

β∈AT (α−1)

uβ

⎞

⎠

Ib� (−1)ν(α,≤−1)ων(α,0)ST
∑

β∈AT (α−1)

uβ

Ib� (−1)ν(α,≥0)ων(α,0)S
∑

β∈Aα−1

uβ

Ib� (−1)ν(α,≥0)ων(α,0)S (Pα−1(ω)uα−1)
Ib� (−1)ν(α,≥0)ων(α,0) Pα−1(−ω)uα,

which leads to (57) since α ∈ Z
2k≥ . 
�
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Having evaluated all terms in (53), we are now in the position to prove the similar
result as Proposition 7 for the ideal Ib defined by (7).

Proposition 12 Let α ∈ Z2k≥ . Then, we have

Pα(ω) + (−1)ν(α,≥0)ων(α,0) Pα−1(−ω) = Pα−1(−ω) + (−1)ν(α,≥2)ων(α,1) Pα(ω).

(58)

Proof First note that this formula holds whenever α /∈ A2k or α − 1 /∈ A2k in the
same reason as in the proof for Proposition 7. When α ∈ A2k and α − 1 ∈ A2k , we
substitute (54)–(57) into (53) and this leads to the required identity (58). 
�

Similar to Corollary 8 for the case of ideal Ia , we have the following statement for
the case of ideal Ib:

Corollary 13 Let α ∈ Z2k≥ . There exists a nonzero rational function Rα(ω) ∈ Q(ω)

such that

Pα+m((−1)mω) = Rα(ω)(1 − (−1)ν(α,≥−m)+mν(α,−m)ων(α,−m)) for allm ∈ Z.

(59)

Proof Without the loss of generality, we assume that α − l ∈ A2k , for 0 ≤ l ≤ q. Let

Rα(ω) = Pα(ω)

1 − (−1)ν(α,≥0)ων(α,0)
.

The identity (58) implies that

Rα−1(−ω) = Rα(ω).

Thus, for 0 ≤ l ≤ q we have

Pα−l((−1)lω) = Rα−l((−1)lω)
(
1 − (−1)ν(α,≥l)+lν(α,l)ων(α,l)

)

= Rα(ω)
(
1 − (−1)ν(α,≥l)+lν(α,l)ων(α,l)

)
.

When α + m /∈ A2k , we have Pα+m(ω) = 0 following the definition of (43). 
�
Theorem 14 The quantisation ideal Ib is stable with respect to every even member of
the Volterra hierarchy ∂t2� (u) = S(X (2�))u − uS−1(X (2�)), � ∈ N.

Proof Let uτ = G = X (2�)
1 u − u X (2�)

−1 , where X (2�) is the sum of all admissible
monomials of size 2�, � ≥ 1. Let k ≥ 2. We want to show that ∂τ (uuk + uku) is in
the ideal Ib. By definition of uτ , this means that

πIb (Guk + uGk + Gku + uk G) = 0, (60)
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or, in terms of X (we drop its upper index):

u Xk+1uk + Xk+1uku − uuk Xk−1 − uk Xk−1u

+ X1uuk + uk X1u − u X−1uk − uku X−1
Ib� 0. (61)

Let us fix an element β ∈ Z2�. We are going to show that the terms equivalent to
uβuuk modulo multiplication by an element of Z[ω] in (61) cancel out. It is clear that

uuβuk
Ib� (−1)ν(β,0)+ν(β,1)ων(β,1)−ν(β,−1)uβuuk,

ukuβu
Ib� (−1)ν(β,k)+ν(β,k+(−1)k )ων(β,k+1)−ν(β,k−1)uβuku,

uukuβ

Ib� (−1)ν(β,k)+ν(β,k+(−1)k )+ν(β,0)+ν(β,1)

ων(β,k+1)+ν(β,1)−ν(β,0)−ν(β,k−1)uβuuk .

We know that for all m ∈ Z,

πIb (Xm) =
∑

α∈Z2n≥

Pα((−1)mω)uα+m .

Hence, the Z[ω] coefficient of uβuuk in u Xk+1uk + Xk+1uku is

Pβ−k−1((−1)k+1ω)((−1)ν(β,0)+ν(β,1)ων(β,1)−ν(β,−1) − 1).

We compute the terms coming from X−k−1, X1 and X−1 in a similar way. Thus, to
prove that the coefficient of uβuuk in (61) is zero amounts to check that

0 = Pβ−k−1((−1)k+1ω)((−1)ν(β,0)+ν(β,1)ων(β,1)−ν(β,−1) − 1)

+ Pβ−k+1((−1)k−1ω)(−1)ν(β,k)+ν(β,k+(−1)k )ων(β,k+1)−ν(β,k−1)

(1 − (−1)ν(β,0)+ν(β,1)ων(β,1)−ν(β,0))

+ Pβ−1(−ω)(1 − (−1)ν(β,k)+ν(β,k+(−1)k )ων(β,k+1)−ν(β,k−1))

+ Pβ+1(−ω)(−1)ν(β,0)+ν(β,1)ων(β,1)−ν(β,−1)

((−1)ν(β,k)+ν(β,k+(−1)k )ων(β,k+1)−ν(β,k−1) − 1).
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Using Corollary 13, we need to verify

(1 − (−1)ν(β,≥k+1)+(k+1)ν(β,k+1)ων(β,k+1))((−1)ν(β,0)+ν(β,1)ων(β,1)−ν(β,−1) − 1)

+ (1 − (−1)ν(β,≥k−1)+(k+1)ν(β,k−1)ων(β,k−1))(−1)ν(β,k)+ν(β,k+(−1)k )ων(β,k+1)−ν(β,k−1)

× (1 − (−1)ν(β,0)+ν(β,1)ων(β,1)−ν(β,0))

+ (1 − (−1)ν(β,≥1)+ν(β,1)ων(β,1))(1 − (−1)ν(β,k)+ν(β,k+(−1)k )ων(β,k+1)−ν(β,k−1))

+ (1 − (−1)ν(β,≥−1)+ν(β,−1)ων(β,−1))(−1)ν(β,0)+ν(β,1)ων(β,1)−ν(β,−1)

× ((−1)ν(β,k)+ν(β,k+(−1)k )ων(β,k+1)−ν(β,k−1) − 1)

= 0

, and thus, the identity (60) holds.Theproof thatπIb

(
∂τ (ukuk+1 − (−1)kωuk+1uk)

) =
0 for all k ∈ Z is similar and we will not repeat it. 
�

6 Summary and discussion

In this paper, we develop the method of quantisation of dynamical systems defined on
free associative algebras based on the concept of quantisation ideals [5]. It enables us
to determine possible commutation relations between the dynamical variables which
are consistent with the dynamical system and define associative multiplication in the
quotient algebra. The method does not use any information on the Poisson structure
of the dynamical system and enables us to find non-deformation quantisations of the
system. To determine commutation relations consistentwith a system is a very first step
to its quantum theory. Next steps will require the development of the representation
theory for the quantised algebras obtained and study the spectral theory of the operators
involved.

In this paper, we explicitly proved that the nonabelian Volterra system (2) and its
infinite hierarchy of symmetries admit the deformation quantisation with commuta-
tion relations (6). We also proved that the sub-hierarchy, consisting of all odd degree
symmetries, admits a non-deformation quantisation with commutation relations (8).
The existence of non-deformation quantisations is quite surprising. Further study is
required to explore the properties of these new remarkable quantum algebra and quan-
tum integrable equations.

Recently, when the paper has already been submitted to the journal, we found
explicit expressions for the infinite sequence of quantum Hamiltonians Hn corre-
sponding to the Ia quantisation of the Volterra hierarchy

H� =
∑

k∈Z

∑

α∈A�
0

ω� − 1

ων(α,0) − 1
Pα(ω)uα+k,

where A�
0 = {α ∈ A� ∩ Z�≥ ; α� = 0}. Assuming that ω = e2i�, � ∈ R, the

Hamiltonians H� are self-adjoint H†
� = H�. They commute with each other, and the

dynamical equations of the quantum hierarchy can be written in the Heisenberg form
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[compare with (20)]:

∂t� (un) = i

2 sin(��)
[H�, un], n ∈ Z, � ∈ N .

We have also found explicit expressions for self-adjoint commuting quantum Hamil-
tonians corresponding to non-deformation quantisation (8) and present the quantum
hierarchy with even times in the Heisenberg form. A detail proof of these results will
be published elsewhere soon.

The Volterra hierarchy admits periodic reductions with any positive integer period
M .We have shown that the Volterra systemwith periods M = 3, 4 admit quantisations
with non-homogeneous commutation relations (Theorem 5).When M = 3, we proved
the resulting quantum system is not only super integrable but also admits bi-quantum
structure, similar to its bi-Hamiltonian structure in the classical case. The cubic sym-
metry of the Volterra system with period M = 4 admits three distinct quantisations.
In each case, the quantum system is a super-integrable systems (Theorem 6). Systems
with periods M ≥ 5 require more work, they have not been studied in this paper in
any detail.

The methods developed in [5] and this paper can be applied to the nonabelian
Narita–Itoh–Bogoyavlensky lattice [17]

ut =
p∑

k=1

(uku − uu−k) , p ∈ N. (62)

The Volterra equation is corresponding to the case when p = 1. Our study shows that
system (62), and all equations of its hierarchy admit the quantisationwith commutation
relations

unun+k = ωun+kun , 1 ≤ k ≤ p, unum = umun , |n − m| > p n, m ∈ Z,

whereω is a nonzero constant. The proof of this statement will be published elsewhere.
These commutation relationswere also obtained by Inoue andHikami [20] using ultra-
local Lax representation and R–matrix technique.

Besides quadratic ideals, our computations for the nonabelian Volterra equation
and its lower degree symmetries suggest that there is a ∂t�–stable ideal generated
by quadratic and cubic homogeneous polynomials. For example, as far as we have
checked, the first few symmetries in the nonabelian Volterra hierarchy leave the fol-
lowing cubic ideal invariant:

Ĩ = 〈unun+1un−1 − un+1un−1un , unum − umun ; |n − m| > 1, n, m ∈ Z〉.

Further research is needed to study the properties of the Volterra chain which is well
defined on the quotient algebra A�Ĩ. Very little is known about this new invariant
ideal and the quotient algebra which does not satisfy the condition (ii).

The concept of quantisation ideals has not been linked yet with Lax representations,
recursion operators, master symmetries and other objects associated with the theory
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of integrable systems. We think that further development of this theory will enable us
to embrace a wide range of integrable systems as well as to clarify and simplify rather
technical proofs of the statements presented in this paper.
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Appendix: Lemmas used for the proof of Proposition 10

In appendix, we are going to prove the lemmas used in constructing the bijection map
between sets Aα and Dα (Proposition 10) in Sect. 5.2.

Let l be any integer. We denote by �l the set of admissible monomials of the form
uaulub satisfying

(i) both a and b have components greater than l if they are not empty.
(ii) there exists a suffix d of a of odd length a = cd where c is either empty or ends

with l + 1.
(iii) if b is non-empty, then it ends with l + 1.

If the length of d in (ii) is minimal, we say that d is the minimal odd suffix of a.
We denote by �l the set of admissible monomials of the form uaulub where

(i) both a and b have components greater than l.
(ii) there exists a prefix c of b of odd length b = cd where c ends with l + 1.
(iii) b ends with l + 1.

If the length of c in (ii) is minimal, we say that c is the minimal odd prefix of b.

Lemma 15 For all l ∈ Z, we construct a bijection ψ : �l → �l such that for all
x ∈ �l , πIb (ψ(x)) = (−1)lω x. Moreover, if x = uaulub and ψ(x) = uculud , then
|c| = |a| − |m| and |d| = |b| + |m|, where m is the minimal odd suffix of a.

Proof We construct ψ by induction on |a|+ |b|. The only element of length 2 in �l is
ul+1ul , while the only element of length 2 in�l is ulul+1.We letψ(ul+1ul) = ulul+1.
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The minimal odd suffix of ul+1 is itself, and we have πIb (ulul+1) = (−1)lωul+1ul ;
hence, the statement of the lemma holds for elements of length 2.

Suppose that we have constructed ψ for all lengths strictly less than n satisfying
the statement. We now construct ψ for elements of length n and prove it satisfies the
statement. Let uaulub be an element of�l of length n. Let d be the minimal odd suffix
of a. Explicitly, this ud has the form ueul+1ud1ul+1 · · · udp ul+1, where the |di |’s are
odd and |e| is even (hence possibly e is empty). Note that in this decomposition of ud ,
the elements di and e do not contain any j < l + 2 and all end with l + 2 (except if
e is empty). Hence for all i = 1, ..., p, ul+1udi is an element of �l+1 whose length is
strictly less than n. By the induction hypothesis, there exist fi of odd length and gi of
even length such that

ψ−1(ul+1di ) = u fi ul+1ugi .

Note that fi does not have a proper odd suffix due to the last assertion in the
lemma. Recall that all elements in fi and gi are greater than l + 1. The element
ueψ

−1(ul+1ud1) · · · ψ−1(ul+1udp )ul+1 is well defined. It has exactly the same (odd)
length as d without any proper odd prefix and

πIb (ueψ
−1(ul+1ud1 ) · · ·ψ−1(ul+1udp )ul+1) = ((−1)l+1ω)−pueul+1ud1ul+1 · · · udp ul+1.

We let

ψ(uaulub) = uculueψ
−1(ul+1ud1) · · · ψ−1(ul+1udp )ul+1ub.

Note that the last statement in the lemma is satisfied. Let

χ = ueψ
−1(ul+1ud1) · · · ψ−1(ul+1udp )ul+1.

It has odd length and the number of ul+1 in χ is p + 1. Thus, we have in the quotient
algebra

πIb (ulχ) = (−1)1+(l+1)(p+1)ωp+1χul;

hence,

πIb (ulueψ
−1(ul+1ud1) · · · ψ−1(ul+1udp )ul+1)

= πIb(ulχ) = (−1)lωueul+1ud1ul+1 · · · udp ul+1ul

and a fortiori,

πIb (ψ(uaulub)) = (−1)lωuaulub.

Weknow that there are as many elements of length n in�l as in�l ; hence, it remains to
check the injectivity ofψ for length n. Suppose thatwe haveψ(uaulub) = ψ(uãulub̃).
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In other words, we have

uculueψ
−1(ul+1ud1) · · · ψ−1(ul+1udp )ul+1ub

= uc̃uluẽψ
−1(ul+1ud̃1

) · · · ψ−1(ul+1ud̃q
)ul+1ub̃

This equality implies that c = c̃ so we can simplify it slightly:

ueψ
−1(ul+1ud1) · · · ψ−1(ul+1udp )ul+1ub

= uẽψ
−1(ul+1ud̃1

) · · · ψ−1(ul+1ud̃q
)ul+1ub̃

Recall that ueψ
−1(ul+1ud1) · · · ψ−1(ul+1udp )ul+1 is the minimal odd prefix of the

left hand side and that uẽψ
−1(ul+1ud̃1

) · · · ψ−1(ul+1ud̃q
)ul+1 is the minimal odd

prefix of the right hand side. By unicity of the minimal odd prefix, they are equal. In
particular, we have b = b̃ and p = q. Recall the definition of fi and gi such that
ψ−1(ul+1udi ) = u fi ul+1ugi . Similarly, we write

ψ−1(ul+1ud̃i
) = u f̃i

ul+1ug̃i .

We have

ug0u f1ul+1ug1u − f2ul+1 · · · u f p ul+1ugp = ug̃0u f̃1
ul+1ug̃1u f̃2

ul+1 · · · u f̃ p
ul+1ug̃p ,

where we have let g0 = e and g̃0 = ẽ. Therefore, we have for all i = 0, ..., p − 1

gi fi+1 = g̃i f̃i+1.

Recall that both fi+1 and f̃i+1 are their own minimal odd suffix. Hence, fi+1 is the
minimal odd suffix of gi fi+1 and f̃i+1 is the minimal odd suffix of g̃i f̃i+1. By unicity
of the minimal odd suffix we have fi+1 = f̃i+1, from where it follows that gi = g̃i .
Hence,

ul+1udi = ψ(u fi ul+1ugi ) = ψ(u f̃i
ul+1ug̃i ) = ul+1ud̃i

,

and thus, we complete the proof. 
�
Let l be any integer. We denote by �l the set of admissible monomials of the form

uaulub where

(i) both a and b have components strictly smaller than l.
(ii) there exists a suffix d of a of odd length a = cd where d starts with l − 1.
(iii) a starts with l − 1.

If the length of d in (ii) is minimal, we say that d is the minimal odd suffix of a.
We denote by �l the set of admissible monomials of the form uaulub where

(i) both a and b have components strictly smaller than l.
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(ii) there exists a prefix c of b of odd length b = cd where d is either empty or starts
with l − 1.

(iii) a is either empty or starts with l − 1.

If the length of c in (ii) is minimal, we say that c is the minimal odd prefix of b.

Lemma 16 For all l ∈ Z, we construct a bijection ρ : �l → �l such that πIb (ρ(x)) =
(−1)l+1ω−1x for all x ∈ �l . Moreover, if x = uaulub and ψ(x) = uculud , then
|c| = |a| − |m| and |d| = |b| + |m|, where m is the minimal odd suffix of a.

Proof Takeρ = T ψ−1T , whereT maps�l to�l andmaps�l to�l . Letuaulub ∈ �l .
We have

ψ−1(T (b)u−lT (a)) ≡ (−1)lω−1T (b)u−lT (a)

and since T (ω) = −ω,

T (ψ−1(T (b)u−lT (a))) ≡ (−1)l+1ω−1aulb.

Let m be the minimal odd prefix of T (a). We know thatψ−1(T (b)u−lT (a)) = cu−ld
with |c| = |T (b)| + |m| and |d| = |T (a)| − |m|. We have ρ(aulb) = T (d)ulT (c).
We conclude by noting that T (m) is the minimal odd suffix of a. 
�

Recall that we identify an element of �, that is a pair (�a, �b) such that �a · �b = 1
mod 2 with the product

∏n
i=1 uai uubi . We denote a subset of X consisting of a part

of � such that ua j u ∈ �0 and ub j u ∈ �0 for some 1 ≤ j ≤ n by � j . We are going
to construct bijections ξ j : � j → � j+1.

Lemma 17 There exists a bijection ξ j : � j → � j+1, 1 ≤ j ≤ n − 1, so that

ξ j (u p)
Ib� (−1)|a j+1|+|b j |u p, p ∈ � j .

Proof Let (�a, �b) be an element of � j . Consider the product of block j with block
j + 1, i.e.

ua j uub j ua j+1uub j+1 .

We have a j0a j+1 ∈ �0 and b j0b j+1 ∈ �0. Hence, there exist ã j , ˜̃a j , b̃ j ,
˜̃b j such

that,

ψ(ua j uua j+1) = uã j uu ˜̃a j
, ρ(ub j uub j+1) = ub̃ j

uu ˜̃b j
.

From the definitions of ρ and ψ , it follows that ˜̃a j0 ∈ �0,
˜̃b j0 ∈ �0 and

(|ã j |, | ˜̃a j |, |b̃ j |, | ˜̃b j |) = (|a j | + 1, |a j+1| + 1, |b j | + 1, |b j+1| + 1) mod 2.
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We now define ξ j : ((�a, �b) �→ (�c, �d) as follows:

ci = ai and di = bi if i �= j and i �= j + 1

c j = ã j , d j = b̃ j , c j+1 = ˜̃a j , and d j+1 = ˜̃b j .

It is clear that (�c, �d) is in the subset � j+1. The map ξ j is a bijection since both ψ and
ρ are bijections. Moreover, we have

πIb (uã j uu ˜̃a j
) = ωua j uua j+1 , πIb (ub̃ j

uu ˜̃b j
) = −ω−1ub j uub j+1 .

We know πIb (ua j uub j ua j+1ub j+1) = (−1)|b j ||a j+1|ua j uua j+1ub j uub j+1 . Therefore,
we obtain

πIb (ξ j (u p))p∈X j = (−1)1+|b||a j+1|ua1uub1 · · · uã j uu ˜̃a j
ub̃ j

uu ˜̃b j
· · · uan uubn = (−1)|b j |+|a j+1|uq ,

where q = (�c, �d) ∈ � j+1, and thus, we complete the proof. 
�
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