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Abstract

In this paper, we explore a recently emerged approach to the problem of quantisation
based on the notion of quantisation ideals. We explicitly prove that the nonabelian
Volterra together with the whole hierarchy of its symmetries admits a deformation
quantisation. We show that all odd-degree symmetries of the Volterra hierarchy admit
also a non-deformation quantisation. We discuss the quantisation problem for peri-
odic Volterra hierarchy including their quantum Hamiltonians, central elements of
the quantised algebras, and demonstrate super-integrability of the quantum systems
obtained. We show that the Volterra system with period 3 admits a bi-quantum struc-
ture, which can be regarded as a quantum deformation of its classical bi-Hamiltonian
structure.

Keywords The quantum Volterra equation - Quantum integrability - Super integable
systems - Non-deformation quantisation - Quantised algebra

Mathematics Subject Classification 37J35 - 37J70 - 81R12

1 Introduction

The problem of quantisation has a century long history. In 1925, inspired by Heisen-
berg’s commutation relations between coordinates and momenta [1], namely,
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6/I\nﬁm - ﬁmén = ihSn,ms éném - émén = Ov
ﬁnﬁm_ﬁmﬁnzoa n,m=1,...,N, (D

Dirac proposed the concept of quantum algebra and noticed that in the limit 2 — 0
the commutators of observables are proportional to their Poisson brackets in classical
mechanics [§,, pm] = iR{qn, pm}. He raised the issue of consistency of the commu-
tation relations (1) with each other and with the equations of motion for a finite Plank
constant 1 # 0 [2]. In fact, Dirac proposed the problem of non-commutative deforma-
tions of multiplication on Poisson manifolds that is presently an active research area.
Important results in this direction have been obtained by Kontsevich [3]. Witten, in
his recent lectures [4], pointed out that due to “the operator ordering problem, there
is no natural, general procedure to quantise a classical system”, and described some
partial remedies to this problem. The general problem of quantisation is still open.

Recently, a fresh approach to the quantisation problem was proposed in [5]. It is
proposed to start from a dynamical system defined on a free associative algebra 2
with a finite or infinite number of multiplicative generators. The dynamical system
defines a derivation 9, : 2l +— 2(. By quantisation, it is understood a reduction in the
dynamical system on £l to the system defined on a quotient algebra 2y = 2 T over
a two-sided ideal J C U satisfying the following properties:

(i) the ideal J is d,—stable, that is, d,(J) C J;
(ii) the quotient algebra 25 admits an additive basis of normally ordered monomials.

In [5], an ideal satisfying the above two conditions is called a quantisation ideal , and
Ay is called a quantised algebra.

The condition (i) is crucial. The reduction in a dynamical system corresponding to
the derivation 9; to the quotient algebra 2(5 is well defined if and only if the ideal is
d,—stable.

The second condition (ii) enables one to define commutation relations between
any two elements of the quotient algebra and uniquely represent elements of 2(5 in
the basis of normally ordered monomials (similar to a normal ordering in quantum
physics). Finitely generated algebras, admitting a Poincaré-Birkhoff—Witt basis, and
their quotients, satisfy the condition (ii). They have a wide range of applications, and
share some properties with the commutative polynomial rings (see [6, 7] and references
in).

Any finitely generated associative algebra can be presented as (is isomorphic to)
a quotient of a free associative algebra over a suitable two-sided ideal. For example,
Dirac’s quantum algebra is a quotient of the free algebra C(q, p1, ..., gn, pnN) Over
the two-sided ideal generated by the commutation relations (1).

We emphasise that quantisation proposed in [5] guarantees the consistency of the
“commutation relations” with each other and with the equations of motion (resolving
the issue raised by Dirac) and the associativity of the non-commutative multiplication
in the quantised algebra (which potentially could be an issue in the deformation quanti-
sation). This new approach also results in examples of non-deformation quantisations.

In order to apply this method of quantisation to a classical dynamical system with
commutative variables, one needs to lift it to a system on a nonabelian free associative
algebra. Such lifting is not unique (on the quantum level it has been noted already by
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Dirac [2] and highlighted by Witten in his lectures [4]). The guiding principle here is
to preserve the most important properties of the classical system in the lifted one. For
example, integrable systems admit hierarchies of symmetries and we would like to have
this property for the corresponding systems defined on a free associative algebras and
for the quantised systems as well. Fortunately many integrable systems admit such
liftings [8—12], and can be quantised by the method proposed in [5]. Recently, the
hierarchies of stationary Korteweg de—Vries equation and Novikov’s equations have
been quantised using the method of quantisation ideals [13].

In this paper, we study the quantisation problem for the integrable nonabelian
Volterra system

3 (up) = 0KV, KW =w,pquy —uguy—y, neZ 2)

and its hierarchy of symmetries. Here o € C is a constant which can be set to be equal
to 1 by the re-scaling u,, — gu,. In the classical (commutative) case system (2) was
introduced by Zakharov et al. for the description of the fine structure of the spectra of
Langmuir oscillations in a plasma [14]. Its integrability and Lax representation were
discovered by Manakov [15] and independently by Kac and van Moerbeke [16]. The
nonabelian version of the system (2), with variables u,(#;) taking values in a free
associative algebra, was studied by Bogoyavlensky [17].

The Volterra system (2) is the first member of the infinite hierarchy of commuting
symmetries

O, (n) = KOWpsg, ... ung), €=1,2,..., neZ,

where KO (u,4¢, ..., u,_¢) are homogeneous polynomials of degree £ + 1 which
can be found explicitly [12]. The second member of the hierarchy

2 2 2
Op, (uy) = K% = Un42Uny1Un + Uy Uy + Unt1Uy,

— U1 — Uplly_ | — Uplip—1Up—2 3)
is given by the cubic polynomial. It can be straightforwardly verified that 9, (97, (#,)) =
¢, (0, (1)), and thus, (3) is a cubic symmetry of (2).

In the new approach, the quantisation problem for equation (2) reduces to the
problem of finding two-sided ideals in the free associative algebra 2l = C(u,, ; n € Z)
generated by an infinite number of non-commuting variables such that the above
conditions (i) and (ii) are satisfied. It is obvious that the ideal J generated by the
infinite set of polynomials

J = (uptty — Op ity ; n,m € 2, Wp.m € C*) 4)

satisfies the condition (ii) for any choice of the parameters w, ,, = a),;}n. In [5], it was
stated that the ideal J satisfies the condition (i) if and only if

-1 .
Ol =Wy yy, =@, Wpm = 1 if |n —m| > 2.
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Thus, the quantisation ideal suitable for the Volterra system (2) is
Ja={untns1 —ounpiun; n€ZYU{upum —umun; In—m|>1, n,meZ}), (5)
leading to the commutation relations
UpUpy] = OUp4 Uy, Uply = Uy, if [n—m|>2, nmeZ (6)

in the quotient algebra 2 J,. It was verified by direct computations that the ideal
J, is invariant with respect to derivations defined by a few first symmetries of the
Volterra hierarchy and conjectured that it is also true for the whole hierarchy. In this
paper, we give an explicit proof for the above conjecture (Theorem 9). The ideal J,
corresponds to a deformation quantisation. In the limit w — 1, it leads to the classical
commutative case.

It was claimed in [5] that the cubic symmetry of the Volterra system, Eq. (3), admits
two distinct quantisations ideals of the form (4). The first one coincides with J, defined
by (5), while the second one is

Tp = {unttng1 — (D) @upiity; n € ZY Uity + tpmity; In—m|>1, n,mez}). (7)

Note that the quantisation corresponding to the ideal Jj is not a deformation of a
commutative or Grassmann algebra. It is a new and non-deformation quantisation of
Eq. (3) with the commutation relations

Unttpp1 = (=D ' ©uppiun,  Untty +upu, =0 if n—m|>2, n,meZ (8

in the quotient algebra 2 J;. The ideal J;, given by (7) is not invariant with respect
to the Volterra system (2), and thus, it is not suitable for its quantisation. In [5], it was
claimed that the ideal Jp, is invariant with respect to a first few odd degree symmetries
of the Volterra equation. In this paper, we prove that the ideal Jp, (7) is a quantisation
ideal for all odd degree members of the Volterra hierarchy (Theorem 14).

In the quantum theory, we replace real valued commutative variables u, by Her-
mitian elements. Their commutation relations are defined by the quantisation ideal,
which should be stable with respect to the Hermitian conjugation (Definition 3). In
the case of the ideals J, and Jp, it implies that w = 2l where £ is an arbitrary real
parameter, an analogue of the Plank constant, and i> = —1. Moreover, in the quantised
equations of the Volterra hierarchy, we should introduce the factors ¢'”* which make
the right-hand side of the equations self-adjoint, that is,

3, () = EPK Oy, ung), £=1,2,..., nel. )
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In the algebra 25, with commutation relations (6), the quantised Volterra equation
and its symmetry can be represented in the Heisenberg form

3 — KD = ), 10
h(Un) = e 25in(h)[ 15 Un] (10)
P 2ih g () ! H 11
h(Uy) = e = 2sin(2h)[ 2, Unl, (11)

where

2
H, = Zuk, H; = Z(”k + Up 1k + Ul 1).
keZ keZ

In the algebra 215, with commutation relations (8), the first member of the quantised
Volterra sub-hierarchy of odd degree symmetries has the same Heisenberg form (11).
Moreover, in the case of the algebra 25, we have H, = H 12, which is not true for the
algebra 245, .

The quantisation of the Volterra system was studied by Volkov and Babelon in
the frame of the quantum inverse scattering method [18, 19]. In the paper by Inoue
and Hikami [20], the commutation relations (6) as well as a first few Hamiltonians
of the classical and quantum Volterra hierarchy were found using ultra-local Lax
representation and R—matrix technique. Our alternative approach does not rely on
the existence of a Lax or Hamiltonian structures, and it enables us to reproduce the
results presented in [20] and to find a non-deformation quantisation (8) for odd degree
members of the Volterra hierarchy which is new and rather surprising.

The Volterra equation and its hierarchy admit periodic reductions with arbitrary
positive integer period M € N. The periodic reduction is the identification u,y =
u, for all n € Z. It reduces the infinite system of equations (2) to a system of M
equations on a finitely generated free algebra 2y; = C(uy, ..., up). The problem of
quantisation of the periodic Volterra hierarchies is discussed in Section 4. In particular,
we show that the Volterra system with period 3 admits bi-quantum structure, which is
a quantum analogue of its bi-Hamiltonian structure in the classical case. In the case
M = 4, we obtain three possible quantisations, and show that the obtained quantised
systems are super-integrable, whose first integrals and central elements are explicitly
presented.

2 Integrable nonabelian Volterra hierarchy

In this section we introduce some basic notations required for this paper and present
the Volterra hierarchy on a free associative algebra in an explicit form.

Let A = C(u,; n € Z) be a free associative algebra generated by an infinite
number of non-commuting variables. There is a natural automorphism & : 2 — £,
which we call the shift operator, defined as

S:ia(ug,...,ur) > a(upsl, .. urr1), S:ar— o, a(ug,...,ur) €A, a eC.
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Thus, 2 is a difference algebra. Let 7 denote the antiautomorphism of 2 defined by
Tw) =u_y, T@-b)=TH) -T(), T =a, abeA, «oacC.

The involution 7 is a composition of the reflection in the alphabet index uy +— u_g
and the transposition of the monomials. For example:

T (uuy + uqu u_3u_o) = U_1U + UsU3U_1U_4.

A derivation D of the algebra 2 is a C-linear map satisfying Leibniz’s rule

D(aa + Bb) = aD(a) + D), D(a-b) =D(a)-b+a-Db), a,be, o peC.

Thus, a derivation D can be uniquely defined by its action on the generators and
D) =0, o € C.

A derivation D is called evolutionary if it commutes with the automorphism S. An
evolutionary derivation is completely characterised by its action on the generator u
(we often write u instead of ug), that is,

D) =a and D) = S¥@), a e

Thus, it is natural to adopt the notation D,, such that D, (u) = a, for an evolutionary
derivation with the characteristic a. A commutator of evolutionary derivations D,, Dy,
is also the evolutionary derivation [D,, D] = D, with the characteristic c = D, (b) —
Dy(a), whichis called the Lie bracket of the elements a and b. Evolutionary derivations
form a Lie subalgebra of the Lie algebra of derivations of 2.

Assuming that the generators u; depend on ¢t € C, we can identify an evolutionary
D, with an infinite system of differential difference equations

0 (un) = Dy (uy) = S8"(a), nel.

Therefore, we can say that 9, (#) = a defines a derivation of 2.
The Volterra system (2) defines the derivation 9, : 2 — 2, which commutes with
the automorphism and anti-commute with the involution 7, i.e.

S'an:at]'sa T'atlz_atl'T.

The differential difference system (3) defines another evolutionary derivation 9d;, com-
muting with S and anti-commuting with 7. Evolutionary derivations commuting with
d;, are symmetries of the Volterra system. It can be straightforwardly verified that
[0s,, 05,1 = 0, and thus, Eq. (3) is a symmetry of the Volterra system.

It is well known that the Volterra system has an infinite hierarchy of commuting
symmetries. They can be found using Lax representations both in commutative [15]
and non-commutative [17] cases, or the recursion operators [12, 21]. Remarkably,
the explicit expressions for generalised symmetries of the Volterra system (2) can be
presented in terms of a family of nonabelian homogeneous difference polynomials
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[12], which is inspired by the polynomials in the commutative case discovered in [22,
23].

Let us assume that the generators u; of the free associative algebra 2l depend on
an infinite set of “times” #1, t2, ... . It follows from Casati and Wang [12] that the
hierarchy of commuting symmetries of the Volterra system (2) can be written in the
following explicit form

3, () = SXDyu —us™'(x®), CeN, (12)
where the (noncommutative) polynomials X ©) are given by explicit formulae
—L
x® = Z Hulj+1_j . (13)
0<hp<=he=<t—1 \j=1

Here ]_[j_;g1 denotes the order of the values j, from 1 to £ in the product of the non-
commutative generators u, ;41— ;. For example, we have X M =y and

X(z):u1u+u2+uu_1; (14)
X(3) = uruiu + u%u + uuiu + u1u2 + u3 G+ uu_1u
+ujuu_1 + uzu,I + uuz_l +uu_qu_o. (15)

Note that 7(X©) = X® | and thus, we have 7 - 0, = —0y, - 7 for all £. Clearly, we
get the Volterra equation (2) when £ = 1 and the system (3) when £ = 2.

3 Quantisation ideals of the Volterra equation and its symmetry

In this section, we prove the statements on quantisation ideals for the Volterra equation
(2) itself and its symmetry (3) stated in [5].
Let J C 2 be a two-sided ideal generated by the infinite set of polynomials §; ;:

J={ijsi<j,i,jely, fij=uu;—owjjuju;, (16)
where w; ; € C* are arbitrary non-zero complex parameters. Given an ideal J, we
denote the projection on the quotient algebra by 75 : 2 — 2(/J. The quotient algebra
A 7 has an additive basis of standard normally ordered monomials

Ui Uiy » - UG, 3 11 =02 >+ >y, iy €Z, n € N.
Indeed, in 2( J any polynomial can be represented in this basis by recursive replace-
ments Uply, — OpmUnmiy if m > n in the monomials. Thus, the condition (ii) for the
ideal 7 is satisfied. The condition (i) imposes constraints on the structure constants

wn,m of the ideal.
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Proposition 1 The ideal J (16) is invariant with respect to the Volterra dynamics (2)
if and only if

Onntyl =001, Wpm=1ifm—n>2, n,melZ.
Denoting wp 1 = w, we arrive to the commutation relations (6) and the ideal J, given
by (5).
Proof Let us differentiate f; ; (i < j) by the derivation d;, associated with the Volterra
equation (2). We have
o (fi,j) = Ui Uill) — Wil U Wil U — WU U]

— i j(Ujp Uiy — WU U+ WU U — WU UG 1),
We project this equation on the quotient algebra and require

0 =75 (0, (51.))) = @i, j(@is1,j — Dujuipiui + i j(1 — oi—y,j)ujuiui—
toij(ijr1 — Dujpuju + o j(1— o j-1)ujuj1u;, a7
where we use the convention w; ; = 1. When j > i +2, the four monomials u j 4 1u ju;,

wjuiu 1, ujuiyu; and uju;j_ju; are linearly independent. Thus, 5 (8,1 (fi,j)) =0
if and only if all their coefficients vanish since w; ; # 0. This leads to

Witl,j = wi-1,j = wj j+1 = w; j-1 = L.

Hence, we must have w; ; = 1 wheneveri + 1 < j. Using this result, it follows from
(17) that

0 =75 (3 (i,i+2)) = @ii+2(@it1,i42 — Orip1)Ui42Ui1U;.

This implies that all the w; ;4 are equal to each other. Let w = w; ;4. It remains to
check that (17) is valid for j =i + 1. Indeed,

73 (3 Giie1) = @ (1 — w1 iy Duip1uiui—1 + (@i iy2 — Dujgouiyiu; =0,

and we proved the statement. O

Proposition 2 The ideal J (16) is invariant with respect to the dynamical system (3),
i.e. O, (u) = SXPYu — uS (X D) only in two cases:

(a) Wpn+l = @, Wpm = lifm—n=>2, n,melZ;

b) wppr1 = (D'w, wpm=—-1ifm—-—n>2 nmelZ,

where w € C* is an arbitrary non-zero complex parameter.

Thus, Eq. (3) admits the same quantisation 2 /J, (5) as the Volterra system. Addi-
tionally, it admits the quantisation with the ideal J;, (7), which is not invariant with
respect to the Volterra system (2). The latter quantisation is not a deformation of a
commutative system.

@ Springer



Quantisations of the Volterra hierarchy Page90f38 94

Proof We differentiate f; ; (i < j) by the derivation 9d;, defined by equation (3) and
project on the quotient algebra. When i 4+ 2 < j, we have

—1
w; ;73 (3rz(fi,j))
2 2
= (wi+1,jwi+2,j — l)ujui+2ui+1ui + (a)iJrl’j — 1)ujul-+1u,-

2

2 2 2
+ (Wi, jwit1,j — Dujuipu;y — (o, joi-1,j — Dujujui—y — (@;j_y ; — Dujuiui_,

— (i1, jwi-2,j — Dujuini—iui—2 + (@i j410i,j+2 — Dujpoujpruju;
2 2 2 2
+ (a)i_j+1 — l)uj+1ujui + (a),‘,ja),‘,_/_,.l — l)uj+1ujui — (a),‘,_/a),;j_l — l)uju_/_lui
2 2
— (@ j_y — Dujuj_qui — (o, j10i,j—2 — Dujuj_jujou;, (18)

where we use the convention w; ; = 1. If i +3 < j all monomials in (18) are distinct
and one deduces from 75 (8,2 (i, j)) = 0 that

2 2
Wit],jWi+2,j = Oj1] j = Of jOit],j = O jO—] j = O] j = Oj—], j0i-2j
2
= Wi j+10i,j+2 = wi,j.,.] = Wi, jwi j+1
2
=W, jwi -1 = a)i’

jo1 = 01w j2 =1

It follows that w; j = e foralli +1 < j where € = £1. Next let us look at oy, (j; i +3)-
When j =i + 3, (18) becomes

€y (00, (fi.i43)) = €(@it2,i+3 — g 1) Ui 43U 12U 41Ui,

which leads to w; j+1 = wi42,i4+3 for all i € Z. So the ideal is invariant under the
automorphism S2. We now look at 01, (fii+2). Substituting j = i + 2 into (18), we
get

2
ey (0, (fiit2)) = (@i 1i+2 — €07 ip 1)Uy Ui 41U

2 2 2 2
+ (@41 540 — OF jp)Ui2U Ui+ (€Wi41,i42 — Wi ip ) Ui42Ui+1U]

which vanishes if and only if w; ;+1 = €w;t1,i4+2. Combining all the constraints
obtained on w; j, we obtain the two cases listed in the statement. Finally, we check

—1 2
W; 4173 (0, (Fii+1)) = (@i i41€ — @jg1ie2)Uip2ut;y 1 — (@ i41€ — 0i—1,7)

ui+1u,-2ui,1 =0.
Thus, we complete the proof. O

In Sect. 5, we will show that every member of the Volterra hierarchy (12) admits the
quantisation 2{ /J, (Theorem 9) and that every even member of the Volterra hierarchy

3, 1) = SX®Nu —uS~1(X?Y), teN
also admits the quantisation 2 Jp, (Theorem 14).
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In the classical commutative case, the variables u,, are usually assumed to be real
valued. Thus, in the quantum case they should be presented by self-adjoint operators
with respect to the Hermitian conjugation .

Definition 3 The Hermitian conjugation  in algebra 2l is defined by the following
rules

ul:un, aTzé, (a+b)T=aT+bT, (ab)szTaT, uy,,a,be, aeC,

where « is the complex conjugate of o € C.

The algebra 2l is Z-graded as a linear space. It can be represented as a direct sum
of self-adjoint and anti-self-adjoint subspaces

Ql:Ql"'@Ql_, AT ={a eNA; al =a}, A ={laeU; aT:—a}.
The Hermitian conjugation T can be extended to the quantised algebra 2( 7 if the
ideal J is f-stable: 3% = 7.

Proposition 4 The quantisation ideals 3, (5) and Jp (7) are t—stable if and only if
T —1
o' =w .

Proof Indeed, in the case of the ideal J, we have

T -1
(Upttn+1 — wun+1un)T = Up+1Up — @ UpUp4] = _wT(ununJr] - (wT) Un+1ln) € Tq
so =0
In the case for Jp, the proof is similar. O

It suggests to represent w = g2, q = e, where ii € R is a real constant (an
analog of the Plank constant). Thus (u,,+1u,1)T = Uplpy] = q2un+1un. The quantum
Volterra hierarchy, which is consistent with the condition u,i = u,, can be presented
in the form

Uy =qUuiu —uu_y), Uy = qe (S(X(ze))u — uS_l(X(ze))) , £eN. (19

Finally, we present the Volterra system and its first symmetry in the Heisenberg
form in the quotient algebras. In the algebra 2 J, with commutation relations (6),
the Volterra Eq. (2) and its symmetry (3) can be represented in the Heisenberg form

1
Oy (up) = T[Hl, uyl, Hy= Zuk;
4 q keZ

1
i) = 3 L. . Hy =) (uj + ugsiug + upupr),  (20)
keZ

where Hj and H; are self-adjoint algebraically independent and commuting Hamil-
tonians [Hy, Hy] =0in A J,.
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The quantisation 2 J, with commutation relations (8) also enables us to present
Eqg. (3) in the Heisenberg form

1
3t2(’4n) = m[Hz, unl. (21)

Note that in the quantised algebra 2 J; we have H, = H12 and HI = H,.

4 Periodic Volterra hierarchy

In the Volterra system (2), we can assume that the function u, (¢1) is periodical in
n with an integer period M € N, that is, u, = un+pm, n € Z. In this case, the
infinite dimensional system (2) reduces to the M-dimensional dynamical system on
Apr = Cluy, ... up) = A/Iy, where theideal Zyy = (u, —upyp; n € Z). Theideal
Ty is obviously stable with respect to evolutionary derivations. We can take u,, n =
1, ... M as canonical representatives of the cosets uy + Zys, k € Z. The algebra 2y,
is a difference algebra with the induced automorphism S(ux) = t(k+1)mod m Of order
M.

The hierarchy of symmetries (12) of the Volterra system (2) reduces to the hierarchy
of symmetries of the M-periodic system provided we count the subscript k in uy
modulo M. The cases M = 1, 2 lead to trivial equations.

In the case M = 3, the periodic Volterra system takes the form

On (u1) = uouy —uruz, 9y (u2) = usus — upuy, 0Oy (u3) = uiuz — uzuz. (22)
It has an infinitely hierarchy of commuting symmetries:

2 2 2 2
O, (u1) = uju3 + uyuzuy + uuz — upuy — u5uU| — U3UUY,
2 2.2 2
Oy (u1) = u?u3 + ujuzuy +ujuy + uiupuiuz + uiuzuiuz + ujusus
2 3
+ujuzuguz + uuzuy +ujuz — uzu:f — UDUURU] — UDUTU3U]

—u%u% — u%ul — UU3UU| — u3u2u% — mu%ul — u%uzul s

For any M, the nonabelian Volterra hierarchy has a common first integral H =

Ziﬁil Uk-
In the case of the finitely generated free algebra 2A,;, we consider more general
inhomogeneous ideals Jy; C Ay (than (4)) generated by the polynomials f; ;:

Iv={i,j,1<i<j<M,ijeN),

fi,j = uinj — i jujui —oj jur —ni;, (23)

where w; j # 0, w; j, aif M € C and we use Einstein summation convention,

namely o/ jur denotes Zﬁw: 10/ jur-In this section, we explore the quantisation prob-

lem for periodic reductions in the Volterra system and its cubic symmetry.
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94 Page 120f38 S. Carpentier et al.

4.1 Quantisation of the periodic Volterra system

Similar to what we did in Sect. 3, we are able to prove the following statement for the
periodic Volterra equation:

Theorem 5 A nonabelian periodical Volterra chain with period M admits a Jp—
quantisation if and only if the following commutation relations hold:

M =3: uplty1 = odupyiun + Bur +uz +u3z) +n, nels; (24)
M =4 : ujuy = aupuy + Bus + yu; — By, (25)
ujuz = uzuy — Pus + Pua,
uqu) = auiug + Pug + yuy — By,
upuz = auzuy + Puy + yusz — By,
UpUg = Uquy — yusz + yuy,
usug = aqusus + Pus + yuz — By;
M >5:upupr1 = QUpyiUy,

UpUpy = Uply, [n—m|>1, n,m € Zy. (26)

The constants «, B, y,n € C, o # 0 are arbitrary.

Proof When M = 3, the ideal J3 is generated by three polynomials f; 2, f1.3 and f2 3.
We differentiate them by the derivation d;, associated with the Volterra Eq. (22) and
project it on the quotient algebra. We have

2 2\ 2 1 15,2
73, (0 (F1,2)) = o12(01 3023 — Duzuguy + (Ul,z + w1,201,3) uy + (01,201,305 3 — 0y Yuj
3 3 3 2
+ (w1,2w2,301,3 T @307, + 07, — 01,2) uzuz
3 1 3 3
+ <w1Y2w1’302,3 —+ ®],30] 5 = @] 30] ) — 01,2) I7RY5]
2 1 3 3 13 3 3 3 3
Tor2 <w1,3"2,3 + "1,3) uguy + <w1,2(’1,3<’z,3 012013 7912913 “1,2"2,3) u3
3 2 1 2 3 2 2 3
+ <w1,2”1,3"2,3 +@12713 + 012073 = 01,2013 033072 + '71,2) u2
3] 11 3] 13
+ (‘“1,2“’1,3’?2,3 + 1,207 3033 1012013 —0],013+0330],— '71,2) uy
3 1 3 3
+ (1,207 312,3 + 07 211,3 =0 21,3+ 0] 2Mm2,3) -
In the same way, we compute 75, (9;, (f2,3)) and 3, (9, (f1,3)). If J3 is preserved
under the derivation 9;,, all coefficients in these expressions should vanish, which

leads to an algebraic system for w; ;, oi’j, ni,j,1 <i<j<3andr €{l,2,3}. The
only nontrivial solution of this system is

1
W= 3= o ol =0y3=—w2013 r=12,3; n2=m3=—w2n3,
1,

which is the ideal presented in the statement by setting w12 = «, 0112 = B and
nmpz=n.
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The proof of the statement for the case when M = 4 is similar, and we do not present
it here. Let us now prove the last part of the statement concerning the case M > 5.
The condition M > 5 implies that u,, 42, U, 41, Un, Un—1, Uy—2 are algebraically inde-
pendentin A7 /Ty forall n € Z. In the quotient algebra Ay /Iy, 73, (8,1 (fi,j)) =0
for alli < j is equivalent to all terms with the same degree vanishing. We denote its
cubic terms as Q,(3l) Note that the cubic terms of 9y, (f;, ;) are

Uip1UiUj — Ujli—1Uj + UjUj U — Uil jUj—]

— a),-,j (uj+1ujui — ujuj_lui + uju,-+1u,- - ujuiu,-_l) . (27)
It is clear that Ql(’l3,))’L+1 = 0 if and only if w, ,4+2 = 1 for all n. We have

3)
O ni2 = @nt 142 — Onng D Un2Unt1Un + (@nn43 — Ditpp3uniouy
+(1 - a)n—l,n+2)un+2unun—lv

which vanishes when w, 43 = Wh—1042 = 1 and @y 41 = Opt+1.0+2. We set
Wp n+1 = A.

Let k be the distance between i and j modulo M. If k > 2, the sets {i + 1,1, j},
{i,i—1,j}{i,j+1,j}and {i, j, j — 1} are all distinct (elements are taken modulo
M). 1t follows from (27) that, for k > 2,

3
0f) = i, j((wit1,j — Dujuipiu; — (wi—1,; — Dujuju; 1)
i)
+ i (o j+1 — Dujpruju; — (0 -1 — Dujuj_qju;)

implying that w; y1,; = w; j4+1 = 1 forall7 and j. This leads to w; ; = 1 for all 7 and
J .- So far we have proved that w, 41 = « for all n and w; ; = 1 otherwise.

We are now ready to look at the rest terms in 7y, (Bt1 (i, j)). The condition
T3, (8,1 (Fn.n+ 1)) = 0 is equivalent to the following equation (we imply sums over

r):

73y (0 i gttty — wpur 1)) = 75, (0 1 (gt + Un )ity — Oy 1y Uniir)
+ 75y (Urf,n+2ur“n+l - 0’,’,’)”4,11/!;’ (u, + un_1))
+ N1 (Upg2 + Upg1 — Uy — Up—1)
+ M n+2Un+1 — Mn—1,n+1Un- (28)

In this expression, if we look at quadratic terms not containing u;, n — 1 <l <n+4?2
as a factor, we get o, nil = Oifr ¢ {n —1,n,n+ 1, n 4+ 2}. We substitute them into
(28) and get o:;}rl = U,’fﬁrl = 0 after comparing to the quadratic terms in its both
sides. We denote the sum over r of o, _, . u, by X,. The quadratic terms in (28)
becomes

n+l 2 n+1
0= Onn+1Unt1 = Op py1Unt1Un—1 + Zntittng

n n 2
+O'n’n+1un+2un — Up Xy — Opnr1Uys
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which implies that ¥, is proportional to u, and further leads to a,f‘;:}r | =00 =
%, = 0. Finally from the vanishing of linear terms in (28), we have n, n+1 = Np n+2 =
0. Thus, we have that for all n, §,, ,4+1 = Uptp4+1 — ctltyy1u, and §, p42 = Uplpyo —
Up2Up.

We will prove that f, y4m = Unlntm — Unt+mUn for m > 2 by induction. Assume
that we have for all 2 < [ < k that , ,41 = upltpss — Up+iu,. We now compute
91, (Fu,n+k). Using the induction assumption, we have

0 =73, (0 Fnntk)) = 734 Unlnpht 1Unk — Un-pht 1 Un-rklhn

Flp Uyl — Uply | Upik)

= U;:,n+k+lurun+k - U;z;]‘n+k”nur — NMn—1,n+kUn + Nnn+k+14n+k-

Thus, the coefficient o; nktl should be zero whenever r is not n but also whenever
r is not n + k 4+ 1 hence the o’s are identically zeros, from which it follows that
Nn.n+k+1 = 0. Hence, we conclude the induction and complete the proof. O

Note that the proof for the case M > 5 can be directly generalised to the non-
periodic case which means that the ideal J is the only stable ideal for the nonabelian
Volterra flow within the class of ideals where f; ; has the form (23). This justifies our
choice of the ideal J (4) in the case of infinite Volterra chain (2).

4.2 Bi-quantum structure of the periodic Volterra system with period 3

In the classical commutative case, the M = 3 periodic Volterra system (22) is bi-
Hamiltonian [24]. There are two compatible Poisson brackets defined by

{Mn—Ha uplo =1, {up, Un—i—l}l = Up41Up, N E 73
such that a linear combination of the Poisson brackets, called a Poisson pencil,
{ e =A =, Jo+xf{,-h

is also a Poisson bracket for any choice of «, i.e. the bracket {-, -}, is skew-symmetric
and satisfies the Jacobi identity. The system admits two first integrals

Hy =ui +us+u3, Hy=u3upui, (29)

such that Eq. (22) with commutative variables can be written in a bi-Hamiltonian form
O (ur) = {ug, Hao = {ux, Hih, k € Z3. (30)

These first integrals Poisson commute with each other, and moreover, H; is in the
kernel of the first Poisson bracket (is a Casimir element), while H is in the kernel of

the second one

{ur, Hi}o = {ur, Hh}1 =0, ke Zs.
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and H, = (1 — k)H| — x Hj is a Casimir element of the bracket {-, -}..

According to Proposition 4 and Theorem 5, the periodic Volterra system (22) on
the free algebra 23 admits a d;, and 7 stable difference ideal Jg = ( ,fe’h); n € 73),
generated by the polynomials

on ) . in
fn( ) = g UpUpp1 — Qupiuty, —i0, neZz, q=ce",

depending on the two real parameters 0 < i < 7, 6 € R. Thus, we have a pencil of
quantised algebras A% =93 /Ty 5. Algebra 2™ has a central element

H(O, h) = sin(h)Hy + 0(2 4 cos(2h))Hy,

where the self-adjoint elements

Hy = uy + uz +us, €29)
Hy = Z Ug (1) o (2)Uo (3)
€S

= 3% + Dusuzu +16 (2q +q~ D1 +u3) = (@ +2¢7uz)  (32)
are first integrals for the quantum Volterra system

(un)y, = qunt1up — uptp—1), n € Z3. (33)
Moreover, system (33) in algebra 2™ can be represented in the Heisenberg form

(Un)y = ——[Hy. up] =

1
Y Hul
2sinh 3600+ cosam) L2 tn]

With two quotient algebras -9 and A(0-? | we associate the following bi-quantum
structure (a quantum deformation of the bi-Hamiltonian structure (30)) as follows:

choice of parameters 0 20, h=0, g =1 6 =0,0<h<m, g= il
stable ideal in 203 Jg ¢ Jo.n
quantised algebra AC0 = 93 / Jo.0 A0 — 93 / Jo.n
self-adjoint central element Hy = uy +us +uz  Hr, =3(1 + qz)u3u2u1
i

the Heisenberg form of (33) (u,);, = —é[Hz, upl (Un)y = m[Hl, Uy

More work is required to study the quantum periodic Volterra systems with M > 4
(25), (26) as we did for M = 3 above, which is not included in this paper.
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4.3 Quantisation of periodic reductions in the cubic symmetry

In this section, we study the quantisation problem for periodical reductions in the
cubic symmetry (3). In the infinite case, this system admits two distinct quantisations
(Proposition 2).

We claim that:

1. In the case M = 3, the quantisation ideal (23) is generated by relations (24).

2. For odd M > 5, the quantisation ideal (23) is generated by relations (26).

3. Foreven M > 6, there are two distinct quantisations corresponding to the ideal J,
generated by the relations (26) and J; generated by relations

UpUp41 = (_1)na)un+luna
UpUy +Upuy, =0 if n—m| >2, nmeZy. (34)

The case M = 4 is exceptional, it admits three distinct quantisation ideals. One
quantisation ideal is generated by commutation relations (25), and the other two are
generated by homogeneous quadratic commutation relations. The periodical reduction
in the system (3) with the period M = 4 can be written in the form (Here we also add
the constant q2 following (19)):

2 2 2 2 2
8tzun =q (un+2un+lun +Mn+1un + Upqru;, — U Up 43 _Mnun+3un+2_unun+3) s

g= P 35)

where the lower index n € Zg4. In the free algebra 24 = C(uy, ...u4), we consider
the ideal J

J=(ijs 1 <i<j=<4), fij=uuj—owjuju;, (36)

generated by six homogeneous quadratic polynomials f; ;, which depend on six
nonzero constants w; ;. The ideal J is 0,,—stable if and only if 9, (f; ;) € J, 1 <
i < j < 4. This is equivalent to the following system of equations on the parameters
i, j

2 2 2
Wy 4 = 1, W1,403 4 = 1, w2 3 = W2 4W3 4,

2
W12 = W1 4024054, ©13 = O] 403 4. (37)

Solving the above system of equations, we obtain the following statement:
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Theorem 6 A nonabelian system (35) admits a J—quantisation of the form (36) if and
only if the six constants w;_ j take values as in one of four cases:

w12 W13 W23 w14 W24 W34

(a): o, 1, w, w !, 1, ow;
®: o, -1, —o, —o !, =1,
©): —w, -1, ®, —o 1, w;
d: —ow, l, —w, o', -1, o,

and o = q*> = %" where h € R. Moreover, in each of the above four cases the

system (35) is a super-integrable quantum system.

The first and second solutions correspond to the cases (a) and (b) in Proposition
2. Solutions (c) and (d) are new; they are related by the automorphism S of 24 and
thus equivalent. The commutation relations in the case (a) can be extended by non-
homogeneous terms (25), while commutation relations (b)—(d) do not admit non-
homogeneous extensions.

Proof First note that the four cases listed in the statement correspond to the four
solutions of the system (37). It is obvious that in each case the ideal is T—stable if and
only if o' = L. Thus, we can set v = €2, i € R.

We now prove the super-integrability of the obtained system in each case. Let

H =uy +uz +u3 + uq,
which is a first integral for the quantum system (35) in all four cases. Moreover, in all

four cases the quantum system (35) for self-adjoint variables u,, can be written in the
same Heisenberg form (21):

i
O, (un) = m[m, ), n € Za. (38)

In the case (a), corresponding to the quantisation of the Volterra system, the quanti-
sation ideal J, is generated by the commutation relations between the variables uy as

follows:

UIUY = WU, UIU3 = U3U|, U4U] = OUIU4,

UU3 = WU3UD, UU4 = U4UD, U3U4 = WULUS. 39)
The algebra 204 T, has two central elements
Hi = usuy, Hor = uqus.
Since the central elements of the algebra commute with the Hamiltonian, they are first

integrals of the system (38). The system of four Eq. (35) admits three commuting first
integrals, and therefore, it is super—integrable.
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In the case (b), the quantisation ideal J, is generated by the commutation relations
between the variables uy as follows

Uijuy = wuruy, UIU3 = —U3U], U4U] = —WUTU4,

UDUZ = —WU3UY, UQU4 = —U4UD, U3U4 = OULU3. (40)
The dynamical system (35) on 24 J;, admits two first integrals
Hy = usuy, Hy = uquy.

Elements H;, H, anti-commute with H, but H2, H;, and H, commute with each
other. Thus, the system (35) is super—integrable on 2l4,7J;. Taking H; and H; as
Hamiltonians, we can find two commuting symmetries of the quantum Eq. (35) on
Ay, Tp, i.€.

0 (up) = [H1, up] = 2usuiuy,, 0y(uy) = [Ha, uy] = 2uqusuy,.

The algebra 24,7}, has three central elements

2.2 2.2
H = uguzuruy, Hi =uzuy, Ho=ujus.

In the case (c), which is new, the quantisation ideal J. is generated by the commu-
tation relations between the variables uy as follows:
Uiy = —wul], UIU3 = —U3U], U4U] = —OU]U4,
Ugu3 = wu3uz, UU4 = U4U2, UU4 = OULUZ. (G3))

The dynamical system (35) on 204 J. admits the first integral H; = u3u; commuting
with H?2. The algebra 24 /J. has two central elements

Hy| = u%u%, Hy = ugqus.

The first integrals H?, H and H, are obviously independent, and therefore, system
(35) on Ay T, is super—integrable.

The last case (d) can be obtained from the case (c) by the cyclic permutation of the
variables {u1, uy, us, ug} — {uy, us, uq, uy}. O

In the case M = 5, the only 9;,—stable ideal is defined by (26). The system admits
three commuting first integrals

2
Hi=Y uy, Hy= ) @ +upupsr +upsim), H=usugusuuy,
kGZS k€Z5

where H is a central element of the algebra. The Heisenberg equations corresponding to
H; and H> result in the periodic Volterra system and its cubic symmetry, respectively.
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5 Quantisation of the nonabelian Volterra hierarchy

In this section, we extend Propositions 1 and 2 in Sect. 2 to the whole nonabelian
Volterra hierarchy. We show that the quantum ideal J, (5) is invariant with respect to
every member of the hierarchy (12) (Theorem 9) and that the quantum ideal Jp, (7) is
invariant with respect to every even member of the nonabelian Volterra hierarchy

B, () = S(XNu —uS™'(X®Y), CeN,

that is, odd degree symmetries of the nonabelian Volterra equation (Theorem 14).

We are going to use the explicit expressions given by (12) to prove these statements.
First we introduce some notations and definitions inspired by the monomials appearing
in X0,

Leta = (a1, a2,...,0r) € 7k be a k-component vector. For each « € Zk, we
define the k-degree monomial uy = Uy Ug, - - - Ug,. We denote the degree of a by
|a| = k. Conventionally, we write (a; + 1,020 + 1, -+ ,ax + 1) as @ + 1. Thus, we
have Siu, = uy+i fori € Z. The number of variable u; in monomial u, is denoted by
V(e 7). Similarly, we denote by v(«, > i) the number of k > i such that u; appears
in uy, counted with multiplicities. We say that two monomials u, and ug are similar
written as o ~ B if v(a,i) = v(B,i) foralli € Z.

We introduce two sets of distinguished monomials, for k > 1

A=loeZ k= =0 k=120 20 apr+1za, i=1..k=1};

Zg = {oz eZk|a,~+1+12ai >aip, =1, k— 1}-

We say that a k-degree monomial u, is admissible if @ € A¥ and is nonincreasing if
ae zk
s
Using these notations, we can simply write the expression X®) given by (13) as

X® =" u,. (42)
ac Ak

Given an ideal J, either J, or Jp, the canonical projection 5y : 2l — 2(/J acts on
X® as follows:

Xy = 3" Plwus,
ae.AMZé

where Paj (w) is the unique polynomial in Z[w] such that for & € A* N Zg,

Pl@ug =75 Y up|. (43)
Be Ak p~a
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We often write it as P, (w) if there is no ambiguity.

J
We say that two polynomials f, g € 2 are J—equivalent denoted by f =~ g if
f — g € J. Polynomials f and g are J equivalent if and only if m5(f) = m3(g).

5.1 Quantisation of the Volterra hierarchy

In this section, we will prove that the ideal J, defined by (5) is preserved by the
symmetry flows (12), for all £ € N.

To do so, we need to study the polynomials Patj “(w). Here we focus on the quantum
ideal J,. For the sake of simplicity, we write the polynomials as Py (w), which are in
Z|w]. For example, we have

ﬁja(X(l)) =xU =y ﬂja(X(z)) =Xx® = uiu + u® + Uu_1;
T3, (X(3)) = upuiu + u%u + (1 + a))ulu2 +ud+ 1+ a))uzu_l
+uiuu_1 + uu2_1 +uu_ju_s.
This defines the polynomials Py (w), e.g. P,0,—1)(w) = 1 4+ w. In general, we prove
the following identity:

Proposition7 Let« € Zg. Then, we have
Py(@) + 0" @O Py (0) = Py_1(®) + 0”@V Py (w). (44)

Proof First note that this formula holds whenever o« ¢ A* or o« — 1 ¢ AF since for
a € 2K, o € A¥ if and only if v(er,0) # 0. If &« ¢ A¥, then Py(w) = 0 and
V(e, 0) = 0. Similarly, if @« — 1 ¢ A* then P,_1(w) = 0 and v(e, 1) = 0. Thus, the
formula holds in both cases.

We now assume that « € A% and @ — 1 € A*. Consider the set E,, defined as

Eu={Bel'f~o prz0 =1 fifm+li=1..k-1].

We split E,, in two different ways by defining four subsets of E:

Ay ={B€Ey|Br =0}, Ba={Be€EyIfr =1},
C(Xz{ﬁeEtY'ﬁk:]}v Da:{IBGEa|ﬂ1:O}~

Itis clear that E, = A, UCy = By U Dy, Ay N Cy = @ and B, N D, = #. We now
have

T3, Z”ﬂ =73, Z”ﬁ + 73, Z”ﬁ

BEE, BeAy BeCy
=73, Z ug | +my, Z ug | . 45)
BEBy BeDy
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We are going to evaluate each term in it. Note that A, = A* is the set of all elements
equivalent to . Thus, by definition (43), we have

w3, | D0 up | = Pal@)ug. (46)
BeAa

Forany 8 € By, wehave p —1 € AXand p — 1 ~ « — 1 and thus

Ty, Z ug =S7Tja Z Upg—1

BEBy B—le Ak p—1~a—1
=S (Py—1(@)ug—1) = Py_1(w)ug. (47)

Let B € Dy. Thereis i > 0 for some 0 < i < ksince f ~ a« and v — 1 € A*.
Assume that there are 0 < m < k positive components at positions i < ip <

- < i, in B. Starting from i1, we find the first zero entry on the left of iy, that is,
Iy = maxj<;<j,—1 {B; = 0} and move the components from /; to i — 1 to the right
of i1 and obtain B! with

'B.}=ﬂf’1§j§ll_1; ,3111=.3i1§
Bl =Bj-1.h+1=<j<ii Bj=p.i+1=<j=<k

Forﬂl,weﬁndtheﬁrstzeroentry ontheleftof iz, thatis, />, = max; +1<j<i,—1 {ﬂjl = O}

and move the components from /5 to iy — 1 to the right of i> and obtain 2. We repeat
this procedure for all positive components in 8. Thus, we obtain a k-component vector
y = B! € A,. This leads to

T3, Z”ﬁ =73, Za)”(ﬁ’l)uy

BEDy yEAy

_ (,z)v(a’l)ﬂja Z uy | = a)‘)(a’l)Pa(a))ua' (48)
yEAy

Similarly, let 8 € Cq. There is B; < 0 for some 0 < i < k since 8 ~ « and « € A¥.
For all nonpositive components, we move the first component being 1 on its right to
its left, taking with all the components of B on its left that are larger than 1. Thus, we
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obtain a k-component vector y € B,. This leads to

3, Z ug | = ng, Z wv(ﬁ,O)uy

peCy YE€By

= U)v(a’o)ﬂfia Z Uy | = "0 Py—1(@)ugy. (49)
y€By

We substitute (46)—(49) into (45), and thus, we obtain the required identity (44). O

In the same way as the proof of Proposition 7, we are able to show that

Pogm (@) + @" @™ Pyt 1 (@) = Pygm—1(®) + 0”@ =™ Pyt (w) for allm € Z.

(50)

This leads to the following statement:

Corollary 8 Let o € ZX. There exists a nonzero rational function Ry (w) € Q(w) such
that

Poyim(@) = Ry(w)(1 — 0" @“™™) forallm € 7. (51)

Proof For a € Zg, there exists [ € 7Z such that v(e 4+ [,0) = v(a, =) # 0. By
iterating (50), we get

Poyim(@)(1 — 0" @Dy = Pyyi(@)(1 — 0" @™ forallm € Z.
Hence, choosing
Ro(®) = Poyi(@)(1 = 0”@~ ")~
we obtain the required result. O

Theorem 9 The quantisation ideal J, is stable with respect to every member of the
Volterra hierarchy 0, (u) = SXOyy —uS~1(X®), ¢ eN.

Proof We fix k and let u; = Q™ be the (k + 1)-degree symmetry of the Volterra
equation given by (12). Since S(J) = J, we only need to show that

3, (Bt (uuty, — a)‘slvmumu)) =0, meN.
This means that

3, (Q(k)um +uQ® — o g®y iy, Q(k)) —0.

@ Springer



Quantisations of the Volterra hierarchy Page230f38 94

We rewrite it in terms of X. Here we simply drop its upper index of X ®).

) S
73, (UXmgrttm — @ Xttt — Uty X1 + 0" 1y Xy u

+ Xiutty — 0w X — uX ity + a)‘sl””umuX,l) =0. (52)
It is clear that, for any o € Zg, we have

Ja (e —
Uttty ~ o@D V@D i,

v(e,m+1)—v(a,m—1)

Ja 5
UpUgU = 0" w UgUUpy ,

v(e,m+1)+v(a,1)—v(a,—1)—v(a,m—1)

Ja
UUpmUyg = © Uy Uy, .

Note that for all [ € Z, we have

73, (X1) = 73,(8'X) = S5, (X) =8| D Pau(@ita | = Y Pal@)ug
ané ané
= Y Pat(@te.

ané

Here the sum is over all ¢ € Zg including the ones not in A* . Hence, the left-handed
side of (52) becomes

D2 (Pai1@) = Pacpn @) @07 @m0 (D=l 1) oy gty

ané

T Z (Pa—l(w) _ Pu+l(w)a)u(ot.l)—v(a,—l)) (1 _ wv(a,ln+l)—v(a,n1—l)) 703, (Uit

aEZé

Forany o € Zg, we need to check that the coefficient of 75, (uyuu,,) vanishes. Using
Corollary 8, it amounts to compute

(1 — Ut _(q _ wv(a,mf1))a)v(a,m+1)7v(ot,m71)) (wv(a,l)fv(a,fl) _ 1)
+ (1 — @D (1= wv(a,—l))wu(a,l)—v(a,—l)) (1 _ a)v(a,m+1)—v(¢x,m—1)> ’

which equals zero after the simplification, and thus, we complete the proof. O

5.2 Non-deformation quantisation for all odd-degree Volterra symmetries
In this section, we will prove that all odd-degree symmetries of the nonabelian Volterra

hierarchy admit the quantisation Jp, that is, the ideal J;, defined by (7) is preserved
by the symmetry flows (12) when ¢ is even. We extend the automorphism S and the
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antiautomorphism 7 to the algebra 2[w] by letting S(w) = 7 (w) = —w so that these
operators are well-defined on the quotient 2(/Jp,.

The ideas guiding the proof essentially are the same as in the previous section with
the notable difference of the equivalence of Proposition 7, which is much harder in
this case.

As in the previous section, for an ideal J,, we define uniquely Py (w) € Z[w] by
the canonical projection 75, : 2 — 2A/J) acting on X®). For example, we have

Jij(X(l)) =x0 = u; 713b(X(2)) =x® = uiu + u® + uu_1;
ﬂjb(X(3)) = upuiu + u%u + 1+ a))ulu2 +ud+ (11— w)uzu_l

+uiuu_1 + uu2_1 +uu_ju_s.

This leads to the polynomials Py (w), e.g. P,0,—1)(®) =1 — w.
To prove that the ideal J;, defined by (7) is preserved by the symmetry flows Q %,
we first prove the equivalents of Proposition 7 only in this case for o € Zg‘ . We now

assume that o € A% and @ — 1 € A%, In the same way as we prove Proposition 7,
we define the set E, as

Ev={per®|p~a 120 pu<1 fi<p+li=1.2%—1]

and split E in two different ways by defining four subsets of E,:

Aa:{ﬂeEa|,32k§O}7 Ba={ﬂ€Eall3121},
Co={B€Ey|Bax =1}, Do ={B € Ey|B1 =0}

It follows that

T3, Z“ﬁ =73, Z“ﬂ + 73, Z"‘ﬂ

BEeE, BeAy BeCq
=1y, Z ug | +my, Z ug | . (53)
BEB, BeDy

We need to evaluate each term under the ideal Jp. Since A, = A% is the set of all
elements equivalent to «, it follows from (43) that

w3, | D up | = Pu@)ug. (54)
BeAq
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Forany 8 € B, note that 8 — 1 € A% and B — 1 ~ « — 1 and thus

Ty, Zug 73, S Z ug_1

BeB B—1e A% B—1~a—1
Py 1(—0)Sug_1 = Py—1(—0)ugy. (55)

We are now left to evaluate the terms for D, and for C,,, and we do so in Propositions 10
and 11, respectively.

Proposition 10 Letuy = uyuuy,, wherea = (1,0, ---,0,y) € Zzzk. Then we have
7y, [ D0 up | = (1" @D Py (@)ug. (56)
BEDy

Proof We divide p and y into n parts and denote each part by a; for p and b; for y,
where i = 1,2,---,n, such thata = (ay,...,a,) ~ pwand b = (by,...,b,) ~ y.
Note that it is possible that the length of some a; (and/or b}) is zero, in which case
we take the convention u, = L, |aj| = 0. Clearly we have

P = 0,b1,a1,0,b3,a2...,0,b,,ay) € Dy; q = (a1,0,b1,a2,0,b2...,a,,0,b,) € Aqy.

Thus, in the quotient algebra, we obtain

n n
3, (1—[ uub,-ua,-> = [T (—nyrs=D+alibl Dy,

i=1 i=1

n
— wv(u,l)(_I)V(M,ZZ)(_l)Z}Ll lai||b;| l_[ Uy, UL, .
i=1

We denote > i, |a;||bi| by a - b and note that v(u, 1) = v(a, 1) and v(u, > 2) =
v(a, > 2). Hence,

. ( 3 u,,) . (Z 1‘[,,)

peDy (@a,b)i=1

:wv("‘")(—l)”(“*>2)ngb( Z ll[ua,uu;,,— Z li[ua,.uuhi)

G-b=0mod 2 i=1 G-b=1mod 2 =1

n n
= wv(“")(—l)”(“’zz)ngb (Z l_[”ui”“hi -2 Z l_[ua,-uu;,,.) .
geAy i=1

G-b=1mod 2 =1
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Note that the first term gives us the required identity (56) using (54). Thus, we are left
to prove that

n
T3, Z l_[”ai””bi =0.

d-b=1mod 2 i=1
From now on, we identify a pair of vectors (a, l;) with [ 7 uguup,. Let
Y ={@b), a-b=1 mod 2}.

We split this set in two equal parts Y and Z after the following remarks. Let ¢ be the
number of indices i such that |a;| and |b;| are both odd and d the number of indices
such that |a;| and |b;| are both even. When none of this is true, the parity of |a; | + |b; |
is odd.

Since the length of « is even , the parity of || 4 |y| is the same as n. Hence,

n
n:Z|a,~|+|b,~| mod2=n—c—d mod?2,

i=1

which implies that ¢ + d is even. Moreover, we know that a - bis odd, that is,

n
1= laillbj] mod2=c mod 2.

i=1

Thus, we have that both ¢ and d are odd.

LetZ = {iy, ..., ic+q} be the set of indices i such that |a;| + |b;] is even (We know
that this set has cardinal ¢ + d). Let [ be minimal so that |a; | and |a;,,,,_,| have
different parity. Such / exists and is unique. Indeed, if it did not exist, we would have
la;,| = laij, ., | for all l implying that ¢ and d are even.

We denote i; by k(a, 5) and iy g1 by m(a, E). However, in the sequel we will
abuse notation and simply write k and m, knowing that we have fixed the element
(a, l;) in the set . Based on these definitions, we put the pair (a, l;) in the set Y if
lak| is odd and we put it in Z if |ax| is even.

Let g € Y and uy = []/_, uguup,. We are going to construct a bijective map

J
¢ : Y > Z such that ¢ (uy) ~ —ug4 in the quotient algebra for all ¢ € Y. Define

O (ug) = (ém—l-n";:k)(uq)»

where the maps &; are defined in Lemma 17 in Appendix. Thus, ¢ only transforms the
product from the block & to the block m, i.e. [7"; uqg,uup, .

By definition of the maps &;, if we represent ¢ () as (C, c?) we see that ¢ and dj
will have even length and that ¢, and d,, will have odd length. It means that ¢ (u,) is
an element of Z, but also that we still have k(¢ (u4)) = k and m (¢ (uy)) = m. That is
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because we have left the first k — 1 blocks and the last n — m blocks intact. Since the
values of k and m are unchanged by ¢ and that all the &;’s are bijections, it follows that

J
¢ is a bijection as well. So it only remains to check that ¢ (i) X —uy. By Lemma
17, we have

Tp
(b(uq) = (—1)’71,{,1
with
n = |br| + laks1| + [beg1l + 1+ lags2l + ... + bp—1] + 1 + |am]

We know that || =1 mod 2 and |a,,| = 0 mod 2. Hence,

m—1
n=14 > (al+b|+1) mod2=1 mod?2
i=k+1
since there is a even number of indices i for which |a;| = |b;| between k and m. O

Below we give an example to illustrate this proposition.
Example 1 Leta = (1,1,0,0,0, -1). We write as « = 11000-1 for short. There are
18 elements in the set A, . Indeed, to get an admissible monomial equivalent to o one
needs to pick an element in
{11000, 10100, 10010, 01100, 01010, 00110}

and an element in

{000 — 1, 00 — 10, 0 — 100}.
Under the ideal Jj, we have

Py(®) = 1 +20* + 20" + °.

Similarly there are 18 elements in D, since they are determined by the choice of an

element in {01100, 01010, 01001, 00110, 00101, 00011} and an element in {000 —
1,00 — 10, 0 — 100}. So we have

3, Z ug | = 0? + 20 + 200 + ¥ = a)zPa(a)),
BeDqy
which is consistent with (56) since v(a, > 2) = 0 and v(«, 1) = 2.

Following the line of Proposition 10’s proof, with this example we first give a full
description of the set X, then splititas ¥ = Y U Z. An admissible monomial is given
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by a partition of |aj| + |a2| + |az| = 2 and a partition |b| + |b2| + |b3| = 1. For this
monomial to be in X, we need |a1||b1| + |a2||b2| + |az||b3]| to be odd. It must be that
(|b11, 1b2], |b3]) is one of (1, 0, 0), (0, 1, 0) and (0, O, 1). Hence, there are 6 elements
in X:

¥ ={10-1100, 1010 — 10,010 — 110, 01010 — 1, 10 — 1010, 10010 — 1},
where 3 elements belong to Y, namely

Y = {10—1100, 1010—10, 10—1010}.
For each element in Y, we first identify the blocks k and m, to remove a 1 and a —1
from the block k& and to add them to the block m. We now write Z in the same order,
thatis, Z = ¢ (Y):
Z = {010-110, 01010-1, 10010-1}.

One can check that 73, (3 _gcx up) = 0and 73, (3 _gey up) = =73, Qg7 up)-

Proposition 11 Letuy = uyu"u,, wherea = (0, 0,---,0,y) € Z2Zk. Then, we have
w | Y up | = (D", (—w)uy. (57)
BeCqy

Proof Note that 8 € C, if and only if 7S~ () € D7 (4—1), where 7 is the antiauto-
morphism. Hence, we have

78 1(Cy) = Dr(a-1).

Moreover, by definition of the map 7, it is clear that 7 (Aq—1) = AT (y—1). Using
these facts and Proposition 10, we obtain

Supg=8T| Y T8 'up) | =8ST| >

BeCy BeCy BEDT (a—1)

J
2 ST [ (1) T @022 T @1, Z ug

BEAT (@—1)
J J
Zb (_l)v(a,s—l)wv(a,O)ST Z Mﬂ é (_1)])(0!,20)0)1)(0[,0)8 Z Mﬁ
BEAT (a—1) BEA4—1

J 3
2 (—1)"@200 @08 (P (@ug-1) = (=120 @O P, | (~w)uq,
which leads to (57) since o € Zzzk. O
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Having evaluated all terms in (53), we are now in the position to prove the similar
result as Proposition 7 for the ideal J;, defined by (7).

Proposition 12 Let o € Zg‘. Then, we have

Py(w) + (=1)"@=0" @0 p, (—w) = Py_j(—w) + (= 1)@=V @D P ().
(58)

Proof First note that this formula holds whenever & ¢ A% ora — 1 ¢ A% in the
same reason as in the proof for Proposition 7. When o € A* and o — 1 € A%, we
substitute (54)—(57) into (53) and this leads to the required identity (58). O

Similar to Corollary 8 for the case of ideal J,, we have the following statement for
the case of ideal Jp:

Corollary 13 Let @ € Zg‘. There exists a nonzero rational function Ry (w) € Q(w)
such that

Pyim(—1)"w) = Ry(w)(1 — (—1)V@==mtmv(e,—=m) (e, —m)y for allm € 7.
(59

Proof Without the loss of generality, we assume thato — [ € .AZk, forO0 <l <gq.Let

Py(w)
1— (_l)u(a,EO)wv(ot,O) :

Ry(w) =

The identity (58) implies that
Ry—1(—w) = Ry(w).
Thus, for 0 <[ < g we have

Pact(—)®) = Ra—i (=) (1 = (=1 20D grieh)

= Ry() (1 _ (_l)v((x,Zl)+lv(a,l)wv(oz,[)> _

When o +m ¢ A%, we have Py, (w) =0 following the definition of (43). O

Theorem 14 The quantisation ideal 3, is stable with respect to every even member of
the Volterra hierarchy o,, (u) = S(X@)y —uS—1(x@9), reN.

Proof Letu; = G = Xiwu — uX(_zf), where X @9 is the sum of all admissible
monomials of size 2¢, £ > 1. Let k > 2. We want to show that d; (uuy + ugu) is in
the ideal Jj. By definition of u,, this means that

Ty, (Gur +uGr + Gru +urG) =0, (60)
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or, in terms of X (we drop its upper index):

uXprug + Xpprugu — uup Xg—1 — up Xp—1u

J
+ Xquup +urpXu —uX_qup —uruX_q ZbO. (61)

Let us fix an element B € Z2¢. We are going to show that the terms equivalent to
uguui modulo multiplication by an element of Z[w] in (61) cancel out. It is clear that

wugig 2 (—1)?BOHED W ED=VE=D

g 22 (—1) BRHEIHD B R EED

J k
uuug :” (_I)V(ﬁ,k)+V(ﬁ,k+(—l) )+v(B,0)+v(B,1)

@ BIFDHVED =V B0V Bk

We know that for all m € Z,

73, (Xm) = Y Pul(—=1)" @)ty ym.

ané"
Hence, the Z[w] coefficient of uguuy in uXyyux + Xprqupu is

Pﬁfkfl((—1)k+1w)((_l)v(ﬂ’o)-‘rv(ﬁ’l)a)v(ﬂ’1)_1)(/3’_1) _ 1)

We compute the terms coming from X_;_1, X; and X_1 in a similar way. Thus, to
prove that the coefficient of uguuy in (61) is zero amounts to check that

0= Pp_i_1 (= )F o) ((— 1) BO+HBD rBH=vB=D _ )
+ Pﬁ_k_H((_1)k*1w)(_1)”(,3sk)+v(/3,k+(71)k)a)v(ﬁ,kﬂ)fv(ﬁ,kfl)
(1-— (_1)v(ﬁ,0)+V(/3,l)wV(ﬁ,l)—V(ﬂ,O))
+ Pg_1(—w)(1 — (_l)v(ﬁ,k)+v(ﬁ,k+(—1>k)wv(ﬂ,k+1)—u(ﬂ,k—1))
+ pﬂH(_w)(_1)V(ﬂ,0)+v(ﬁ,1)wv(ﬂ,l)—v(ﬁ,—l)
((_1)v<ﬁ,k)+v(ﬁ,k+(—1)k)wu(ﬁ,k+1)—u(ﬁ,k—1) - .

@ Springer



Quantisations of the Volterra hierarchy Page310f38 94

Using Corollary 13, we need to verify

(1 = (= 1)V B2 DHEEDVBIHD B+ (VB0 D (B D=V =) _ 1y
+ (- (_l)v(ﬁ.2k—1)+(k+l)v(ﬁ,k—l)wv(ﬁ,k—l))(_l)v(ﬁ,k)+v(ﬁ,k+(—l)k)wv(ﬁ.lﬁ—l)—v(ﬂ,k—l)
X (1 = (=1)PBO+VED v(BD=v(B.0)y
T (1= (=Y BZDHED By _ () BOHVEIHDO o Bkt D=v(B k1))
T (1 = (=) B==DH0(B.=D (v (B~ 1)) ()W BO+v(B.D) (B D=v(B.~1)
X ((=1)PBRHVBIHEDO B DB _ 1)

=0

,and thus, the identity (60) holds. The proof that 75, (BT (ugug+1 — (— 1)ka)uk+1 uk)) =
0 for all k € Z is similar and we will not repeat it. O

6 Summary and discussion

In this paper, we develop the method of quantisation of dynamical systems defined on
free associative algebras based on the concept of quantisation ideals [5]. It enables us
to determine possible commutation relations between the dynamical variables which
are consistent with the dynamical system and define associative multiplication in the
quotient algebra. The method does not use any information on the Poisson structure
of the dynamical system and enables us to find non-deformation quantisations of the
system. To determine commutation relations consistent with a system is a very first step
to its quantum theory. Next steps will require the development of the representation
theory for the quantised algebras obtained and study the spectral theory of the operators
involved.

In this paper, we explicitly proved that the nonabelian Volterra system (2) and its
infinite hierarchy of symmetries admit the deformation quantisation with commuta-
tion relations (6). We also proved that the sub-hierarchy, consisting of all odd degree
symmetries, admits a non-deformation quantisation with commutation relations (8).
The existence of non-deformation quantisations is quite surprising. Further study is
required to explore the properties of these new remarkable quantum algebra and quan-
tum integrable equations.

Recently, when the paper has already been submitted to the journal, we found
explicit expressions for the infinite sequence of quantum Hamiltonians H,, corre-
sponding to the J, quantisation of the Volterra hierarchy

¢
o —1
Ho=3 ). v 1 Le(@tatk,
keZ ccE.AS

where .Aé ={a € A'n Zé; oy = 0}. Assuming that o = €2, 1 e R, the
Hamiltonians H, are self-adjoint HZ = H;. They commute with each other, and the

dynamical equations of the quantum hierarchy can be written in the Heisenberg form
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[compare with (20)]:

i
Btl(un)zm[Hg,un], I’lEZ, ?eN.

We have also found explicit expressions for self-adjoint commuting quantum Hamil-
tonians corresponding to non-deformation quantisation (8) and present the quantum
hierarchy with even times in the Heisenberg form. A detail proof of these results will
be published elsewhere soon.

The Volterra hierarchy admits periodic reductions with any positive integer period
M . We have shown that the Volterra system with periods M = 3, 4 admit quantisations
with non-homogeneous commutation relations (Theorem 5). When M = 3, we proved
the resulting quantum system is not only super integrable but also admits bi-quantum
structure, similar to its bi-Hamiltonian structure in the classical case. The cubic sym-
metry of the Volterra system with period M = 4 admits three distinct quantisations.
In each case, the quantum system is a super-integrable systems (Theorem 6). Systems
with periods M > 5 require more work, they have not been studied in this paper in
any detail.

The methods developed in [5] and this paper can be applied to the nonabelian
Narita—Itoh-Bogoyavlensky lattice [17]

P
w=y (ugu—uu_y), peN. (62)
k=1

The Volterra equation is corresponding to the case when p = 1. Our study shows that
system (62), and all equations of its hierarchy admit the quantisation with commutation
relations

Uplpik = OUp iUy, 1 <k < p, gty =upty, |n—m|>p n,melZ,

where w is a nonzero constant. The proof of this statement will be published elsewhere.
These commutation relations were also obtained by Inoue and Hikami [20] using ultra-
local Lax representation and R—matrix technique.

Besides quadratic ideals, our computations for the nonabelian Volterra equation
and its lower degree symmetries suggest that there is a d;,—stable ideal generated
by quadratic and cubic homogeneous polynomials. For example, as far as we have
checked, the first few symmetries in the nonabelian Volterra hierarchy leave the fol-
lowing cubic ideal invariant:

J = (Uptpi1Up—1 — Upp1Un—1Up , Uplly — Uply; |n—m|>1, n,m e Z).

Further research is needed to study the properties of the Volterra chain which is well
defined on the quotient algebra 2 3. Very little is known about this new invariant
ideal and the quotient algebra which does not satisfy the condition (ii).

The concept of quantisation ideals has not been linked yet with Lax representations,
recursion operators, master symmetries and other objects associated with the theory
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of integrable systems. We think that further development of this theory will enable us
to embrace a wide range of integrable systems as well as to clarify and simplify rather
technical proofs of the statements presented in this paper.
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Appendix: Lemmas used for the proof of Proposition 10

In appendix, we are going to prove the lemmas used in constructing the bijection map
between sets Ay and D, (Proposition 10) in Sect. 5.2.

Let / be any integer. We denote by A; the set of admissible monomials of the form
uquiup satisfying

(i) both a and b have components greater than / if they are not empty.
(ii) there exists a suffix d of a of odd length a = cd where c is either empty or ends
with [ + 1.
(iii) if b is non-empty, then it ends with / 4 1.

If the length of d in (ii) is minimal, we say that d is the minimal odd suffix of a.
We denote by I'; the set of admissible monomials of the form u,u;u; where

(i) both a and b have components greater than /.
(i1) there exists a prefix ¢ of b of odd length b = cd where c ends with [ + 1.
(iii) b ends with [ + 1.

If the length of ¢ in (ii) is minimal, we say that ¢ is the minimal odd prefix of b.

Lemma 15 For alll € Z, we construct a bijection W : A; — T'j such that for all
x € Ay, g, (Y (x)) = (=Dl x. Moreover, if x = uqujup and Y (x) = ucujug, then
lc| = |a| — |m| and |d| = |b| + |m|, where m is the minimal odd suffix of a.

Proof We construct v by induction on |a| + |b|. The only element of length 2 in A; is
uj4+1u;, while the only element of length 2 in I'; is uju;1. We let ¥ (uj41u;) = uju4q.
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The minimal odd suffix of u; is itself, and we have 75, (uju;4+1) = (—l)la)ul+1ul;
hence, the statement of the lemma holds for elements of length 2.

Suppose that we have constructed y for all lengths strictly less than n satisfying
the statement. We now construct i for elements of length n and prove it satisfies the
statement. Let u,u;up, be an element of A; of length n. Let d be the minimal odd suffix
of a. Explicitly, this u, has the form ueu;11uq w1 - - “Ud,Ul+1, where the |d;|’s are
odd and |e| is even (hence possibly e is empty). Note that in this decomposition of u4,
the elements d; and e do not contain any j < [ 4+ 2 and all end with [ 4+ 2 (except if
e is empty). Hence forall i =1, ..., p, u;41ug, is an element of I'; | whose length is
strictly less than n. By the induction hypothesis, there exist f; of odd length and g; of
even length such that

U i dy) = ugupiug,.
Note that f; does not have a proper odd suffix due to the last assertion in the
lemma. Recall that all elements in f; and g; are greater than [ 4+ 1. The element

ey~ (uigug,) -+ U (i ua,uig is well defined. It has exactly the same (odd)
length as d without any proper odd prefix and

-1 - I+1 3
w5, el ™ urgrua,) - g, uren) = (=D o) Pugup g uig - ua,uig

We let

-1 —1
Vuquiup) = ucupuey ™ (Uiiua) - ¥~ (Ui41Ug, ) ui+1Up.

Note that the last statement in the lemma is satisfied. Let

-1 -1
X =uey ™ (Upprg) Y~ (Ui, ui4i.

It has odd length and the number of u;11 in x is p + 1. Thus, we have in the quotient
algebra

) = (1) HEDPHD 4, Pt

73, (U x XU

hence,

-1 -1
7y, ey ™ (Uiprg,) - ¥~ (Uip1ug, ) ui41)

i
=75, (U x) = (—1) wueutjprug w1 - - - ua,ui+1u]
and a fortiori,
!
75, (W (Uaupup)) = (—1) wuquiup.

We know that there are as many elements of length n in I['; as in A;; hence, it remains to
check the injectivity of v for length nn. Suppose that we have ¥ (ugujup) = (uzuiug).
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In other words, we have

—1 —1
ucuiuey ™ (Uipitgy) -+ Y~ (Ui1ud, ) ui+1up

= uguluglﬁ_l(ul+1ud~l) . 1,0_1(141-{-1”(]‘1)”1-&-1“5
This equality implies that ¢ = ¢ so we can simplify it slightly:

ue ™ uigruay) - igua, ) uieup
= Mél”_l(ulﬂugl) e 1P_l(Ml+114[7q)ul+1u,;
Recall that uetp’l Wps1ugy) - 1/1’1 (u1+1udp)ul+1 is the minimal odd prefix of the
left hand side and that uglp’l(ulﬂujl) e w’l(ulﬂu‘;q)ulﬂ is the minimal odd
prefix of the right hand side. By unicity of the minimal odd prefix, they are equal. In

particular, we have b = b and p = ¢q. Recall the definition of f; and g; such that
w_l(u1+1udi) = ufujy1ug . Similarly, we write

1/f_1(141+114(ji) = UG
We have
Ugol fiUll41Ug U — fouppy - g Ui, = Ugolh fUILIUG U F UL -~ U g U1 UG,
where we have let go = ¢ and gg = e. Therefore, we have foralli =0, ..., p — 1
gifir1 = &i fit1.

Recall that both f; 1 and f; are their own minimal odd suffix. Hence, fj is the
minimal odd suffix of g; fi+1 and f; is the minimal odd suffix of g; fi41. By unicity
of the minimal odd suffix we have f;jy; = fi41, from where it follows that g; = g;.
Hence,

uppiitd; = Y puppiung) =Y zuipug) = upug,
and thus, we complete the proof. O

Let / be any integer. We denote by ®; the set of admissible monomials of the form
ugujup, where

(i) both a and b have components strictly smaller than /.
(ii) there exists a suffix d of a of odd length a = cd where d starts with [ — 1.
(iii) a starts with [ — 1.

If the length of d in (ii) is minimal, we say that d is the minimal odd suffix of a.
We denote by ®; the set of admissible monomials of the form u,u;u, where

(i) both a and b have components strictly smaller than /.
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(ii) there exists a prefix c of b of odd length b = cd where d is either empty or starts
with [ — 1.
(iii) a is either empty or starts with [ — 1.

If the length of c in (ii) is minimal, we say that ¢ is the minimal odd prefix of b.

Lemma 16 Foralll € Z, we construct abijection p : ©; — ®; suchthatny,(p(x)) =
(=DHtlw=1x for all x € ©;. Moreover, if x = uqujup and Y (x) = ucujug, then
lc| = |a| — |m| and |d| = |b| + |m|, where m is the minimal odd suffix of a.

Proof Takep = Ty~ ' T, where 7 maps ©; to I'; and maps A; to ®;. Letu,ujup € ©;.
We have

YN T BT (@) = (—D)'o™ T BT (a)
and since 7 (w) = —w,
T (TBu T @) = (Do aub.
Let m be the minimal odd prefix of 7 (a). We know that v~ (T (b)u_; T (a)) = cu_;d

with |c| = |7 (b)| + |m| and |d| = |7 (a)| — |m|. We have p(au;b) = T (d)u;7 (¢).
We conclude by noting that 7 (m) is the minimal odd suffix of a. O

Recall that we identify an element of X, that is a pair (@, b) such that G - b = 1
mod 2 with the product [/_; ug,uup,. We denote a subset of X consisting of a part
of X such that us,;u € Ag and up;u € ®¢ for some 1 < j < n by X; . We are going
to construct bijections &; : X; — X ;1.

Lemma 17 There exists a bijection&; : ¥; — X1, 1 < j <n—1, so that

J
Eiup) = (—1)‘“1+1|Hb/|up, pEX;.

Proof Let (a, l;) be an element of X;. Consider the product of block j with block
j+1,1e.

UgjUp;Uaj, Ul -

We have a;0a; 1 € Ao and b;0b; | € ©g. Hence, there exist a;, czzj, bj, b; such
that,

w(“a.,’uua./_;_] ) = Ug,uu

J éj’ ’O(ub.fuubj+1) = ul;juu: :

bj
From the definitions of p and v, it follows that a ;0 € Ao, l§ ;0 € ©g and

(a1, 1a;1, 1651, 1b;) = (lajl + 1, laj41] + 1, |bj| + 1, [bj11] + 1) mod 2.
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We now define &; : ((a, 5) — (¢, j) as follows:
ci=ajandd; =b;ifi #j and i # j+1

Cj Z&j, dj:bj, Cj.;,.]:[lj, and dj.,.]:bj.

It is clear that (¢, c?) is in the subset X ;1. The map &; is a bijection since both v and
p are bijections. Moreover, we have

. Sy — - I |
njb(uajuuaj)—wuajuuajﬂ, njb(ubjuul;/_)— O upup; .

We know njb(uajuubjuajﬂubjﬂ) = (—1)‘ J”“J“'uajuuajﬂubjuub Therefore,

we obtain

j+1

3, & p)) pex; = (=D, g U U U<, Uitp, = (—D)lbsHlajly,

where ¢ = (¢, J) € X1, and thus, we complete the proof. O
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