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Abstract

Changes in free-roaming dog population size are important indicators of the effectiveness of

dog population management. Assessing the effectiveness of different management meth-

ods also requires estimating the processes that change population size, such as the rates of

recruitment into and removal from a population. This is one of the first studies to quantify the

size, rates of recruitment and removal, and health and welfare status of free-roaming dog

populations in Europe. We determined the size, dynamics, and health status of free-roaming

dog populations in Pescara, Italy, and Lviv, Ukraine, over a 15-month study period. Both

study populations had ongoing dog population management through catch-neuter-release

and sheltering programmes. Average monthly apparent survival probability was 0.93 (95%

CI 0.81–1.00) in Pescara and 0.93 (95% CI 0.84–0.99) in Lviv. An average of 7 dogs km-2

were observed in Pescara and 40 dogs km-2 in Lviv. Per capita entry probabilities varied

between 0.09 and 0.20 in Pescara, and 0.12 and 0.42 in Lviv. In Lviv, detection probability

was lower on weekdays (odds ratio: 0.74, 95% CI 0.53–0.96) and higher on market days

(odds ratio: 2.58, 95% CI 1.28–4.14), and apparent survival probability was lower in males

(odds ratio: 0.25, 95% CI 0.03–0.59). Few juveniles were observed in the study populations,

indicating that recruitment may be occurring by movement between dog subpopulations

(e.g. from local owned or neighbouring free-roaming dog populations), with important conse-

quences for population control. This study provides important data for planning effective dog

population management and for informing population and infectious disease modelling.

Introduction

Domestic dogs (Canis familiaris) are abundant globally, with the total population size esti-

mated at around 700 million to 1 billion [1,2]. Dogs that are unrestricted in their movement,

without human supervision, are part of the free-roaming dog population. This includes both

owned and unowned dogs. The free-roaming dog population can present issues in terms of
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public health [3–5], conservation of wildlife [6], livestock predation [7,8], and dog welfare

[9,10]. Effective management of the free-roaming dog population is a primary concern of gov-

ernment agencies, animal welfare organisations, and public health and conservation research-

ers [11]. Changes in free-roaming dog population size are important indicators of the

effectiveness of dog population management. Reducing population size and stabilising popula-

tion turnover can lead to reductions in risks to public health [12,13], conservation of wildlife

[6], and dog welfare [9,14,15].

Dog population size is a function of the processes of recruitment and removal, such as

births, deaths, immigration, and emigration. Several studies have estimated rates of overall

recruitment and removal, births, mortality, migration and dispersal of free-roaming dog popu-

lations [10,16–18]. Studies mostly use household questionnaires and/or direct observation of

dog populations to attain estimates. Questionnaires take advantage of the loose ownership sta-

tus of free-roaming dogs and allow monitoring of individuals over several years through

repeated surveys [16–18]. While questionnaires may be applicable for populations where free-

roaming dogs are mostly owned, they may preferentially sample those dogs under stricter con-

trols than dogs that are unclaimed or unrestricted in their movements. Most free-roaming

dogs have been reported as owned in some respect [16,19–21], though previous studies have

largely been conducted in Asia, Africa and South America, with a lack of data from dog popu-

lations in Europe.

The few studies that have been carried out in Europe have been limited to estimating popu-

lations sizes of free-roaming (e.g. in Poland [22]) or owned dogs (e.g. in Italy [23,24]). No stud-

ies have estimated rates of recruitment or removal in European free-roaming dog populations.

Dog population management in Europe is conducted to reduce risks to public health (e.g.

rabies and leishmaniasis) [25–28], reduce predation on livestock [8] and wildlife [29], and to

improve free-roaming dog welfare [30]. As dog population dynamics are likely to vary between

countries, relating to the habitat type (e.g. urban/rural) and the human population (e.g. density

and cultural/social factors) [1,9], it is important that we better understand the dynamics of

free-roaming dog populations in Europe to help inform management strategies.

Mark-recapture is a commonly used method of estimating population size, where individu-

als are observed, identified (e.g. through marking), and re-observed during successive surveys

to calculate abundance and population processes. Dog population size has often been esti-

mated using closed mark-recapture methods (see [31] for review) that assume geographic and

demographic closure (i.e. no births, deaths or migration). Closed mark-recapture methods

allow the estimation of population size and detection probability [32]. They are advantageous

as they can allow for individual heterogeneity in detection probability and differences in detec-

tion probability after first capture, leading to less biased parameter estimates [32]. Closed

mark-recapture methods do not estimate recruitment (i.e. births, immigration, and abandon-

ment of dogs) and removal (i.e. deaths, emigration, and adoption of dogs) rates, which

describe how the population is changing. Open mark-recapture methods account for these

demographic and geographic processes and allow estimation of recruitment and removal rates

(e.g. Jolly-Seber, Cormack-Jolly-Seber, and Pollock’s robust design).

To reduce population size, population management methods aim to alter rates of recruit-

ment or removal in a population. For example, increasing removal of individuals through cull-

ing or sheltering, and decreasing recruitment by reducing births. Open mark-recapture

methods are useful for understanding how the population is changing through the relative

rates of recruitment and removal, and for assessing the potential effectiveness of different man-

agement methods, for example through elasticity or perturbation analyses [33]. Open mark-

recapture methods have rarely been applied to free-roaming dog populations [31,34], possibly

due to a lack of awareness, expertise, or resources to apply open mark-recapture methods. Belo
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et al., (2017) [34] are the first to report dog demographic parameter estimates through an open

mark-recapture (Jolly-Seber) approach in Brazil. Belo et al., (2017) [34] report high population

turnover (high removal and recruitment rates), which has implications for population and dis-

ease control. They attributed the high recruitment rates to the abandonment of owned dogs,

suggesting that methods reducing owned dog abandonment will be most effective in this area

[34].

The Pollock’s robust design method is advantageous over other methods as it incorporates

both open and closed mark-recapture study designs and analyses [35,36]. The robust design is

a nested sampling design incorporating sampling occasions over two temporal scales, involv-

ing widely spaced primary sampling periods, where the population is assumed open to the

influences of recruitment and removal, and narrowly spaced secondary sampling periods,

where the population is assumed closed to the influences of recruitment and removal. By

incorporating both methods, Pollock’s robust design allows for the demographic processes of

recruitment and removal to be estimated (as in open models), and also deals with individual

heterogeneity in detection probability (as in closed models) and survival probability [35,36],

providing more robust parameter estimates. Whilst the Pollock’s robust design mark-recap-

ture method has been applied to a number of animal populations [37–39], it has not previously

been applied to free-roaming dogs.

The aim of this study was to determine the size, dynamics, and health status of two Euro-

pean free-roaming dog populations. We investigate these parameters using two free-roaming

dog populations in Pescara, Italy and Lviv, Ukraine. In central Italy, free-roaming dog popula-

tions contribute to the spread of leishmaniasis (see [40,41] for review) and predation of live-

stock [8]. Rabies is a public health concern in Ukraine, which has the second highest incidence

of rabies cases in Europe [42]. Dog population management is conducted in both study regions

to control the population size and the risks associated with the free-roaming dogs populations

[11,30]. Understanding the free-roaming dog population dynamics in the study regions pri-

marily helps to inform management strategies within Italy and Ukraine, although the results

may be applicable in other regions with similar environments and human populations.

In Lviv, as different study sites had varying intensity of population management, we also

aimed to investigate whether there were changes in population dynamics between sites where

different dog population management had been applied. The effects of environmental factors,

day of the week, and sex on detection and apparent survival probability were also investigated.

Using this information, we discuss how population processes could inform dog population

management.

Materials and methods

Study regions and study sites

This study was carried out in two regions, Pescara province in Italy, and the Lviv region of

Ukraine (Fig 1). Pescara is located in central Italy in the Abruzzo region and has an oceanic cli-

mate [43]. Lviv is located in the west of Ukraine and has a temperate continental climate [43].

Regions were selected due to historical records on dog population management from the Vet-

erinary Services—Pescara Province Local Health Unit and local Communal Enterprise in Lviv.

Both regions had ongoing dog population management through a combination of catch-neu-

ter-release (CNR) and sheltering. Data was available for 42 out of 46 municipalities in Pescara

and for the entire city of Lviv. Four areas in each study region were selected to have similar: (i)

number of inhabitants in each town/suburb; and (ii) profiles in terms of size, structure (e.g.

residential/industrial), and household numbers (assessed visually prior to fieldwork).
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Prior to the fieldwork commencing, pilot trips to the study sites were conducted to check

the suitability of the selected study sites for: (i) accessibility (i.e., no private land such as indus-

trial areas where access is prohibited); and (ii) the presence of free-roaming dogs. Data col-

lected during the pilot trip was not included in the analysis. The precise study sites remain

anonymous as a condition of data sharing with the local networks. All data was collected in

public areas of Pescara and Lviv (i.e. publicly accessible streets), therefore no permits were

required.

In Pescara, a study site refers to a rural town/village in the Pescara province. Population

density in the study sites in Pescara varied between 127 and 193 people km-2. Distances

between sites varied between 4.65 and 12.40 km. Study sites in Pescara were selected to have

similar dog population management: similar numbers of dogs had been caught, neutered, and

released within the study sites between 2015 and 2019 (S1 Table). In Lviv, a study site refers to

a section of Lviv city. Lviv city is an urban environment with a population size of 717,803 and

a population density of 3,982 people km-2. Distances between study sites varied between 1.00

and 6.80 km in Lviv. All study sites were approximately 2 km2. In Lviv, as the level of dog

Fig 1. Map highlighting Italy (green) and Ukraine (yellow) with study regions of Pescara and Lviv indicated by red circle.

https://doi.org/10.1371/journal.pone.0266636.g001
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population management differed throughout the city, we aimed to assess whether there were

differences between sites with varying management intensity by selecting two study sites

where dogs had been caught, neutered, and released (sites one and two) and two study sites

where no dogs had been caught, neutered, and released (sites three and four) (S1 Table).

Data collection

Data was collected in each study site every three months between April 2018 and July 2019

(Fig 2), excluding in January 2019, where data collection did not occur due to the logistical

challenges associated with the extremely low temperatures in both study regions. Within each

primary sampling period, data was collected over three consecutive days (secondary sampling

periods) in each study site (Fig 2), except for in study site one in Lviv in primary sampling

period three (October 2018), where secondary sampling period two was missed due to field-

worker illness. As data for this day is “missing completely at random”, this does not impact the

results.

Data was collected using a street survey approach between approximately 7am and 9am

(see S1 File and S2 Table for details) to reduce temporal variation in detection probability [44–

47]. Two fieldworkers travelled together on foot along predesigned routes and recorded infor-

mation on every visible free-roaming dog (Table 1). Survey routes were designed to maximise

street coverage across the study site and avoid enclosed areas as a safety measure to reduce the

risk of dog attack. Roads without a pavement were excluded as a traffic safety measure. The

street surveys followed the same route across both the secondary and primary sampling days.

Dogs were classified as free-roaming if they were: (i) not within an enclosed private property

(e.g. the front yard of a house); (ii) not on a lead; and (iii) not associated with a person (i.e. not

on a lead but under the watch and responsibility of a person). All information was logged on

the Animal-id.info app (animal-id.net); a mobile software application. This app facilitates data

collection by storing Global Positioning System (GPS) coordinates and allows easy logging of

all dog demographic and health variables (Table 1). To reduce inter-observer variation, field-

workers undertook training prior to fieldwork on how to score the body condition of dogs.

Fieldworkers photographed every observed dog using a Nikon D3400 camera for subsequent

Fig 2. Study design consisting of five primary sampling periods conducted at three-month intervals between April 2018 and July 2019

(excluding January 2019) and three consecutive days of secondary sampling periods within each primary sampling period.

https://doi.org/10.1371/journal.pone.0266636.g002
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identification of individuals. Photographs were taken to include details of both sides of the

dog’s body, its legs, head, and tail.

This study was conducted by observing and photographing free-roaming dogs from a dis-

tance in public areas of Pescara, Italy and Lviv, Ukraine. All data were collected visually, i.e. no

dogs were handled during this study. This study therefore did not require formal ethical

approval as the study did not involve handling, husbandry or established veterinary practice,

and did not include experimental practices which may cause pain, suffering, distress or lasting

harm [49–51].

Mark-recapture analysis

Individual capture histories were based on prior observations of the individual dogs during

the primary and secondary sampling periods (1 = observed, 0 = not observed). Dogs were

identified from the photographs, using distinctive markings on the body, legs, head, and tail.

Each dog was given a distinctiveness rating between one and three (1 = very distinct, with

unique colouring/marking; 2 = moderately distinct, with some identifiable colouring/marking;

3 = indistinct, mono-coloured with minimal markings (Fig 3). All individuals were included

in the mark-recapture analysis, regardless of their distinctiveness rating. Observations of dogs

where photograph quality was poor were not included in the mark-recapture analysis.

It is challenging to estimate demographic parameters using mark-recapture data because sev-

eral ecological processes can lead to the mark-recapture histories that are observed. For exam-

ple, individuals may be present in the population, but not detected during surveys, meaning

their presence or absence is not an accurate estimate of whether an individual is contributing to

the population processes. To deal with these challenges, a hierarchical Bayesian hidden Markov

model of Pollock’s closed robust design was used to analyse the mark-recapture histories for

both regional locations. Hidden Markov models deal with these challenges as they allow the

underlying latent states of dogs (e.g. their presence or absence in the population) to be estimated

depending on observations during the mark-recapture surveys (i.e. their capture histories).

Table 1. Variables recorded during street surveys.

Variable Categories Method of estimation

Global Positioning System (GPS) coordinates Latitude and longitude GPS recording in Animal-id.info app

Sex Male / female / unknown Observation of reproductive organs

Age Juvenile (less than one year) / adult (over one year) Body size, allometry and behaviour [47]

Size (height) Large (>65cm) / medium (45-65cm) / small (<45cm) Estimated visually

Neutering status (Lviv only) Presence/absence Observation of ear tag

Collar Presence/absence Observation of collar

Visibly pregnant (females only) Yes/no Observation of enlarged abdomen and

mammary glands

Lactation status (females only) Yes/no Observation of enlarged mammary glands

Skin condition Presence/absence Observation of hair loss and/or dermatitis

Visible injury Presence/absence Observation of visible lesions (e.g. wounds) or

lameness

Body condition score (non-pregnant and non-lactating

adult dogs only)

1 emaciated / 2 underweight / 3 normal / 4 overweight

/ or 5 obese

Based on visible body fat coverage [48]

Temperature at beginning and end of survey Degrees Celsius (˚C) weather.com

Rain Yes/no Observation

Market during survey Yes/no Observation

https://doi.org/10.1371/journal.pone.0266636.t001
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We used a nested study design, comprising t primary sampling periods and s secondary

sampling periods where an individual was able to be observed. Each study site had a popula-

tion of dogs that underwent the processes of recruitment (individuals entering the population

through births and immigration) and removal (individuals leaving the population through

death and emigration) between t primary sampling periods. Between the s secondary sampling

periods the population was assumed closed to the processes of recruitment and removal. As

described above, there were five t primary sampling periods, each with three s secondary sam-

pling periods (Fig 2).

A hierarchical Bayesian hidden Markov model of Pollock’s robust design was used to ana-

lyse the mark-recapture histories for both regional locations. At each primary sampling period

t, the model estimated each dog’s probability of being in one of the following three latent states,

conditional on their capture history (i.e. their true states cannot be measured directly): not-yet-
entered; dead; or alive. The not-yet-entered state described those individuals who were yet to

enter the study population (i.e. through immigration or birth). The dead state described those

individuals who were no longer part of the study population (i.e. removed through mortality,

adoption to the restricted owned dog population, or emigration), and the alive state denoted

individuals who were part of the study population. Only individuals in state alive were avail-

able to be observed. An individual could transition between latent states across primary sam-

pling periods (t to t+1). No state transitions occurred between secondary sampling periods.

Table 2 outlines the probability of an individual transitioning between states (not-yet-entered,

dead, or alive) at primary period (t), given their state at the previous primary sampling period

(t-1). A dog’s probability of being observed was δt,s if in the state alive, and zero if dead or not-
yet-entered. A dog’s probability of being unobserved was one if dead or not-yet-entered, and 1-
δt,s if alive.

As described by Royle & Dozario (2008) [52] and Kery & Schaub (2011) [53], full capture

histories were modelled through parameter-expansion and data augmentation, which involves

Fig 3. Examples of distinctiveness ratings of dogs identified across primary sampling periods: A1-3 of distinctiveness 1

(distinct with unique markings); B1-3 of distinctiveness 2 (moderately distinct, with some identifiable colouring/

markings); and C1-3 of distinctiveness 3 (indistinct, mono-coloured, minimal markings).

https://doi.org/10.1371/journal.pone.0266636.g003
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adding a large number of zero capture histories to account for those dogs that were present

but never observed (see S2 File and S1–S5 Figs for details).

In this model, recruitment referred to the probability of an individual dog transitioning

from the not-yet-entered state at t-1 to alive at t primary sampling period (i.e. entering the

population through immigration or birth). As discussed by Roye and Dorazio (2008) [52]

and Kery and Schaub (2011) [53], recruitment probability was in practice a nuisance param-

eter because birth and immigration were confounded and, because of data augmentation,

the recruitment probability was in fact a ‘removal entry probability’ that described the prob-

ability of a member of the augmented data set entering at time t. Removal entry probabilities

thus have no biological meaning [52–54]. Instead, we followed Royle & Dozario (2008) [52]

and Kery & Schaub (2011) [53] by deriving the ‘entry probability’ for each time point t,
defined as the fraction of real individuals in the augmented data set that entered at each

time point (S2 File). We calculated per capita probability, describing the fraction of new

recruits at primary period t per individual dog alive and in the study site at primary period

t. Calculation of per capita entry probabilities are detailed in S2 File. We estimated survival

probability, which was also a confounded variable, as it was a function of both the probabil-

ity of an individual remaining in the study site (i.e. not emigrating) and remaining alive,

leading to its more popular name of “apparent survival”. Table 3 outlines the parameters

calculated for each study site.

All model parameters had ‘weakly informative’ prior distributions and all individuals

started in the not-yet-entered state. The model was written in Stan [55] and run in R version

3.6.1 [56] using the “Rstan” package version 2.21.3 [57] with four Markov chain Monte Carlo

chains of 2,500 iterations of warmup and 2,500 iterations for sampling, giving 10,000 posterior

samples for inference. The Stan model used the forward algorithm to marginalise out the

latent, discrete states for each individual. Convergence was assessed by inspecting the Rhat val-

ues (values less than 1.05 suggest convergence) and effective sample sizes (values over 1000

suggest good precision of the tails of distribution).

Random intercepts were included for apparent survival, recruitment, and detection to

describe intra-country variation across study sites and primary periods, and intra-site variation

across dogs. Spatial correlations (correlations in parameter estimates given the distances

between study sites) and temporal correlations (correlations in parameter estimates given the

time differences between primary sampling periods) were captured by using Gaussian process

prior distributions on the sites and primary periods random intercepts (squared exponential

and periodic kernel functions, respectively; see model code in https://github.com/lauren-

smith-r/Smith-et-al-Population-dynamics-free-roaming-dogs). Due to the hierarchical struc-

ture, survival, recruitment, and detection results were partially pooled across dogs, sites, and

primary period times.

Parameter estimates were converted from the log odds scale to the probability scale using

the inverse logit function: logitð� 1ÞðxÞ ¼ exp ðxÞ=ð1þexpðxÞÞ, where x is the posterior value on the

Table 2. State transition matrix: the probability of an individual transitioning to a state at primary period (t),

given their state at the previous primary sampling period (t-1) (reading from row to column).

t+1

Not yet entered Dead Alive

t Not yet entered 1-ψ 0 ψ
Dead 0 1 0

Alive 0 1-φ φ

https://doi.org/10.1371/journal.pone.0266636.t002
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logit scale. Parameter estimates were summarised by calculating the mean and 95% credible

intervals (CIs) of the posterior distribution (the 95% most probable values).

The effects of the following predictor variables were tested on detection probability:

average temperature (average of recorded temperature at beginning and end of survey);

market event (yes/no); rain (yes/no); weekday/weekend; sex (male/female), study site and

primary period. The effects of sex, study site, and primary period were also tested on

apparent survival probability. The detection and apparent survival probability for individ-

uals of unknown sex (including pseudo-individuals) were computed by marginalising over

the respective male and female conditional probabilities. For the missing survey in study

site one in Lviv for primary period three, secondary sampling period two, NA’s were

included in the array of capture histories (γ (i x t x s)) and, for the predictor variables, tem-

perature, and rainfall (no rainfall) was recorded using records in weather.com, the missed

survey day was a weekday and market event was recorded as NA. A significant effect was

determined if the 95% CIs did not include zero on the log odds scale.

It is common in frequentist mark-recapture modelling to run several models, stratified by

temporal and population subgroup parameter estimates (leading to an enormous number of

possible models, see [58] for discussion) and to use model-averaging to provide parameter

results. Studies suggest the use of Hierarchical Bayesian mark-recapture models with random-

effects yield similar parameter estimates to model-averaging of frequentist mark-recapture

models (using Akaike Information Criterion, AICc weights) [58–60]. As all parameters in the

model are of theoretical relevance and as there were no specific biological hypotheses, no

explicit model comparison was run.

Table 3. Description of parameters calculated for each study site in study regions.

Parameter Description

Z(m x t) Matrix of the possible latent states (not-yet-entered; alive; dead) for each individual (including pseudo-
individuals) at each t primary sampling period.

n Total number of dogs individually identified throughout the duration of the study.

Nt Total number of dogs alive and available for observation during primary sampling period t.
m Total number of dogs, including observed and unobserved pseudo-individuals.
γ (m x t x s) Array of capture histories for all individually identified dogs and the parameter expanded data

augmented pseudo-individuals.
γ (i x t x s) Array of capture histories for all individuals observed in s secondary sampling periods throughout t

primary sampling periods.

W Superpopulation: Total number of dogs that have ever been in the study site across all primary

sampling periods.

φti Apparent survival of individual dog between t and t+1 primary sampling period.

δti Probability of observing a dog, given it is alive, in secondary sampling period s within primary

sampling period t.
ψti Probability of recruitment–an individual dog transitioning from not yet entered at t-1 to alive at t

primary sampling period. As described, this is a nuisance parameter that is required to describe the

model.

Eti Proportion of superpopulation entering at each primary period t, given they have not already entered.

ft Per capita entry probability: the fraction of new recruits at primary period t per individual dog alive

and in the study site at primary period t.
λ Population growth (S2 File).

Mt Matrix of time intervals between each primary sampling period.

Md Matrix of distances between study sites.

https://doi.org/10.1371/journal.pone.0266636.t003
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Results

Descriptive statistics–dog demographics and health

In Pescara 53 dogs and in Lviv 182 dogs were individually identified. In each study region in

total: an average of 10 dogs were observed in each secondary sampling period in Pescara

(min = 4, max = 15), and 28 in Lviv (min = 14, max = 36); an average of 3 new dogs were iden-

tified (min = 0, max = 14) in Pescara, and 11 (min = 5, max = 36) in Lviv; and an average of 6

dogs had been previously observed (min = 0, max = 13) in Pescara, and 16 in Lviv (min = 0,

max = 28) (Table 4). No individuals were observed in more than one study site in either

Pescara or Lviv (i.e. there was no evidence for movement between study sites). Sex ratio was

similar in both regions: of the total number of identified dogs, 22–26% were female, 51–52%

were male, and 23–26% were of unknown sex (Table 5). Nearly all observed dogs were adults

in both Pescara (98%) and Lviv (95%). No visibly pregnant females and few lactating females

were observed in any site across both regions. All survey timings, weather, market events, and

temperature conditions are detailed in S3 and S4 Tables.

Table 4. Number of observed dogs and newly observed individuals in total across the study sites in Pescara and Lviv for each secondary sampling period.

Study

region

Primary sampling

period

Secondary sampling

period

Number of dogs

observed

Number of new

individuals

Number of previously identified

individuals

Pe
sc
ar
a

1 (Apr 2018) 1 14 14 0

2 11 7 4

3 15 9 6

2 (Jul 2018) 1 6 4 2

2 13 3 10

3 7 0 7

3 (Oct 2018) 1 5 1 4

2 12 3 9

3 12 2 10

4 (Apr 2019) 1 8 1 7

2 10 3 7

3 4 0 4

5 (Jul 2019) 1 13 0 13

2 4 5 2

3 9 0 9

Lv
iv

1 (Apr 2018) 1 36 36 0

2 19 10 8

3 19 9 10

2 (Jul 2018) 1 32 16 16

2 27 12 15

3 31 13 18

3 (Oct 2018) 1 31 13 18

2 27 7 20

3 35 10 25

4 (Apr 2019) 1 36 12 24

2 23 11 12

3 34 11 23

5 (Jul 2019) 1 19 7 12

2 14 6 8

3 33 5 28

https://doi.org/10.1371/journal.pone.0266636.t004
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As the different study sites in Lviv had different management strategies, the demographic

and health measures between sites could be compared. Juveniles were observed in one of the

two sites with CNR–site two (5 of 35 dogs, 14%)–and in both sites with no CNR–three (2 of 56

dogs, 4%), and four (2 of 64 dogs, 3%). Based on the presence of ear tags, study site one had a

higher percentage of dogs neutered and vaccinated (52%), compared to study site two (29%)

(Table 6). Dogs in sites three (29%) and four (17%) were also observed with ear tags, even

though no/few dogs were recorded as caught, neutered, and released at these sites.

In Pescara, the overall prevalence of skin conditions was 7%, with a maximum of 21% in

October 2018, while the prevalence of skin conditions was only 3% in Lviv (Table 5). The prev-

alence of visible injuries was higher in Pescara (12%) compared to Lviv (7%). Most dogs in

both regions had a body condition score of three (normal body condition, 73% of total obser-

vations), with few observed underweight dogs.

Table 5. Demographic and health results for observed dogs in Pescara, Italy and Lviv, Ukraine during surveys between April 2018 and July 2019.

Pescara Lviv

Demographic

(% of total individuals)

No. individual dogs 53 182

Estimated average dog density (dogs km-2) 7 40

Sex Female 26% 22%

Male 51% 52%

Unknown 23% 26%

Age Adult 98% 95%

Juvenile 2% 5%

Visibly pregnant females 0% 0%

Lactating females 7% 5%

Distinctiveness 1 26% 14%

2 62% 68%

3 11% 17%

Health

(% of total observations)

Prevalence of skin conditions 7% 3%

visible injuries 12% 7%

Body condition score 1 –emaciated 0% 0%

2 –underweight 0% 1%

3 –normal 73% 73%

4 –overweight 13% 13%

5 –obese 3% 2%

Unknown 9% 11%

Neutering coverage NA 34%

Population dynamics Removal probability 7% 7%

Recruitment probability 9–20% 12–42%

Dog detection probability 27% 18%

https://doi.org/10.1371/journal.pone.0266636.t005

Table 6. Number and percentages of neutered and vaccinated dogs observed in each study site in Lviv, Ukraine. Neuter and vaccination status indicated by presence

of ear-tag. Sites with active CNR are indicated in bold.

Study site No. identified dogs Neutered & vaccinated Females neutered & vaccinated Males neutered & vaccinated Unknown sex neutered & vaccinated

1 27 14 (52%) 7 (26%) 6 (22%) 1 (4%)

2 35 10 (29%) 4 (11%) 4 (11%) 1 (3%)

3 56 16 (29%) 6 (11%) 6 (11%) 4 (7%)

4 64 11 (17%) 2 (3%) 6 (9%) 3 (5%)

https://doi.org/10.1371/journal.pone.0266636.t006
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Dog demographic parameters

The average monthly probability of a dog remaining alive and in the study population (i.e. not

emigrating) was 0.93 (95% CI: 0.81–1.00) in Pescara and 0.93 (95% CI: 0.84–0.99) in Lviv. The

average apparent survival probability between primary sampling periods (3 to 6 months) was 0.71

(95% CI: 0.42 to 0.95) in Pescara and 0.73 (95% CI: 0.45 to 0.95) in Lviv. The average probability

of a dog being observed in a single survey (detection probability) was 0.27 (95% CI: 0.05–0.54) in

Pescara and 0.18 (95% CI: 0.02–0.40) in Lviv. S5 and S6 Tables outline the apparent survival and

detection probabilities per primary period and study site for Pescara and Lviv respectively. Stan-

dard deviations for between-dog effects on survival and detection are presented in S7 Table.

Per capita entry probabilities (i.e. the average fraction of dogs entering the study areas during

the study periods per individual dog) varied between 0.09 (95% CI: 0.03–0.33) and 0.20 (95%

CI: 0.00–0.38) in Pescara, and 0.12 (95% CI: 0.00–0.26) and 0.42 (95% CI: 0.26–0.62) in Lviv

(Table 7). The average monthly per capita entry probabilities were 0.05 (95% CI 0.00–0.09) in

Pescara and 0.06 (95% CI 0.01–0.10) in Lviv. Population size estimates varied between 12 (95%

CI: 4–20) and 22 (95% CI: 4–41) in Pescara, and 58 (95% CI: 15–155) and 114 (95% CI: 44–195)

in Lviv (Fig 4). Study sites in Pescara had an average of 7 dogs km-2 (95% CI: 2–14 dogs km-2)

and in Lviv 40 dogs km-2 (95% CI: 13–73 dogs km-2) across sites and primary periods. The pop-

ulation in Pescara shows a declining trend throughout the study in all four study sites (Table 7

and Figs 4 and S6). In Lviv, the population increased between October 2018 and April 2019 in

all four study sites (Table 7 and Figs 4 and S7). Per capita entry probabilities (Table 7) and

apparent survival probabilities (S6 Table) were both high between these primary periods.

Table 7. Estimated population size and per capita entry probability, and the 2.5 and 97.5 percentiles of the posterior distribution (95% CI,) across study sites and

primary periods for Pescara, Italy and Lviv, Ukraine. Per capita entry probabilities for the first primary period are not included, due to lack of interpretability in the pri-

mary period one parameter estimate.

Estimated population size Per capita entry probability

Pescara Lviv Pescara Lviv

Primary Period Mean 2.5% CI 97.5%CI Mean 2.5% CI 97.5% CI Mean 2.5% CI 97.5% CI Mean 2.5% CI 97.5% CI

Si
te
1

1 15 5 24 73 9 172

2 15 5 23 70 13 160 0.20 0.00 0.38 0.18 0.00 0.33

3 14 5 22 62 8 139 0.15 0.00 0.31 0.12 0.00 0.26

4 12 4 20 81 18 168 0.12 0.00 0.24 0.33 0.18 0.55

5 12 4 20 75 15 155 0.14 0.00 0.27 0.16 0.00 0.33

Si
te
2

1 18 4 36 69 15 147

2 17 4 33 66 18 133 0.19 0.00 0.37 0.18 0.00 0.34

3 15 3 29 58 15 155 0.17 0.00 0.33 0.13 0.00 0.19

4 13 2 26 78 26 149 0.12 0.00 0.26 0.36 0.19 0.54

5 12 1 25 72 21 138 0.15 0.00 0.29 0.18 0.02 0.35

Si
te
3

1 22 5 41 114 44 195

2 21 5 39 100 40 167 0.19 0.03 0.33 0.20 0.02 0.36

3 18 2 35 82 31 144 0.15 0.00 0.27 0.15 0.00 0.27

4 16 1 32 102 43 167 0.09 0.00 0.22 0.33 0.20 0.48

5 15 1 31 86 35 147 0.12 0.00 0.26 0.17 0.03 0.30

Si
te
4

1 13 1 27 94 38 157

2 13 2 27 79 34 130 0.19 0.00 0.36 0.21 0.00 0.39

3 12 1 24 58 23 99 0.16 0.00 0.32 0.17 0.00 0.32

4 11 2 23 82 37 129 0.10 0.00 0.25 0.42 0.26 0.62

5 11 0 22 64 24 107 0.14 0.00 0.29 0.23 0.04 0.41

https://doi.org/10.1371/journal.pone.0266636.t007
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There was no significant effect of rain, temperature, sex, study site, or primary period on

detection probability in Pescara or Lviv (Table 8). In Lviv, there was a significant effect of

weekend on detection probability. When converted to the probability scale, the probability of

observing a dog was 0.18 (95% CI: 0.02–0.40) on surveys conducted at the weekend and 0.14

(95% CI: 0.01–0.33) on weekdays (Table 8). There was also a significant effect of market days

on detection in Lviv (Table 8). The probability of observing a dog was 0.33 (95% CI: 0.06–0.66)

on market days and 0.18 (95% CI: 0.02–0.40) on non-market days.

Fig 4. Estimated population size for each study site (1 to 4) in Pescara, Italy and Lviv, Ukraine across the primary sampling periods between April 2018 and July

2019. Error bars show the 2.5 and 97.5 percentiles of the posterior distribution (95% CI). �No surveys conducted in January 2019.

https://doi.org/10.1371/journal.pone.0266636.g004

Table 8. Effects of predictor variables on detection and apparent survival as odds ratios (OR) in Pescara, Italy and Lviv, Ukraine. Significant results are highlighted

in bold.

Detection Apparent survival

Pescara Lviv Pescara Lviv

OR 2.5% CI 97.5% CI OR 2.5% CI 97.5% CI OR 2.5% CI 97.5% CI OR 2.5% CI 97.5% CI

Weekend vs. weekday 1.16 0.64 1.74 0.74 0.53 0.96

Market day vs. no market 0.75 0.24 1.36 2.58 1.28 4.14

Rain vs. dry 0.79 0.31 1.34 0.73 0.47 1.00

Temperature 0.98 0.88 1.08 0.98 0.92 1.04

Male vs. female 0.63 0.22 1.15 0.82 0.37 1.32 1.29 0.08 3.43 0.25 0.03 0.59

https://doi.org/10.1371/journal.pone.0266636.t008
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There was no evidence for a significant effect of study site or primary period on apparent

survival probability in Pescara or Lviv (S8 and S9 Tables). Sex had a significant effect on appar-

ent survival in Lviv (Table 8). When comparing across the average primary period (3–6

months), average male apparent survival probability was 0.40 (95%CI: 0.04–0.76) compared to

0.73 (95%CI: 0.45–0.95) in females. There were no significant differences in detection (Pescara

vs Lviv: odds ratio 3.36, 95% CI 0.04 to 10.60) or apparent survival parameters (Pescara vs

Lviv: odds ratio 1.57, 95% CI 0.01 to 5.13) between countries.

Discussion

This study provides some of the first estimates of health, welfare, population size, and rates of

recruitment and removal for free-roaming dog populations in Europe. This study is also the

first to use Pollock’s robust design mark-recapture to estimate free-roaming dog population

dynamics. We found high population turnovers in both Pescara and Lviv, with removal rates

of 7% per month in both locations, and recruitment rates (per capita entry probabilities) of

5–6% per month. Few juveniles were observed in either location, potentially indicating recruit-

ment through abandonment or immigration. This detailed demographic data provides critical

information for planning effective dog population management and informing population

and infectious disease modelling.

In Pescara, estimates of dog population size and density were much smaller than in Lviv (7

dogs km-2 in Pescara, and 40 dogs km-2 in Lviv). As dog population size correlates with human

population size [2], the difference in population estimates could relate to the smaller human

population sizes in the study villages/towns in Pescara, compared to those in the study sites in

the city of Lviv. Population size reduction is an important indicator of effective dog population

management. Both Pescara and Lviv had ongoing dog population management through CNR

and sheltering. In Pescara, the population size decreased over the study period. Whilst this

decreasing trend in dog population size observed in Pescara may relate to the population man-

agement, these results should be interpreted with caution, as determining an effect of manage-

ment would require a baseline period (prior to management intervention), a control

population, and an increased number of study sites. As many dog populations have historically

been managed to some extent, it is challenging to obtain true baseline or control populations.

The length of the study would also need to be increased to distinguish between a reducing pop-

ulation and natural fluctuations in population size, particularly as modelling studies suggest

the effect of management may take years to be observed [10,61,62]. Population management

through CNR could create more stable populations over shorter periods of time, prior to

decreasing the population size, and this would be reflected by low recruitment and removal

rates. Both free-roaming dog populations in Pescara and Lviv had high recruitment and

removal rates, suggesting further management could be implemented to reduce the size and

turnover of these free-roaming dog populations. Recruitment and removal rates provide an

alternative indicator of management impact that could be observed over shorter durations

and, as such, should be considered in future population monitoring efforts.

There was no evidence for significant effects of study site (within regions) on apparent sur-

vival probability. For study sites in Lviv with different levels of management intensity, this pos-

sibly indicates that dog population management, as currently applied, does not influence the

death rate or migration rate of dog populations. Belo et al., (2017) [34] also found no evidence

for a significant effect of management on apparent survival rates. In general, parameter esti-

mates had wide confidence intervals, relating to low sample sizes, limiting the strength of the

study’s conclusions. Additionally, similar percentages of neutered dogs were observed across

all study sites in Lviv (Table 6), even though no management had been recorded in study sites
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three and four. This potentially indicates historical dog population management in the area

(i.e. CNR conducted by other organisations) or movement of dogs throughout the city.

Although we found no evidence of individuals moving between study sites (no individuals

were observed in more than one study site), a longer study or increased number of study sites

may have captured these movement events. These factors could possibly explain the lack of

clear differences between study sites on apparent survival probability. To allow more robust

estimates of changes in population size, recruitment, and removal rates and to determine

effects of dog population management, future studies should consider (i) conducting mark-

recapture over several of years and (ii) having a larger sample size in terms of study sites and

secondary sampling periods.

The observed sex ratio, percentage of adults, and body condition scores were similar

between Pescara and Lviv, and we found no evidence of country effects on detection or appar-

ent survival probability, despite differences in habitats (rural vs. urban), climates, and culture.

The average monthly apparent survival probabilities (i.e. the probability of an individual sur-

viving and remaining in the study site) of 93% in Pescara and Lviv are similar to those reported

by Belo et al., (2017) [34] in Brazil of between 86–99% per month using the Jolly-Seber open

mark-recapture approach. The reported per capita entry probabilities (i.e. fraction of all dogs

in the population entering at each time point) of 5–6% per month in both Pescara and Lviv

(Table 7) are also similar to those reported by Belo et al., (2017) [34] of 0–8% per month for

free-roaming dog populations in Brazil. Similar rates of recruitment and removal may suggest

similar birth, mortality, and movement rates of free-roaming dogs between the different coun-

tries. To determine this, future work should aim to disentangle the processes of recruitment

and removal to provide rates of birth, mortality, abandonment, emigration, and immigration

(both to neighbouring populations and from different subpopulations) within the free-roam-

ing dog population. Disentangling the processes of recruitment and removal is a challenging

task. For example, while mark-recapture methods incorporating age cohorts have been used

for other species to disentangle births from immigration [63], in free-roaming dog populations

these methods would not be of use, as dogs may be abandoned at any age. Instead, disentangl-

ing these processes may require working with local communities to assist in these estimates,

for example through questionnaire surveys or interviews with focus groups.

High recruitment and removal rates, and therefore high population turnover, can hinder

population and infectious disease control that aims to maintain a neutered/vaccinated cover-

age above a critical threshold. For example, a primary motive for dog population management

globally is to reduce the risk of rabies transmission from dogs to humans [64]. Vaccination of

70% of the dog population is required to reduce transmission or prevent an outbreak of rabies

in a population [65]. High death rates and movement of vaccinated dogs out of an area, and

high birth rates and movement of susceptible, unvaccinated dogs into an area may reduce the

overall coverage to below this critical threshold. Rabies is a public health concern in Ukraine,

with outbreaks occurring sporadically in free-roaming dog populations [42,66]. We observed

vaccination and neutering coverages of only 17–52% across the study sites in Lviv, which are

insufficient to prevent an outbreak of rabies in these populations. Removal of 7% and recruit-

ment of 5–6% of the population per month has the potential to further reduce vaccination and

neutering coverages. Higher vaccination coverages and reduced population turnover are

required to protect against a rabies outbreak in Lviv.

Our findings suggest that 7% of the population per month is removed through deaths, or by

movement to other populations, such as adoption to the restricted owned dog population, or

migration to another section of the city. The recorded lifespan of free-roaming dogs is low,

often reported as under three years for populations in Africa and Asia [17,21,67], although

estimates are lacking for free-roaming dog populations in Europe. A lifespan of three years
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translates to a mortality rate of approximately 3% per month, suggesting that movement

accounted for much of the removal rate observed in this study.

We observed recruitment rates (per capita entry probabilities) of 5–6% per month. It is

challenging to disentangle whether these individuals were recruited through births, abandon-

ment, or immigration. Throughout the study, and in both study regions, few juveniles and lac-

tating females and no visibly pregnant females were observed, suggesting low birth rates with

recruitment instead occurring through movement from other populations, such as immigra-

tion or abandonment of adult dogs. Although it is important to consider that fewer juveniles

may have been observed due to a possible lower detection probability, for example, if puppies

were hidden with their mother, out of sight of the observer, in dens, bushes or under cars. Belo

et al., (2017) [34] in Brazil and Morters et al., (2014) [16] in Indonesia and South Africa also

determine that recruitment was primarily driven by the movement of adult dogs in their study

populations. This has important implications for population control. If dogs are recruited

through abandonment, management efforts should be targeted at responsible dog ownership

to reduce abandonment and the prevalence of free-roaming owned dogs, particularly those

that are intact. Similarly, to mitigate the effects of immigration of intact dogs between sections

of a city, interventions should be planned to ensure whole-city coverage, as movement of dogs

between sections of the city could quickly repopulate areas, reaching carrying capacity through

either births or migration.

In Lviv, males had a lower apparent survival probability (0.40 compared to 0.73 in females).

As other studies report higher mortality rates in female dogs [17,18,68], it is likely that the lower

apparent survival probabilities in males is due to increased movement. Movement of individuals

is related to resources, and, for males, these resources may include seeking mates, possibly

resulting in increased migration and lower apparent survival probabilities compared to females.

This is supported by studies investigating home range sizes [69] and dispersal behaviour [70] of

free-roaming dogs, that find greater dispersal and movement in intact males, compared to

females or neutered males. Movement of free-roaming dogs may reduce local vaccination or

neutering coverage, which can hinder disease and population management. As intact males are

more likely to disperse than neutered males, targeting the neutering of male dogs may help

reduce population turnover and maintain high local vaccination/neutering coverages.

In the study regions, the average detection probability was slightly lower than those

reported in other studies of free-roaming dogs (Pescara 0.27, 95% CI 0.05 to 0.54; Lviv 0.18,

95% CI 0.02 to 0.40) (Table 5), which range between 0.33 and 0.68 for dog populations in Bra-

zil and India [34,46,71,72]. Detection probability is dependent upon an individual being pres-

ent in the study area, available for detection, and detected during mark-recapture surveys [73].

The slightly lower detection probability reported in this study could possibly be due to differ-

ences in the structure of the study areas, in human-dog interactions, or in the mark-recapture

models used to estimate this parameter [46].

Detection probabilities were higher for surveys conducted on the weekend in Lviv, although

not in Pescara. The lack of evidence of effect on detection probability in Pescara may be due to

the smaller number of observed dogs (Pescara 53; Lviv 182), leading to smaller sample sizes to

determine an effect. Several studies describe differences in dog detection probability due to

time of day effects, for example higher detection probabilities in the morning compared to the

afternoon [44–47]. This study highlights the importance of future studies also considering

potential day of the week influences. This effect may relate to changes in human behaviour

and activity at the weekend compared to on weekdays. For example, there may be a reduction

in human activity due to fewer people travelling for work at the weekend, potentially leading

to higher free-roaming dog activity, and therefore detectability, when streets are quieter. Simi-

larly, we found a significant effect of market events on detection probability in Lviv. This may
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again relate to human activity and behaviour, such as high aggregations of people and potential

food resources. Tiwari et al. (2018) [46] also found higher detection rates related to human

events. Human activity and behaviour (for example, due to events or public holidays) need to

be considered in mark-recapture analyses, particularly when interpreting results across time

or areas.

In this study, a photographic method was used to identify individuals, limiting the impact of

the “marking” on detection probability. Photographic methods are advantageous over other

methods used to mark dogs, such as dyes that require animal contact [72]. In this study, all indi-

viduals were assumed to be correctly re-identified. However, errors in capture histories could

have occurred, particularly for less-distinct individuals. These errors can lead to less accurate

parameter estimates. Most dogs were classified as very or moderately distinct (88% in Pescara;

82% in Lviv) and were more likely to be correctly re-identified. It is worth noting that higher

percentages of indistinct individuals may occur in free-roaming dog populations in other geo-

graphic areas. The applicability of photographic mark-recapture methods may be limited in

populations with high proportions of indistinct individuals. For these populations, use of tags

(such as ear tags) or other long-term individually identifiable markings could be used but are

less advantageous as the use of tags often requires capture and handling to read individual iden-

tifiers. Additionally, photographic mark-recapture studies may benefit from photograph match-

ing software to reduce error rates and increase accuracy of parameter estimates [74].

Conclusions

This study has provided detailed dog population dynamics data that is critical for informing pop-

ulation and infectious disease models and planning effective control strategies. We found high

population turnovers in both Pescara and Lviv, with removal rates of 7% per month in both loca-

tions, and recruitment rates (per capita entry probabilities) of 5–6% per month. Few juveniles

were observed in this study, potentially providing evidence for recruitment and removal through

movement between dog subpopulations. Future management should be conducted to ensure

entire municipality coverage and incorporate management of owned unrestricted dog popula-

tions (preventing reproduction through restricted movement or reproductive control). This

study has also identified that detection probability of dogs may be influenced by day of the week,

and human events, such as markets. Future researchers conducting mark-recapture of free-

roaming dog populations should consider controlling for these effects–statistically or through

study design–to ensure surveys are comparable across time and between areas.
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19. Bögel K, Frucht K, Drysdale G, Remfry J. World Health Organisation Guidelines for Dog Population

Management. Geneva; WHO; 1990.

20. Cleaveland S, Dye C. Maintenance of a microparasite infecting several host species: rabies in the Ser-

engeti. Parasitology. 1995; 111: S33–S47. https://doi.org/10.1017/s0031182000075806 PMID:

8632923

21. Butler J, Bingham J. Demography and dog-human relationships of the dog population in Zimbabwean

communal lands. Vet Rec. 2000; 147: 442–446. https://doi.org/10.1136/vr.147.16.442 PMID: 11079440

22. Krauze-Gryz D, Gryz J. Free-Ranging Domestic Dogs (Canis familiaris) in Central Poland: Density,

Penetration Range and Diet Composition. Polish J Ecol. 2014; 62: 183–193. https://doi.org/10.3161/

104.062.0101

23. Carvelli A, Scaramozzino P, Iacoponi F, Condoleo R, Della Marta U. Size, demography, ownership pro-

files, and identification rate of the owned dog population in central Italy. PLoS One. 2020; 15: 1–17.

https://doi.org/10.1371/journal.pone.0240551 PMID: 33057370

24. Capello K, Bortolotti L, Lanari M, Baioni E, Mutinelli F, Va, et al. Estimate of the size and demographic

structure of the owned dog and cat population living in Veneto region (north-eastern Italy). Prev Vet

Med. 2015; 118: 142–147. https://doi.org/10.1016/j.prevetmed.2014.10.017 PMID: 25434702

25. Vascellari M, Ravagnan S, Carminato A, Cazzin S, Carli E, Da Rold G, et al. Exposure to vector-borne

pathogens in candidate blood donor and free-roaming dogs of northeast Italy. Parasites and Vectors.

2016; 9: 1–10. https://doi.org/10.1186/s13071-016-1639-6 PMID: 27357128

26. Nychyk S, Zhukorskiy O, Polupan I, Ivanov M, Nikitova A. Improvement Control System of Rabies in

Ukraine. Online Journal of Public Health Informatics. 2013. p. 1. https://doi.org/10.5210/ojphi.v5i1.4502

27. Polupan I, Bezymennyi M, Golik M, Zh D, Nychyk S, Nedosekov V. Spatial and Temporal Patterns of

Enzootic Rabies on the Territory of Chernihiv Oblast of Ukraine. J Vet Med Biotechnol Biosaf. 2017; 3:

31–36.

PLOS ONE Free-roaming dog population dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0266636 September 9, 2022 20 / 22

https://doi.org/10.1007/s13280-016-0858-6
http://www.ncbi.nlm.nih.gov/pubmed/28074403
https://doi.org/10.1016/j.prevetmed.2010.07.009
http://www.ncbi.nlm.nih.gov/pubmed/20696487
https://doi.org/10.1016/j.prevetmed.2010.07.001
https://doi.org/10.1016/j.prevetmed.2010.07.001
http://www.ncbi.nlm.nih.gov/pubmed/20709415
https://doi.org/10.1371/journal.pbio.1000053
https://doi.org/10.1371/journal.pbio.1000053
http://www.ncbi.nlm.nih.gov/pubmed/19278295
https://doi.org/10.1071/WR10027
https://doi.org/10.1071/WR10027
https://doi.org/10.1016/j.prevetmed.2010.11.011
https://doi.org/10.1016/j.prevetmed.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21144606
https://doi.org/10.1111/1365-2664.12279
http://www.ncbi.nlm.nih.gov/pubmed/25657481
https://doi.org/10.1371/journal.pone.0167092
http://www.ncbi.nlm.nih.gov/pubmed/27893866
https://doi.org/10.1016/j.prevetmed.2010.01.002
https://doi.org/10.1017/s0031182000075806
http://www.ncbi.nlm.nih.gov/pubmed/8632923
https://doi.org/10.1136/vr.147.16.442
http://www.ncbi.nlm.nih.gov/pubmed/11079440
https://doi.org/10.3161/104.062.0101
https://doi.org/10.3161/104.062.0101
https://doi.org/10.1371/journal.pone.0240551
http://www.ncbi.nlm.nih.gov/pubmed/33057370
https://doi.org/10.1016/j.prevetmed.2014.10.017
http://www.ncbi.nlm.nih.gov/pubmed/25434702
https://doi.org/10.1186/s13071-016-1639-6
http://www.ncbi.nlm.nih.gov/pubmed/27357128
https://doi.org/10.5210/ojphi.v5i1.4502
https://doi.org/10.1371/journal.pone.0266636


28. Dujardin JC, Campino L, Cañavate C, Dedet JP, Gradoni L, Soteriadou K, et al. Spread of vector-borne

diseases and neglect of leishmaniasis, Europe. Emerg Infect Dis. 2008; 14: 1013–1018. https://doi.org/

10.3201/eid1407.071589 PMID: 18598618

29. Wierzbowska IA, Hedrzak M, Popczyk B, Okarma H, Crooks KR. Predation of wildlife by free-ranging

domestic dogs in Polish hunting grounds and potential competition with the grey wolf. Biol Conserv.

2016; 201: 1–9. https://doi.org/10.1016/j.biocon.2016.06.016

30. Tasker L. Stray animal control practices (Europe). WSPA RSPCA Rep. London, WSPA and RSPCA;

2007.

31. Belo VS, Werneck GL, da Silva ES, Barbosa DS, Struchiner CJ. Population Estimation Methods for

Free-Ranging Dogs: A Systematic Review. Kaminski J, editor. PLoS One. 2015; 10: e0144830. https://

doi.org/10.1371/journal.pone.0144830 PMID: 26673165

32. Otis DL, Burnham KP, White GC, Anderson DR. Statistical Inference from Capture Data on Closed Ani-

mal Populations. Wildl Monogr. 1978; 3–135.

33. Benton TG, Grant A. Elasticity analysis as an important tool in evolutionary and population ecology.

Trends Ecol Evol. 1999; 14: 467–471. https://doi.org/10.1016/s0169-5347(99)01724-3 PMID:

10542452

34. Belo VS, Struchiner CJ, Werneck GL, Teixeira Neto RG, Tonelli GB, de Carvalho Júnior CG, et al.

Abundance, survival, recruitment and effectiveness of sterilization of free-roaming dogs: A capture and

recapture study in Brazil. Ambrósio CE, editor. PLoS One. 2017; 12: e0187233. https://doi.org/10.1371/

journal.pone.0187233 PMID: 29091961

35. Pollock KH. A Capture-Recapture Design Robust to Unequal Probability of Capture. J Wildl Manage.

1982; 46: 752–757. https://doi.org/10.2307/3808568.

36. Kendall WL, Pollock KH. The Robust Design in Capture-Recapture Studies: A Review and Evaluation

by Monte Carlo Simulation. Wildlife 2001: Populations. Springer Netherlands; 1992. pp. 31–43. https://

doi.org/10.1007/978-94-011-2868-1_4

37. Smith HC, Pollock K, Waples K, Bradley S, Bejder L. Use of the Robust Design to Estimate Seasonal

Abundance and Demographic Parameters of a Coastal Bottlenose Dolphin (Tursiops aduncus) Popula-

tion. Miller PJO, editor. PLoS One. 2013; 8: e76574. https://dx.plos.org/10.1371/journal.pone.0076574.

38. Bailey LL, Simons TR, Pollock KH. Spatial and temporal variation in detection probabilities of Plethodon

salamanders using the robust capture-recapture design. J Wildl Manage. 2004; 68: 14–24. https://doi.

org/10.2193/0022-541X(2004)068[0014:SATVID]2.0.CO;2.

39. Nichols JD, Pollock KH, Hine JE. The Use of a Robust Capture-Recapture Design in Small Mammal Pop-

ulation Studie A Field Example with Microtus pennsylvanicus. Acta Theriol (Warsz). 1984; 29: 357–365.

40. Otranto D, Capelli G, Genchi C. Changing distribution patterns of canine vector borne diseases in Italy:

Leishmaniosis vs. dirofilariosis. Parasites and Vectors. 2009; 2: 1–8. https://doi.org/10.1186/1756-

3305-2-S1-S2 PMID: 19426441

41. Otranto D, Dantas-Torres F. Canine and feline vector-borne diseases in Italy: Current situation and per-

spectives. Parasites and Vectors. 2010; 3: 1–12. https://doi.org/10.1186/1756-3305-3-2/FIGURES/4

42. World Health Organization. Rabies information system of the WHO Collaboration Centre for Rabies

Surveillance and Research. 2022.

43. Peel MC, Finlayson BL, Mcmahon TA. Updated world map of the Köppen-Geiger climate classification.

Hydrol Earth Syst Sci Discuss. 2007; 4: 439–473.

44. Tenzin T, McKenzie JS, Vanderstichel R, Rai BD, Rinzin K, Tshering Y, et al. Comparison of mark-

resight methods to estimate abundance and rabies vaccination coverage of free-roaming dogs in two

urban areas of south Bhutan. Prev Vet Med. 2015; 118: 436–448. https://doi.org/10.1016/j.prevetmed.

2015.01.008 PMID: 25650307

45. Meunier N V., Gibson AD, Corfmat J, Mazeri S, Handel IG, Bronsvoort BMDC, et al. Reproducibility of

the mark-resight method to assess vaccination coverage in free-roaming dogs. Res Vet Sci. 2019; 123:

305–310. https://doi.org/10.1016/j.rvsc.2019.02.009 PMID: 30852350

46. Tiwari HK, Vanak AT, O’Dea M, Gogoi-Tiwari J, Robertson ID. A Comparative Study of Enumeration

Techniques for Free-Roaming Dogs in Rural Baramati, District Pune, India. Front Vet Sci. 2018; 5: 1–

12. https://doi.org/10.3389/fvets.2018.00104.

47. Daniels T. The social organization of free-ranging urban dogs. I. Non-estrous social behavior. Appl

Anim Ethol. 1983; 10: 341–363. https://doi.org/10.1016/0304-3762(83)90184-0.

48. ICAM coalition. Humane Dog Population Management Guidance. 2019.

49. UK Government. Animals (Scientific Procedures) Act. 1986.

50. European Directive. Legislation for the protection of animals used for scientific purposes. 2010.

51. Law of Ukraine. On the Protection of Animals from Cruelty. 2006.

PLOS ONE Free-roaming dog population dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0266636 September 9, 2022 21 / 22

https://doi.org/10.3201/eid1407.071589
https://doi.org/10.3201/eid1407.071589
http://www.ncbi.nlm.nih.gov/pubmed/18598618
https://doi.org/10.1016/j.biocon.2016.06.016
https://doi.org/10.1371/journal.pone.0144830
https://doi.org/10.1371/journal.pone.0144830
http://www.ncbi.nlm.nih.gov/pubmed/26673165
https://doi.org/10.1016/s0169-5347(99)01724-3
http://www.ncbi.nlm.nih.gov/pubmed/10542452
https://doi.org/10.1371/journal.pone.0187233
https://doi.org/10.1371/journal.pone.0187233
http://www.ncbi.nlm.nih.gov/pubmed/29091961
https://doi.org/10.2307/3808568
https://doi.org/10.1007/978-94-011-2868-1_4
https://doi.org/10.1007/978-94-011-2868-1_4
https://dx.plos.org/10.1371/journal.pone.0076574
https://doi.org/10.2193/0022-541X(2004)068[0014:SATVID]2.0.CO;2
https://doi.org/10.2193/0022-541X(2004)068[0014:SATVID]2.0.CO;2
https://doi.org/10.1186/1756-3305-2-S1-S2
https://doi.org/10.1186/1756-3305-2-S1-S2
http://www.ncbi.nlm.nih.gov/pubmed/19426441
https://doi.org/10.1186/1756-3305-3-2/FIGURES/4
https://doi.org/10.1016/j.prevetmed.2015.01.008
https://doi.org/10.1016/j.prevetmed.2015.01.008
http://www.ncbi.nlm.nih.gov/pubmed/25650307
https://doi.org/10.1016/j.rvsc.2019.02.009
http://www.ncbi.nlm.nih.gov/pubmed/30852350
https://doi.org/10.3389/fvets.2018.00104
https://doi.org/10.1016/0304-3762(83)90184-0
https://doi.org/10.1371/journal.pone.0266636


52. Royle JA, Dorazio RM. Modeling Population Dynamics. First. In: Royle AJ, Dozario RM, editors. Hierar-

chical Modeling and Inference in Ecology: The analysis of data from populations, metapopulations and

communities. First. San Diego, United States: Elsevier Science Publishing Co Inc; 2008. pp. 325–345.

https://doi.org/10.1016/b978-0-12-374097-7.00012–0

53. Kery M, Schaub M. Estimation of Survival, Recruitment, and Population Size from Capture-Recapture

Data Using the Jolly-Seber Model. First. Bayesian Population Analysis using WinBUGS: A Hierarchical

Perspective. First. Waltham: Elsevier Inc.; 2011. pp. 316–346.

54. Royle JA, Dorazio RM. Parameter-expanded data augmentation for Bayesian analysis of capture-

recapture models. J Ornithol. 2012; 152: 521–537. https://doi.org/10.1007/s10336-010-0619-4.

55. Stan Development Team. Stan modeling language users guide and reference manual. Version 2.15.0.

2016.

56. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. 2013.

57. Stan Development Team. “RStan: the R interface to Stan.” R package version 2.19.3. 2020.

58. Clark JS, Ferraz G, Oguge N, Hays H, DiCostanzo J. Hierarchical Bayes for structured, variable popula-

tions: From recapture data to life-history prediction. Ecology. 2005; 86: 2232–2244. https://doi.org/10.

1890/04-1348

59. Rankin RW, Nicholson KE, Allen SJ, Krützen M, Bejder L, Pollock KH. A Full-Capture Hierarchical

Bayesian Model of Pollock’s Closed Robust Design and Application to Dolphins. Front Mar Sci. 2016; 3:

1–18. https://doi.org/10.3389/fmars.2016.00025

60. Schofield MR, Barker RJ, MacKenzie DI. Flexible hierarchical mark-recapture modeling for open popula-

tions using WinBUGS. Environ Ecol Stat. 2009; 16: 369–387. https://doi.org/10.1007/s10651-007-0069-1

61. Yoak AJ, Reece JF, Gehrt SD, Hamilton IM. Optimizing free-roaming dog control programs using

agent-based models. Ecol Modell. 2016; 341: 53–61. https://doi.org/10.1016/j.ecolmodel.2016.09.018.

62. Kisiel LM, Jones-Bitton A, Sargeant JM, Coe JB, Flockhart DTT, Canales Vargas EJ, et al. Modeling

the effect of surgical sterilization on owned dog population size in Villa de Tezontepec, Hidalgo, Mexico,

using an individual-based computer simulation model. Ambrósio CE, editor. PLoS One. 2018; 13: 1–22.

https://doi.org/10.1371/journal.pone.0198209 PMID: 29856830

63. Pollock KH. Capture-Recapture Models Allowing for Age-Dependent Survival and Capture Rates. Bio-

metrics. 1981; 37: 521–529.

64. Knobel DDL, Cleaveland S, Coleman PGP, Fèvre EM, Meltzer MI, Miranda MEG, et al. Re-evaluating

the burden of rabies in Africa and Asia. Bull World Health Organ. 2005; 83: 360–368. PMID: 15976877

65. Coleman PG, Dye C. Immunization coverage required to prevent outbreaks of dog rabies. Vaccine.

1996; 14: 185–186. https://doi.org/10.1016/0264-410x(95)00197-9 PMID: 8920697

66. Polupan I, Bezymennyi M, Gibaliuk Y, Drozhzhe Z, Rudoi O, Ukhovskyi V, et al. An Analysis of Rabies Inci-

dence and Its Geographic Spread in the Buffer Area Among Orally Vaccinated Wildlife in Ukraine From

2012 to 2016. Front Vet Sci. 2019; 6: 1–13. https://doi.org/10.3389/fvets.2019.00290 PMID: 31552281

67. Kaare MT. Rabies control in rural Tanzania: Optimising the design and implementation of domestic dog

mass vaccination programmes. PhD Thesis. The University of Edinburgh. 2006.

68. Kitala P, McDermott J, Kyule M, Gathuma J, Perry B, Wandeler A. Dog ecology and demography infor-

mation to support the planning of rabies control in Machakos District, Kenya. Acta Trop. 2001; 78: 217–

230. https://doi.org/10.1016/S0001-706X(01)00082-1.

69. Durr S, Dhand NK, Bombara C, Molloy S, Ward MP. What influences the home range size of free-roam-

ing domestic dogs? Epidemiol Infect. 2017; 145: 1339–1350. https://doi.org/10.1017/

S095026881700022X PMID: 28202088

70. Pal SK, Ghosh B, Roy S. Dispersal behaviour of free-ranging dogs (Canis familiaris) in relation to age,

sex, season and dispersal distance. Appl Anim Behav Sci. 1998; 61: 123–132. https://doi.org/10.1016/

S0168-1591(98)00185-3.

71. Belsare AAVA, Gompper MME. Assessing demographic and epidemiologic parameters of rural dog

populations in India during mass vaccination campaigns. Prev Vet Med. 2013; 111: 139–146. https://

doi.org/10.1016/j.prevetmed.2013.04.003 PMID: 23664490

72. Punjabi GA, Athreya V, Linnell JDC. Using natural marks to estimate free-ranging dog Canis familiaris abun-

dance in a MARK-RESIGHT framework in suburban Mumbai, India. Trop Conserv Sci. 2012; 5: 510–520.

73. Hostetter NJ, Gardner B, Sillett TS, Pollock KH, Simons TR. An integrated model decomposing the

components of detection probability and abundance in unmarked populations. Ecosphere. 2019; 10:

1–9. https://doi.org/10.1002/ecs2.2586

74. Cruickshank SS, Schmidt BR. Error rates and variation between observers are reduced with the use of

photographic matching software for capture-recapture studies. Amphibia-Reptilia. 2017; 38: 315–325.

PLOS ONE Free-roaming dog population dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0266636 September 9, 2022 22 / 22

https://doi.org/10.1016/b978-0-12-374097-7.000120
https://doi.org/10.1007/s10336-010-0619-4
https://doi.org/10.1890/04-1348
https://doi.org/10.1890/04-1348
https://doi.org/10.3389/fmars.2016.00025
https://doi.org/10.1007/s10651-007-0069-1
https://doi.org/10.1016/j.ecolmodel.2016.09.018
https://doi.org/10.1371/journal.pone.0198209
http://www.ncbi.nlm.nih.gov/pubmed/29856830
http://www.ncbi.nlm.nih.gov/pubmed/15976877
https://doi.org/10.1016/0264-410x(95)00197-9
http://www.ncbi.nlm.nih.gov/pubmed/8920697
https://doi.org/10.3389/fvets.2019.00290
http://www.ncbi.nlm.nih.gov/pubmed/31552281
https://doi.org/10.1016/S0001-706X(01)00082-1
https://doi.org/10.1017/S095026881700022X
https://doi.org/10.1017/S095026881700022X
http://www.ncbi.nlm.nih.gov/pubmed/28202088
https://doi.org/10.1016/S0168-1591(98)00185-3
https://doi.org/10.1016/S0168-1591(98)00185-3
https://doi.org/10.1016/j.prevetmed.2013.04.003
https://doi.org/10.1016/j.prevetmed.2013.04.003
http://www.ncbi.nlm.nih.gov/pubmed/23664490
https://doi.org/10.1002/ecs2.2586
https://doi.org/10.1371/journal.pone.0266636

