
Received 24 August 2022, accepted 6 September 2022, date of publication 16 September 2022,
date of current version 28 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3207200

Unlocking Edge Intelligence Through Tiny
Machine Learning (TinyML)
SYED ALI RAZA ZAIDI 1, (Member, IEEE), ALI M. HAYAJNEH 2, (Member, IEEE),
MARYAM HAFEEZ3, (Member, IEEE), AND Q. Z. AHMED 3, (Member, IEEE)
1School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT Leeds, U.K.
2Department of Electrical Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan
3School of Computing & Engineering, University of Huddersfield, HD1 3DH Huddersfield, U.K.

Corresponding author: Syed Ali Raza Zaidi (s.a.zaidi@leeds.ac.uk)

This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) under Grant UK EP/S016813/1 and
Grant EP/N010523/1; in part by the Royal Academy of Engineering, Transforming Systems through Partnership TSP1040, under Grant
UK 122040; and in part by the Royal Academy through the Distinguished International Associates under Grant DIA-2021-18.

1

2

3

4

5

6

7

8

9

10

ABSTRACT Machine Learning (ML) on the edge is key to enabling a new breed of IoT and autonomous
system applications. The departure from the traditional cloud-centric architecture means that new deploy-
ments can bemore power-efficient, provide better privacy and reduce latency for inference. At the core of this
paradigm is TinyML, a framework allowing the execution of ML models on low-power embedded devices.
TinyML allows importing pre-trainedMLmodels on the edge for providingML-as-a-Service (MLaaS) to IoT
devices. This article presents a TinyMLaaS (TMLaaS) architecture for future IoT deployments. The TMLaaS
architecture inherently presents several design trade-offs in terms of energy consumption, security, privacy,
and latency. We also present how TMLaaS architecture can be implemented, deployed, and maintained
for large-scale IoT deployment. The feasibility of implementation for the TMLaaS architecture has been
demonstrated with the help of a case study.

11

12

INDEX TERMS Tiny machine learning, IoT, edge computing, 5G, LoRa, gesture recognition, deep learning,
transfer learning, federated learning, implementation, MLOps, energy efficiency.

I. INTRODUCTION13

Artificial intelligence (AI) is fundamentally a collection of14

digital technologies that derive cognition (learning, plan-15

ning and orientation) through perception of the environment,16

therefore providing capability to make the right decisions at17

the right time. Machine Learning (ML) is an algorithmic18

tool-set to enable AI, in this context cognition is implemented19

as a learning process based on experience in relation to a20

certain task with an associated performance measure. The21

experience is often derived from the data collected from the22

perception of the environment.23

A. MOTIVATION24

The symbiosis of AI and Internet-of-Things (IoT) is nat-25

ural. IoT provides a perception layer for many smart-city26

The associate editor coordinating the review of this manuscript and

approving it for publication was Wai-Keung Fung .

applications and ML augments sensing capabilities by deriv- 27

ing intelligence from data collected through this percep- 28

tion layer. A typical IoT device will have a micro-controller 29

unit (MCU) potentially with an integrated low-power radio 30

transceiver for wireless connectivity. Each MCU is furnished 31

with a limited amount of memory and is typically designed 32

to operate on a coin cell for several years. These low-cost 33

IoT devices have a small footprint as often designed to 34

be less obtrusive. In current IoT architecture typically data 35

from the end-nodes/IoT devices is transmitted and aggre- 36

gated at the gateways. The transmission of data is sup- 37

ported by a variety of connectivity technologies ranging from 38

Unlicensed WiFi and Low-Power Wide-Area-Networking 39

(LPWAN) technologies such as LoRa and Sigfox, as well 40

as Licensed Cellular radio e.g. LTE for Machines (LTE-M) 41

and Narrow Band (NB) IoT. The gateways are then con- 42

nected to Cloud platforms via a broadband internet con- 43

nection and allow storage, processing and inference on the 44

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 100867

https://orcid.org/0000-0003-1969-3727
https://orcid.org/0000-0003-4238-181X
https://orcid.org/0000-0002-3957-5341
https://orcid.org/0000-0002-3367-1711


S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

FIGURE 1. Power Consumption & Available Memory in Commercially
available IoT MCUs.

aggregated sensor data. This architecture has several perfor-45

mance bottlenecks:46

1) POWER CONSUMPTION FOR WIRELESS CONNECTIVITY47

Most IoT devices are battery-powered allowing tetherless48

connectivity in scenarios where: i. fixed power supply does49

not exist; ii. the power source is not co-located with point-50

of-interests (PoI) for monitoring or actuation; iii. plugging51

into mains is costly and outweighs the device utility; and iv.52

mains power limits the mobility of the object in which IoT53

sensors are augmented. However, reliance on battery power54

means that operational lifetime is limited and power con-55

sumption is of paramount importance. Typically local com-56

putation is several-fold less power-hungry than transmission57

over wireless channel [1]. Moreover, while sensors collect58

a huge amount of data, from an application perspective it59

is the inference that is of importance. This inadvertently60

requires compute efficient method of localized ML which61

also increases bandwidth efficiency. Fig. 1 provides a quick62

comparison of popular commercially available IoT MCUs.63

Ideally, in order to provide local computation capabilities,64

MCUs with high onboard memory (RAM and FLASH) and65

low power consumption are required, i.e. the sweet spot for66

MCUs is the top-left corner of the figure. Unfortunately, it can67

be observed there are no commercial products that lie in that68

sweet spot. This could be credited to the inherent interplay69

between onboard memory and power consumption. Never-70

theless, the industry has made rapid progress and some of the71

recent MCUs (STM, NINA and Nano BLE Sense) are placed72

in the next best space for design choices.73

2) LATENCY74

The current architecture not only incurs power cost to75

facilitate wireless connectivity but also introduces non-76

deterministic delay. Fig. 2 shows the probability density func-77

tion (PDF) of latency for the Message Queuing Telemetry78

FIGURE 2. Latency for Typical MQTT IoT application.

Transport (MQTT) packet published by an IoT device e.g. 79

temperature sensor for a subscriber such as a remote mon- 80

itoring tablet. Each packet is 140 bytes in size and latency 81

is calculated at the application layer. It is obvious that there 82

is a minimum fixed latency (which itself is a function of the 83

load on the server, time of day, etc.) and a power-law distri- 84

bution for the random delay. This scenario does not include 85

the time taken to perform ML to derive inference. However, 86

it shows that the round trip latency of cloud-centric solutions 87

is unpredictable. Therefore, it is highly desirable to move the 88

inference capabilities to the edge. 89

3) PRIVACY 90

Another disadvantage of cloud-centric architecture is that raw 91

data from the sensor has to traverse to the cloud via gateway 92

and the internet. Any compromise in security leads to privacy 93

violations. Also, there is no transparency on how data is being 94

used and which applications are authorized to use it. Moving 95

inference closer to the user, i.e. on the edge can provision 96

an architecture whereby raw data is never transmitted to the 97

cloud. Only inferences driven on the raw data are transmitted 98

to the cloud and stored for application-specific actions. 99

4) CONNECTIVITY 100

Lastly, in the current architecture gateways need to be 101

connected to the internet. Provisioning such connectivity 102

incurs both capital expenditure (CAPEX) and operational 103

expenditure (OPEX) with management overheads associated 104

with maintaining infrastructure. Local inference capabilities 105

reduce the reliance on connectivity, i.e. provision of services 106

in areas where internet connectivity is intermittent or even 107

does not exist at all. 108

B. ML-AS-A-SERVICE (MLaaS) 109

The above-mentioned performance limitations have triggered 110

a new paradigm for edge intelligence, i.e., MLaaS hosted on 111

100868 VOLUME 10, 2022



S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

the edge for the IoT nodes. This emerging architecture is112

shown in Fig. 3. The architecture aims to employ on-device113

learning for low-fidelity ML, i.e. to perform rough and quick114

estimates. This is especially useful when actuation depends115

on such inference as ultra-low latency can be guaranteed.116

Additionally, the trained ML model which is deployed on the117

Edge-gateway can be exposed as a service for the end IoT118

devices. This provides the capability to perform high-fidelity119

ML at the edge. In many practical scenarios, the end devices120

or IoT devices will not perform any inference and will just121

access MLaaS from the edge. This allows for conserving122

energy on end nodes which are typically battery-powered,123

while gateways have more compute, memory and potential124

access to a fixed power supply. A step further from this125

architecture can be enabled through the exploitation of vir-126

tualization, i.e., the edge device can actually offload ML127

inference tasks horizontally between the end nodes. How-128

ever, this increases gateway design complexity potentially129

affecting continuous integration (CI) and continuous deliv-130

ery (CD) capabilities for firmware software. Moreover, the131

end nodes deplete more power. Nevertheless, in both afore-132

mentioned approaches, end-devices and gateways (typically133

embedded devices) need to be capable of implementing ML134

inference while coping with limited memory and power bud-135

get. TinyML precisely tries to address these design issues.136

In addition to ML capabilities, several other features need137

to be incorporated into the IoT Gateway under the proposed138

architecture. These include:139

1) DEVICE MANAGER140

Coordinates: a) commissioning and authentication for new141

IoT nodes added to the network; b) provides functional-142

ity to construct shallow or deep copies of device state,143

thereby enabling operation with intermittent connectivity.144

The commissioning functionality requires the implementa-145

tion of either a lightweight web-based user interface (UI)146

that can be serviced by the gateway or a separate mobile147

application that can be downloaded by the user. Typically148

the approach taken in many commercial products is to host149

a lightweight web server on the gateway which can host the150

web-based UI. Additional UI functionality for visualization151

of sensor output and inference is often also incorporated in152

the web application.153

2) CLOUD MANAGER154

Coordinates: a) authentication of the gateway with the back155

end cloud service provider; b) provides cloud connectivity156

manager, e.g. management of connectivity to LPWAN; and,157

c) can additionally host a light-weight web-server which can158

allow pre-fetching of server-side rendered components for159

IoT applications, as well as rendering of data-visualization160

which can be locally performed.161

3) RESOURCE MANAGER162

Performs a) local storage management for core applica-163

tion logic, as well as visualization for the end-user device;164

b) performs memory management for both ML functions and 165

end-user visualization. 166

The goal of this article is to provide a comprehensive 167

overview of how TinyML-as-a-Service (TMLaaS) architec- 168

ture and also demonstrate its usefulness through a practical 169

case study. We also outline practical considerations in imple- 170

menting the proposed architecture. 171

II. ML ON MCUs: CHALLENGES & SOLUTIONS 172

Neural network (NN) based learning has been extensively 173

studied from an embedded application development perspec- 174

tive in [2], [3], [4], [5], [6], and [7]. Convolutional NN (CNN), 175

Recurrent NN and their hybrids exploit the correlation of 176

time-domain, spectral-domain features and long-term depen- 177

dencies in the input data to improve the performance of the 178

MLmodel. However, due to the high computational and stor- 179

age requirement of the neural architecture of these models, 180

full-scale deployment of many models is infeasible for IoT 181

applications employing MCUs. In this context, model com- 182

pression techniques are an active area of research to meet the 183

hardware constraints. In [8], an RNN compression approach 184

using pruning and integer quantization of weights/activation 185

has been suggested for deployment on MCUs. Depthwise- 186

separable (DS-CNNs) decompose 3-D convolution opera- 187

tions into 2-D and 1-D convolutions and have been suggested 188

in [9] as an optimal choice of ML on MCUs. Another such 189

effort is presented by [10] which is geared towards reducing 190

the complexity of computation of convolutions in NNs by 191

approximating the matrix multiplication calculations. How- 192

ever, it does introduce significant costs in terms of employing 193

more additional operations. In addition to model compres- 194

sion, various optimizations based on adaptive NN architec- 195

tures have also been proposed for provisioning ML models 196

on MCUs. In [11], a two-stage neural architecture search 197

approach has been proposed that first optimizes the search 198

space to fit the resource constraints, and then specializes 199

in the network architecture in the optimized search space. 200

This allows the model to adapt to different QoS and resource 201

constraints. Tree-based learning approaches [12] have been 202

studied in the context of reducing computational load and 203

storage requirements. Such models offer acceptable accu- 204

racy, however, they are limited in terms of their scalability. 205

Hybrid approaches such as [13] combine DS- CNN neural 206

architectures and tree-based learning to offer solutions that 207

attain accuracy by using neural networks for feature extrac- 208

tion and computational efficiency by using a shallow Bonsai 209

decision tree to perform the classification. TinyML frame- 210

work can exploit neural architecture search (NAS) to design 211

models that can meet the stringent MCU memory, latency, 212

and energy constraints. An example of such an approach can 213

be found in [14]. Articles [15] and [16] provide a comprehen- 214

sive overview of the revolution of TinyML and a review of 215

tinyML studies. In [17] authors present a new data compres- 216

sion solution called the Tiny Anomaly Compressor (TAC) 217

to leverage the TinyML perspective. In [18], the authors 218

present an architecture for detecting medical face masks 219

VOLUME 10, 2022 100869



S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

FIGURE 3. Architecture for the gateway.

for deployment on resource-constrained endpoints having220

extremely lowmemory footprints. However, to the best of our221

knowledge, multiple design trade-offs and implementation-222

related challenges involved in TMLaaS architecture223

need further attention as presented in the discussion to224

follow.225

A. CONTRIBUTIONS226

The main contributions of this work include a comprehensive227

framework for exploiting TinyML-as-a-Service (TMLaaS) at228

the Edge for future IoT applications. The paper identifies the229

need to have light ML solutions to fit the constrained onboard230

power and memory resources by providing an overview231

of onboard memory and power consumption of a variety232

of commercially available MCUs. The proposed TMLaaS233

architecture in this paper supports the on-device learning234

for low-fidelity ML as required for resource-constrained235

MCU-based IoT-type solutions. We present multiple design236

tradeoffs and implementation-related challenges involved in237

TMLaaS architecture. TFLite Micro-based design and work-238

flow implementation of TinyML solutions is detailed and the239

operational cycle of the architecture has also been discussed.240

The paper also presents a practical case study based on the241

proposed design space of TMLaaS architecture. We out-242

line some important research challenges and provide a brief243

road map for the evolution of TMLaaS-empowered IoT244

networks.245

B. ORGANISATION 246

The rest of the paper is organized as follows: In Section II, 247

we present a brief account of existing ML approaches 248

and literature on implementing these models on resource- 249

constrained MCUs. In Section III, the design and imple- 250

mentation challenges of interoperability and performance 251

characterization to unlock the full potential of ML solu- 252

tions has been discussed. TFLite Micro-based design and 253

workflow implementation of TinyML solutions is detailed. 254

Section IV explains MLaaS architecture in detail along with 255

its operational cycle termed at ML-Ops. Section V presents 256

the ease of development and deployment of the proposed 257

TLMaaS architecture with the help of a simple case study. 258

In Section VI, emerging ML modalities, road maps and open 259

issues have been discussed with a focus on Transfer Learn- 260

ing and Federated Learning. Section VII concludes the paper 261

while Section VIII details the future work. 262

III. TinyML OVERVIEW 263

TinyML is an emerging field at the intersection of embed- 264

ded systems and ML. Effectively, TinyML provides tools 265

to develop ML models which can be executed on resource- 266

limited devices. The process flow for TinyML deployment 267

starts with the collection of data from the hardware where 268

an inference engine is required. The data can either be 269

logged on onboard storage or could be directly imported into 270

user-friendly tools e.g. Edge Impluse Studio. The ML model 271

100870 VOLUME 10, 2022



S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

FIGURE 4. Applications for TMLaaS.

is trained on the collected data set and the model is then272

exported into a form that is directly implementable on the273

MCU. The MCU employs the trained model for inference in274

subsequent iterations. In order to unlock the full potential of275

ML for IoT systems, two key challenges need to be addressed:276

A. Interoperability:TheMCUmarket is quite fragmented277

and there is no unified standard for TinyML implementation.278

Platform-specific implementations are not scalable as they279

require a manual application and hardware-specific optimiza-280

tions.281

B. Performance Characterization: Another challenge282

limiting TinyML is that in the absence of a uniform frame-283

work, it is hard to evaluate the hardware performance in284

a neutral and vendor-agnostic manner. When performance285

boosts are reported it is difficult to decipher whether they are286

related to hardware or software implementation and whether287

these gains generalize across various applications. These two288

challenges are addressed by a TensorFlow Lite (TFL) Micro289

proposed in [19]. In fact, TFLite has become synonymous290

to TinyML itself as most practical implementations of ML291

models rely on the TFLite libraries.292

A. TinyML IMPLEMENTATION ASPECTS & DESIGN293

PRINCIPLES FOR TFLite MICRO294

The core design principle behind TFLite Micro is that it aims295

to provide the utmost necessary features for enabling ML296

on IoT devices. In other words, the framework assumes that297

the model, input data and output arrays are in memory and298

perform computations on these arrays directly. The TFLite299

Micro Framework uses an interpreter which loads the data 300

structure that defines theMLmodel. The choice of interpreter 301

against the code generators is based on the fact that the model 302

can be easily updated without the need for recompiling the 303

firmware on the IoT device. 304

B. TinyML WORKFLOW IMPLEMENTATION 305

A typical TinyML workflow will include training of 306

ML model using the TensorFlow framework on a 307

high-performance computer (e.g. using TFLite within Jupyter 308

Notebook) or on a cloud server (e.g. using Google Colab). 309

The Tensor Flow model is then converted to a TFLite format 310

using a converter. The converted model can then be exported 311

as a C-byte array. On the MCU, the application utilizes the 312

TinyML library which exposes the OpResolver application 313

programming interface (API). In contrast to TensorFlow, 314

TFLite Micro supports only a limited number of operations 315

for implementing NNs. The application developer utilizes 316

OpResolver to specify which operators need to be linked to 317

the final binaries of the IoT firmware. This in turn minimizes 318

the file size for the compiled firmware. Within the firmware, 319

a contiguous chunk of memory ‘‘arena’’ needs to be allo- 320

cated for TFLite Interpreter to store intermediate results and 321

other variables. Typically, an instance of Interpreter is created 322

by furnishing arena and OpResolver as a parameter. The 323

Interpreter then takes care of memory allocation, operator 324

resolution and model loading. The input data for the model is 325

written onto an array which is read by the interpreter. Simi- 326

larly, the output data is provided in form of an output array. 327

VOLUME 10, 2022 100871



S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

Interested readers are encouraged to see [20] for detailed328

tutorials on implementation.329

IV. TMLaaS ARCHITECTURE330

A. TinyML AS A SERVICE331

TMLaaS refers to exposing theMLaaS onGateways and End-332

Devices. Effectively, as shown in Fig. 3, the learning process333

can be viewed as a monolithic functionality split across the334

end device and the gateway. Devices perform quick-and-335

coarse inference while gateway can provide fine grained336

inference capabilities. TMLaas expands the ML capabili-337

ties provided by TinyML. In other words, TMLaaS is an338

architecture for exposing TinyML-as-a-Service. In contrast,339

TinyML alone provides a framework for enabling the exe-340

cution of ML models on resource-constrained devices. Some341

of the key applications of TinyML have been presented in342

Fig. 4.343

When designing the TMLaaS system an important ques-344

tion is how such a split can be accomplished. A simple answer345

to this design question is that for those applications where346

each IoT device contributes a sub-set of input features for347

the ML model, it is natural to expose the learning on the348

gateway. Also where these sensors are heterogeneous or the349

inference aims to treat the input from sensors as a multiple-350

input channel, it is easy to expose MLaaS on the gateway.351

On the other hand, in applications where inference leads to352

actuation, latency can be reduced by placing coarse inference353

capabilities on the device itself. Both choices yield different354

design trade-offs. For instance, a designer can think of trad-355

ing onboard computations on devices with computation on356

the gateway. Both have different energy penalties with the357

later design option trades on-board energy consumption of358

computation with the energy consumed in wireless transmis-359

sion. Depending on the computational requirements it might360

be better to run the model on the gateway which may be361

powered from mains rather than running these models on362

devices that are battery-powered. Another such trade-off is in363

terms of security. Depending on how secure the link between364

the device and gateway is versus the link between gateway365

and cloud, one might establish the split of the learning pro-366

cess. This of course needs to be considered along with pri-367

vacy constraints enforced by the application. For instance,368

if the aggregate information at the gateway contains data from369

devices belonging to different users and certain devices pro-370

vide side information for other features/data points then pri-371

vacy aspects will dictate how coarse and fine-grained learning372

is split. Lastly, one needs to consider the modality of com-373

munication on devices and the ease of upgrading/replacing374

the ML model. Gateways might have a bi-directional com-375

munication link with the cloud while IoT devices can be376

uplink only (e.g. SigFox, ELTRES or BLE Advertising Bea-377

cons). Therefore, it is easier to upgrade and test the models378

on the gateway rather than on end devices. As long as the379

method with which the MLaaS is exposed, the end devices380

do not change the application will operate seamlessly. For381

instance, such functionality can be exposed using RESTful382

APIs. Maintaining, managing, testing and re-configuring the 383

TMLaaS applications falls under MLOps. We present a brief 384

overview of MLOps in what follows. 385

B. ML-OPS 386

In order to understand the operation of ML-based embed- 387

ded applications, it is important to understand ML systems 388

development life cycle and aspects of the continuous high- 389

quality operation. This corresponds to a complete ecosys- 390

tem of ML-embedded solutions from development through 391

to delivery. This includes system construction, its integra- 392

tion, testing, releasing, deployment and infrastructure man- 393

agement [21]. Deriving from this definition, MLOps is a 394

set of engineering practices that aim at unifying ML system 395

development and operation with the objective of ensuring 396

continuous integration (CI), continuous development (CD) 397

and continuous testing (CT). In principle, MLOps is equiv- 398

alent of DevOps i.e. combination of practices and tools that 399

increases the ability of the software provider to deliver appli- 400

cations and services at a rapid pace. The following steps 401

provide a footprint of activities that may be used as a ref- 402

erence classification for MLOps: (i) Sampling: For embed- 403

ded applications, it is of utmost importance to have samples 404

of data arriving at an accurate rate for processing. This is 405

particularly important for real-time embedded applications 406

using data from multiple sources; (ii) Analysis: It involves 407

the classification of data based on the model schema and its 408

requirements. It also includes the metadata which can be of 409

higher value as compared to raw data hence a key enabler 410

for federated learning; (iii) Structure: The data needs to be 411

formatted in accordance with the ML model input structure. 412

It needs to be partitioned into training and validation sets; 413

(iv) Training: The TinyML model is trained using the 414

structured data; (v) Evaluation and Validation: The model 415

is evaluated and validated against test data and bench- 416

marks; (vi) Deployment: The validated model is deployed; 417

(vii) CI: It refers to multiple integrations on a daily 418

basis. These can include algorithmic as well as visualiza- 419

tion/firmware updates; (viii) CD: Based on the CI, devel- 420

opment is also continuous with updates based on changing 421

application dynamics or algorithms. New models can be 422

developed and trained. Network bandwidths, latency and pri- 423

vacy are key aspects of TinyML performance that may require 424

a CD approach to guarantee QoS; (ix) CT: Continuous vali- 425

dation and testing of the updated models. 426

V. CASE STUDY 427

In this section, we aim to demonstrate the ease of develop- 428

ment and deployment of the proposed TLMaaS architecture 429

with the help of a simple case study. The case study will 430

showcase how some of the features previously outlined can 431

be implemented in practice, as well as present a benchmark 432

of different ML models on the hardware. Through this case 433

study, we explore the feasibility of implementing the most 434

commonly used classical classification and deep neural net- 435

work (DNN) techniques. 436

100872 VOLUME 10, 2022



S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

FIGURE 5. Case study setup.

A. SCENARIO437

We consider a scenario where a wearable device is438

equipped with an inertial measurement unit (IMU) and WiFi439

transceiver. The gateway device receives the data sent by the440

wearable device. The wearable device has a sampling trig-441

ger, i.e., it starts constructing an observation window after a442

certain acceleration threshold is exceeded. The observation443

window has a fixed length which is considered a design vari-444

able. Once the observation window is fully constructed data445

is transmitted over WiFi to the gateway device. The gateway446

device receives raw data which is treated as input to the ML447

model. This data is used in conjunction with a pre-compiled448

model by TinyML interpreter to produce the classification449

output. In particular, we aim to classify two different gestures,450

i.e. left and right. The choice of these gestures is on the basis451

that we can construct a wearable joystick that can be used452

for a variety of applications (e.g. presentations, gaming etc.).453

Notice the choice of which gestures, we want to classify454

is arbitrary and mainly based on ease of collection of data.455

However, the same principle applies if, for instance, we want456

to use IMU data to detect falls in the elderly. To provide457

a comparison of this case study with a standard example,458

we employ the MNIST dataset for the classification of hand-459

written digits. Studies in [22] have used a single-layer CNN-460

basedmodel for gesture recognition. In [23], Tensorflow (TF)461

and Keras are evaluated for their usage in gesture recognition.462

The gestures classification dataset samples consist of the two463

three-dimensional sensor measurements (i.e., accelerometer464

and gyroscope) that add up to six raw features. The target of465

the classifier is simply to label the class of the gesture whether466

it is left or right based on the selected features. For theMNIST 467

dataset, the aim is to label the handwritten 28 × 28 pixels 468

number into the actual value from 0 to 9. 469

B. IMPLEMENTATION 470

The implementation of the case study in terms of hardware 471

and software components is shown in Fig. 5. We employ 472

NodeMCU (ESP8266) as an IoT device connected with an 473

I2C interface to the IMU chip (MPU-6050). ESP8266 is set 474

up as a WiFi client device and streams the six raw features 475

from the IMU to the gateway. The gateway firmware scans for 476

the data but also provides a sub-set of functionalities outlined 477

in Fig. 3. For the gateway, we employ HELTEC LoRa Wire- 478

less Stick. The gateway has dual connectivity, i.e. WiFi and 479

LoRa. The gateway implements: i) Device Manager: which 480

handles the data streamed by all devices. It also manages con- 481

nectivity between devices and the gateway. ii) Lightweight 482

WebServer:A lightweight web server that hosts a web appli- 483

cation written using React a JavaScript framework. The appli- 484

cation provides functionality to provision eitherWiFi or LoRa 485

connectivity to the cloud. The web application also provides 486

visualization for the outcome of the local inference process 487

on a per-device basis. The web application interacts with the 488

web server which is fundamentally a part of the firmware 489

through RESTful API.iii) TMLaaS Engine: this is imple- 490

mented in the firmware using EloquentTinyML wrapper on 491

TFLite. This allows the execution of TFLite on ESP32MCUs 492

present on the HELTEC board. The implementation process 493

for TMLaaS functionality is comprised of three steps. First, 494

we collect the training data to train the classifiers offlinewhile 495

VOLUME 10, 2022 100873



S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

TABLE 1. DNN results.

optimizing the hyper-parameters of the model and ensuring496

targeted accuracy is obtained. Secondly, we use the conver-497

sion techniques (i.e., TF Lite and EloquentML [24] Wrapper)498

that ports the model from the training programming language499

into a compiled byte array that can be used by TinyML Inter-500

preter. This step includes ensuring that the compiled model501

will fit on the small flash memory footprint and can execute502

on the available SRAM. If the compiled model size is larger503

than any of the available resources, we then will need to504

sacrifice some of the optimized parameters and as a result505

the accuracy of the classifier. Third, the compiled model is506

ported to the MCU for live testing on unseen data in real507

time.508

C. RESULTS & DESIGN INSIGHTS509

Table 1 summarizes the performance for both data sets510

with different combination of hyper-parameters. The choice511

of hyper-parameters impact latency for prediction and the512

amount of RAM and Flash memory occupied by the model.513

However, the prediction accuracy has only a slight change514

if any with a reduction in the size of the input layer. Effec-515

tively, in this case, study (as can be seen from Fig 5) the516

raw waveforms have a distinct signature for both gestures.517

Therefore it is easy to obtain higher classification accuracy518

without a massive input layer and a huge number of hid-519

den layers. A similar observation is valid for the MNIST520

data set. In summary, with the help of such analysis, we can521

establish minimum hyperparameter space which yields good522

accuracy while minimizing the prediction delay, memory523

and processing footprint on the gateway. Table 1 provides524

a summary of performance for different classifiers when525

employed on the two datasets of interest. Both Support Vec-526

tor Machine (SVM) and Random Forest Classifiers provide527

good accuracy for the classification task. Nevertheless, the528

prediction time for Random Forest is several folds lower than529

SVMs. Random Forest Classifier also has a low resource530

footprint in terms of RAM and Flash space. Therefore,531

it seems like an ideal choice for implementing the classifi-532

cation task on the gateway using the traditional classification533

approach.534

VI. EMERGING ML MODALITIES, ROAD MAP AND OPEN 535

CHALLENGES 536

Although the proposed TMLaaS architecture itself is in its 537

infancy, there are two key ML modalities and relevant open 538

challenges that need to be addressed by the community. In our 539

subsequent discussion, we outline what these ML modalities 540

are and highlight their importance for enabling the pervasive 541

deployment of TMLaaS architecture. 542

A. TinyML FOR TRANSFER LEARNING 543

A typical TinyML workflow involves training a model using 544

high-performance computing platforms and then compiling it 545

through the TinyML framework which can be interpreted on 546

the edge device for making an inference. As an example, the 547

model developed by OpenAI recently to solve rubrics cube 548

not only required 1K desktop computers with several graph- 549

ical processing unit (GPU) accelerators but also consumed 550

2.8 Gigawatt-hours of electricity. The evolving trajectory to 551

expedite TMLaaS at the edge is to supply pre-trained models 552

through the edge device and can be employed for inference. 553

repository (e.g. TensorFlow Hub). These pre-trained models 554

can then be imported by edge devices for inference. It is 555

not always possible to train and re-train to build TinyML 556

models because (a) Training on large datasets is computa- 557

tionally expensive; (b) The input data for certain use cases 558

are not available but the trained models are often available. 559

Additionally, Transfer Learning (TL) provides the capabil- 560

ity of applying knowledge gained while solving one problem 561

and applying it to different but semantically similar prob- 562

lems. Therefore, a pre-trained model on a semantically sim- 563

ilar task can be easily downloaded from the hub/repository 564

for the edge device and can then be employed for infer- 565

ence. TL scenarios may be Inductive (i.e., source and target 566

problem domains are same but tasks are different), Unsuper- 567

vised (i.e. lack of labeled data in target domain), or Trans- 568

ductive (semantic similarities in source and target problems 569

but different domains for inputs). Since TMLaaS architec- 570

ture is still in its infancy, the adoption of on-the-fly pre- 571

compiled ML models through TL remains an open research 572

area. 573

100874 VOLUME 10, 2022



S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

TABLE 2. Classifiers results.

B. TinyML FOR FEDERATED LEARNING574

As discussed earlier, TMLaaS architecture inherently allows575

the designer to preserve privacy by utilizing a pre-compiled576

model on the edge devices. However, the model itself does577

not improve over time, i.e. learning from other edge devices578

is not inherently feasible. In contrast, Federated Learn-579

ing (FL) relies on distributed training model whereby data580

never leaves the edge devices. However, a shared model581

learns by aggregating locally computed ML models. In [25]582

authors introduce the Federated Averaging Algorithm, which583

combines local stochastic gradient descent (SGD) on each584

client with the server which then utilizes local computa-585

tion for averaging. Although the initial model was proposed586

for identically and independently distributed (iid) datasets,587

recent works have extended the algorithm for the non-iid588

datasets. The combination of TinyML and Federated learn-589

ing is natural as both complement each other perfectly.590

While TinyML can allow local execution of the models,591

FL can provide means for exploiting cross-device knowl-592

edge to improve the prediction model itself. To the best of593

our knowledge, the only attempt made to combine these594

two is in [26] and this is still an open area for future595

research.596

VII. CONCLUSION597

In this article, we presented a comprehensive framework598

for exploiting TinyML-as-a-Service (TMLaaS) at the Edge599

for future IoT applications. The paper compares onboard600

memory and power consumption of a variety of commer-601

cially available MCUs and identifies the need to have602

light ML solutions to fit their constrained power and603

memory resources. The outlined TMLaaS architecture sup-604

ports on-device learning for low-fidelity ML. We presented605

several design tradeoffs and implementation-related chal-606

lenges involved in TMLaaS architecture. TFLiteMicro-based607

design and workflow implementation of TinyML solutions608

is detailed and the operational cycle of the architecture has609

also been discussed. The design space of TMLaaS archi-610

tecture was also explored via a practical case study. Lastly,611

we outlined some important research challenges and a brief612

road map for the evolution of TMLaaS-empowered IoT613

networks.614

VIII. FUTURE WORK 615

As a part of the future work in this area, several challenges 616

need to be addressed for both TL and FL-based approaches 617

before they can play their significant role in unleashing 618

wide-scale penetration of TMLaaS solutions. The three key 619

research challenges in the TL area are: a. How can the edge 620

device evaluate the trustworthiness of a pre-trained model, 621

i.e., how can an edge device be sure that the source domain 622

data set was representative and did not have any biases? b. 623

How can we build a trustworthy dissemination protocol for 624

sharing retrained TL models between edge devices? c. The 625

third and the most important design question is how we 626

develop an interpretable TL model, i.e. transition towards. 627

Explainable ML models for TMLaaS architecture. From FL 628

perspective, some of the important design questions include: 629

a. TinyMLminimizes the energy cost paid in the transmission 630

of data to the cloud by allowing edge execution of the ML 631

model. However, for federated averaging at least the local 632

updates of the model need to be transmitted to the Cloud. 633

While this does not compromise privacy, it has energy and 634

connectivity costs. A typical FL update workflow requires 635

bandwidth that far exceeds the capability of current LPWAN 636

technologies. Therefore, it is these trade-offs that will dictate 637

when and how these two frameworks should be utilized in 638

conjunctions. b. It is possible to compress FL models using 639

ML compression techniques. TinyML frameworks e.g. Ten- 640

sorFlow Lite needs to explore how communication efficient 641

model compression can be accomplished for FL. 642

In summary, both TL and FL will play an instrumental role 643

in the proliferation of TMLaaS architecture. The architecture 644

itself when viewed through the lens of these ML modalities 645

provides a rich design space for further research.We hope that 646

the highlighted design issues will trigger community interest 647

in exploring some of these open research areas further. 648

REFERENCES 649

[1] X. Wang, M. Magno, L. Cavigelli, and L. Benini, ‘‘FANN-on-MCU: An 650

open-source toolkit for energy-efficient neural network inference at the 651

edge of the Internet of Things,’’ IEEE Internet Things J., vol. 7, no. 5, 652

pp. 4403–4417, May 2020. 653

[2] G. Chen, C. Parada, and G. Heigold, ‘‘Small-footprint keyword spotting 654

using deep neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech 655

Signal Process. (ICASSP), May 2014, pp. 4087–4091. 656

VOLUME 10, 2022 100875



S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

[3] T. N. Sainath and C. Parada, ‘‘Convolutional neural networks657

for small-footprint keyword spotting,’’ Google Res., New York,658

NY, USA, Tech. Rep. 43969, 2015. [Online]. Available: https://659

storage.googleapis.com/pub-tools-public-publication-data/pdf/43969.pdf660

[4] S. O. Arık, M. Kliegl, R. Child, J. Hestness, A. Gibiansky, C. Fougner,661

R. Prenger, and A. Coates, ‘‘Convolutional recurrent neural networks662

for small-footprint keyword spotting,’’ in Proc. Interspeech, 2017,663

pp. 1606–1610.664

[5] M. Sun, A. Raju, G. Tucker, S. Panchapagesan, G. Fu, A. Mandal, S. Mat-665

soukas, N. Strom, and S. Vitaladevuni, ‘‘Max-pooling loss training of long666

short-term memory networks for small-footprint keyword spotting,’’ in667

Proc. IEEE Spoken Lang. Technol. Workshop (SLT), San Diego, CA, USA,668

Dec. 2016, pp. 474–480.669

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,670

M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural671

networks for mobile vision applications,’’ 2017, arXiv:1704.04861.672

[7] J. G. Wilpon, L. Rabiner, C.-C. Lee, and E. R. Goldman, ‘‘Automatic673

recognition of keywords in unconstrained speech using hidden Markov674

models,’’ IEEE Trans. Acoust., Speech Signal Process., vol. 38, no. 11,675

pp. 1870–1878, Nov. 1990.676

[8] I. Fedorov, M. Stamenovic, C. Jensen, L.-C. Yang, A. Mandell, Y. Gan,677

M. Mattina, and P. N. Whatmough, ‘‘TinyLSTMs: Efficient neural speech678

enhancement for hearing aids,’’ 2020, arXiv:2005.11138.679

[9] Y. Zhang, N. Suda, L. Lai, and V. Chandra, ‘‘Hello edge: Keyword spotting680

on microcontrollers,’’ 2017, arXiv:1711.07128.681

[10] M. Tschannen, A. Khanna, and A. Anandkumar, ‘‘StrassenNets: Deep682

learning with a multiplication budget,’’ in Proc. 35th Int. Conf. Mach.683

Learn., Stockholm, Sweden, 2018, pp. 4985–4994.684

[11] J. Lin, W.-M. Chen, Y. Lin, C. Gan, and S. Han, ‘‘McuNet: Tiny deep685

learning on IoT devices,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 33,686

2020, pp. 11711–11722.687

[12] A. Kumar, S. Goyal, and M. Varma, ‘‘Resource-efficient machine688

learning in 2 KB RAM for the Internet of Things,’’ in Proc.689

34th Int. Conf. Mach. Learn., Sydney, NSW, Australia, 2017,690

pp. 1935–1944.691

[13] D. Gope, G. Dasika, and M. Mattina, ‘‘Ternary hybrid neural-tree692

networks for highly constrained IoT applications,’’ in Proc. Mach.693

Learn. Syst. (SysML) Conf., Palo Alto, CA, USA, vol. 1, 2019,694

pp. 190–200.695

[14] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,696

V. J. Reddi, M. Mattina, and P. Whatmough, ‘‘MicroNets: Neural network697

architectures for deploying TinyML applications on commodity microcon-698

trollers,’’ in Proc. Mach. Learn. Syst., San Jose, CA, USA, vol. 3, 2021,699

pp. 517–532.700

[15] N. N. Alajlan and D. M. Ibrahim, ‘‘TinyML: Enabling of inference deep701

learning models on ultra-low-power IoT edge devices for AI applications,’’702

Micromachines, vol. 13, no. 6, p. 851, 2022.703

[16] L. Dutta and S. Bharali, ‘‘TinyML meets IoT: A comprehensive survey,’’704

Internet Things, vol. 16, Dec. 2021, Art. no. 100461.705

[17] G. Signoretti, M. Silva, P. Andrade, I. Silva, E. Sisinni, and P. Ferrari,706

‘‘An evolving TinyML compression algorithm for IoT environments707

based on data eccentricity,’’ Sensors, vol. 21, no. 12, p. 4153,708

2021.709

[18] P. Mohan, A. J. Paul, and A. Chirania, ‘‘A tiny CNN architecture for med-710

ical face mask detection for resource-constrained endpoints,’’ in Innova-711

tions in Electrical and Electronic Engineering. Singapore: Springer, 2021,712

pp. 657–670.713

[19] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,714

I. Nappier, M. Natraj, T. Wang, P. Warden, and R. Rhodes, ‘‘TensorFlow715

lite micro: Embedded machine learning for TinyML systems,’’ in Proc.716

Mach. Learn. Syst., vol. 3, pp. 800–811, 2021.717

[20] T. F. Foundation. Tflite Micro Implementation Tutorials. Accessed:718

Aug. 23, 2022. [Online]. Available: https://bit.ly/2PGReuc719

[21] G. C. Foundation. MLOPS: Continuous Delivery and Automation720

Pipelines in Machine Learning. Accessed: Aug. 23, 2022. [Online]. Avail-721

able: https://bit.ly/2QH21VM722

[22] S. Bian and P. Lukowicz, ‘‘Capacitive sensing based on-board hand ges-723

ture recognition with TinyML,’’ in Proc. ACM Int. Joint Conf. Pervasive724

Ubiquitous Comput., 2021, pp. 4–5.725

[23] B. Coffen and M. S. Mahmud, ‘‘TinyDL: Edge computing and deep learn-726

ing based real-time hand gesture recognition using wearable sensor,’’ in727

Proc. IEEE Int. Conf. E-Health Netw., Appl. Services (HEALTHCOM),728

Shenzhen, China, Mar. 2021, pp. 1–6.729

[24] Eloquent. Eloquent TinyML Wrapper Library. Accessed: Aug. 23, 2022.730

[Online]. Available: https://bit.ly/2O5FQYB731

[25] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, 732

‘‘Communication-efficient learning of deep networks from decentralized 733

data,’’ in Proc. 20th Int. Conf. Artif. Intell. Statist. Lauderdale, FL, USA, 734

2017, pp. 1273–1282. 735

[26] K. Kopparapu and E. Lin. TinyFL: Enabling Federated Learning 736

on Tiny Devices. Accessed: Aug. 23, 2022. [Online]. Available: 737

https://bit.ly/3sMXa3P 738

SYED ALI RAZA ZAIDI (Member, IEEE) 739

received the Ph.D. degree from the School of 740

Electronic and Electrical Engineering. From 2011 741

to 2013, he was associated with the International 742

University of Rabat working as a Research Asso- 743

ciate. He was also a Visiting Research Scien- 744

tist at the Qatar Innovations and Mobility Centre, 745

fromOctober 2013 to December 2013, working on 746

QNRF Funded Project QSON. From 2013 to 2015, 747

he was associated with the SPCOM Research 748

Group working on US ARL Funded Project in the area of network science. 749

He is currently an Associate Professor at the University of Leeds in the broad 750

area of communication and sensing for robotics and autonomous systems. 751

He has published more than 90 papers in leading IEEE conferences and 752

journals. His current research interests include intersection ICT, applied 753

mathematics, mobile computing, and embedded systems implementation. 754

Specifically, his current research is geared towards: design and implemen- 755

tation of communication protocols to enable various applications (rehabil- 756

itation, healthcare, manufacturing, and surveillance) of future RAS; and 757

design, implementation, and control of RAS for enabling future wireless 758

networks (autonomous deployment, management, and repair of future cel- 759

lular networks). He was awarded the G. W. and F. W. Carter Prize for 760

best thesis and best research paper. He has been awarded COST IC0902, 761

Royal Academy of Engineering, EPSRC, Horizon EU, and DAAD grants 762

to promote his research outputs. From 2014 to 2015, he was an Editor of 763

IEEE COMMUNICATIONS LETTERS and also a lead Guest Editor of IET Signal 764

Processing journal’s Special Issue on Signal Processing for Large Scale 5G 765

Wireless Networks. He is also an Editor of IET Access, Front haul and 766

Backhaul books. He is currently serving as an Associate Technical Editor 767

for IEEE Communication Magazine. 768

ALI M. HAYAJNEH (Member, IEEE) received 769

the B.Sc. and M.Sc. degrees from the Jordan 770

University of Science and Technology (JUST), 771

Irbid, Jordan, in 2010 and 2014, respectively, and 772

the Ph.D. degree from the University of Leeds, 773

Leeds, U.K. He is currently with the Department 774

of Electrical Engineering, Faculty of Engineering, 775

The Hashemite University, Zarqa, Jordan, where 776

he is also the Director of the Innovation and 777

Entrepreneurial Projects Center. He is working as 778

an Android Development Freelancer, by integrating, and utilizing the IoT 779

promising technologies for the management of smart homes and cities. His 780

experience in many programming languages gives him the motivation to 781

diversify his interests in utilizing many platforms and technology engines. 782

His current research is funded by the Royal Academy of Engineering through 783

two programs: Transfer Systems through Partnerships (TSP); and distin- 784

guished international associate (DIA) in the fields of smart agriculture, 785

drone-assisted micro irrigation, and tiny machine learning on the edge IoT 786

devices. His current research interests include drone assisted wireless com- 787

munications, public safety communication networks, backscatter commu- 788

nication, deep learning, power harvesting, stochastic geometry, device to 789

device (D2D), machine to machine (M2M) communications, modeling of 790

heterogeneous networks, cognitive radio networks, and cooperative relay 791

networks. 792

100876 VOLUME 10, 2022



S. A. R. Zaidi et al.: Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML)

MARYAM HAFEEZ (Member, IEEE) received793

the Ph.D. degree in electrical engineering794

from the University of Leeds, U.K., in 2015.795

From 2015 to 2018, she was a Research Fellow796

at the Institute of Robotics, Autonomous Systems797

and Sensing (IRASS), University of Leeds. Since798

2018, she has been a Senior Lecturer at the Depart-799

ment of Engineering and Technology, University800

of Huddersfield. Her current research is funded801

by the EU Horizon 2020 program. Her research802

interests include the design and analysis of protocols for next-generation803

green intelligent wireless networks by employing tools from game theory804

and stochastic geometry alongwith the Internet of Things (IoT) and Industry-805

4.0-related research. She worked in the area of dynamic spectrum access had806

received the Best Paper Award from the IEEE International Conference on807

Communications (ICC), in 2013. She is also serving as a member of the808

Editorial Board for Frontiers in Communications and Networks journal.809

Q. Z. AHMED (Member, IEEE) received the810

degree in electrical engineering from the National811

University of Science and Technology, Pakistan,812

in 2001, the M.Sc. degree in electrical engineering813

from the University of Southern California (USC),814

Los Angeles, USA, in 2005, and the Ph.D. degree815

in electronics and electrical engineering from816

the University of Southampton, U.K., in 2009.817

From 2009 to 2011, he was working as an Assistant Professor at the National 818

University of Computer and Emerging Sciences (NUCES), Islamabad, Pak- 819

istan. In 2011, he started working as a Postdoctoral Fellow in cooperative 820

communications at the King Abdullah University of Science and Technology 821

(KAUST). In 2015, he started working as a Lecturer at the University of 822

Kent, where he was involved with research on millimetre wave and device to 823

device communications. He is currently a Reader in electronic and electrical 824

engineering at the University of Huddersfield, U.K. He contributed to project 825

management and research in EU FP7 and Horizon 2020 research projects, 826

iCIRRUS and RAPID. He was the Main Investigator on Royal Society and 827

Royal Engineering Project as well. In 2017, he joined the University of 828

Huddersfield. He is presently the main author and co-investigator in EU 829

H2020 ETN Research Project ‘‘MObility and Training fOR beyond 5G 830

Ecosystems (MOTOR5G)’’ (3.9Me) and EU H2020 RISE Research Project 831

‘‘Research Collaboration and Mobility for Beyond 5G Future Wireless Net- 832

works (RECOMBINE)’’ (0.5Me). In August 2020, ‘‘Capacity building for 833

Digital Health monitoring and Care System’’ is granted by the Erasmus+: 834

Higher Education-International Capacity Building. Out of 1005 eligible 835

applications submitted 164 have been selected for funding. The funding 836

amount is approximatly 1Me. In June 2021, ‘‘Smart Mattress’’ has been 837

granted 175,734 in collaboration with Deluxe Beds LTD by the Innovative 838

UK. The project proposes to increase the mattress life cycle, which will 839

reduce the number of mattresses sent to the landfill and improve our sleep 840

quality. 841

842

VOLUME 10, 2022 100877


