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ABSTRACT Machine Learning (ML) on the edge is key to enabling a new breed of IoT and autonomous
system applications. The departure from the traditional cloud-centric architecture means that new deploy-
ments can be more power-efficient, provide better privacy and reduce latency for inference. At the core of this
paradigm is TinyML, a framework allowing the execution of ML models on low-power embedded devices.
TinyML allows importing pre-trained ML models on the edge for providing ML-as-a-Service (MLaaS) to IoT
devices. This article presents a TinyMLaaS (TMLaaS) architecture for future IoT deployments. The TMLaaS
architecture inherently presents several design trade-offs in terms of energy consumption, security, privacy,
and latency. We also present how TMLaaS architecture can be implemented, deployed, and maintained
for large-scale IoT deployment. The feasibility of implementation for the TMLaaS architecture has been
demonstrated with the help of a case study.

INDEX TERMS Tiny machine learning, IoT, edge computing, 5G, LoRa, gesture recognition, deep learning,

transfer learning, federated learning, implementation, MLOps, energy efficiency.

I. INTRODUCTION

Artificial intelligence (Al) is fundamentally a collection of
digital technologies that derive cognition (learning, plan-
ning and orientation) through perception of the environment,
therefore providing capability to make the right decisions at
the right time. Machine Learning (ML) is an algorithmic
tool-set to enable Al, in this context cognition is implemented
as a learning process based on experience in relation to a
certain task with an associated performance measure. The
experience is often derived from the data collected from the
perception of the environment.

A. MOTIVATION
The symbiosis of AI and Internet-of-Things (IoT) is nat-

ural. IoT provides a perception layer for many smart-city
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applications and ML augments sensing capabilities by deriv-
ing intelligence from data collected through this percep-
tion layer. A typical IoT device will have a micro-controller
unit (MCU) potentially with an integrated low-power radio
transceiver for wireless connectivity. Each MCU is furnished
with a limited amount of memory and is typically designed
to operate on a coin cell for several years. These low-cost
IoT devices have a small footprint as often designed to
be less obtrusive. In current IoT architecture typically data
from the end-nodes/IoT devices is transmitted and aggre-
gated at the gateways. The transmission of data is sup-
ported by a variety of connectivity technologies ranging from
Unlicensed WiFi and Low-Power Wide-Area-Networking
(LPWAN) technologies such as LoRa and Sigfox, as well
as Licensed Cellular radio e.g. LTE for Machines (LTE-M)
and Narrow Band (NB) IoT. The gateways are then con-
nected to Cloud platforms via a broadband internet con-
nection and allow storage, processing and inference on the
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FIGURE 1. Power Consumption & Available Memory in Commercially
available loT MCUs.

aggregated sensor data. This architecture has several perfor-
mance bottlenecks:

1) POWER CONSUMPTION FOR WIRELESS CONNECTIVITY
Most IoT devices are battery-powered allowing tetherless
connectivity in scenarios where: i. fixed power supply does
not exist; ii. the power source is not co-located with point-
of-interests (Pol) for monitoring or actuation; iii. plugging
into mains is costly and outweighs the device utility; and iv.
mains power limits the mobility of the object in which IoT
sensors are augmented. However, reliance on battery power
means that operational lifetime is limited and power con-
sumption is of paramount importance. Typically local com-
putation is several-fold less power-hungry than transmission
over wireless channel [1]. Moreover, while sensors collect
a huge amount of data, from an application perspective it
is the inference that is of importance. This inadvertently
requires compute efficient method of localized ML which
also increases bandwidth efficiency. Fig. 1 provides a quick
comparison of popular commercially available [oT MCUs.
Ideally, in order to provide local computation capabilities,
MCUs with high onboard memory (RAM and FLASH) and
low power consumption are required, i.e. the sweet spot for
MCUs is the top-left corner of the figure. Unfortunately, it can
be observed there are no commercial products that lie in that
sweet spot. This could be credited to the inherent interplay
between onboard memory and power consumption. Never-
theless, the industry has made rapid progress and some of the
recent MCUs (STM, NINA and Nano BLE Sense) are placed
in the next best space for design choices.

2) LATENCY

The current architecture not only incurs power cost to
facilitate wireless connectivity but also introduces non-
deterministic delay. Fig. 2 shows the probability density func-
tion (PDF) of latency for the Message Queuing Telemetry
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FIGURE 2. Latency for Typical MQTT loT application.

Transport (MQTT) packet published by an IoT device e.g.
temperature sensor for a subscriber such as a remote mon-
itoring tablet. Each packet is 140 bytes in size and latency
is calculated at the application layer. It is obvious that there
is a minimum fixed latency (which itself is a function of the
load on the server, time of day, etc.) and a power-law distri-
bution for the random delay. This scenario does not include
the time taken to perform ML to derive inference. However,
it shows that the round trip latency of cloud-centric solutions
is unpredictable. Therefore, it is highly desirable to move the
inference capabilities to the edge.

3) PRIVACY

Another disadvantage of cloud-centric architecture is that raw
data from the sensor has to traverse to the cloud via gateway
and the internet. Any compromise in security leads to privacy
violations. Also, there is no transparency on how data is being
used and which applications are authorized to use it. Moving
inference closer to the user, i.e. on the edge can provision
an architecture whereby raw data is never transmitted to the
cloud. Only inferences driven on the raw data are transmitted
to the cloud and stored for application-specific actions.

4) CONNECTIVITY

Lastly, in the current architecture gateways need to be
connected to the internet. Provisioning such connectivity
incurs both capital expenditure (CAPEX) and operational
expenditure (OPEX) with management overheads associated
with maintaining infrastructure. Local inference capabilities
reduce the reliance on connectivity, i.e. provision of services
in areas where internet connectivity is intermittent or even
does not exist at all.

B. ML-AS-A-SERVICE (MLaas)
The above-mentioned performance limitations have triggered
a new paradigm for edge intelligence, i.e., MLaaS hosted on
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the edge for the IoT nodes. This emerging architecture is
shown in Fig. 3. The architecture aims to employ on-device
learning for low-fidelity ML, i.e. to perform rough and quick
estimates. This is especially useful when actuation depends
on such inference as ultra-low latency can be guaranteed.
Additionally, the trained ML model which is deployed on the
Edge-gateway can be exposed as a service for the end IoT
devices. This provides the capability to perform high-fidelity
ML at the edge. In many practical scenarios, the end devices
or IoT devices will not perform any inference and will just
access MLaaS from the edge. This allows for conserving
energy on end nodes which are typically battery-powered,
while gateways have more compute, memory and potential
access to a fixed power supply. A step further from this
architecture can be enabled through the exploitation of vir-
tualization, i.e., the edge device can actually offload ML
inference tasks horizontally between the end nodes. How-
ever, this increases gateway design complexity potentially
affecting continuous integration (CI) and continuous deliv-
ery (CD) capabilities for firmware software. Moreover, the
end nodes deplete more power. Nevertheless, in both afore-
mentioned approaches, end-devices and gateways (typically
embedded devices) need to be capable of implementing ML
inference while coping with limited memory and power bud-
get. TinyML precisely tries to address these design issues.
In addition to ML capabilities, several other features need
to be incorporated into the IoT Gateway under the proposed
architecture. These include:

1) DEVICE MANAGER

Coordinates: a) commissioning and authentication for new
IoT nodes added to the network; b) provides functional-
ity to construct shallow or deep copies of device state,
thereby enabling operation with intermittent connectivity.
The commissioning functionality requires the implementa-
tion of either a lightweight web-based user interface (UI)
that can be serviced by the gateway or a separate mobile
application that can be downloaded by the user. Typically
the approach taken in many commercial products is to host
a lightweight web server on the gateway which can host the
web-based UI. Additional UI functionality for visualization
of sensor output and inference is often also incorporated in
the web application.

2) CLOUD MANAGER

Coordinates: a) authentication of the gateway with the back
end cloud service provider; b) provides cloud connectivity
manager, e.g. management of connectivity to LPWAN; and,
¢) can additionally host a light-weight web-server which can
allow pre-fetching of server-side rendered components for
IoT applications, as well as rendering of data-visualization
which can be locally performed.

3) RESOURCE MANAGER
Performs a) local storage management for core applica-
tion logic, as well as visualization for the end-user device;
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b) performs memory management for both ML functions and
end-user visualization.

The goal of this article is to provide a comprehensive
overview of how TinyML-as-a-Service (TMLaaS) architec-
ture and also demonstrate its usefulness through a practical
case study. We also outline practical considerations in imple-
menting the proposed architecture.

Il. ML ON MCUs: CHALLENGES & SOLUTIONS

Neural network (NN) based learning has been extensively
studied from an embedded application development perspec-
tivein [2], [3], [4], [5], [6], and [7]. Convolutional NN (CNN),
Recurrent NN and their hybrids exploit the correlation of
time-domain, spectral-domain features and long-term depen-
dencies in the input data to improve the performance of the
ML model. However, due to the high computational and stor-
age requirement of the neural architecture of these models,
full-scale deployment of many models is infeasible for IoT
applications employing MCUs. In this context, model com-
pression techniques are an active area of research to meet the
hardware constraints. In [8], an RNN compression approach
using pruning and integer quantization of weights/activation
has been suggested for deployment on MCUSs. Depthwise-
separable (DS-CNNs) decompose 3-D convolution opera-
tions into 2-D and 1-D convolutions and have been suggested
in [9] as an optimal choice of ML on MCUs. Another such
effort is presented by [10] which is geared towards reducing
the complexity of computation of convolutions in NNs by
approximating the matrix multiplication calculations. How-
ever, it does introduce significant costs in terms of employing
more additional operations. In addition to model compres-
sion, various optimizations based on adaptive NN architec-
tures have also been proposed for provisioning ML models
on MCUs. In [11], a two-stage neural architecture search
approach has been proposed that first optimizes the search
space to fit the resource constraints, and then specializes
in the network architecture in the optimized search space.
This allows the model to adapt to different QoS and resource
constraints. Tree-based learning approaches [12] have been
studied in the context of reducing computational load and
storage requirements. Such models offer acceptable accu-
racy, however, they are limited in terms of their scalability.
Hybrid approaches such as [13] combine DS- CNN neural
architectures and tree-based learning to offer solutions that
attain accuracy by using neural networks for feature extrac-
tion and computational efficiency by using a shallow Bonsai
decision tree to perform the classification. TinyML frame-
work can exploit neural architecture search (NAS) to design
models that can meet the stringent MCU memory, latency,
and energy constraints. An example of such an approach can
be found in [14]. Articles [15] and [16] provide a comprehen-
sive overview of the revolution of TinyML and a review of
tinyML studies. In [17] authors present a new data compres-
sion solution called the Tiny Anomaly Compressor (TAC)
to leverage the TinyML perspective. In [18], the authors
present an architecture for detecting medical face masks
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FIGURE 3. Architecture for the gateway.

for deployment on resource-constrained endpoints having
extremely low memory footprints. However, to the best of our
knowledge, multiple design trade-offs and implementation-
related challenges involved in TMLaaS architecture
need further attention as presented in the discussion to
follow.

A. CONTRIBUTIONS

The main contributions of this work include a comprehensive
framework for exploiting TinyML-as-a-Service (TMLaaS) at
the Edge for future IoT applications. The paper identifies the
need to have light ML solutions to fit the constrained onboard
power and memory resources by providing an overview
of onboard memory and power consumption of a variety
of commercially available MCUs. The proposed TMLaaS
architecture in this paper supports the on-device learning
for low-fidelity ML as required for resource-constrained
MCU-based IoT-type solutions. We present multiple design
tradeoffs and implementation-related challenges involved in
TMLaaS architecture. TFLite Micro-based design and work-
flow implementation of TinyML solutions is detailed and the
operational cycle of the architecture has also been discussed.
The paper also presents a practical case study based on the
proposed design space of TMLaaS architecture. We out-
line some important research challenges and provide a brief
road map for the evolution of TMLaaS-empowered IoT
networks.
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B. ORGANISATION

The rest of the paper is organized as follows: In Section II,
we present a brief account of existing ML approaches
and literature on implementing these models on resource-
constrained MCUs. In Section III, the design and imple-
mentation challenges of interoperability and performance
characterization to unlock the full potential of ML solu-
tions has been discussed. TFLite Micro-based design and
workflow implementation of TinyML solutions is detailed.
Section IV explains MLaaS architecture in detail along with
its operational cycle termed at ML-Ops. Section V presents
the ease of development and deployment of the proposed
TLMaaS architecture with the help of a simple case study.
In Section VI, emerging ML modalities, road maps and open
issues have been discussed with a focus on Transfer Learn-
ing and Federated Learning. Section VII concludes the paper
while Section VIII details the future work.

Ill. TinyML OVERVIEW

TinyML is an emerging field at the intersection of embed-
ded systems and ML. Effectively, TinyML provides tools
to develop ML models which can be executed on resource-
limited devices. The process flow for TinyML deployment
starts with the collection of data from the hardware where
an inference engine is required. The data can either be
logged on onboard storage or could be directly imported into
user-friendly tools e.g. Edge Impluse Studio. The ML model
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FIGURE 4. Applications for TMLaaS.

is trained on the collected data set and the model is then
exported into a form that is directly implementable on the
MCU. The MCU employs the trained model for inference in
subsequent iterations. In order to unlock the full potential of
ML for IoT systems, two key challenges need to be addressed:

A. Interoperability: The MCU market is quite fragmented
and there is no unified standard for TinyML implementation.
Platform-specific implementations are not scalable as they
require a manual application and hardware-specific optimiza-
tions.

B. Performance Characterization: Another challenge
limiting TinyML is that in the absence of a uniform frame-
work, it is hard to evaluate the hardware performance in
a neutral and vendor-agnostic manner. When performance
boosts are reported it is difficult to decipher whether they are
related to hardware or software implementation and whether
these gains generalize across various applications. These two
challenges are addressed by a TensorFlow Lite (TFL) Micro
proposed in [19]. In fact, TFLite has become synonymous
to TinyML itself as most practical implementations of ML
models rely on the TFLite libraries.

A. TinyML IMPLEMENTATION ASPECTS & DESIGN
PRINCIPLES FOR TFLite MICRO

The core design principle behind TFLite Micro is that it aims
to provide the utmost necessary features for enabling ML
on IoT devices. In other words, the framework assumes that
the model, input data and output arrays are in memory and
perform computations on these arrays directly. The TFLite
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Micro Framework uses an interpreter which loads the data
structure that defines the ML model. The choice of interpreter
against the code generators is based on the fact that the model
can be easily updated without the need for recompiling the
firmware on the IoT device.

B. TinyML WORKFLOW IMPLEMENTATION

A typical TinyML workflow will include training of
ML model using the TensorFlow framework on a
high-performance computer (e.g. using TFLite within Jupyter
Notebook) or on a cloud server (e.g. using Google Colab).
The Tensor Flow model is then converted to a TFLite format
using a converter. The converted model can then be exported
as a C-byte array. On the MCU, the application utilizes the
TinyML library which exposes the OpResolver application
programming interface (API). In contrast to TensorFlow,
TFLite Micro supports only a limited number of operations
for implementing NNs. The application developer utilizes
OpResolver to specify which operators need to be linked to
the final binaries of the IoT firmware. This in turn minimizes
the file size for the compiled firmware. Within the firmware,
a contiguous chunk of memory “arena” needs to be allo-
cated for TFLite Interpreter to store intermediate results and
other variables. Typically, an instance of Interpreter is created
by furnishing arena and OpResolver as a parameter. The
Interpreter then takes care of memory allocation, operator
resolution and model loading. The input data for the model is
written onto an array which is read by the interpreter. Simi-
larly, the output data is provided in form of an output array.
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Interested readers are encouraged to see [20] for detailed
tutorials on implementation.

IV. TMLaaS ARCHITECTURE

A. TinyML AS A SERVICE

TMLaaS refers to exposing the MLaaS on Gateways and End-
Devices. Effectively, as shown in Fig. 3, the learning process
can be viewed as a monolithic functionality split across the
end device and the gateway. Devices perform quick-and-
coarse inference while gateway can provide fine grained
inference capabilities. TMLaas expands the ML capabili-
ties provided by TinyML. In other words, TMLaaS is an
architecture for exposing TinyML-as-a-Service. In contrast,
TinyML alone provides a framework for enabling the exe-
cution of ML models on resource-constrained devices. Some
of the key applications of TinyML have been presented in
Fig. 4.

When designing the TMLaaS system an important ques-
tion is how such a split can be accomplished. A simple answer
to this design question is that for those applications where
each IoT device contributes a sub-set of input features for
the ML model, it is natural to expose the learning on the
gateway. Also where these sensors are heterogeneous or the
inference aims to treat the input from sensors as a multiple-
input channel, it is easy to expose MLaaS on the gateway.
On the other hand, in applications where inference leads to
actuation, latency can be reduced by placing coarse inference
capabilities on the device itself. Both choices yield different
design trade-offs. For instance, a designer can think of trad-
ing onboard computations on devices with computation on
the gateway. Both have different energy penalties with the
later design option trades on-board energy consumption of
computation with the energy consumed in wireless transmis-
sion. Depending on the computational requirements it might
be better to run the model on the gateway which may be
powered from mains rather than running these models on
devices that are battery-powered. Another such trade-off is in
terms of security. Depending on how secure the link between
the device and gateway is versus the link between gateway
and cloud, one might establish the split of the learning pro-
cess. This of course needs to be considered along with pri-
vacy constraints enforced by the application. For instance,
if the aggregate information at the gateway contains data from
devices belonging to different users and certain devices pro-
vide side information for other features/data points then pri-
vacy aspects will dictate how coarse and fine-grained learning
is split. Lastly, one needs to consider the modality of com-
munication on devices and the ease of upgrading/replacing
the ML model. Gateways might have a bi-directional com-
munication link with the cloud while IoT devices can be
uplink only (e.g. SigFox, ELTRES or BLE Advertising Bea-
cons). Therefore, it is easier to upgrade and test the models
on the gateway rather than on end devices. As long as the
method with which the MLaaS is exposed, the end devices
do not change the application will operate seamlessly. For
instance, such functionality can be exposed using RESTful

100872

APIs. Maintaining, managing, testing and re-configuring the
TMLaaS applications falls under MLOps. We present a brief
overview of MLOps in what follows.

B. ML-OPS

In order to understand the operation of ML-based embed-
ded applications, it is important to understand ML systems
development life cycle and aspects of the continuous high-
quality operation. This corresponds to a complete ecosys-
tem of ML-embedded solutions from development through
to delivery. This includes system construction, its integra-
tion, testing, releasing, deployment and infrastructure man-
agement [21]. Deriving from this definition, MLOps is a
set of engineering practices that aim at unifying ML system
development and operation with the objective of ensuring
continuous integration (CI), continuous development (CD)
and continuous testing (CT). In principle, MLOps is equiv-
alent of DevOps i.e. combination of practices and tools that
increases the ability of the software provider to deliver appli-
cations and services at a rapid pace. The following steps
provide a footprint of activities that may be used as a ref-
erence classification for MLOps: (i) Sampling: For embed-
ded applications, it is of utmost importance to have samples
of data arriving at an accurate rate for processing. This is
particularly important for real-time embedded applications
using data from multiple sources; (ii) Analysis: It involves
the classification of data based on the model schema and its
requirements. It also includes the metadata which can be of
higher value as compared to raw data hence a key enabler
for federated learning; (iii) Structure: The data needs to be
formatted in accordance with the ML model input structure.
It needs to be partitioned into training and validation sets;
(iv) Training: The TinyML model is trained using the
structured data; (v) Evaluation and Validation: The model
is evaluated and validated against test data and bench-
marks; (vi) Deployment: The validated model is deployed;
(vii) CI: It refers to multiple integrations on a daily
basis. These can include algorithmic as well as visualiza-
tion/firmware updates; (viii) CD: Based on the CI, devel-
opment is also continuous with updates based on changing
application dynamics or algorithms. New models can be
developed and trained. Network bandwidths, latency and pri-
vacy are key aspects of TinyML performance that may require
a CD approach to guarantee QoS; (ix) CT: Continuous vali-
dation and testing of the updated models.

V. CASE STUDY

In this section, we aim to demonstrate the ease of develop-
ment and deployment of the proposed TLMaaS architecture
with the help of a simple case study. The case study will
showcase how some of the features previously outlined can
be implemented in practice, as well as present a benchmark
of different ML models on the hardware. Through this case
study, we explore the feasibility of implementing the most
commonly used classical classification and deep neural net-
work (DNN) techniques.
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A. SCENARIO

We consider a scenario where a wearable device is
equipped with an inertial measurement unit (IMU) and WiFi
transceiver. The gateway device receives the data sent by the
wearable device. The wearable device has a sampling trig-
ger, i.e., it starts constructing an observation window after a
certain acceleration threshold is exceeded. The observation
window has a fixed length which is considered a design vari-
able. Once the observation window is fully constructed data
is transmitted over WiFi to the gateway device. The gateway
device receives raw data which is treated as input to the ML
model. This data is used in conjunction with a pre-compiled
model by TinyML interpreter to produce the classification
output. In particular, we aim to classify two different gestures,
i.e. left and right. The choice of these gestures is on the basis
that we can construct a wearable joystick that can be used
for a variety of applications (e.g. presentations, gaming etc.).
Notice the choice of which gestures, we want to classify
is arbitrary and mainly based on ease of collection of data.
However, the same principle applies if, for instance, we want
to use IMU data to detect falls in the elderly. To provide
a comparison of this case study with a standard example,
we employ the MNIST dataset for the classification of hand-
written digits. Studies in [22] have used a single-layer CNN-
based model for gesture recognition. In [23], Tensorflow (TF)
and Keras are evaluated for their usage in gesture recognition.
The gestures classification dataset samples consist of the two
three-dimensional sensor measurements (i.e., accelerometer
and gyroscope) that add up to six raw features. The target of
the classifier is simply to label the class of the gesture whether
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Mobile Device

itis left or right based on the selected features. For the MNIST
dataset, the aim is to label the handwritten 28 x 28 pixels
number into the actual value from O to 9.

B. IMPLEMENTATION

The implementation of the case study in terms of hardware
and software components is shown in Fig. 5. We employ
NodeMCU (ESP8266) as an IoT device connected with an
12C interface to the IMU chip (MPU-6050). ESP8266 is set
up as a WiFi client device and streams the six raw features
from the IMU to the gateway. The gateway firmware scans for
the data but also provides a sub-set of functionalities outlined
in Fig. 3. For the gateway, we employ HELTEC LoRa Wire-
less Stick. The gateway has dual connectivity, i.e. WiFi and
LoRa. The gateway implements: i) Device Manager: which
handles the data streamed by all devices. It also manages con-
nectivity between devices and the gateway. ii) Lightweight
Web Server: A lightweight web server that hosts a web appli-
cation written using React a JavaScript framework. The appli-
cation provides functionality to provision either WiFi or LoRa
connectivity to the cloud. The web application also provides
visualization for the outcome of the local inference process
on a per-device basis. The web application interacts with the
web server which is fundamentally a part of the firmware
through RESTful APLiii) TMLaaS Engine: this is imple-
mented in the firmware using EloquentTinyML wrapper on
TFLite. This allows the execution of TFLite on ESP32 MCUs
present on the HELTEC board. The implementation process
for TMLaaS functionality is comprised of three steps. First,
we collect the training data to train the classifiers offline while
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TABLE 1. DNN results.

Dataset Input layer  Hidden layer = Output RAM (kb) Flash (kb)  Prediction (ms)  Accuracy
Gesture detection DNN 714x20 10x1 1 42.339 147.839 20.16 99%
714x18 9x1 1 40.324 145.824 18.96 99%
714x16 8x1 1 38.324 143.824 16.032 99%
714x14 7x1 1 36.339 141.839 14.062 99%
714x12 6x1 1 34.371 139.871 11.972 99%
714x10 5x1 1 32417 137.917 10.0133 99%
714x8 4x1 1 30.484 135.984 8.0133 99%
714x6 3x1 1 28.558 134.058 6.045 99%
MNIST DNN 64x56 56X16 10 40.027 145.777 8.577 95.72%
64x48 48X16 10 37.496 142.964 7.635 97.01%
64x40 40X16 10 34.964 140.433 6.555 98.64%
64x32 32X16 10 32.343 137.812 5.205 97.22%

optimizing the hyper-parameters of the model and ensuring
targeted accuracy is obtained. Secondly, we use the conver-
sion techniques (i.e., TF Lite and EloquentML [24] Wrapper)
that ports the model from the training programming language
into a compiled byte array that can be used by TinyML Inter-
preter. This step includes ensuring that the compiled model
will fit on the small flash memory footprint and can execute
on the available SRAM. If the compiled model size is larger
than any of the available resources, we then will need to
sacrifice some of the optimized parameters and as a result
the accuracy of the classifier. Third, the compiled model is
ported to the MCU for live testing on unseen data in real
time.

C. RESULTS & DESIGN INSIGHTS

Table 1 summarizes the performance for both data sets
with different combination of hyper-parameters. The choice
of hyper-parameters impact latency for prediction and the
amount of RAM and Flash memory occupied by the model.
However, the prediction accuracy has only a slight change
if any with a reduction in the size of the input layer. Effec-
tively, in this case, study (as can be seen from Fig 5) the
raw waveforms have a distinct signature for both gestures.
Therefore it is easy to obtain higher classification accuracy
without a massive input layer and a huge number of hid-
den layers. A similar observation is valid for the MNIST
data set. In summary, with the help of such analysis, we can
establish minimum hyperparameter space which yields good
accuracy while minimizing the prediction delay, memory
and processing footprint on the gateway. Table 1 provides
a summary of performance for different classifiers when
employed on the two datasets of interest. Both Support Vec-
tor Machine (SVM) and Random Forest Classifiers provide
good accuracy for the classification task. Nevertheless, the
prediction time for Random Forest is several folds lower than
SVMs. Random Forest Classifier also has a low resource
footprint in terms of RAM and Flash space. Therefore,
it seems like an ideal choice for implementing the classifi-
cation task on the gateway using the traditional classification
approach.
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VI. EMERGING ML MODALITIES, ROAD MAP AND OPEN
CHALLENGES

Although the proposed TMLaaS architecture itself is in its
infancy, there are two key ML modalities and relevant open
challenges that need to be addressed by the community. In our
subsequent discussion, we outline what these ML modalities
are and highlight their importance for enabling the pervasive
deployment of TMLaaS architecture.

A. TinyML FOR TRANSFER LEARNING

A typical TinyML workflow involves training a model using
high-performance computing platforms and then compiling it
through the TinyML framework which can be interpreted on
the edge device for making an inference. As an example, the
model developed by OpenAl recently to solve rubrics cube
not only required 1K desktop computers with several graph-
ical processing unit (GPU) accelerators but also consumed
2.8 Gigawatt-hours of electricity. The evolving trajectory to
expedite TMLaaS at the edge is to supply pre-trained models
through the edge device and can be employed for inference.
repository (e.g. TensorFlow Hub). These pre-trained models
can then be imported by edge devices for inference. It is
not always possible to train and re-train to build TinyML
models because (a) Training on large datasets is computa-
tionally expensive; (b) The input data for certain use cases
are not available but the trained models are often available.
Additionally, Transfer Learning (TL) provides the capabil-
ity of applying knowledge gained while solving one problem
and applying it to different but semantically similar prob-
lems. Therefore, a pre-trained model on a semantically sim-
ilar task can be easily downloaded from the hub/repository
for the edge device and can then be employed for infer-
ence. TL scenarios may be Inductive (i.e., source and target
problem domains are same but tasks are different), Unsuper-
vised (i.e. lack of labeled data in target domain), or Trans-
ductive (semantic similarities in source and target problems
but different domains for inputs). Since TMLaaS architec-
ture is still in its infancy, the adoption of on-the-fly pre-
compiled ML models through TL remains an open research
area.
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TABLE 2. Classifiers results.

Dataset Classifier type RAM (kb) Flash (kB) Prediction time (ms) Accuracy
Gestures SVM 2.898 45.26 13.474 94.70%
Logistic Regression 2.898 13.88 0.698 94.70%
GaussianNB 2.902 20.17 27.556 98.00%
Decision Tree Classifier 2.898 9.10 0.0001 89.47%
Random Forest Classifier 2.898 14.77 0.085 98.00%
MNIST SVM 0.609 173.08 80.794 95.00%
Logistic Regression 0.359 18.94 1.657 91.00%
Gaussian NB 0.363 18.83 36.750 81.00%
Decision Tree Classifier 0.1093 5.96 0.003 78.00%
Random Forest Classifier 0.1093 5.96 0.030 91.50%

B. TinyML FOR FEDERATED LEARNING

As discussed earlier, TMLaaS architecture inherently allows
the designer to preserve privacy by utilizing a pre-compiled
model on the edge devices. However, the model itself does
not improve over time, i.e. learning from other edge devices
is not inherently feasible. In contrast, Federated Learn-
ing (FL) relies on distributed training model whereby data
never leaves the edge devices. However, a shared model
learns by aggregating locally computed ML models. In [25]
authors introduce the Federated Averaging Algorithm, which
combines local stochastic gradient descent (SGD) on each
client with the server which then utilizes local computa-
tion for averaging. Although the initial model was proposed
for identically and independently distributed (iid) datasets,
recent works have extended the algorithm for the non-iid
datasets. The combination of TinyML and Federated learn-
ing is natural as both complement each other perfectly.
While TinyML can allow local execution of the models,
FL can provide means for exploiting cross-device knowl-
edge to improve the prediction model itself. To the best of
our knowledge, the only attempt made to combine these
two is in [26] and this is still an open area for future
research.

VIl. CONCLUSION

In this article, we presented a comprehensive framework
for exploiting TinyML-as-a-Service (TMLaaS) at the Edge
for future IoT applications. The paper compares onboard
memory and power consumption of a variety of commer-
cially available MCUs and identifies the need to have
light ML solutions to fit their constrained power and
memory resources. The outlined TMLaaS architecture sup-
ports on-device learning for low-fidelity ML. We presented
several design tradeoffs and implementation-related chal-
lenges involved in TMLaaS architecture. TFLite Micro-based
design and workflow implementation of TinyML solutions
is detailed and the operational cycle of the architecture has
also been discussed. The design space of TMLaaS archi-
tecture was also explored via a practical case study. Lastly,
we outlined some important research challenges and a brief
road map for the evolution of TMLaaS-empowered IoT
networks.
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VIIl. FUTURE WORK

As a part of the future work in this area, several challenges
need to be addressed for both TL and FL-based approaches
before they can play their significant role in unleashing
wide-scale penetration of TMLaaS solutions. The three key
research challenges in the TL area are: a. How can the edge
device evaluate the trustworthiness of a pre-trained model,
i.e., how can an edge device be sure that the source domain
data set was representative and did not have any biases? b.
How can we build a trustworthy dissemination protocol for
sharing retrained TL models between edge devices? c. The
third and the most important design question is how we
develop an interpretable TL model, i.e. transition towards.
Explainable ML models for TMLaaS architecture. From FL
perspective, some of the important design questions include:
a. TinyML minimizes the energy cost paid in the transmission
of data to the cloud by allowing edge execution of the ML
model. However, for federated averaging at least the local
updates of the model need to be transmitted to the Cloud.
While this does not compromise privacy, it has energy and
connectivity costs. A typical FL. update workflow requires
bandwidth that far exceeds the capability of current LPWAN
technologies. Therefore, it is these trade-offs that will dictate
when and how these two frameworks should be utilized in
conjunctions. b. It is possible to compress FL. models using
ML compression techniques. TinyML frameworks e.g. Ten-
sorFlow Lite needs to explore how communication efficient
model compression can be accomplished for FL.

In summary, both TL and FL will play an instrumental role
in the proliferation of TMLaaS architecture. The architecture
itself when viewed through the lens of these ML modalities
provides arich design space for further research. We hope that
the highlighted design issues will trigger community interest
in exploring some of these open research areas further.
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