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a b s t r a c t 

The Palaeocene-Eocene thermal maximum is a global warming period ( ∼56 Ma), which is marked by a 

sharp negative carbon isotope excursion (CIE) that caused by the injection of massive isotopically-light 

carbon into the ocean-atmosphere. It is generally considered that the carbon injection caused global 

warming. However, several studies have suggested that warming and environmental perturbations pre- 

cede the onset of the CIE. Here we present Granger test to investigate the detailed mechanisms of 

this event. We show a shift from climate-warming driving carbon-emission scenario to a scheme in 

which carbon-injection causing global-warming during the CIE. The initial carbon emission might be 

from methane hydrates dissociation and/or permafrost thawing, possibly linked with astronomical paced 

warming. This change of causal direction may result from the warming feedback of the emitted carbon 

and additional carbon from other sources, such as volcanism, bolide impact, oxidation of marine organic 

matter, and wildfires burning peatlands. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Ocean University of China. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The Paleocene-Eocene thermal maximum (PETM, ∼56 Ma) is 

 period of rapid and prolonged global warming ( Charles et al., 

011 ). Paleothermometer proxies (e.g., δ18 O (oxygen isotope) 

nd TEX 86 (‘tetraether index’ of tetraether lipids consisting of 

6 carbon atoms)) analyses suggest that global temperature rise 

pproximately 5–8 °C during this interval ( Dunkley Jones et al., 

013 ; Frieling et al., 2017 ). Associated with the climate warming 

s a dramatic negative carbon isotopic excursion (CIE) of 3–5 ‰ 

 McInerney and Wing, 2011 ), which has been interpreted to be 

aused by the injection of massive 13 C-depleted carbon into the 

cean and atmosphere ( Dickens et al., 1997 ). It is generally consid- 

red that the massive carbon injection into the ocean-atmosphere 

ystem caused global warming and environmental perturbations 

 Pagani et al., 2006 ; Zachos et al., 2008 ). However, several studies

ave found that global warming and environment change precedes 
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he carbon isotope excursion, and proposed that the initial warm- 

ng may have triggered the release of the isotopically-light carbon 

ources ( Frieling et al., 2019 ; Handley et al., 2011 ; Harding et al.,

011 ; Kender et al., 2012 ; Sluijs et al., 2007 ; Thomas et al., 2002 ;

eebe et al., 2016 ). Thus, despite strong correlation exists between 

he carbon cycle perturbation and the global warming and en- 

ironment change, the exact driving mechanism between these 

actors still remains unclear. 

In this study, we use the Granger causality test to further in- 

estigate the mechanisms between carbon release (inferred from 

13 C data) and global warming (reconstructed from δ18 O data). The 

ranger causality test is first introduced in econometrics by No- 

el Prize winner Clive W. J. Granger Granger (1969) . It is used to

xamine the causality relationship between variables of time se- 

ies. In brief, if variable Y can be explained by lagged variable 

 in the statistic model, it is then considered that X granger- 

ause Y. This method has been used to investigate the causality 

etween greenhouse gas concentrations and global temperature 

hange with recent monitored data, and has yielded different con- 

lusions ( Kodra et al., 2011 ; Stern and Kaufmann, 1999 ; Sun and

ang, 1996 ; Triacca, 20 01 , 20 05 ). Furthermore, in addition to data

rom 1850 to present day, this method has been applied to clima- 
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https://doi.org/10.1016/j.geogeo.2022.100125
http://www.ScienceDirect.com
http://www.elsevier.com/locate/geogeo
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:geozy.liu@outlook.com
https://doi.org/10.1016/j.geogeo.2022.100125
http://creativecommons.org/licenses/by-nc-nd/4.0/


Z. Liu, X. Ji, W. Luo et al. Geosystems and Geoenvironment 2 (2023) 100125 

Fig. 1. Granger causality test results for the δ13 C and δ18 O data of the PETM interval 

(Millville Core; Wright and Schaller, 2013 ). Q1, Q2, Q3 and Q4 represent the first, 

second, third and fourth interval. See text for the division of the intervals. Orange 

arrow indicates the Granger causality direction. 
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ological series from the more recent past (e.g., time series data re- 

overed from ice cores, covering ∼800 kyr; Attanasio et al., 2012 ; 

avidson et al., 2016 ; Gay-Garcia et al., 2009 ; Jiang et al., 2015 ;

aufmann et al., 2010 ). In this study, we explore the potential ap- 

lication of this method to deep-time climatological data recovered 

rom core sediments and discuss the finding of our research and 

he limitation of using this test method on paleoclimate data se- 

ies. 

. Dataset 

Geochemical data generated of samples collected from the 

ower part of the drill core to the upper part would form a time 

eries dataset. In this study, previously published data from the 

illville core (ODP 174AX) are analysed, which is drilled in the ex- 

anded New Jersey shelf in the North Atlantic Ocean. Coupled δ13 C 

nd δ18 O data are available across the Paleocene-Eocene interval 

f the drill core at 2 mm gap ( Fig. 1 ; Wright and Schaller, 2013 ).

ased on sedimentation rates estimated from the nearby area, the 

ime gap is about 20–25 years ( Sluijs et al., 2007 ). However, car-

on cycle-climate modelling has estimated the sampling resolution 

f ∼40 years ( Zeebe et al., 2016 ). The exact duration between two

djacent data points is hard to be precisely quantified. However, 

his would not affect the test result, as the sequence of the data 

s not changed. Oxygen isotope ( δ18 O) varies as a result of temper- 

ture fluctuations and thus paleoclimate can be reconstructed by 

nalysing δ18 O of the sediments ( Grossman, 2012 ). Carbon isotope 

ecord is used to reflect the addition of δ13 C-depleted carbon into 

he ocean and atmosphere, although they do not follow a linear 

elationship ( Cui et al., 2011 ). The data are divided into four inter-

als, with the first interval (Q1) covers the data before the onset of 

he CIE, the second and third intervals (Q2 and Q3) cover the onset 

f the CIE ( Wright and Schaller, 2013 ) and the fourth interval (Q4)

overs the data after the CIE. The boundary between Q2 and Q3 is 

rawn based on the carbon isotope profile, where a pulse of large 

egative CIE occurred within the onset of the PETM CIE ( Fig. 1 ). 

. Methodology 

.1. Granger causality test 

Granger causality was first introduced in econometrics to test 

otential causality relationships between variables of time series 
2 
ata ( Granger, 1969 ). It is based on incremental forecasting power. 

ere we consider two nested models, the unrestricted regression 

odel 

 t = μ1 + 

∑ 

k 
i=1 a j Y t −i + 

∑ 

k 
i=1 b i X t −i + ε t (1) 

nd the restricted model 

 t = μ2 + 

∑ 

k 
i=1 c i Y t −i + v t (2) 

here μ1 and μ2 are constants; a, b, and c are the coefficients of 

he models; εt and v t are univariate white noise; i is the lag of 

he models and k is the highest lag. For example, Y t is the cur-

ent sample, and Y t-1 is the sample before Y t . Y t-1 is one sampling

ap stratigraphically lower than sample Y t. The Granger causality 

elationship between variable Y and variable X is determined by 

omparing the estimation accuracies for this climatic factor by the 

nrestricted and the restricted models. The null hypothesis of non- 

ausality corresponds to: 

 0 : B 1 = B 2 = . . . = B k = 0 (3) 

A significant statistics (P-value < 0.05) implies that the null 

ypothesis is rejected. The increase in the explanatory power of 

he unrestricted model (including variable X) compared to the re- 

tricted model (not including variable X) suggests causality from 

 to Y. Before we perform a Granger causality test, it is neces- 

ary to determine if the time series is stationary, as nonstationary 

f time series may cause spurious causality results ( Stock et al., 

990 ). This can usually be done with the unit root test process 

 Dickey and Fuller, 1981 ). If the series has a unit root, then the

ime series is not stationary. Nonstationary time series data can 

chieve stationary by taking the first difference. For nonstation- 

ry time series data, the Toda-Yamamoto method can be applied 

 Toda and Yamamoto, 1995 ). This procedure would require the 

aximum order of integration (d) of the investigated series. The 

ptimal lag number is selected by using Akaike information crite- 

ia (AIC; Akaike, 1973 ). 

.2. Unit root test 

In this study, the augmented Dicky-Fuller (ADF) test method is 

sed for unit root test ( Dickey and Fuller, 1981 ). The null hypothe-

is is that the series has a unit root and contains a stochastic trend. 

he model of the augmented Dickey-Fuller (ADF) test is specified 

s follow: 

y t = α + βt + γ y t −1 + 

∑ 

p 

i=1 
δi �y t −1 + w t (4) 

here y is the investigated variable and w t is a random error term. 

he lagged first differences of the dependent variables provide cor- 

ection for possible serial correlation. The optimum number of lags 

p), in this paper, was selected based on log likelihood ( Berger and 

olpert, 1988 ), Hannan-Quinn criterion ( Hannan and Quinn, 1979 ), 

nd Akaike information Criterion ( Akaike, 1973 ). The null hypoth- 

sis is given by γ = 0. The alternative hypothesis is that the se- 

ies is stationary. Unit root tests are also performed for cases (1) 

ithout trend with constant and (2) without trend or constant and 

he decision is made based on three-step ADF test ( Pfaff, 2008 ). 

nit root test was performed on the data for the whole pe- 

iod and the four quarters individually with the results listed in 

able 1 . 

In order to provide some robustness in deciding the sta- 

ionarity of the series, additional tests like Phillips-Perron (PP), 

wiatkowski-Phillips-Schmidt-Shin (KPSS) and Dickey-Fuller Gen- 

ralized Least Squares (DF-GLS) are conducted ( Elliott et al., 

996 ; Kwiatkowski et al., 1992 ; MacKinnon, 1996 ; Peter and Per- 

on, 1988 ). The PP and DF-GLS unit root tests have a null hy-

othesis of a unit root process, while the KPSS test have a 



Z. Liu, X. Ji, W. Luo et al. Geosystems and Geoenvironment 2 (2023) 100125 

Table 1 

3-step ADF test results for δ13 C and δ18 O data. 

Time series t + c ADF P -value P -value of t c ADF P- value 1 difference datat + c ADF P -value Conclusion 

All δ13 C 0.0847 (3) 0.002 0.0000 (7) I(1) 

All δ18 O 0.0000 (1) I(0) 

Q1 δ13 C 0.0000 (0) I(0) 

Q1 δ18 O 0.2707 (1) 0.8799 0.0095 (0) I(0) 

Q2 δ13 C 0.0214 (2) I(0) 

Q2 δ18 O 0.0003 (0) I(0) 

Q3 δ13 C 0.0025 (0) I(0) 

Q3 δ18 O 0.0016 (0) I(0) 

Q4 δ13 C 0.0000 (0) I(0) 

Q4 δ18 O 0.0003 (0) I(0) 

Notes: The numbers in the parentheses indicate the optimal lag length suggested by the Akaike Information Criterion (AIC). 

t + c means the estimation with trend and constant. c means estimation with constants only. 

Table 2 

Additional unit root test results. 

Time series PP DF-GLS KPSS 

All δ13 C c -1.19 1.26 1.89 

c + t -6.31 -1.34 0.23 

none -0.87 

All δ18 O c -2.84 ∗ -0.10 1.80 ∗∗∗

c + t -8.94 ∗∗∗ -4.43 ∗∗∗ 0.11 

none 0.73 

Q1 δ13 C c -5.53 ∗∗∗ -3.63 ∗∗∗ 0.69 ∗∗

c + t -6.28 ∗∗∗ -6.38 ∗∗∗ 0.07 

none -0.12 - - 

Q1 δ18 O c -3.31 ∗∗ -2.44 ∗∗ 0.18 

c + t -3.31 ∗ -3.56 ∗∗ 0.16 

none -0.40 - - 

Q2 δ13 C c -4.35 ∗∗∗ -0.85 0.95 ∗∗∗

c + t -5.52 ∗∗∗ -2.62 0.13 

none -4.12 ∗∗∗ - - 

Q2 δ18 O c -4.51 ∗∗∗ -2.13 ∗∗ 0.77 ∗∗∗

c + t -5.20 ∗∗∗ -4.94 ∗∗∗ 0.08 

none 0.21 - - 

Q3 δ13 C c -3.17 ∗∗ -2.33 ∗∗ 0.74 ∗∗∗

c + t -4.72 ∗∗∗ -4.62 ∗∗∗ 0.05 

none -0.03 - - 

Q3 δ18 O c -4.61 ∗∗∗ -2.25 ∗∗ 0.42 

c + t -5.03 ∗∗∗ -4.86 ∗∗∗ 0.08 

none -0.05 - - 

Q4 δ13 C c -6.15 ∗∗∗ -1.50 0.74 ∗∗∗

c + t -7.12 ∗∗∗ -7.05 ∗∗∗ 0.07 

none 0.72 - - 

Q4 δ18 O c -4.89 ∗∗∗ -0.23 0.29 

c + t -5.10 ∗∗∗ -1.52 0.07 

none 0.80 - - 

∗∗∗ Significant at 1%. 
∗∗ Significant at 5%. 
∗ Significant at 10% level. The lower of the P-value, the 

higher the significant level. Notes: The lag lengths were 

determined by the Akaike Information Criteria (AIC) for the 

DF-GLS test, while the bandwidths in the Phillips–Perron 

(PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests 

were determined by the method of Newey–West. Criti- 

cal values for the DF-GLS and PP tests are based upon 

MacKinnon (1996) . Critical values for the KPSS test are 

from Kwiatkowski et al. (1992) . 

n

T

d

B

δ
T

Table 3 

Results of Granger causality test. 

periods optimum lag P -value 

maximum order of 

integration (d) 

from δ13 C to δ18 O: 

all 3 0.2738 1 

Q4 1 0.9186 0 

Q3 1 0.0763 ∗ 0 

Q2 1 0.0808 ∗ 0 

Q1 1 0.0120 ∗∗ 0 

from δ18 O to δ13 C: 

all 3 0.3444 1 

Q4 1 0.3170 0 

Q3 1 0.7131 0 

Q2 1 0.0455 ∗∗ 0 

Q1 1 0.8618 0 

∗∗ Significant at 5%. 
∗ Significant at 10% level. The lower of the P -value, the higher the significant 

level. 
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ull hypothesis of a stationary series. These results are listed in 

able 2 . 

Granger causality test was performed on the δ13 C and δ18 O 

ata of the whole sampled period and each individual interval. 

oth directions of the causality relationship (i.e., from δ13 C to 
18 O and vice versa) were examined and the results are listed in 

able 3 . 
3 
. Results and discussion 

.1. Stationarity of the series data 

It is known from other physical variables and more-detailed 

tudies of the Earth system that climate variability itself is a func- 

ion of the climate, and that the massive PETM transition, there- 

ore, tend to be expected to involve a non-stationary transition. It 

as been proposed that the Millville data series are not stationary 

 Zeebe et al., 2016 ). Based on Fig. 1 , it is intuitive to conclude that

oth the δ13 C and δ18 O data in Q1 and Q4 are stationary, while Q2 

nd Q3 (i.e., the PETM transition) are not stationary. However, the 

DF unit root test results ( Table 1 ) and the majority of other tests

uggest that δ13 C and δ18 O data of the Q2 and Q3 quarters are 

tationary, despite the whole period δ13 C data are not stationary 

 Table 2 ). Likewise, stationarity has also been suggested for recent 

laciation and interglaciation transitions that tend to be assumed 

onstationary ( Davidson et al., 2016 ; McMillan and Wohar, 2013 ). 

he difference between stationary and nonstationary conclusions 

rawn by different authors has been attributed to the differing 

ime-spans of data analysed ( Davidson et al., 2016 ). 

.2. Causality test results 

The first quarter (Q1) covers the majority of the data before 

he CIE ( Fig. 1 ). In theory, the δ13 C and δ18 O should behave inde-

endently in steady-state. However, a causality relationship is de- 

ected from δ13 C to δ18 O ( Fig. 1 ; Table 3 ). Generally, the δ13 C driv-
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ng δ18 O perturbations can be explained by carbon injection caus- 

ng climate warming. Nonetheless, the δ18 O data display a trend 

f cooling instead of warming. A pre-PETM cooling event has also 

een reported in the Eastern North Sea Basin ( Stokke et al., 2020 ).

his cooling has been linked with large scale volcanic eruption 

ssociated with the North Atlantic Igneous Province (NAIP). Large 

mounts of sulphuric aerosol acid together with a small amount of 

sotopically-light carbon into the atmosphere may ultimately exert 

s climate cooling effect because sulphur can increase planetary 

lbedo ( Stokke et al., 2020 ). 

The second quarter (Q2) covers the initial excursions for both 

he δ13 C and δ18 O data ( Fig. 1 ). Previously, the theory that global

arming drove the carbon release mainly comes from observed ge- 

logical records that the proxies for environmental perturbations 

tart to shift before the CIE ( Handley et al., 2011 ; Harding et al.,

011 ; Kender et al., 2012 ; Sluijs et al., 2007 ; Thomas et al., 2002 ).

t usually needs expanded sections with high sedimentary rate to 

learly discern the sequence of different datasets. For example, 

t the Wilson Lake section (New Jersey shelf), climate warming 

recedes the onset of the CIE as inferred from the TEX 86 ther- 

ometer record ( Sluijs et al., 2007 ). This is also supported by the

iotic change that the onset of the Apectodinium (a subtropical 

enus) acme is detected ∼40 cm below the CIE ( Sluijs et al., 2007 ).

he nearby Bass River section also shows a similar pattern, with 

alf of the total warming occurred before the CIE ( Sluijs et al., 

007 ). The Millville site is close to the Wilson Lake and Bass River 

ections, however, δ13 C and δ18 O data from this section start to 

hift simultaneously ( Fig. 1 ). It is not feasible to spot their se-

uence and causality relationship based on the isotope stratig- 

aphy profile alone. Even so, our Granger causality test result is 

ble to show a significant (at 5%) Granger causality from the δ18 O 

o δ13 C in this period ( Fig. 1 ; Table 3 ), indicating the mecha-

ism that climate warming driving the carbon release. Scenarios 

hat environmental change may cause the onset of the CIE have 

lso been reported for other sections in southwest Pacific Ocean 

 Handley et al., 2011 ; Sluijs et al., 2007 ), North Sea ( Kender et al.,

012 ; Sluijs et al., 2007 ), high Arctic ( Harding et al., 2011 ), South-

rn Ocean ( Thomas et al., 2002 ) and North America ( Secord et al.,

010 ). 

Climate warming causing the carbon injection that responsi- 

le for the CIE is consistent with the hypothesis of methane re- 

ease from gas hydrate system ( Dickens, 2011 ; Dickens et al., 1995 ).

as hydrates are crystalline compounds that formed under high- 

ressure low temperature conditions, mainly containing water and 

H 4 , with δ13 C typically < -60 ‰ ( Milkov, 2004 ). Large volumes of

as hydrates are stored in continental slope and its size is sensi- 

ive to seafloor temperature change. In the event of global warm- 

ng, enormous gas hydrates were converted to free methane gas. 

he massive amount of free 13 C-depleted methane would be able 

o drive the observed CIE. Permafrost thawing is another alterna- 

ive/additional source of carbon ( DeConto et al., 2012 ). A substan- 

ial amount of soil organic carbon was stored in the Antarctica 

nd Circum-Arctic, and this terrestrial carbon is readily discharged 

hen the temperature reached a certain threshold. The initial cli- 

ate change might be caused by Earth’s astronomical configura- 

ions that favourable inducing warming, which is the original pro- 

osed mechanism of the methane hydrate dissociation hypothesis 

 Dickens et al., 1995 ; Lourens et al., 2005 ; Lunt et al., 2011 ). A

eak causality from δ13 C to δ18 O (at 10%) has also been found in 

his interval. This can be interpreted by the positive feedback from 

he carbon release. Once a significant amount of methane was re- 

eased, the increased concentration of CH 4 and CO 2 (by oxidiza- 

ion of CH 4 ) in the atmosphere would be able to further warm the 

cean. 

In the third quarter (Q3), only the causality relationship from 

13 C to δ18 O is significant (at 10%; Table 3 ). This indicates that 
4 
he carbon emission from submarine gas hydrates and permafrost 

ay have reached its maximum. The geological process has shifted 

rom a warming-driven carbon releasing dominated scenario to 

he scheme that carbon release was driving the global warm- 

ng and environmental changes. This shift of driving mechanism 

ight be caused by the positive feedback of the released carbon 

rom gas hydrates destabilization and/or permafrost thawing, to- 

ether with additional carbon injection from sources such as vol- 

anic outgassing and thermogenic volatile and methane during 

he emplacement of the NAIP ( Storey et al., 2007 ; Svensen et al., 

004 ), wildfires burning peatlands ( Kurtz et al., 2003 ) and oxida- 

ion of organic matter in shallow continental seaways ( Higgins and 

chrag, 2006 ). 

When coming into the fourth quarter (Q4), there is no causal 

elationship between the δ13 C and δ18 O data, despite that this in- 

erval is still at the ‘body’ of the CIE ( Fig. 1 ; Table 3 ). It is possi-

le that each profile of δ13 C and δ18 O is progressing independently 

ithin their own cycle, or only minor causality exists that is not 

etected by this method. Over the whole investigated period, no 

ausality exists for the δ13 C and δ18 O data ( Fig. 1 ). This might re-

ult from the fact that there are multiple directions of causality 

ithin the whole period. We have noted several large gaps in the 

ata due to the CaCO 3 dissolution ( Zachos et al., 2005 ). However, 

he effect of the missing data is hard to evaluate. 

The above discussion is based on assumption of stationary Q2 

nd Q3 interval series data. We acknowledge that some unit root 

est results do not suggest stationarity of the series, although the 

ajority of unit root tests yielded stationarity ( Tables 1 and 2 ). In

he case of nonstationarity, these data would achieve stationary by 

aking the first difference – I(1). The Toda-Yamashita method was 

hen applied to investigate the causality for data in Q2 and Q3. 

esults suggest that the significant causality previously found on 

he level data no longer exist ( Table 3 ). Nonetheless, a relatively 

mall P-value is found from δ18 O to δ13 C for Q2 (0.1305) and from 

13 C to δ18 O for Q3 (0.1176) that have the same direction as previ- 

us Granger test results for the level data ( Tables 2 , 3 ). In addition,

rom Table 2 we found supporting evidence that δ18 O and δ13 C are 

tationary time series by using different unit-root testing methods 

PP, DF-GLS and KPSS). 

.3. Limitations 

.3.1. Quarters’ boundaries and data size 

Granger causality result suggests that the whole time series 

ata of δ13 C and δ18 O show no significant causal relations, and 

hat significant causality only emerges when pieces of the data are 

eparated from each other into “quarters” ( Fig. 1 ). The choice of 

hese quarters is clearly influenced by the authors’ interpretation. 

e chose the quarters based on the behaviour of the carbon and 

xygen isotope trends, i.e., before and after the PETM excursions 

Q1 and Q4; Fig. 1 ). The PETM excursion is further divided into 

wo parts (Q2 and Q3) by another obviously dramatic carbon iso- 

ope shift. However, even with the reference to the same criteria, 

ocation of the boundaries would be different by each observer and 

hus the result of the test would inevitably be affected. 

In addition to the uncertainty regarding the quarters’ bound- 

ries, division of the dataset would also reduce the data size. 

e acknowledge that the data size is not large (281 for each 

eries), compared with other subjects where this method is ap- 

lied, like economic studies (e.g., research about the stock mar- 

et). The fact that significance was only found in separated quar- 

ers rather than the whole series further indicates the notion of 

P-hacking”, i.e., if enough datasets are tested, a low P-value is in- 

vitably found ( Head et al., 2015 ). However, as previously stated, 

e divide the dataset based on background geological information 

bout the PETM ( Wright and Schaller, 2013 ) and observable jumps 
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n the scatter plot ( Fig. 1 ), rather than purposely reporting signifi- 

ant P-values. 

Inferred causalities are based on local δ13 C and δ18 O profiles 

rom Millville. Although these profiles are largely controlled by 

lobal carbon cycle and climate change, we need to note that other 

ections may not have a similar profile. Thus, additional studies 

n data from multiple sections would further validate the appli- 

ation of this method and the interpretation of the results. How- 

ver, Millville is the only section that currently has cm-resolution 

ulk isotope records. Nonetheless, the changes in δ13 C and δ18 O 

ecords are consistant with most other perlagic sequences and 

oraminifer isotope data from neaby PETM sections ( Stassen et al., 

012 ; Zachos et al., 2007 ; Zachos et al., 2006 ; Zeebe et al., 2016 ). 

.3.2. Linearity and potential omitted variables 

To apply the granger test, an underlying assumption is that 

he δ13 C and δ18 O data have a linear relationship over this inter- 

al, which is difficult to characterize in the geological record. It is 

nown that δ13 C and δ18 O data vary together in geological records, 

howing the interactions of geological processes ( Grossman, 2012 ; 

altzman and Thomas, 2012 ). δ13 C and δ18 O are proxies of the be- 

aviour of certain elements of the climate system, and are prob- 

bly not appropriately characterized as having a direct cause and 

ffect relationship. If they are causally involved, there are certainly 

ther variables that are omitted in the bivariate system, such as 

CO 2 ( Triacca, 1998 ). To put this in a simplified PETM scenario, 

he δ13 C shift was driven by addition of isotopically-light carbon 

 

13 C depleted) into the ocean and atmosphere – a process would 

navoidably increase the p CO 2 level and the temperature. The car- 

on emission could also be caused by temperature rise as dis- 

ussed previously. The oxygen isotope fractionation of the seawa- 

er (and thus the carbonates) is linked with temperature, and pa- 

eotemperature can be reconstructed with oxygen isotope data us- 

ng some sort of equations (e.g., T ( °C) = 16.5 - 4.3( δ18 O CaCO3 -

18O w-AMW 

) + 0.14( δ18 O CaCO3 - δ18 O w-AMW 

) 2 ; Epstein et al., 1953 ).

here are methods that can be used to estimate ancient p CO 2 lev- 

ls, however, that would generally require other geochemical prox- 

es (e.g., boron isotopes), and may involve large error with the es- 

imation. Assuming linear relationship is not contradicting the true 

eneral co-movements between δ13 C and δ18 O, after controlling for 

tructure breaks of the data. However, we would like to emphasise 

hat the real geological scenario would be much more complicated 

han that as explained above. 

.3.3. Age-model 

Granger causality is typically applied to time series whose tim- 

ng is well known. Unlike recent monitored climate series data, 

limate series data recovered from drill cores involve some sort 

f uncertainty regarding the timing. A constant sedimentation rate 

thus a linear depth-time translation) is obviously difficult to meet 

cross this interval. According to nearby area sedimentation rates, 

he time gap is calculated to be about 20–25 years ( Sluijs et al.,

007 ). However, Zeebe et al. (2016) estimated a sampling reso- 

ution of ∼40 years based on carbon cycle-climate modelling. In- 

eed, numerous studies have suggested highly variable sedimenta- 

ion rates during the PETM as a response to hydrological perturba- 

ions ( Carmichael et al., 2017 ). However, our unequal spaced data 

id not affect our causality’s conclusion under linear’s hypothesis, 

ince our data has neither serious missing observations’ problem 

or high density of observations in the same period. 

. Conclusions 

In summary, the Granger causality test suggests that the ini- 

ial carbon release of the CIE might be caused by astronomi- 

al paced climate warming ( DeConto et al., 2012 ; Frieling et al., 
5 
019 ; Lourens et al., 2005 ). This causality relationship was then 

eversed to carbon emission driving the climate warming in the 

ater stage of the CIE, possibly due to extra carbon liberated from 

ther sources including volcanic and thermogenic volatile and 

ethane ( Frieling et al., 2016 ), submarine gas hydrates dissocia- 

ion ( Dickens, 2011 ; Dickens et al., 1995 ), decomposition of per- 

afrost ( DeConto et al., 2012 ), desiccation of a large epicontinen- 

al sea ( Higgins and Schrag, 2006 ) and wildfires burning peatlands 

 Kurtz et al., 2003 ). This study demonstrates the potential appli- 

ation of Granger causality test in deep-time climate research to 

nvestigate the detailed mechanisms that drive climate change in 

arth history. Limitations of applying Granger causality test include 

tationarity time-scale of the data series, which are difficult to 

haracterize for geological data. Furthermore, unlike modern mon- 

tored data, geological data derived from geochemistry analyses of 

ore samples are generally sparse. 
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