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Abstract. Accurate boundary layer temperature and hu-
midity profiles are crucial for successful forecasting of
fog, and accurate retrievals of liquid water path are im-
portant for understanding the climatological significance of
fog. Passive ground-based remote sensing systems such as
microwave radiometers (MWRs) and infrared spectrome-
ters like the Atmospheric Emitted Radiance Interferometer
(AERI), which measures spectrally resolved infrared radia-
tion (3.3 to 19.2 µm), can retrieve both thermodynamic pro-
files and liquid water path. Both instruments are capable of
long-term unattended operation and have the potential to sup-
port operational forecasting. Here we compare physical re-
trievals of boundary layer thermodynamic profiles and liquid
water path during 12 cases of thin (LWP< 40 g m−2) super-
cooled radiation fog from an MWR and an AERI collocated
in central Greenland. We compare both sets of retrievals to
in-situ measurements from radiosondes and surface-based
temperature and humidity sensors. The retrievals based on
AERI observations accurately capture shallow surface-based
temperature inversions (0–10 m a.g.l.) with lapse rates of up
to −1.2 ◦C m−1, whereas the strength of the surface-based
temperature inversions retrieved from MWR observations
alone are uncorrelated with in-situ measurements, highlight-
ing the importance of constraining MWR thermodynamic
profile retrievals with accurate surface meteorological data.
The retrievals based on AERI observations detect fog on-
set (defined by a threshold in liquid water path) earlier than
those based on MWR observations by 25 to 185 min. We pro-
pose that, due to the high sensitivity of the AERI instrument
to near-surface temperature and small changes in liquid wa-
ter path, the AERI (or an equivalent infrared spectrometer)

could be a useful instrument for improving fog monitoring
and nowcasting, particularly for cases of thin radiation fog
under otherwise clear skies, which can have important radia-
tive impacts at the surface.

1 Introduction

The socioeconomic and climatological impacts of fog are far
reaching. The reduction in visibility associated with fog dis-
rupts transportation, resulting in economic losses equivalent
to those associated with tornadoes and severe storms (Gul-
tepe et al., 2007). Poor visibility due to fog is the most im-
pactful extreme weather event in Arctic maritime operations
(Panahi et al., 2020) and the second largest contributor after
adverse winds to weather-related accidents in aviation (Gul-
tepe et al., 2019). Supercooled fog is particularly impact-
ful, since the collision of supercooled liquid droplets with a
cold surface can result in the formation of rime or glaze ice.
The build-up of ice can damage structures and power trans-
mission lines (Ducloux and Nygaard, 2018) and presents an
additional safety hazard in both shipping and aviation (Cao
et al., 2018; Panahi et al., 2020), making accurate forecasts of
supercooled fog critical for risk mitigation. From a climato-
logical perspective, fog is an important moisture source, par-
ticularly in arid regions, (e.g. Hachfeld and Jürgens, 2000),
and impacts the surface energy budget by modifying radiant
and turbulent energy transfers (Shupe and Intrieri, 2004; Bei-
derwieden et al., 2007; Anber et al., 2015). The hydrological
and radiative impacts of fog are both directly related to fog
duration and liquid water content, and so accurate monitoring
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of the liquid water content of fog is vital for understanding
the role of fog in local climate and hydrological cycles.

Fog forms when the near-surface air reaches saturation,
resulting in the formation of liquid water droplets on con-
densation nuclei (e.g. Oke, 2002). The air can reach satu-
ration either through cooling until it reaches the dew point
or through a moistening process such as the evaporation of
surface water/drizzle or moist air advection (Gultepe et al.,
2007). The cooling of air near the surface can result from ad-
vection (either cold air advection or the advection of a warm
air mass over a cooler surface), through orographic effects
(i.e. the adiabatic cooling of air rising over topography or
cold air pooling in valleys), or through direct radiative cool-
ing of the surface. Fogs that primarily form through radia-
tive cooling of the surface are known as radiation fogs and
commonly form on clear evenings with light winds, where
the net surface cooling is maximised through the reduction
of direct solar heating and limited turbulent mixing of heat
downward to the surface (e.g. Savijärvi, 2006). Due to the
rapid cooling of the surface, the formation of radiation fog
is associated with a surface temperature inversion, which can
be extremely shallow, with most of the inversion often de-
veloping in the lowest 10 m above the surface (Hudson and
Brandt, 2005; Price, 2011; Izett et al., 2019).

The onset of radiation fog in numerical weather prediction
(NWP) models is particularly sensitive to the initial thermo-
dynamic structure of the boundary layer (Steeneveld et al.,
2014). Accurate representation of the boundary layer struc-
ture, particularly temperature and humidity profiles in the
lowest 1 km a.g.l. and the development of the surface-based
temperature inversion, is thus crucial for forecasting radia-
tion fog (Steeneveld et al., 2014; Gultepe et al., 2007; Bergot
et al., 2007; Tardif, 2007); however, NWP models often fail
to reproduce the strong but shallow gradients associated with
it (Martinet et al., 2020; Westerhuis and Fuhrer, 2021).

The assimilation of boundary layer thermodynamic profile
measurements is one possibility for improving NWP fore-
casts of radiation fog. However, making continuous high-
resolution observations of temperature and humidity profiles
is challenging. Despite improvements in recent years, satel-
lite retrievals of boundary layer profiles and fog characteris-
tics remain insufficient due to their coarse vertical resolution
(> 1 km) and poor spatial coverage (Wulfmeyer et al., 2015;
Wu et al., 2015; Wilcox, 2017; Yi et al., 2019). Surface-based
in-situ measurements are limited by a maximum height (usu-
ally less than 50 m), while radiosonde profiles are spatially
and temporally sparse and resource intensive, and the devel-
opment of a coordinated, unmanned aerial system profiling
platform is still in its infancy (Jacob et al., 2018; McFarquhar
et al., 2020). Active ground-based remote sensors, such as
differential absorption lidars (DIALs), can produce accurate
thermodynamic profiles with a high temporal resolution but
have a typical lowest range gate of greater than 50 m, mak-
ing them unsuitable for fog monitoring (Newsom et al., 2020;
Stillwell et al., 2020; Turner and Lohnert, 2021).

In addition to thermodynamic profiles, accurate monitor-
ing of liquid water content is important to understand the
climatological and hydrological impacts of fog. One met-
ric to describe the liquid water content is fog liquid wa-
ter path (LWP), defined as the integral of liquid water con-
tent over the depth of the fog layer. LWP is directly re-
lated to visibility; for example, given a homogeneous, mono-
disperse fog with a depth of 100 m and a uniform droplet
effective radius of 10 µm, increasing the LWP from 10 to
20 g m−2 corresponds to a reduction in horizontal visibility
from 200 to 100 m (assuming a visible contrast threshold
of 0.05; Bendix, 1995), highlighting the importance of ac-
curate LWP retrievals for visibility nowcasting. The LWP
of thin fogs (LWP< 40 g m−2) is important from a clima-
tological perspective, because both longwave and shortwave
surface radiative fluxes become extremely sensitive to small
changes in LWP (Turner et al., 2007). Although thin liquid
clouds and fogs are common globally (Turner et al., 2007),
they are especially important in the Arctic, where they dom-
inate cloud radiative forcing of the surface (Shupe and In-
trieri, 2004; Miller et al., 2015). Cloud LWP was a critical
control on the exceptional Greenland Ice Sheet melt event
of 2012 (Bennartz et al., 2013). At the highest point on the
ice sheet, had the cloud LWP been 20 g m−2 higher than
observed, the reduction in downwelling shortwave radiation
would have prevented surface melt. Equally, had the LWP
been 20 g m−2 lower, the reduction in downwelling longwave
radiation would have prevented surface melt (Bennartz et al.,
2013).

Ground-based microwave radiometers (MWRs) are pas-
sive sensors that measure downwelling radiation. Commer-
cial MWRs for temperature and water vapour profiling typi-
cally operate 14–35 spectral channels at 22–31 GHz and 51–
58 GHz and are sensitive to the lowest 6 km of the atmo-
sphere (Löhnert and Maier, 2012; Blumberg et al., 2015).
Because MWRs can retrieve continuous (< 10 s) boundary
layer temperature and humidity profiles as well as LWP un-
der both clear skies and non-precipitating clouds, they are
frequently used for fog monitoring (e.g. Gultepe et al., 2009;
Wærsted et al., 2017; Temimi et al., 2020; Martinet et al.,
2020). Recent studies have demonstrated that the assimila-
tion of MWR brightness temperatures into NWP models has
the potential to improve forecasts of stable boundary layers
and fog by correcting errors in the temperature profile in the
lowest 500 m above the surface (Martinet et al., 2017, 2020).
The success of these trials contributed to EUMETNET’s re-
cent decision to establish a homogeneous European network
of MWRs by 2023 (Illingworth et al., 2019; Rüfenacht et al.,
2021).

However, the maximum vertical resolution of boundary
layer temperature profile retrievals from the MWR is 50 m at
the surface, decreasing to 1.7 km at 1 km a.g.l. (Rose et al.,
2005; Cadeddu et al., 2013), which is insufficient to re-
solve the shallow surface-based temperature inversions that
often portend the onset of radiation fog (Price, 2011; Izett
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et al., 2019). Although combining the MWR with active re-
mote sensing instruments such as DIALs or radio acous-
tic sounding systems (RASS) can improve the vertical res-
olution of the temperature profile retrievals in the lowest
2 km of the atmosphere, these improvements do not extend
down to the lowest 100 m a.g.l. due to the height of the
lowest range gate of the active remote sensing instruments
(Turner and Lohnert, 2021; Djalalova et al., 2022). In ad-
dition, large absolute uncertainties in LWP retrievals from
the MWR (±12–25 g m−2) result in large relative errors dur-
ing thin fog (LWP< 40 g m−2; Turner, 2007; Marke et al.,
2016). These errors can be reduced by combining the MWR
data with measurements from infrared spectrometers (either
with single or multiple channels) that are more sensitive to
small amounts of liquid water (Marke et al., 2016).

One such infrared spectrometer is the Atmospheric Emit-
ted Radiance Interferometer (AERI, Knuteson et al., 2004a),
a passive remote sensing instrument that has greater sensi-
tivity than MWRs to both changes in near-surface (< 1 km)
thermodynamic profiles (Blumberg et al., 2015; Turner and
Lohnert, 2021) and small changes in LWP (for LWP<
40 g m−2, Turner, 2007; Marke et al., 2016). The AERI mea-
sures spectrally resolved downwelling infrared radiation be-
tween 3.3 and 19.2 µm. Because of the higher opacity at
infrared wavelengths relative to the optical depths spanned
by the MWR, the AERI can detect changes in the bound-
ary layer thermodynamic profile at a finer vertical resolution
and with greater accuracy than the MWR (Blumberg et al.,
2015; Turner and Lohnert, 2021). The primary disadvantage
is that the AERI is not sensitive to atmospheric properties
above a cloud with a LWP>∼ 40 g m−2, for which the cloud
is nearly opaque in the infrared. This means that retrievals of
thermodynamic profiles above optically thick clouds are not
possible, and retrievals below them are only possible if the
cloud temperature and height are well characterised.

Although several studies have compared the performance
of AERI and MWR retrievals of thermodynamic profiles
and LWP under different conditions (Blumberg et al., 2015;
Turner, 2007; Löhnert et al., 2009; Turner and Lohnert,
2021), none of these studies have included cases of fog. Fog
is distinct from “cloudy scenes” in general because the LWP
and changes in the thermodynamic profile that are relevant
for fog development and lifetime are concentrated in the
lowest layers (< 100 m) above the surface. The goal of this
study is to compare the performance of thermodynamic and
LWP retrievals based on MWR and AERI observations dur-
ing radiatively thin (LWP< 40 g m−2) fog events, with an
emphasis on those aspects that are crucial for making accu-
rate forecasts and understanding the climatic impact of fog:
the representation of the thermodynamic profile in the lowest
1 km a.g.l., the detection of shallow surface-based tempera-
ture inversions, and accurate measurements of small changes
in fog LWP.

We take advantage of the collocation of an MWR and an
AERI alongside a large suite of supplementary instruments

for monitoring atmospheric properties at Summit Station
(Summit) in the centre of the Greenland Ice Sheet (Shupe
et al., 2013). The surface air temperature at Summit ap-
proaches 0 ◦C only in exceptional circumstances (NSIDC,
2021), and supercooled radiation fog is common, occurring
over 10 % of the time in the summer (Cox et al., 2019). Al-
though usually shallow, summer-time radiation fog in central
Greenland is particularly impactful, because it forms during
the coldest part of the day and has a net warming effect at the
surface, effectively dampening the diurnal temperature cycle
with the potential to precondition the ice sheet surface for
melt (Solomon et al., 2017; Cox et al., 2019). Aviation op-
erations at Summit are also frequently disrupted by the low
visibility.

Using a consistent physical retrieval algorithm for both in-
struments, we compare the suitability of the MWR and the
AERI for retrieving near-surface thermodynamic profiles and
LWP during supercooled radiation fog events at Summit in
the summer of 2019. We evaluate the retrieved thermody-
namic profiles against radiosonde profiles and in-situ tem-
perature and humidity measurements and assess the ability
of each set of retrievals to detect the increase in LWP associ-
ated with the onset of fog. Henceforth in this study, ‘fog’ will
specifically pertain to supercooled radiation fog unless oth-
erwise specified. The applicability of the results of this study
to other (less extreme) environments and to different types of
fog is discussed in Sect. 4.

2 Methods

2.1 Measurement site and instrumentation

The Integrated Characterization of Energy, Clouds, Atmo-
spheric state and Precipitation at Summit (ICECAPS) project
collected continuous observations of the atmosphere above
Summit from 2010 to 2021 (Shupe et al., 2013). At the high-
est point of the Greenland Ice Sheet (−38.45◦ E, 72.58◦ N,
3250 m a.s.l.), the atmosphere above Summit is extremely
dry, and temperatures are rarely above freezing (Shupe et al.,
2013). The ice sheet surface is homogeneous in all directions
so that the atmospheric conditions at Summit are minimally
influenced by local topography. During the summer (JJAS),
freezing fog (defined as fog that reduces visibility to less than
1000 m) was reported by on-site observers 10 % of the time
(2010–2020). These fogs can occur when surface tempera-
tures are as low as −35 ◦C and almost always contain super-
cooled liquid droplets (Cox et al., 2019), presumably due to a
lack of ice-nucleating particles (near-surface aerosol concen-
trations at Summit are exceptionally low, Guy et al., 2021).

The Aerosol Cloud Experiment (ACE) was added to the
ICECAPS project in 2019 and included the addition of tem-
perature and humidity sensors and sonic anemometers at four
levels on a 15 m tower for high resolution monitoring of
the near-surface turbulent and thermodynamic structure (Guy
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et al., 2021). For this study, we focus on fog events during
the summer of 2019 for which time the multi-level temper-
ature data from the tower are available. Figure 1 shows the
experimental setup of the MWR and AERI at Summit, and
Table 1 provides details of all the ICECAPS-ACE instrumen-
tation used in this study.

We use the tower-mounted temperature probes (Vaisala
HMP155, installed in aspirated shields) as “true” reference
points to assess the performance of the surface temperature
retrievals from the MWR and AERI. The instrument uncer-
tainty for the HMP155 is <±0.3 ◦C. For this study, we de-
fine the “surface” as the height of the raised platform pho-
tographed in Fig. 1, where both the AERI and MWR win-
dows are situated. This surface is aligned with the HMP155
sensor mounted on the tower at 4 m above the snow sur-
face; measurements from this sensor are henceforth referred
to as surface temperature. Measurements from the HMP155
sensor located 10 m higher on the tower are compared to
the 10 m thermodynamic retrievals. The same height adjust-
ment is applied to the radiosonde profiles prior to comparison
(which are launched approximately 3 m below the platform
“surface” or 1 m above the snow surface). The uncertainty
in the radiosonde measurements is ±4 % relative humidity
and ±0.3 ◦C (Jensen et al., 2016).

2.1.1 The AERI

The polar AERI (PAERI) at Summit was designed and man-
ufactured by personnel at the Space Science and Engineer-
ing Center (SSEC) at the University of Wisconsin-Madison
and is one of the original AERIs developed for the US De-
partment of Energy’s Atmospheric Radiation Measurement
(ARM) program (Turner et al., 2016). It was built and cali-
brated according to specifications in Knuteson et al. (2004a)
and adheres to the performance requirements of radiomet-
ric calibration (< 1 %, 3σ , of ambient radiance) and spectral
calibration (1.5 ppm, 1σ ), as explained by Knuteson et al.
(2004b). The PAERI measures downwelling spectral infrared
radiance between 3 and 19 µm at an unapodized spectral
resolution of about 0.48 cm−1 (see Table 3 from Knuteson
et al., 2004a). The PAERI operates on a continuous measure-
ment schedule where it obtains views of the hot and ambi-
ent calibration sources followed by eight consecutive views
of the sky at zenith. The sequence is repeated so that each
set of eight sky views is bracketed in time by views of both
calibration sources; these sources are then used to calibrate
the eight sky views. Each of the spectral measurements is
a “co-addition” of six interferometric scans. Each complete,
calibrated measurement sequence takes approximately 3 min
with the sky views separated by approximately 15–20 s. This
yields more than 3300 infrared spectra each day. Quality con-
trol is then applied to each of the spectra by eliminating those
that have instrument parameters outside of acceptable lim-
its; the acceptable limits were set by SSEC personnel. The
important instrument parameters are the responsivities and

noise-equivalent radiances of the hot blackbody calibration
source measured by both of the PAERI detectors (InSb and
MCT) plus the electric current and temperature of the Stir-
ling cooler that maintains the detectors at 77 K. In actuality,
the instrument responsivities are a very sensitive indicator of
the PAERI’s health, and most unusable spectra are eliminated
by low responsivity associated with small amounts of snow
on the PAERI scene mirror. Finally, the remaining calibrated
sky views are subjected to noise filtering using the technique
described by Antonelli et al. (2004) and Turner et al. (2006).

2.1.2 The MWR

The MWR at Summit, a Humidity and Temperature Pro-
filer (HATPRO) from Radiometer Physics GmbH, observed
downwelling radiation in all 14 channels simultaneously ev-
ery 4 s (see Table 2 for channel details). After collecting 600
zenith views, the HATPRO collected elevation scans at 5.4,
10.2, 16.2, 19.2, 23.4, 30.0, and 42.0 on either side of zenith.
These elevation scans were used to both evaluate and update
the calibration accuracy of the K-band channels (i.e. the low
opacity channels between 22 and 32 GHz) using the tip-curve
technique (Han, 2000). The more opaque V-band channels
(i.e. in the 51–58 GHz band) were calibrated twice yearly us-
ing an external liquid nitrogen target; the most recent cali-
bration used for this analysis was performed on 1 May 2019.
Both the tip curves and the liquid nitrogen views are used
to determine the effective temperature of the internal noise
diode, which is used regularly when viewing the internal
blackbody to establish two different reference values (i.e. one
ambient blackbody view with the noise diode off and one
“hot” blackbody view with the noise diode on). These inter-
nal blackbody views, which are done every minute, are used
to continually update the gain of the radiometer and convert
the observed signal to brightness temperature (Tb) following
the calibration principles outlined in Liljegren (2000).

However, since the liquid nitrogen calibrations are per-
formed infrequently, any drift in the effective temperature of
the noise diode in the V-band channels will result in a cali-
bration bias. Using a radiative transfer model (the monochro-
matic MonoRTM, Clough et al., 2005) with radiosonde pro-
files as input, we have determined a Tb offset that is sub-
tracted from the observed brightness temperatures. The bias
correction and the impact of not applying this correction
prior to performing the thermodynamic retrievals are dis-
cussed in Appendix A.

2.2 Case study identification

For forecasting and nowcasting purposes, fog is usually de-
fined by a threshold in horizontal visibility (typically <

1000 m), which has important implications from a safety per-
spective (Gultepe et al., 2007). However, limiting the def-
inition of fogs to those that reduce visibility to < 1000 m
encourages thinner fogs (or mists) to be ignored or incor-
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Figure 1. Key ICECAPS-ACE instrumentation at Summit Station (photographed by the author, 16 May 2019).

Table 1. Overview of instrumentation used in this study. All instruments were installed at Summit as part of the ICECAPS project (Shupe
et al., 2013) or ICECAPS-ACE project (Guy et al., 2021).

Title Instrument Key specifications References

PAERI Polar Atmospheric Emitted 530–3000 cm−1 (3–19 µm), Knuteson et al. (2004a)
Radiance Interferometer 1 cm−1 res. < 1 min time res. Walden et al. (2005)

HATPRO RGP Humidity and Frequencies: 7 channels 22-
MWR Temperature Profiler, 32 GHz, 7 channels 51–58 Rose et al. (2005)

microwave radiometer GHz, 2–4 s time resolution.

MMCR Millimetre cloud Ka band (35 GHz), 8 mm
radar wavelength, 45 m vertical res. Moran et al. (1998)

2 s time res.

Ceilometer Vaisala laser 905 nm wavelength. 15 m Münkel et al. (2006)
ceilometer CT25K vertical res., 15 s time res.

POSS Precipitation Occurrence X-band radar (10.5 GHz)
Sensor System 1 min time res. Single volume Sheppard and Joe (2008)

near surface.

Temperature and Vaisala HMP155, 1 min averages at 0 and 10 m. Guy et al. (2020)
humidity probes aspirated

Radiosondes Vaisala RS41-SG Launched at 12:00 and Jensen et al. (2016)
00:00 UTC daily.

rectly classified as clear-sky events. Being able to accurately
measure thinner fogs is extremely important because (a) they
form the precursor to thick fog, (b) they modify the surface
moisture, aerosol, temperature, and radiative structure that
might impact fog development further down the line (Haeffe-
lin et al., 2013), and (c) they can have important radiative and
climatological impacts even without developing into a thick
fog (Cox et al., 2019; Hachfeld and Jürgens, 2000). Because
both the MWR and AERI are directly sensitive to the radia-
tive impact of fog (as opposed to visibility), for the purpose

of this study, we define fog as the presence of near-surface
liquid water that has a detectable radiative impact. Radiation
fogs typically form under clear skies; as such, we only con-
sider cases of fog under otherwise clear skies, which allows
us to be certain that the LWP retrievals are a measure of fog
LWP alone. The applicability of the results of this study to
other types of fog is discussed in Sect. 4.

To identify case studies of radiation fog under otherwise
clear skies, we only considered times when there were no
clouds detected by the MMCR, which has a lowest range
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Table 2. Centre frequencies, assumed noise level, whether the ele-
vation scans for the frequency are included in the observation vec-
tor, and the bias offset applied to the observations for the HATPRO
MWR at Summit.

Noise Used in Bias
Frequency level elev. offset
GHz K scan K

22.24 0.30 No 0.23
23.04 0.30 No 0.08
23.84 0.30 No 0.09
25.44 0.30 No 0.00
26.24 0.30 No 0.12
27.84 0.30 No 0.17
31.40 0.30 No 0.15
51.26 0.80 No 2.02
52.28 0.80 No 2.15
53.86 0.50 No 2.03
54.94 0.30 Yes −0.45
56.66 0.30 Yes −0.32
57.30 0.25 Yes −0.12
58.00 0.25 Yes −0.11

gate close to 200 m a.g.l. and is therefore insensitive to fog,
and when there was no precipitation detected by the POSS,
which is particularly sensitive to ice crystals. Of the times
that these criteria were met, fog was provisionally identified
when the 962 cm−1 downwelling radiance measured by the
AERI was greater than a threshold of 1.7 RU (radiance units,
1 RU= 1 mW m−2 sr−1 cm−1). In the extremely dry atmo-
sphere over Summit, the 962 cm−1 microwindow is almost
completely transparent under clear skies and is therefore par-
ticularly sensitive to the presence of clouds (e.g. Cox et al.,
2012). The threshold value of 1.7 RU was 3 standard devi-
ations above the mean 962 cm−1 radiance during 179 veri-
fied clear-sky hours between June and September 2019 and
therefore identified when the AERI window was obscured
by cloud/fog with a detectable radiative impact. Ambiguous
cases when there was evidence that something other than
fog may have caused the 962 cm−1 radiance increase, such
as clear-sky ice crystal precipitation, high cirrus clouds, or
the plume from the station generator, were removed based
on the observer log and photographs. Table 3 details the 12
cases that met the criteria above and were selected for the in-
tercomparison. In each case, the fog formed in late evening
or early morning and usually dissipated by midday, as is
characteristic of radiation fog (Fig. 2). Note that for 11 of
these cases, there was no cloud base height detected by the
ceilometer during the event, indicating that the events were
indeed fog as opposed to low cloud. The only exception is
for case ID 11, during which the ceilometer detected a cloud
base between 52 and 105 m intermittently between periods
of obscured vertical visibility.

Figure 2. Diurnal distribution of fog during the summer 2019
case studies listed in Table 3 (blue bars). Black dashed lines
show the maximum and minimum solar elevation angles (June–
September 2019). Local time at Summit is UTC−3 h.

2.3 Retrieval methodology

We retrieve boundary layer thermodynamic profiles (temper-
ature, T , and water vapour mixing ratio, wv) and LWP at a
5 min temporal resolution using the TROPoe iterative opti-
mal estimation physical retrieval algorithm that is detailed in
Turner and Lohnert (2021) and Turner and Blumberg (2019).
TROPoe uses a forward model to calculate the observation
vector from the current state vector, where the state vector
is the retrieved thermodynamic profile and LWP, and the ob-
servation vector is the downwelling radiance observed by ei-
ther the polar AERI or HATPRO MWR. Note that the ob-
servation vector from the MWR includes data from the el-
evation scans at 10.2, 16.2, and 19.2 degrees for the four
most opaque V-band channels; including elevation scans in
the retrieval has been shown to increase the accuracy of the
retrieved temperature profile (Crewell and Lohnert, 2007).
The forward models are line-by-line radiative transfer mod-
els; the LBLRTM version 12.1 (Clough and Iacono, 1995)
simulates the AERI spectral radiances, and the monochro-
matic MonoRTM (Clough et al., 2005) simulates the MWR
radiances. Note that the latter uses the improved temperature-
dependent liquid water absorption coefficients (Turner et al.,
2016). The state vector is incrementally adjusted to minimise
the difference between the forward model calculation and the
observation vector until the change between successive iter-
ations is less than the uncertainty in the current state vector
(Rodgers, 2000).

Due to the limited vertical resolution of the MWR, opera-
tional retrievals of thermodynamic profiles from MWRs are
typically also constrained by an in-situ measurement of sur-
face temperature, usually from a sensor that is integrated with
the MWR (e.g. Cimini et al., 2015). For this study, we run
TROPoe in three physically consistent configurations: once
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Table 3. Details of the 12 radiation fog cases used in this study, including mean temperatures (T ) and water vapour mixing ratios (wv).
Note that the minimum visibility comes from observer reports at 00:00, 12:00, and 18:00 UTC and may not represent the minimum visibility
outside of these times. Values where data were not available are indicated by NA – for example, when the observer did not log a visibility
within the fog time frame or when the ceilometer did not report an obscured vertical visibility. Local time is UTC−3 h.

ID Case start Case end Duration Mean Mean Min visibility Min ceilometer
Date, time Date, time (h) surface T surface wv observer log. vertical
UTC, 2019 UTC, 2019 (◦C) (g kg−1) (m) visibility (m)

1 8 Jun, 03:30 8 Jun, 05:50 2.3 −17 1.3 NA 30
2 12 Jun, 02:55 12 Jun, 10:30 7.6 −8.9 2.7 NA 30
3 13 Jul, 23:25 14 Jul, 04:30 5.1 −21 0.93 1600 30
4 15 Jul, 23:10 16 Jul, 10:30 11 −19 1.0 400 30
5 31 Jul, 23:25 1 Aug, 04:35 5.2 −8.6 2.7 400 25
6 1 Aug, 22:00 2 Aug, 14:40 17 −12 2.0 800 20
7 4 Aug, 06:35 4 Aug, 08:15 1.7 −17 1.2 NA NA
8 4 Aug, 22:40 5 Aug, 11:50 13 −18 1.2 400 15
9 6 Aug, 01:05 6 Aug, 10:00 8.9 −21 0.82 NA 30
10 14 Aug, 23:05 15 Aug, 08:00 8.9 −27 0.49 3200 43
11 5 Sep, 04:30 5 Sep, 08:35 4.1 −25 0.61 NA 30
12 30 Sep, 03:30 30 Sep, 11:05 7.6 −28 0.46 NA NA

using only the PAERI radiances as the observation vector
(as in Turner and Löhnert, 2014, henceforth named AERIoe),
once using only the microwave brightness temperature obser-
vations from the HATPRO MWR (as in Löhnert et al., 2009)
to provide a direct comparison of the relative sensitivity of
the two instruments (henceforth named MWRoe), and lastly
using the same configuration as the MWRoe but this time
being additionally constrained by the in-situ surface tem-
perature and water vapour observations from the HMP155,
as it would be in an operational setting (henceforth named
MWRoe-sfc).

Thermodynamic retrieval from passive spectral radiance
observations is an ill-posed problem; hence the optimal-
estimation retrieval is necessarily constrained by an a pri-
ori probability density function (the prior) that provides the
first guess state vector that stabilises the retrieval (Turner and
Löhnert, 2014). Typically, a location-specific prior can be de-
rived from a database of historical observations (i.e. from
radiosonde profiles) at or near the location of interest. The
prior for Summit is computed from 1756 summer radiosonde
launches (2010–2018). However, due to the rapid warming in
the Arctic (e.g. Koenigk et al., 2020), this does not encapsu-
late the exceptionally warm and moist conditions at Summit
during the summer of 2019 (NSIDC, 2019). To allow the re-
trievals more flexibility to account for the exceptional con-
ditions, we have re-centred the prior using the mean of the
three radiosondes closest to the retrieval date (whilst con-
serving relative humidity) and increased the wv variance in
the prior by a factor of 4 at the surface (decreasing to 0 by
1 km a.g.l.).

Previous studies have used cloud base height (CBH) de-
rived from a collocated ceilometer as an additional constraint
on the retrieval, which allows the retrieval of below-cloud

thermodynamic profiles from the AERI in the presence of
thick clouds (Turner et al., 2007; Turner and Löhnert, 2014;
Blumberg et al., 2015). Because we focus on radiation fogs
under otherwise clear skies – which are, by definition, based
at the surface – we initially assumed that the CBH is 5 m a.g.l.
in all cases. However, large temperature biases (> 5 K) in the
AERIoe retrievals during fog illustrated that the TROPoe is
highly sensitive to the CBH assumption when using AERI
data as an input (see Sect. 3.1). For the final retrievals, we
used CBH from the ceilometer to constrain the retrieval if
the ceilometer detected a cloud base within 10 min of the
retrieval time; if the ceilometer reported obscured vertical
visibility, then the detected vertical visibility height (Morris,
2016) was input as the CBH. If neither of these situations oc-
curred, the CBH assumption defaulted to 5 m a.g.l. The sen-
sitivity of the retrievals to this choice is discussed further in
Sect. 3.1. We ran all retrievals for up to 3 h before and af-
ter each fog event to encapsulate the atmospheric conditions
on either side of radiation fog formation. The retrieval al-
gorithm outputs 1σ uncertainties for all variables that incor-
porate the random error from the observations, the correlated
error propagated from the prior, and the sensitivity of the for-
ward model. Errors related to the CBH assumption or phase
assumption (when only liquid water is considered) are not
included, and we discuss these below in Sects. 3.1 and 4.

2.4 Evaluation metrics

To evaluate the three TROPoe retrieval configurations
(AERIoe, MWRoe, and MWRoe-sfc), we focus on three as-
pects that are crucial for making accurate fog forecasts with
NWP models, for visibility nowcasting, and for understand-
ing the climatic impact of fog:
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1. accurate representation of the structure of the tempera-
ture and humidity profile in the lowest 1 km a.g.l.

2. detection of the presence and strength of shallow
surface-based temperature inversions that typically por-
tend the formation of radiation fog

3. detection of the initial increase in LWP that signifies the
onset of fog and a reduction in horizontal visibility.

To evaluate the accuracy of the temperature and humidity
profile retrievals in the lowest 1 km a.g.l., we assess the per-
formance of the MWRoe-sfc and AERIoe against 14 coin-
cident radiosonde profiles by evaluating the mean bias and
spread between the radiosonde profiles (truth) and the re-
trievals. We use modified Taylor diagrams (Taylor, 2001;
Turner and Löhnert, 2014) to assess how well the retrieved
profiles capture the shape of the true profiles by consider-
ing the Pearson’s correlation coefficient and the ratio of the
standard deviation of the retrieval to that of the truth pro-
file. These results allow for a direct comparison with Blum-
berg et al. (2015), who compare TROPoe retrievals based
on MWR and AERI observations to a larger number of ra-
diosonde profiles (127) in southwestern Germany (but only
consider clear-sky days or clouds with bases > 500 m a.g.l.).

To evaluate the ability of each retrieval to detect the occur-
rence and strength of surface-based temperature inversions,
we compare the retrieved surface (0 m) and 10 m temper-
atures with measurements from in-situ temperature sensors
(see Sect. 2.1). We define the inversion “strength” as the 10–
0 m temperature and evaluate the Pearson’s correlation co-
efficients and root-mean-squared error (RMSE) between the
retrieved values and the “truth” (the in-situ temperature sen-
sors). Although we are limited by a maximum sensor height
on the tower, we expect the 10–0 m temperature difference
to be a good indicator of whether or not the retrieval cap-
tures the surface-based temperature inversion, since most of
the inversion during radiation fog often occurs in the lowest
10 m a.g.l. (Price, 2011; Izett et al., 2019). We also compare
the retrieved inversion strength over a deeper layer (100–
10 m) with the 14 coincident radiosonde profiles.

Finally, in the absence of an independent method of deter-
mining LWP, we evaluate the ability of each retrieval to de-
tect the initial increase in LWP, which is defined in this study
as an indicator of fog formation that might lead to visibil-
ity reduction, with “fog onset” being defined as the point at
which the retrieved LWP minus 2σ uncertainty (which is di-
rectly computed by TROPoe) increases above 0.1 g m−2 for
at least 10 min. We then compare the difference in fog on-
set detection time between the MWRoe and the AERIoe for
each case study. We use the ceilometer range-corrected at-
tenuated backscatter as an independent indicator of fog onset
time. This methodology allows us to compare the sensitiv-
ity of the two sets of retrievals to small increases in liquid
water that can begin to reduce visibility and impact radiative
energy fluxes at the surface.

3 Results

3.1 Retrieval performance and sensitivity to cloud base
height assumption

All 2045 retrievals from each configuration of TROPoe con-
verged, meaning that the retrieval algorithm was able to find a
solution within the maximum number of iterations. The mean
RMSE between the final forward model calculation and the
observed PAERI radiance across all AERIoe retrievals was
0.54±0.09 RU, which is of the order of the instrument noise
level (Blumberg et al., 2015). For the MWRoe retrievals the
mean RMSE between the final forward model calculation
and the MWR brightness temperatures was 0.38± 0.12 K,
again within the instrument noise level (Rose et al., 2005).
The MWRoe and MWRoe-sfc are comparable in terms of
RMSE, liquid water path retrieval and thermodynamic pro-
file retrievals above 100 m a.g.l., so we only discuss the dif-
ference between the MWRoe and MWRoe-sfc when we con-
sider the ability of each retrieval configuration to capture the
strong surface-based temperature inversions associated with
radiation fog in Sect. 3.3.

The AERIoe retrievals were very sensitive to the cloud
base height (CBH) assumption. Because we are only con-
sidering cases of radiation fog under otherwise clear skies,
the first iteration of retrievals assumed that, if liquid water
was detected, the cloud base height was 5 m a.g.l., remov-
ing the requirement for additional instrumentation to detect
CBH. Figure 3a demonstrates that, under this assumption,
the AERIoe retrieved unrealistic temperature profiles in some
cases when the fog was optically thick (i.e. ceilometer is
obscured) or when the ceilometer detected a cloud with a
base close to 1300 m a.g.l. prior to the start of the fog event.
The unrealistic temperature profiles manifest as exception-
ally warm temperatures just above the surface, indicated by
red colours in Fig. 3.

Previous AERIoe algorithms have used the ceilometer
“first cloud base height field” (an output of the Vaisala propri-
etary software) to estimate CBH (Turner and Löhnert, 2014;
Blumberg et al., 2015). Using this assumption rather than
simply assuming the CBH to be 5 m a.g.l. reduced the tem-
perature profile artefacts in some but not all cases (Fig. 3b).
The ceilometer software also outputs a vertical visibility field
(described in Morris, 2016) when the extinction profile is
such that the atmosphere is obscured but no distinct cloud
base can be determined, as often happens in the case of thick
fog. The remaining artefacts in the example case study oc-
cur when the ceilometer reports a vertical visibility value
(Fig. 3b). When we used the vertical visibility field in ad-
dition to the first cloud base height field to provide the CBH
assumption in the AERIoe retrieval, the remaining artefacts
were removed (Fig. 3c).

Even if the fog is reducing visibility at the surface, the
cloud base height is the height at which the fog becomes
optically thick to the PAERI, which is similar to when it
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Figure 3. Temperature profiles during the 5 September case study from three iterations of the AERIoe retrieval using different CBH assump-
tions. The ceilometer first cloud base height field is overlaid as cyan crosses, and the vertical visibility field is overlaid as black circles. (a)
Assumed CBH was 5 m a.g.l. any time LWP> 0; (b) assumed CBH was set to the ceilometer first cloud base height if the ceilometer detected
a cloud within the 10 min centred on the retrieval time, otherwise 5 m a.g.l.; (c) as in (b) except if the ceilometer reported “obscured” the
CBH was set equal to the ceilometer maximum vertical visibility field.

becomes optically thick for the ceilometer (which uses ra-
diation in the near-infrared, 905 nm). Figure 3 shows that a
difference in CBH of just 30 m can make a significant dif-
ference to the retrieval when the cloud is close to the sur-
face, demonstrating that accurate CBH measurements are a
necessary input to the AERIoe for retrieving thermodynamic
profiles in the presence of fog or near-surface clouds. In con-
trast, the MWRoe was not sensitive to the CBH assumption,
because clouds are markedly more transparent at microwave
frequencies. For the remainder of this study, all retrieval con-
figurations derive CBH from both the first cloud base height
and the vertical visibility field of the ceilometer.

3.2 Performance of retrieved thermodynamic profiles
in the lowest 1 km a.g.l.

The AERIoe temperature profiles (0–1 km a.g.l.) compared
extremely well to the 14 radiosonde profiles considered,
with a mean bias of −0.43 ◦C and a mean RMSE of 1.0 ◦C
(Fig. 4a). The MWRoe temperature profiles exhibited a ver-
tically consistent negative bias compared to the radiosonde
profiles, with an average value of −1.5 ◦C and an average
RMSE of 1.7 ◦C (Fig. 4a). Although investigating the source
of the negative bias in the MWRoe temperature profile is out-
side the scope of this study, such systematic biases can often
be corrected for, and the similar spread in bias magnitude
between the AERIoe and the MWRoe temperature retrievals

imply that the performance of the two sets of retrievals would
be similar after an additional bias correction (Fig. 4a). For
both sets of retrievals, the temperature RMSE is largest in
the lowest 50 m a.g.l., where it approaches 2.0 ◦C (Fig. 4a);
this is also the case for the MWRoe-sfc, which looks quali-
tatively similar (not shown).

For water vapour, the performance of the AERIoe and
MWRoe retrievals compared to the radiosonde profiles was
very similar (Fig. 4b). Neither set of retrievals exhibited a
mean bias, and the RMSE of the AERIoe retrievals was
slightly smaller than the MWRoe up to 800 m a.g.l., with a
mean value of 0.39 g kg−1 (compared to 0.44 g kg−1 for the
MWRoe).

Figure 4c and d show that both sets of temperature pro-
file retrievals are better correlated with the radiosonde pro-
files (r > 0.98, Fig. 4c,) than the water vapour profile re-
trievals, which in some cases have correlation coefficients
< 0.7 (Fig. 4d), and the spread in the standard deviation ra-
tio is much smaller for the temperature retrievals (0.9–1.2)
than for the water vapour profile retrievals (0.6–1.3). The
AERIoe retrievals (for both temperature and water vapour)
have a similar spread in correlation coefficients and standard
deviation ratios than the MWRoe retrievals, indicating that
the performance of the two retrievals was comparable across
this subset of profiles.
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Figure 4. Comparison between retrieved thermodynamic profiles and the 14 coincident radiosonde profiles in the lowest 1 km a.g.l. (a) The
temperature and (b) and water vapour bias (retrieval – radiosonde) for AERIoe retrievals (red) and MWRoe retrievals (blue); the solid line
shows the mean bias and the shaded represents the range. Dashed lines show the root-mean-squared error (RMSE). (c) The temperature and
(d) water-vapour-modified Taylor plots showing the relationship between the correlation coefficient and standard deviation ratio for each
retrieval/radiosonde pair ([1,1] represents a perfect score) for the AERIoe retrievals (red) and the MWRoe retrievals (blue).

3.3 Characterisation of shallow surface-based
inversions

The AERIoe temperature retrievals at 0 and 10 m a.g.l.
are equally well correlated with observations (r = 0.99,
RMSE= 1.1 ◦C), indicating that the AERIoe captures ver-
tical temperature gradients in the lowest 10 m of the atmo-
sphere well and retrieves surface temperatures with consis-
tently high accuracy (Fig. 5). In comparison, the MWRoe re-
trievals perform worse than the AERIoe at both heights, with
r = 0.86, RMSE= 4.2 ◦C at 0 m, and r = 0.95, RMSE=
2.1 ◦C at 10 m (Fig. 5). Notably, the performance of the
MWRoe is worst at 0 m, where the MWRoe typically has
a warm bias at colder temperatures (72 % of the time when
T <−7 ◦C) and a cold bias at warmer temperatures (93 % of
the time when T >−7 ◦C). This bias reduced at 10 m, imply-
ing that the temperature lapse rate between 0 and 10 m a.g.l.
is often incorrect in the MWRoe retrieval (Fig. 5).

For the MWRoe-sfc, which includes the surface tempera-
ture as an additional constraint in the retrieval, the correla-
tion with in-situ surface temperature measurement is perfect,
suggesting that very little additional variability is introduced
by the microwave radiance measurements. Despite this, the
10 m temperature retrievals from the MWRoe-sfc perform
only marginally better than those of the MWRoe compared
to the in-situ measurements and not as well as the AERIoe,
which did not have the advantage of the extra information
from the in-situ surface temperature probe (Fig. 5). This sug-
gests that constraining the retrieval by the in-situ surface tem-

perature does not translate to improvements in the tempera-
ture profile retrieval above that level.

Figure 6a confirms that the MWRoe is not able to cap-
ture the 0–10 m temperature lapse rate by demonstrating
that there is no correlation between the measured surface-
inversion strength (10–0 m T) and that retrieved by the
MWRoe. In fact, the 10–0 m lapse rate is essentially con-
stant in the MWRoe, implying that retrieved temperatures at
0 and 10 m are highly correlated. In contrast, the AERIoe
surface-inversion strength is well correlated with in-situ mea-
surements (r = 0.80) with an RMSE of 1.9 ◦C (Fig. 6a),
demonstrating that the AERIoe can accurately retrieve shal-
low surface temperature inversions with lapse rates of up to
−1.2 ◦C m−1. When the in-situ surface temperatures are used
to constrain the MWR retrieval (in the MWRoe-sfc), the abil-
ity of the retrieval to capture the shallow temperature inver-
sions is considerably improved (Fig. 6a). Note that the cor-
relation between the MWRoe-sfc near-surface temperature
inversion and the in-situ measurements in Fig. 6a is not a fair
assessment of performance, since the retrieval results are not
independent from the in-situ measurements. Nonetheless, it
highlights the importance of using accurate surface tempera-
ture measurements to constrain MWR temperature retrievals.

The radiosonde profiles provide an alternative independent
measure of surface-inversion strength, allowing the compar-
ison of the ability of each retrieval configuration to cap-
ture surface temperature inversions over a deeper layer. Fig-
ure 6b compares the 100–10 m retrieved inversion strength
with that measured by the 14 coincident radiosonde profiles.
Over this depth, the RMSE of the AERIoe and the MWRoe-
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Figure 5. Retrieved temperature versus in-situ measurements from the tower at the surface (a) and 10 m (b). The MWRoe retrievals are
plotted as pale blue circles, the AERIoe retrievals as red crosses, and the MWRoe retrievals that are constrained by the surface temperature
(MWRoe-sfc) are dark blue circles. The Pearson’s correlation coefficient (r) and root-mean-squared error (RMSE) between each set of
retrievals and the tower measurements are included on the figure. All correlations are significant at the 99 % confidence level. The dashed
grey line represents perfect agreement.

sfc are comparable to the values for the 10–0 m comparison
(1.65 and 1.83 ◦C m−1 respectively), but the MWRoe RMSE
remains much larger (2.22 ◦C m−1), demonstrating that the
MWRoe alone is not capable of accurate retrievals of sur-
face temperature inversions even in this deeper layer. Only
the AERIoe retrievals in this case are significantly correlated
(r = 0.46) with the radiosonde measurements, although the
small number of radiosondes available for comparison makes
it difficult to draw robust conclusions from this result. Klein
et al. (2015) compared AERI-derived lapse rate 100–10 m
against more than 200 radiosondes in Oklahoma (southern
US) and found very good agreement with r2 values > 0.93.

The reason that the AERIoe can accurately retrieve shal-
low surface-based temperature inversions but the MWRoe
cannot is because the AERI infrared radiance measurements
theoretically contain much more information about the near-
surface temperature profile than the MWR brightness tem-
peratures (Blumberg et al., 2015). Figure 7 supports this by
illustrating that the degrees of freedom for signal for temper-
ature from the AERIoe retrievals is greater than that from the
MWRoe retrievals, especially at the surface. The degrees of
freedom for signal is a measure of the number of indepen-
dent pieces of information from the observation vector that
the retrieval used to generate the solution (Rodgers, 2000).
Figure 7 shows that the AERIoe has around 6 times as much
information about the surface temperature than the MWRoe
and twice as much at 10 m. The mean degrees of freedom for
signal for the surface temperature retrieval is over 4 times
higher for the MWRoe-sfc compared to the MWRoe due
to the additional information about the surface temperature
in the observation vector. However, above the surface, the
AERIoe still contains more information about the temper-
ature profile than the MWRoe-sfc in the lowest 500 m of

the boundary layer, the region in which accurate tempera-
ture profiles in NWP models are critical for successful fog
forecasts (Martinet et al., 2020).

3.4 LWP retrievals and the detection of fog onset

The LWP retrievals from the AERIoe and MWRoe were well
correlated (r = 0.88) and fell within ±5 g m−2 of each other
in ∼ 90 % of all retrievals; however, on occasion, there were
discrepancies of up to 10 g m−2 (Fig. 8), which can be equiv-
alent to significant differences in horizontal visibility and net
surface radiative forcing (see example in Sect. 1).

Although we do not have an independent measure of the
“true” LWP, Fig. 9 illustrates the difference in the sensitiv-
ity of the MWRoe and the AERIoe to LWP as a function
of LWP magnitude. The PAERI radiance observations are
very sensitive to changes in LWP when the LWP is small,
and so the 1σ uncertainty in the retrieved LWP from the
AERIoe is less than 1 g m−2 for LWP< 20 g m−2 (or less
than 10 %, Fig. 9). In contrast, the uncertainties in LWP de-
rived from MWR brightness temperatures are related to ab-
solute radiometric uncertainties that are approximately con-
stant with respect to LWP, equating to at least 50 % uncer-
tainty for LWP< 10 g m−2 (Fig. 9). However, as the LWP
approaches opacity in the infrared (> 40 g m−2), the sensi-
tivity of the PAERI radiance observations to changes in LWP
decreases until the uncertainties in the LWP retrievals from
the AERIoe become equivalent to those from the MWRoe
(∼ 3 g m−2 or ∼ 6 % uncertainty at 50 g m−2).

The high sensitivity of the AERIoe to changes in LWP
when LWP is small means that the increase in LWP as-
sociated with the development of radiation fog under clear
skies is detected earlier in the AERIoe retrievals compared
to the MWRoe retrievals (following our fog definition as the
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Figure 6. (a) Inversion strength (10–0 m temperature, T ) retrieved from the AERIoe (red), the MWRoe (light blue), and the MWRoe-sfc (dark
blue) versus observations from the tower-mounted HMP155 probes. (b) The same as (a) except for the 100–10 m inversion strength compared
to observations from 14 coincident radiosonde profiles. On both subplots, the diagonal grey dashed line represents perfect agreement, and the
horizontal and vertical dashed black lines at 0 ◦C delineate when a surface-based temperature inversion is present (right quadrants) versus
absent (left quadrants). The root-mean-squared error (RMSE) values are included on the plots, and the Pearson’s correlation coefficients (r)
are only included when they are significant at the 90 % confidence level.

Figure 7. Mean degrees of freedom for signal across all temperature
retrievals from the MWRoe (pale blue), the AERIoe (red), and the
MWRoe constrained by the in-situ surface temperature measure-
ment, MWRoe-sfc (dark blue).

presence of near-surface liquid water that has a detectable
radiative impact). The increased sensitivity of the infrared
over the microwave to small LWP values was described in
(Turner, 2007). This is illustrated in Fig. 10, which shows
the development of LWP during the 15 July 2019 case study.
Shortly after 23 h on 15 July, the AERIoe detected a signif-
icant LWP that continued to increase gradually at a rate of
∼ 1.4 g m−2 h−1, until 02:00 h on 16 July, after which it in-
creased rapidly to ∼ 30 g m−2 at 03:00 h (Fig. 10). In con-
trast, due to the larger uncertainties in the MWRoe LWP re-

Figure 8. The differences in retrieved liquid water path (LWP) be-
tween all AERIoe and the MWRoe retrievals (LWP> 0.1 g m−2).
A total of 50 % of all retrievals fall within the central box, 90% of
all retrievals fall within the box plot “whiskers”, and the remaining
data are plotted as outliers (circles).

trieval, the MWRoe LWP did not increase to a value that was
significantly different from the noise until the onset of the
rapid LWP increase just after 02:00 h.

For independent verification, we also determine fog onset
from the ceilometer range-corrected attenuated backscatter.
We define the ceilometer fog onset as being where the 5 min
mean total backscatter increases by more than 3 standard de-
viations from the mean clear-sky backscatter at Summit be-
tween 1 June and 30 September 2019 (the mean clear-sky
backscatter is determined using the same subset of verified
clear-sky hours used to identify fog events from the AERI
radiance, Sect. 2.2). Ceilometer attenuated backscatter is sen-
sitive to the scattering cross section of molecules and parti-
cles in the atmosphere and can be sensitive to the presence
of atmospheric aerosols (e.g. Markowicz et al., 2008) and
to the hygroscopic growth of aerosols prior to their activa-
tion into fog droplets (Haeffelin et al., 2016), the latter of
which can be a precursor to radiation fog formation (Haeffe-
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Figure 9. 1σ uncertainty in the AERIoe (red) and MWRoe (blue)
liquid water path (LWP) retrievals as a function of LWP. (a) Shows
the absolute uncertainties, and (b) shows the percentage uncertain-
ties. The solid line is the median of all retrievals and shading is the
interquartile range.

lin et al., 2016). At Summit, the aerosol scattering cross sec-
tion is usually extremely small (< 2× 10−6 m−1 at 550 nm,
Schmeisser et al., 2018), and any signal due to the presence
of aerosols is incorporated into the calculation into the mean
clear-sky backscatter. We do not distinguish between the de-
tection of aerosol hygroscopic growth and droplet formation
in the ceilometer backscatter.

For the 15 July 2019 case, the ceilometer detected fog on-
set shortly before 00:00 on 16 July, 40 min after the AERIoe
(Fig. 10b). Despite the relatively low LWP, the visibility at
00:00 h was only 400 m, and the observer reported freezing
fog, indicating that this signal was indeed due to the presence
of liquid droplets. In this case, if the MWRoe LWP retrieval
was used to detect fog or for visibility nowcasting, the fog at
00:00 h on 16 July would not have been detected, whereas if
the AERIoe LWP retrieval was used instead, it would have
been.

The ceilometer detects fog (or aerosol hygroscopic
growth) for all cases, with the exception of case 7 (4 August).
During this case, the fog was extremely thin (maximum LWP
from the AERI only 2 g m−2), but the onsite observer logged
the presence of a fog bow between 07:15 and 08:30, demon-
strating that liquid water droplets were indeed present. This
was a very marginal case that demonstrates the ability of the
AERI to detect very small amounts of liquid water when
even the ceilometer cannot. The MWRoe retrieval only de-
tects fog for 6/12 cases (Fig. 11), and for those 6 cases, the
AERIoe retrieval consistently detects the onset of fog (via
the increase in LWP) before the MWRoe retrieval by 25 to
185 min (Fig. 11). For the 6 cases where the MWRoe does
not detect the fog, the mean LWP detected by the AERIoe is
very low (1.4 to 3.1 g m−2).

4 Discussion

Central Greenland provides an excellent opportunity to study
climatologically relevant radiation fog due to the pristine en-
vironment, commonality of events, and presence of the ICE-
CAPS’s long-term, multi-instrument platform. Nonetheless,
it is a unique environment, and therefore the applicability of
the results of this study in other environments is not guaran-
teed. Comparing retrievals between locations is complicated
by the dependence on the quality of different prior datasets
and instrument calibrations. However, in general, the perfor-
mance of the MWRoe and AERIoe thermodynamic profile
retrievals in the lowest 1 km a.g.l. are comparable to the per-
formance assessed in a similar way against 127 radiosonde
profiles in southwestern Germany (Blumberg et al., 2015).
Blumberg et al. (2015) found the mean RMSE in the tem-
perature profiles (lowest 1 km a.g.l.) to be ∼ 0.9 ◦C for the
AERIoe and ∼ 1.1 ◦C for the MWRoe (compared to 1.0 and
1.6 ◦C in this study); for water vapour profiles, an RMSE of
0.7 g kg−1 for the AERIoe and 1.0 g kg−1 for the MWRoe
was found (compared to 0.38 and 0.43 g kg−1 in this study).
Nevertheless, under certain conditions, we might expect the
performance of the AERIoe to deteriorate. For example, in
environments where the total column water vapour is very
high (e.g. tropical regions), the atmosphere will have a higher
opacity in the infrared and the AERI sensitivity will be re-
duced (Löhnert et al., 2009). Additionally, the high sensitiv-
ity of the AERI, which makes it so suited to the study of
fog, also makes it sensitive to localised plumes of pollution
or smoke and, in some cases, to atmospheric aerosols (e.g.
Turner and Eloranta, 2008). Both sets of retrievals are also
sensitive to the quality of the prior that is used to constrain
the retrieval and provide a first guess (Turner and Löhnert,
2014) and to the calibration and characterisation of the par-
ticular instrument, which is typically more challenging for
the MWR (see Appendix A, Blumberg et al., 2015, and Löh-
nert and Maier, 2012). All of these factors may impact per-
formance at different locations and should be considered dur-
ing experimental design. Note that neither instrument oper-
ates effectively in rain.

The radiation fog case studies presented in this study are
all composed of supercooled water droplets, with some oc-
curring at surface temperatures as low as −28 ◦C (Table 3).
Supercooled fogs at such cold temperatures are common at
Summit, whereas ice fogs during the summer are rare (Cox
et al., 2019). Observations of “fog bows” – atmospheric op-
tics associated with the scattering of light by liquid water
droplets – during most case studies confirm the presence of
liquid water, as does the fact that the fogs are also detected
by the ceilometer, which is not very sensitive to ice crystals
(Van Tricht et al., 2014). However, the possibility exists that
some (or even all) of these case studies contain ice crystals in
addition to liquid water droplets. The scattering and absorp-
tion properties of ice crystals can be quite different to those
of water droplets at wavelengths that are relevant for the
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Figure 10. (a) The evolution of fog liquid water path (LWP) during the 15 July 2019 case study retrieved from the AERIoe (red) and the
MWRoe (blue). Error bars show the 2σ uncertainty of the retrievals. The vertical red line shows the fog onset determined from the AERIoe
retrievals, and the vertical blue line shows the fog onset determined by the MWRoe retrievals 3 h later. (b) Total range-corrected attenuated
backscatter (5 min mean, green line) and vertical visibility (black points) from the ceilometer. Orange points indicate when the ceilometer
reports obscured.

Figure 11. Time between fog onset detection from the AERIoe (ver-
tical red line, t = 0) and fog onset detection from the MWRoe (up-
per) and ceilometer (lower). Only cases where both methods de-
tected fog are included (6/12 for the MWRoe and 11/12 for the
ceilometer). The whiskers capture all data points; the box shows
the interquartile range.

AERIoe (e.g. Turner, 2005, Rowe et al., 2013), potentially
resulting in biases in the AERIoe LWP retrievals that as-
sume a liquid-only cloud. The lack of an independent “truth”
value for LWP means that we cannot quantify any such bi-
ases. Nevertheless, the smaller uncertainties in the AERIoe
LWP retrieval relative to the MWRoe LWP retrieval are re-
lated to the physical sensitivity of the measurement, and so
we can expect this result to be consistent across other cases
of warm fog.

This study focuses on cases of thin radiative fog (LWP<
40 g m−2), which is the most common type of fog at Sum-
mit, and draws attention to the benefits of the AERI, which
is particularly sensitive to the small changes in LWP and
strong shallow temperature inversions that are characteristic
of these events. For other types of fog, onset might not be
initiated by a small increase in LWP; for example, in stratus-
lowering events, the reduction in cloud base height from the
ceilometer might be a better indicator of fog onset. At other
locations (in the mid-latitudes, for example), thicker fogs
with LWP> 50 g m−2 are more common and can be 100’s
of metres deep (Toledo et al., 2021). Although the AERI
might still be a useful instrument for the early detection of
such events, once the fog becomes optically thick in the in-
frared, the AERI can no longer provide information about the
thermodynamic profile above the fog or the trend in LWP,
both of which are useful parameters for understanding the
development of deep well-mixed fog (Toledo et al., 2021). In
such cases, thermodynamic profile and LWP retrievals from
the MWR are valuable. The TROPoe algorithm can com-
bine both AERI and MWR measurements in the same re-
trieval. Below-cloud thermodynamic profiles from the com-
bined MWR+AERI are essentially the same as retrievals
based on AERI measurements alone (Turner and Lohnert,
2021), but the uncertainty in the LWP retrieval when both
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instruments are combined is < 20 % across the entire range
in LWP from 1 to < 500 g m−2 (Turner, 2007).

Although this study focuses on the passive remote sens-
ing instruments that are essential for fog detection (since
the active remote sensing instruments have a blind spot im-
mediately above the surface), complementary information
from active remote sensing instruments are also necessary
for accurate results. We demonstrate in Sect. 3.1 that accu-
rate cloud base height detection (from the ceilometer) is an
important input for the AERIoe retrievals, and the radar is
also required to filter out precipitation events than can in-
validate retrievals from both the MWR and the AERI. Over-
all, this study highlights the importance of instrument syn-
ergy to provide optimal thermodynamic profiles and LWP
retrievals, supporting the findings of previous studies (Turner
et al., 2007; Löhnert et al., 2009; Turner and Lohnert, 2021;
Smith et al., 2021; Djalalova et al., 2022) and expanding on
this conclusion to include the specific conditions pertaining
to the development of radiation fog.

5 Summary and conclusions

Previous studies have demonstrated that AERI measure-
ments of spectral infrared radiance are more sensitive to the
structure of the near-surface temperature profile and to small
changes in liquid water path (LWP) than MWR measure-
ments of microwave brightness temperatures (Turner, 2007;
Löhnert et al., 2009; Blumberg et al., 2015). The purpose
of this study was to compare retrievals of boundary layer
thermodynamic profiles and LWP from these two instrument
types during cases of thin supercooled radiation fog in cen-
tral Greenland using a consistent physical retrieval algorithm
(the AERIoe retrieval based on observations of infrared ra-
diance and the MWRoe based on microwave brightness tem-
peratures). We assess the performance of the two retrievals
against three criteria that are critically important for the fore-
cast and detection of radiation fog:

1. ability to retrieve accurate thermodynamic profiles in
the lowest 1 km a.g.l. of the atmosphere

2. ability to capture the strength and development of shal-
low surface-based temperature inversions that typically
portend the formation of radiation fog

3. ability to detect the initial increase in LWP that signifies
the onset of fog and a reduction in horizontal visibility.

Although there are only 14 coincident radiosonde pro-
files available for comparison, the bias and RMSE statistics
of the temperature and water vapour profiles in the lowest
1 km a.g.l. are consistent with the findings of Löhnert et al.
(2009) and Blumberg et al. (2015), suggesting that the per-
formance of both sets of retrievals in the Arctic and under
conditions for the formation of supercooled fog are simi-
lar to the performance in the mid-latitudes and under other

sky conditions (clear skies or below clouds with bases above
500 m a.g.l.). We find that the water vapour profile retrievals
in the lowest 1 km a.g.l. are comparable for both the MWRoe
and the AERIoe, with RMSE of 0.44 g kg−1 for the MWRoe
and 0.39 g kg−1 for the AERIoe. The AERIoe temperature
profile retrievals perform better in terms of bias and RMSE
than the MWRoe for the 14 cases considered (MWRoe bias:
−1.5 ◦C, RMSE: 1.7 ◦C; AERIoe bias: −0.43 ◦C, RMSE:
1.0 ◦C); however, the consistency of the negative tempera-
ture bias in the MWRoe suggests that an additional bias cor-
rection may be possible, which would result in comparable
performance between the two sets of retrievals.

A unique aspect of this study was the assessment of the
ability of the two retrieval types to characterise shallow
(0–10 m a.g.l.) surface-based temperature inversions. Despite
the similar performance of the temperature profile retrievals
up to 1 km a.g.l. in general, the ability of the two retrieval
types to characterise the 0–10 m temperature lapse rate was
markedly different. The AERIoe 0–10 m temperature differ-
ences were well correlated with in-situ observations, captur-
ing surface temperature inversions well up to a lapse rate of
−1.2 ◦C m−1 (previous studies have demonstrated the ability
of the AERIoe to characterise near-surface lapse rates well
for values of−0.01 to 0.01 ◦C m−1, Klein et al., 2015). How-
ever, the MWRoe 0–10 m temperature differences were not
correlated with observations and did not deviate more than
1 ◦C from the prior. The reason for this difference is that the
infrared radiance measurements from the AERI contain more
information about the temperature near the surface than the
MWR measurements. This highlights the importance of us-
ing accurate surface temperature measurements to constrain
MWR thermodynamic profile retrievals.

In addition to increased sensitivity to shallow surface tem-
perature inversions, the AERI is much more sensitive to
small changes in LWP, with the result that the uncertainties in
retrieved LWP from the AERIoe are much smaller than those
retrieved from the MWRoe for LWP< 50 g m−2. This means
that the AERIoe is consistently able to detect small changes
in LWP, which might initiate radiation fog and reduce hori-
zontal visibility, by up to 185 min before the MWRoe. This
has important implications for fog detection and visibility
nowcasting, because even a very small LWP (< 5 g m−2) can
reduce horizontal visibility, and the MWRoe alone would not
have detected fog on some occasions when reported visibility
was as low as 400 m.

Based on these results, we hypothesise that the assimila-
tion of near-surface temperature profile retrievals from an
AERI into NWP models could improve fog forecasts beyond
the improvements already seen through the assimilation of
MWR measurements (Martinet et al., 2020). In addition, the
increased sensitivity of the AERI to small changes in LWP
(compared to the MWR) will allow the AERI to detect the
onset of radiation fog events earlier, with the potential to in-
crease the skill of fog nowcasting products and improve cli-
matological analyses of fog radiative effects.
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Although this study demonstrates that the AERI is partic-
ularly well suited to retrieving boundary layer properties that
are key for radiation fog formation, there are trade-offs that
must be considered when selecting instruments for opera-
tional use, notably that the AERI is unable to retrieve thermo-
dynamic profiles above optically thick clouds/fog (LWP>
40 g m−2), and that the AERIoe retrieval is particularly sen-
sitive to the CBH assumption during fog/low cloud. This
highlights the importance of a multi-instrument approach to
improve fog forecasting under all sky conditions: ceilome-
ter cloud base heights are necessary to generate accurate
thermodynamic profile retrievals from the AERI; MWRs are
needed to retrieve LWP and thermodynamic profiles above
optically thick fog/clouds, and radar data is required to de-
termine the presence of precipitation, which can invalidate
retrievals from both passive instruments.

The results of this study present a case for future
observing-system experiments (or observing-system simu-
lation experiments, as in Otkin et al., 2011; Hartung et al.,
2011) to quantify the impact of the operational use of AERI
observations in terms of improvements to NWP skill, partic-
ularly in the case of radiation fog.

Data availability. ICECAPS data are available
from the Arctic Data Center: HATPRO MWR
(https://doi.org/10.18739/A2TX3568P, Turner and Ben-
nartz, 2020), MMCR (https://doi.org/10.18739/A2Q52FD4V,
Shupe, 2020a), POSS (https://doi.org/10.18739/A2GQ6R30G,
Shupe, 2020b), and radiosonde profiles
(https://doi.org/10.18739/A20P0WR53, Von P. Walden
and Shupe, 2020). PAERI data and retrieval output from
the TROPoe are in the process of being submitted to
the Arctic Data Center (https://doi.org/10.5439/1880028).
ICECAPS-ACE HMP155 temperature/humidity sensor
data can be accessed through the CEDA archive at http:
//catalogue.ceda.ac.uk/uuid/f06c6aa727404ca788ee3dd0515ea61a
(last access: 5 July 2021).

Appendix A: MWR Tb bias correction

An external liquid nitrogen target is used to determine the ef-
fective temperature of the MWR internal noise diode, which
is required to convert the observed signal into brightness tem-
perature (Tb) values, as described in Sect. 2.1.2. Due to the
personnel and resource requirements, this calibration is only
performed twice a year at Summit. Imperfect calibrations
can result in a radiometric bias in the Tb measurements, and
drift in the effective temperature of the internal noise diode
can occur in between calibrations (Löhnert and Maier, 2012;
Blumberg et al., 2015).

To determine this radiometric bias in the observed Tb val-
ues, the twice-daily radiosondes launched at Summit be-
tween 1 June and 31 August 2019 were used as input in
the MonoRTM, and the bias between the observed and com-

Figure A1. The Tb bias offset for the cases used in this analysis. The
inset plot shows the temporal variability of the 51.26 (filled circles)
and 52.28 (open squares) GHz channels for these cases, where the
colours indicate the date (MMDD) of the case.

puted Tb values was determined. The evolution of the bias
over time is well illustrated by showing the bias values for
the cases used in this analysis (Fig. A1). The bias in the K-
band channels remained very small (absolute value less than
0.5 K), confirming that the automated tip-curve calibration
method applied to those transparent channels was working
well. However, there is a significant negative bias (calcula-
tion larger than the observed radiance) in the 51 to 54 GHz
channels, and this bias changes with time. However, the bias
in the 51.26 and 52.28 GHz channels is variable with time
with no apparent pattern (inset in Fig. A1). Fortunately, the
Tb bias in the 55 to 58 GHz channels is stable with time, and
the magnitude is relatively small (less than 0.7 K for those
channels).

Note that we do not consider or correct for possible spec-
tral biases in the MWR frequencies channels (Löhnert and
Maier, 2012). It is possible that the large Tb biases in the
51.26, 52.28, and 53.86 GHz channels are a combination of
both spectral and radiometric biases. It is important to note
that the biases in those channels might not be entirely due
to the calibration accuracy of the microwave radiometer; the
bias could also be explained by systematic errors in the ra-
diative transfer model used, as the various uncertainties of
the absorption line properties at those frequencies results in
large model uncertainty (Cimini et al., 2018).

Figure A2 illustrates the difference between the MWRoe-
retrieved thermodynamic profile compared to the radioson-
des during the radiation fog case studies with and without
the mean radiosonde-derived bias correction applied. The
application of the bias correction reduces the mean bias in
the water vapour profile from 0.14 to 0.01 g kg−1 and the
mean RMSE from 0.47 to 0.43 g kg−1. However, the bias
correction has little effect on the temperature profiles. The
reason for the consistent small negative temperature bias in
the MWRoe both with (mean −1.45 ◦C) and without (mean
−1.26 ◦C) the bias correction is currently unknown, espe-
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Figure A2. As Fig. 4 but comparing the performance of the final MWRoe retrieval (blue) with that of the MWRoe retrieval without the
additional Tb bias correction applied (orange). The solid line shows the mean bias and the shaded represents the range. Dashed lines show
the root-mean-squared error (RMSE).

cially since the mean Tb bias in the high-frequency end of
the V-band is very close to zero.

The reduction in the bias and RMSE of the MWRoe-
retrieved water vapour profile compared to the radiosondes
demonstrates that the application of the additional Tb bias
correction is essential for making accurate MWR thermo-
dynamic profile retrievals. Currently, the only way of per-
forming this bias correction is by using an alternative “truth”
profile (in this case, radiosonde profiles); this is a significant
disadvantage of the MWR, since radiosondes are spatially
sparse, resource intensive, and expensive. However, a method
using only the climatology data, as encapsulated in the a pri-
ori data, has been proposed by Djalalova et al. (2022); this
new method helps to account for some of the spectral arte-
facts in the bias but needs additional research to help char-
acterise any systematic error that might be introduced by the
method.
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