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Chemical precipitation is one of the most widely knownmethods for treatment

of industrial wastewaters with high sulphate content, where sulphate can be

precipitated as practically insoluble ettringite (Ca6Al2(SO4)3(OH)12·26H2O). This

treatment method is also widely recognised for solidifying hazardous

components and toxic elements e.g. arsenic in wastewater. In the ettringite

precipitation process, lime and aluminium salts are typically used as starting

materials, in stoichiometric amounts to form ettringite from the sulphate-

containing water, leading to a pH rise to ~11.5 and ettringite precipitation. In

the current study, for the first time, ye’elimite mineral (Ca4Al6O12SO4), also

known as calcium sulfoaluminate (CSA) in cements, is used in order to

investigate its suitability to form ettringite precipitate from sulphate and

arsenic containing synthetic wastewater and industrial wastewater solutions.

The dissolution of ye’elimite prior to dosing, optimal precipitation pH, and

arsenic co-precipitation were studied. The effluent and precipitates were

characterized using X-ray diffraction (XRD), field emission scanning electron

microscopy (FESEM-EDS) and inductively coupled plasma atomic emission

spectroscopy (ICP-OES). The results showed that high percentage of

sulphate removal (98% in the synthetic wastewater and 87% in the industrial

wastewater) can be achieved using ye’elimite as the aluminium source in

ettringite precipitation. Additionally, up to 95% arsenic removal was achieved

in arsenic co-precipitation experiments from the synthetic wastewater. The

current developed technology can be used as a novel ecological and cost-

effective approach for removal of sulphate and toxic elements from

wastewater.
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1 Introduction

Sulphate is a common major anion in industrial wastewaters

formed in many industries, such as mining, metal, and pulp

manufacturing (Jin et al., 2020). Sulphate anion (SO2−
4 ) is not

considered to be toxic; however, high sulphate content in

discharge water can result in an increase in the salinity of

receiving water, e.g., lake (Nariyan et al., 2018). The high
concentration of sulphate in discharge water can also

influence the permanent stratification of the receiving lake,

hence disturbing nutrient and oxygen cycles (Boehrer and
Schultze, 2008). Therefore, the industrial wastewater with high

sulphate content are required to be treated prior to being

discharged into the environment. Sulphate content limits for
discharge water typically range between 250 and 1,000 mgL−1

SO4
2− (Runtti et al., 2018). Residual sulphate concentration below

these limits can be achieved using ettringite precipitation, due to
the low solubility of ettringite. During the ettringite precipitation

process, calcium hydroxide (also known as hydrated lime) and

aluminium reagents, such as sodium aluminate are added to the
sulphate containing water, leading to a pH rise to 10.5–13, and,

hence precipitation of ettringite (Reinsel, 1999; Tolonen et al.,
2016; Segundo et al., 2019). Additionally, ettringite is widely

recognised to stabilise hazardous components and toxic

elements, including heavy metals and borate ion (Arliguie and
Grandet, 1990; Olmo et al., 2001; Weeks et al., 2008; Coumes

et al., 2009; Coumes et al., 2017).

The crystalline structure of ettringite
(Ca6Al2(SO4)3(OH)12 · 26H2O) consists of

(Ca6[Al(OH)6]2 · 24H2O)
6+ layers, where channels between

these layers are occupied by SO2−
4 anions and water (H2O)

molecules (Myneni et al., 1998). Ettringite can bind oxyanions

by mechanisms of interaction with the surface functional groups

by ligand exchange or by substitution of sulphate anions in
ettringite channels (Zhang and Reardon, 2003). The oxyanion

binding properties of ettringite can be utilized for removal of

arsenic and other impurities from water. Arsenic exists typically
as oxyanion arsenate (AsO3−

4 ) in alkaline conditions (Myneni

et al., 1997; Zhang and Reardon, 2003). Arsenate anions are

repelled by the negatively charged ettringite anions, while they
are attracted to the positively charged

(Ca6[Al(OH)6]2 · 24H2O)
6+ layers. Therefore, the surface

charge and structure of ettringite indicate that substitution
can be the main driving mechanism (Zhang and Reardon, 2003).

The typically used aluminium reagents, such as sodium

aluminate are costly (Sapsford and Tufvesson, 2017; Tian
et al., 2019). The choice of aluminium reagent has high

impact on operational cost of the ettringite precipitation

method. Alternatively, industrial by-products can be utilised
as aluminium reagents during ettringite precipitation process,

offering ecological benefits and lower costs (Álvarez-Ayuso and

Nugteren, 2005). A cost effective sulphate removal process using
an aluminium-based proprietary reagent has also been suggested

in the literature (Reinsel, 1999). The selection of aluminium

reagent influences the efficiency of sulphate removal, as well as
sludge density and sludge settling velocity (Sapsford and

Tufvesson, 2017).

Ettringite can also be produced using ye’elimite
(Ca4Al6O12SO4), the representative hydraulic phase in calcium

sulfoaluminate (CSA) cements (Haha et al., 2019). CSA-based

clinker can be produced using industrial by-products and are
intensively promoted as eco-friendly alternatives to Portland

cement (PC), due to their potential to reduce carbon dioxide

(CO2) emissions and energy consumption up to 35% and 15%,
respectively, compared to that of PC (Hanein et al., 2018; Haha

et al., 2019). CSA cements are currently being developed for

waste management solutions and applications. Additionally, the
hydrated CSA cement matrix encapsulates toxic elements and

heavy metals, which can be chemically bound and immobilized

in ettringite and monosulfate phases (Albino et al., 1996; Berardi
et al., 1998; Ambroise and Pera, 2004; Peysson et al., 2005; Luz

et al., 2006; Zhou et al., 2006; Luz et al., 2007; Qian et al., 2008;

Berger et al., 2009; Luz et al., 2009; Winnefeld and Lothenbach,
2010; Berger et al., 2011; Sun et al., 2011; Wu et al., 2011;

Champenois et al., 2012; Mesbah et al., 2012; Champenois
et al., 2015; Beltagui et al., 2017; Coumes et al., 2017).

Upon hydration, ye’elimite forms the main hydrates in CSA-

based cement systems, including highly crystalline ettringite and
partially disordered monosulfate, as well as amorphous

aluminium hydroxide (Glasser and Zhang, 2001; Hargis et al.,

2014). Hence, ettringite is formed in the presence of calcium,
sulphate, and hydroxide in the aqueous solution (Fridrichová

et al., 2016):

Ca4Al6O12SO4(s) + 8CaSO4(aq) + 6Ca(OH)2(aq)

+ 90H2O(l) → 3Ca6Al2(SO4)3(OH)12 · 26H2O(s)

In the present work, the suitability of ye’elimite, together with

calcium hydroxide, to form ettringite precipitate from sulphate

and arsenic containing synthetic wastewater and industrial
wastewater solutions is investigated. Calcium hydroxide can

be used unaccompanied to remove sulphate from water;

however, in order to reduce SO2−
4 content within the

acceptable limits of discharge water, the precipitation of

insoluble ettringite is required. Sulphate removal efficiency

and precipitate purity as well as, arsenic co-precipitation
during ettringite precipitation were scrutinised.

2 Materials and methods

2.1 Materials

Sodium sulphate (VWR, 99.9%) and arsenic pentoxide

(VWR, 99.9%) were used for preparation of synthetic
wastewater solutions. Hydrochloric acid (VWR, 37%) and
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calcium hydroxide (VWR, 98%) were used in the ettringite

precipitation experiments. Calcium hydroxide was used at
10 wt% aqueous solution (2.045 g calcium hydroxide in

18 ml deionized water) in this study. 1 or 10 M sodium

hydroxide solutions (Merck), were used in order to adjust
pH of solutions. Aluminium oxide (Alfa Aesar, 99.7%),

calcium sulphate (Alfa Aesar 99%), and calcium oxide (Alfa

Aesar, 99%) were used to synthesize ye’elimite. The chemical
composition of industrial wastewater used in this study is

tabulated in Table 1.

2.2 Sample preparation

Three synthetic wastewater solutions were prepared by

addition of 2.62 g sodium sulphate and a varying amount of

arsenic pentoxide (0, 0.23, and 0.35 g) to 1 L deionized water,
which corresponds to sulphate concentration of 2,000 ppm

(including sulphate from ye’elimite) and arsenic

concentrations of 0, 58, and 100 ppm (mg/L). The synthetic
wastewater solution containing sodium sulphate in absence of

arsenic pentoxide is referred to as “model solution” in this study.

Ye’elimite (250 g) was synthesized from stoichiometric
amounts of aluminium oxide (50.1 wt%), calcium sulphate

(22.3 wt%), and calcium oxide (27.6 wt%) at 1,300°C. The raw
materials were dried at 800°C prior to firing and mixed by hand

in a porcelain mortar for 20 min and added to an alumina

crucible. The crucible was placed in a preheated (600°C)
muffle furnace (Nabertherm Chamber furnace) and heated to

1300°C with the heating rate of 10°C/min, held for 4 h, and then

slowly cooled down to room temperature during 4 h with the
average cooling rate of 300°C/h. Ye’elimite was ground using a

mortar and sieved using an air jet sieve (Alpine e200LS,

Hosokawa Micron, Japan) with particle size of 125 μm. The
purity of synthesized ye’elimite was 91.6% (Cuesta et al.,

2013), containing minor phases of 5.8% krotite (CaAl2O4)

(Hörkner and Müller-Buschbaum, 1976), and 2.6% anhydrite
(CaSO4) (Morikawa et al., 1975), as measured by Rietveld

refinement (see Figure A1).
To achieve maximum sulphate removal efficiency, several

dissolution methods for ye’elimite were tested. These include

dissolving 1.2 g ye’elimite in 1) 11 ml deionized water at 20°C, 2)
11 ml deionized water at 70°C, 3) calcium hydroxide aqueous

solution (2.0 g calcium hydroxide in 18 ml deionized water) at

20°C, and 4) 3 ml hydrochloric acid at 20°C, comprising four
different dissolution methods. Ye’elimite was dissolved for 2 h

using magnetic stirrer (1400 rpm) in each solutions and then was

used as reagent in the ettringite precipitation experiments. Each
of these ye’elimite containing solutions were then added

separately to 800 of mL model solution simultaneously into

four zones (dropwise during 5 min with 400 rpm) using a
programmable paddle stirrer equipment (Kemira, Flocculator

2000).

For ettringite precipitation, the calcium hydroxide mixtures
were added in stoichiometric ratio into the synthetic wastewater

and industrial wastewater solutions (Ca: Al: SO4 � 6: 2: 3).

After addition of calcium hydroxide and ye’elimite, the
pH was adjusted using the sodium hydroxide solutions. The

samples were mixed at 50 rpm for 5 h, followed by overnight

settling. After settling, the sludge volume was estimated and the
precipitates were filtered using 7–12 μm filter paper via vacuum

filtration. The filtered sludge was air-dried, crushed, sieved

(63 μm), and stored in a desiccator. All the precipitation
experiments were done duplicate.

2.3 Analytical techniques

All effluent samples were vacuum filtered through 0.45 μm
cellulose nitrate membrane filters (Sartorius) prior to analysis.

TABLE 1 The chemical composition of industrial wastewater used in this study.

SO4 (g/l) Na (g/L) Ca (g/L) Mg (g/L) Mn (mg/L) Zn (mg/L) Fe (mg/L)

16 1.9 0.53 2.5 260 309 <0.2

FIGURE 1

Percentage of sulphate removal from the synthetic

wastewater using different ye’elimite dissolution methods.
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Aluminium, calcium, and arsenic elements were detected with an
inductively coupled plasma atomic emission spectroscopy (ICP-

OES). Sulphate was measured with an IC (METROHM

761 Compact IC, Herisau) following standard SFS-EN ISO
10304–1. Magnesium was measured using an atomic

absorption spectrophotometer (AAS) (Varian AA240FS) based

on standard SFS 3018. Both IC and AAS measurements were
done triplicate. pH and conductivity of the effluent samples were

measured using a HACH HQ40d portable meter and the

turbidity was measured using an Oakton Portable
Turbidimeter TN-100.

The synthesized ye’elimite was analysed using a SmartLab
9 kW diffractometer (Rigaku) equipped with D/teX Ultra

250 detector. X-ray diffraction (XRD) pattern was

recorded with Co (Kα1 = 1.78892, Kα2 = 1.79278) at
40 kV and 135 mA in a range of 2-theta 5–130° with step

size of 0.02° and scanning speed 4.063°/min. The phase

quantities from XRD patterns were analysed with Rietveld
method using PDXL 2 software (Rigaku, Japan) with PDF-4 +

2020 RDB database.

The dried precipitate samples were analysed with the
PANalytical X’Pert PRO X-ray Diffractometer. The

difractograms were collected using Cu Kα (1.5406 Å) source at

40 mA and 45 kV in the 2 Theta range of 5–70° and with a scan
speed of 0.0235°/s. The XRD analysis was conducted using the

HighScore program and Rietveld method.

Field emission scanning electron microscopy (FESEM-EDS)
analysis of precipitates was conducted using a Zeiss Ultra plus

operated at 15 kV with energy dispersive X-ray spectroscopy

(EDS) detector and Aztec software (Oxford Instruments).
Arsenic content in the precipitates from arsenic

FIGURE 2

Percentage of sulphate removal from the model solution

using different precipitation pH. Error bars represent standard

deviation (n = 2).

FIGURE 3

Residual aluminium and calcium concentrations with

different precipitation pH. Error bars represent standard deviation

(n = 2).

FIGURE 4

X-ray diffraction (XRD) patterns of precipitates from the

ettringite precipitation experiments at pH range 11–12.5. R

denotes repeated test. The unmarked peaks in the diffractograms

are related to ettringite.
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coprecipitation experiments was measured using the ICP-OES.

The analysis was conducted according to U.S. EPA Method

3051A, where the microwave-assisted wet digestion was
performed using a 3:1 ratio of HNO3 and HCl acid.

3 Results and discussion

3.1 Effectiveness of ye’elimite dissolution
method

In order to examine the effectiveness of sulphate removal,

different ye’elimite dissolution methods were tested. Figure 1

below shows the percentage of sulphate removal from the
model solution (sodium sulphate containing synthetic

wastewater in absence of arsenic pentoxide); i.e., when

ye’elimite was dissolved in four different solutions:
deionized water at 20 and 70°C, solution of 10 wt%

calcium hydroxide in deionized water at 20°C, and

hydrochloric acid at 20°C. As shown in Figure 1, the
dissolution of ye’elimite in hydrochloric acid resulted in

significantly higher sulphate removal (95%), indicating that

almost all ye’elimite was dissolved and reacted in order to
form ettringite, yielding the highest amount of ettringite

(84%). Thus, the hydrochloric acid dissolution method of

ye’elimite (described in Section 2.2) was selected for further
investigations in this study.

3.2 pH optimisation of ettringite
precipitation

pH is an important parameter in ettringite precipitation

since ettringite is only stable in the pH range of 10.5–13

(Tolonen et al., 2016; Segundo et al., 2019). Four different
pH values were tested for the ettringite precipitation

experiment, including 11.0, 11.5, 12.0, and 12.5 (Figure 2).

The current results show that the highest percentage of
sulphate removal from the model solution was achieved at

FIGURE 5

Sulphate (A) and arsenic (B) removal as a function of the initial arsenic concentration in the ettringite precipitation experiments using the

synthetic wastewater solutions. Error bars represent standard deviation (n = 2).

FIGURE 6

X-ray diffraction (XRD) patterns of the precipitates

synthesized in the absence of arsenic, in the presence of 58 ppm

arsenic, and 100 ppm arsenic.
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pH 12–12.5. Similarly pH range of 11–12.5 was suggested for
ettringite precipitation in the literature (Chrysochoou and

Dermatas, 2006; Almasri et al., 2015). As shown in Figure 3,

pH 11.0 was too low to effectively remove sulphate. This can
be due to the partial dissolution of formed ettringite, as the

pH is close to the lower limit of ettringite stability range.

Additionally, the residual aluminium and calcium
concentrations were measured as a function of

pH (Figure 3). The residual aluminium and calcium

concentrations were decreased by increasing pH from 11 to
12.5. This can be due to an increase in ettringite stability. At

pH 12, the residual aluminium and calcium concentrations

were less than 25 mg/L, and 140 mg/L, respectively. As
calcium hydroxide and deionized water were added to

ettringite in stoichiometric amounts, residual aluminium,

calcium, and sulphate were present, due to ettringite
solubility. Moreover, the ettringite yield increased with

increasing pH by 82%, 86%, 87%, and 88% at pH 11, 11.5,
12, and 12.5, respectively.

X-ray diffractograms of the ettringite precipitates

prepared with different pH were used to identify ettringite
(ICDD 04-013-3691) and calcite (ICDD 04-066-0867) peaks

at pH range 11.0–12.5 (Figure 4). The amounts of ettringite

and calcite in the solid samples were determined using full-
pattern quantitative Rietveld analysis. The precipitates

contained 97%, 98%, 98%, and 96% ettringite at pH 11.0,

11.5, 12.0, and 12.5, respectively. The precipitates also
contained 2%–4% calcite, which is common in ettringite

precipitation, as calcium reacts with atmospheric CO2

dissolved in water, forming calcite. At pH 12.5, the
precipitate contained more calcite than at pH 11.5, and

12.0. This could be due to an increase in CO2

concentration in the water, as dissolution of CO2 increases
with increasing pH (Fang et al., 2018). High purity ettringite

TABLE 2 Al/S ratio in the precipitates from arsenic co-precipitation experiments.

Sample Analysis number As [wt%] Al:S ratio Analysis number As [wt%] Al:S ratio

0 ppm As 1 0 0.71 11 0 0.62

2 0 0.51 12 0 0.57

3 0 0.53 13 0 0.63

4 0 0.78 14 0 0.51

5 0 0.85 15 0 0.69

6 0 0.63 16 0 0.69

7 0 0.69 17 0 0.84

8 0 2.85 18 0 0.68

9 0 0.79 — — —

10 0 0.59 — — —

58 ppm As 39 0.79 0.72 49 3.01 0.73

40 2.37 0.90 50 2.76 0.71

41 0.51 0.49 51 0.61 0.29

42 0.7 0.69 52 2.84 0.74

43 2.56 0.78 53 2.81 0.71

44 2.45 0.73 54 2.67 0.71

45 2.57 0.73 55 2.22 0.67

46 2.59 0.74 56 2.18 0.63

47 2.71 0.72 — — —

48 1.35 0.54 — — —

100 ppm As 98 3.81 1.64 108 2.12 0.62

99 0.49 0.91 109 0.46 0.48

100 1.71 0.83 110 3.36 0.74

101 4.26 0.78 111 0.62 0.88

102 2.9 0.65 112 2.26 0.81

103 0.39 1.10 113 2.75 0.79

104 1.14 0.90 114 1.45 0.73

105 0.32 1.02 115 0.63 0.73

106 0.27 0.85 116 0.73 0.92

107 0.54 0.33 117 0.54 0.86
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was attained in the ettringite precipitation experiment in all

tested pH values.

3.3 Arsenic removal from synthetic
wastewater

Arsenic removal by ettringite precipitation was examined

using the synthetic wastewater solutions with initial sulphate
concentration of 2,000 ppm and arsenic concentrations of

58 and 100 ppm. Figure 5 shows the percentage of arsenic

and sulphate removal from the synthetic wastewater solutions.
Sulphate removal decreased with increasing the initial arsenic

concentration, which indicates that arsenic was replacing

sulphate in ettringite structure. Additionally, the arsenate
co-precipitation during ettringite synthesis was studied by

Myneni et al. Myneni et al. (1998) using Fourier transform

infrared (FTIR) and Raman spectroscopy. It was suggested
that AsO3−

4 was preferentially substituted for SO2−
4 inside the

channels at low sorption densities. The current results show

that by increasing the initial arsenic concentration from 58 to
100 ppm, the percentage of arsenic removal decreased from

95% to 89%. This could be due to the fact that the surface sites

available for substitution are being occupied, as the mass
percentage of arsenic in precipitate containing 58 ppm

arsenic was lower than that of precipitate containing

100 ppm arsenic (0.84% and 1.1%, respectively).
The precipitates were analysed using ICP-OES, XRD

(Figure 6) and FESEM-EDS (see Figure A2). According to

XRD and Rietveld analysis, the precipitates were above 98%
ettringite, and the remaining was gypsum. The peak associated

with arsenic oxide (As4O6 ICDD 01-084-7622) and ettringite

(ICDD 04-013-3691) were observed at 31.7° and 31.9°,
respectively (Figure 6). The peak intensity at 31.7° was

relatively higher when the arsenic concentration in the

synthetic wastewater solution was increased from 0 to
100 ppm. This observation is in agreement with ICP-OES

measurements where arsenic concentration in the

precipitate increased by 0, 25, and 34 mg/g with increasing
the initial arsenic concentration in synthetic wastewater

solutions (0, 58, and 100 ppm), respectively.

The FESEM-EDS analysis was conducted for the
precipitates from arsenic co-precipitation experiments in

both small rectangle area and point analysis and the results

are summarized in Table 2. The ratio of Al:S was calculated
in different points/areas. The current results show that the

ettringite sample precipitated in absence of arsenic

pentoxide had the Al:S ratio of approximately 2:3 in all
analysed points, while the ettringite samples precipitated in

the presence of 58 ppm arsenic, the Al:S ratio was above 2:

3 in majority of the analysed points. This indicates that the
arsenate ions could have replaced some of the sulphate ions

in ettringite molecular structure. However, in some
analysed points, the Al:S ratio was approximately 2:3, or

even lower (e.g., points number 41 and 48, and area number

51). Lower Al:S ratio could be due to the heterogeneity of
the sample as the precipitate also contains gypsum. The

ettringite samples precipitated in the presence of 100 ppm

arsenic, had the Al:S ratio of above 2:3 in majority of the
analysed points. The Al:S ratio was also higher than that of

the ettringite samples precipitated in the presence of

58 ppm arsenic, indicating the higher degree of sulphate
substitution by arsenate. In point number 102, the Al:S

ratio was the same as the ettringite stoichiometric ratio. In

point number 107 and area 109, the Al:S ratio was lower,
which can be due to the presence of gypsum in the

precipitate. The current XRD and FESEM-EDS results

demonstrate that the arsenic is removed both as arsenic
oxide, and by substitution of sulphate ions in ettringite

molecular structure by arsenate.

3.4 Sulphate removal from industrial
wastewater

An industrial wastewater with high initial sulphate

concentration (16,000 ppm) was used for sulphate
removal using ettringite precipitation. The industrial

wastewater was treated with gypsum precipitation in

order to decrease its sulphate concentration prior to the
ettringite precipitation, as sulphate concentration limit

(lower than 2,000 ppm) would be useful for ettringite

precipitation. The traditional gypsum precipitation at
pH 9.5 resulted in only 6.3% sulphate removal with

FIGURE 7

The percentage of sulphate removal from the industrial

wastewater used in this study by gypsum and ettringite

precipitations.
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residual sulphate concentration of 15,000 ppm. This is due

to an insignificant dosage of calcium hydroxide needed to

raise pH of the wastewater (initial pH 7.1 ± 0.3) to target
pH 9.5, and to remove of more sulphate as gypsum.

Additionally, the wastewater contained magnesium

(concentration 2,500 ppm) which can disturb sulphate
precipitation by keeping sulphate in the soluble form of

magnesium sulphate, as shown in a previous study (Tolonen

et al., 2015). Therefore, due to the fact that the sulphate
concentration in the industrial wastewater was still above

2,000 ppm, a second gypsum precipitation was conducted as

pre-treatment prior to the ettringite precipitation
experiment. In this stage, calcium was added as calcium

hydroxide in stoichiometric ratio (Ca:SO4 1:1), which led to

an increase in pH to 12.9. Following this high pH gypsum
precipitation, the sulphate concentration decreased by

78.0%, leading to residual sulphate concentration of

3300 ppm. At pH 12.9, magnesium precipitated both as
hydroxide and carbonate. The formed precipitate

contained 86.7% gypsum, 3.3% magnesium hydroxide,

2.2% magnesium carbonate and 7.8% calcium carbonate.
Magnesium concentration after high pH gypsum

precipitation was less than 0.1 ppm.

The ettringite precipitation experiment was conducted
using ye’elimite mineral, which further decreased the

sulphate concentration in industrial wastewater by 87%–

450 ppm. The percentage of sulphate removal after gypsum
and ettringite precipitations are shown in Figure 7. The purity

of formed ettringite was 99% determined by XRD and Rietveld

analysis. Properties of the sludge and the industrial
wastewater after the gypsum and ettringite precipitation

experiments are shown in Table 3. Formed ettringite is

stable as material.

4 Conclusion and recommendations

The suitability of Ye’elimite mineral as an alternative
aluminium reagent to form ettringite precipitate from

sulphate and arsenic containing synthetic wastewater and

industrial wastewater solutions was examined. The title

study showed that sulphate removal of up to 98% from the

synthetic wastewater and 87% from the industrial wastewater
can be achieved using ye’elimite as the aluminium source in

the ettringite precipitation. The purity of precipitated

ettringite was high in both synthetic and industrial
wastewaters. Additionally, up to 95% arsenic removal was

achieved in arsenic co-precipitation experiments from the

synthetic wastewater.
The current study demonstrated that ye’elimite mineral

can be used as a novel alternative to aluminium salts for

removal of sulphate and arsenic from wastewaters.
Additionally, ye’elimite mineral contains calcium, which

can also offer the advantage of decreasing the amount of

calcium hydroxide required to be employed during the
ettringite precipitation process.

In the current study, the ye’elimite dissolution process

showed optimised performance when used in combination
with hydrochloric acid; however, it is envisaged that

ye’elimite sintering process (e.g., residence time,

temperature, and cooling rate) and physical properties
(e.g., particle size and morphology) can be adjusted to

enhance the dissolution. Furthermore, ye’elimite can be

doped with other elements, e.g., iron which can substitute
aluminium in the ye’elimite structure and this may offer

advantages for enhanced dissolution. For further

fundamental investigations, the influence of any
common ion and/or inhibition effects can be studied.

Moreover, the remaining ettringite sludge can be

blended and re-fired into ye’elimite to enable
circularity, while the carbonation of ettringite sludge

offers additional benefits (e.g., carbon capture) or other

recycling routes for the ettringite sludge, in an age where
resource efficiency is crucial.

The current work has shown that water treatment using
cement clinker phases is possible. After all, cements are

designed such that water/fluid-particle reaction processes

lead to dissolution of a solid oxide and subsequent
precipitation of minerals. This study has unlocked a

gateway for the utilisation of cement clinker phases/

TABLE 3 Properties of the sludge and the industrial wastewater after the gypsum and ettringite precipitation experiments.

Treatment/precipitation Sulphate [mgL−1] Turbidity [NTU] Sludge volume
[ml]

Sludge dry
mass [g]

Sludge solids
content [g
L−1]

Sludge density
[g L−1]

None 16000 26.5 — — — —

Gypsum 15000 10.1 196 1.6 8.3 1042

High pH gypsum 3300 7.3 614 23.3 38.0 1062

Ettringite 450 1.5 320 10.5 32.7 1102
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minerals in water treatment, such as those in the mayenite

group which can form complex solid solutions.
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Appendix A

FIGURE A1

X-ray diffraction (XRD) pattern of the synthesized Ye’elimite

used in this study. The unlabelled peaks refer to ye’elimite.

FIGURE A2

FESEM-EDS analysis of the precipitates synthesized (A) in the

absence of arsenic, (B) in the presence of 58 mgL−1 arsenic, and (C)

100 mgL−1 arsenic.
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