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A B S T R A C T

We show that any uniformly linearly-polarised paraxial vortex mode carrying orbital angular momentum
(OAM) has zero spin angular momentum (SAM) density, but exhibits non-zero helicity density distributions.
Such a mode then possesses chirality as confirmed by experiment and so can engage with chiral matter.
We show that confining the treatment for the general paraxial fields only to leading order leads directly
to agreement of our theory with the experimental results, provided we ensure that crucially the paraxial fields
obey duality. We find that the space integral of the helicity and chirality densities vanish identically for all
such optical vortex modes without specifying the kind of mode. These generally applicable properties of optical
vortex modes carrying orbital angular momentum thus assert that without optical spin due to elliptical wave
polarisation of index 𝜎, an optical vortex alone cannot possess total helicity, even though it always exhibits
non-zero helicity density distributions.

The property of optical helicity is one of four fundamental prop-
erties of light; the other three are energy, momentum and angular
momentum. The latter three, when considered in the contexts of optical
vortex light have been reasonably well understood, but further work
still remains to be done as regards knowledge of optical helicity and
chirality. Our main goal in this article is to highlight novel features of
optical helicity and chirality which, we emphasise, are the preserve of
all paraxial optical vortex modes with uniform linear polarization.

The origins of the concept of helicity are traceable to the area of
fluid dynamics which highlights helicity as an invariant topological
property [1]. The helicity density is defined as the dot product of the
fluid velocity 𝐮 and the vorticity 𝜴 = 𝛁 × 𝐮. In order to define the
helicity density in the optical physics context one assigns the roles of
the fluid velocity 𝐮 and the vorticity 𝜴 to the vector potential 𝐀 and
the magnetic field 𝐁 = 𝛁 × 𝐀, respectively [2–4]. In addition to the
areas of optical physics and fluid dynamics, helicity plays a role in
diverse areas, as, for example, in plasma physics and astrophysics [5].
Furthermore, it is known to involve knots and links [6–11] and has
led to applications in a number of inter-disciplinary contexts such as
molecular biology [12] and particle physics [13]. It is, in fact, the
optical part of chiral light-matter interactions that is responsible for
all natural forms of optical activity.

In the recent literature (see, for example,[14,15]), the general ex-
pression for the helicity density of an electromagnetic field in free space
is given in the Coulomb gauge and has the following form

𝜂 =
1

2

(
𝑍−1

0
𝐀 ⋅ 𝐁 −𝑍0𝐂 ⋅ 𝐃

)
(1)
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where 𝑍0 =
√
𝜇0∕𝜖0 is the impedance of free space. The corresponding

expression for the chirality density is

𝜒 =
1

2

(
−𝜖0𝐄 ⋅ 𝐁̇ + 𝐁 ⋅ 𝐃̇

)
(2)

where 𝐃 = 𝜖0𝐄 is the displacement field and 𝐂 is the dual vector

potential such that 𝛁×𝐂 = −𝐃 and 𝑪̇ = −𝐁∕𝜇0. Here we will be dealing

with cycle-averaged properties of monochromatic fields in which case

the cycle-averaged spin angular momentum (SAM) density is defined

as

𝒔̄ =
𝜖0

𝜔
ℑ[𝐄∗ × 𝐄] (3)

while the cycle-averaged helicity density 𝜂̄ and chirality density 𝜒̄ are

given by

𝜂̄ = −
𝜖0𝑐

2𝜔
ℑ[𝐄∗

⋅ 𝐁]

=
𝑐

𝜔2
𝜒̄ (4)

The evaluation of the above cycle-averaged densities of any optical

vortex mode requires the correct specification of both the electric field

𝐄 and the corresponding magnetic field 𝐁. All electromagnetic fields,

including the fields of optical vortex beams invariably have a longitudi-

nal electric field component in addition to the transverse electric field

components, as in the case of a Laguerre–Gaussian mode [16].
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A major property of the optical vortex mode is the cycle-averaged
total helicity ̄ which is defined as the space integral of the cycle-
averaged helicity density 𝜂̄. We have

̄ = ∫ 𝑑3𝐫 𝜂̄ (5)

A form of the total helicity was first put forward by Woltjer [17] who
called it the magnetic helicity and interpreted it to be a topological
invariant representing the extent of the magnetic field linkage. As in the
case of fluid dynamics the total optical helicity is conserved in a given
light beam since the vortex lines are frozen-in [1]. The total optical
helicity is related to the Hopf index by the relation [3]

 =
1

̄ (6)

where  is an action constant which is characteristic of the vortex
light mode. Similarly the total spin angular momentum ̄ is the space
integral of the density 𝒔̄.

Our aim here is to derive the above cycle-average properties which
are common to any of the paraxial optical vortex modes, without
saying which. As regards helicity, we make use of the property of
topological invariance to deduce the Hopf index and derive a general
expression for the action constant . We also show that in the case
we are considering of a uniformly linearly-polarised optical vortex, the
helicity and chirality densities do not vanish, but their space-integrals
both vanish. These general properties, as far as we know, have not been
previously highlighted as applicable in general for any optical vortex
without specifying which.

The current activity and interest in optical helicity and chirality
have been invigorated by the report of the experiment by Wozniak
et al. [18] which has shown that linearly polarised twisted light in the
form of Laguerre–Gaussian light exhibits a chiral behaviour. Displaying
their experimental helicity density distributions due to two otherwise
identical doughnut modes for which the winding numbers were 𝓁 = 1

and 𝓁 = −1, Wozniak et al. [18] thus confirmed the typical chirality
feature: that the density distributions of such a linearly-polarised light
show lack of mirror symmetry since the two densities could not be
superimposed on each other.

Prior to the advent of twisted light the property of optical helicity
has been the preserve of optical spin angular momentum (SAM) arising
from wave polarisation, in general elliptical polarisation, with spin an-
gular momentum ℏ𝜎. The experimental finding by Wozniak et al. [18]
indicates that optical vortex modes carrying orbital angular momentum
(OAM), but which have no optical spin angular momentum, can engage
with chiral matter via the helicity density distributions. This seems
consistent with the generally-held belief that twisted light has spin-like
properties as for example the confirmation that it can rotate matter.

In this communication we provide an analytical treatment for the
helicity and chirality of paraxial uniformly linearly-polarised twisted
light, confirming the chiral nature of the helicity density. Earlier theo-
ries put forward to explain the experimental results by Wozniak et al.
include the work by Koksal et al. [19] who considered the case of
tightly-focused Laguerre–Gaussian light based on the non-paraxial for-
malism of Barnett and Allen [20]. Forbes and Jones [21] showed how
the experimental results could be explained by carefully considering
the leading as well as higher orders of the expansion of the densities
in powers of 1∕𝑘2

𝑧
𝑤2

0
, where 𝑘𝑧 is the axial wavenumber and 𝑤0 is the

waist.
Here we show that confining the treatment for the general paraxial

fields only to leading order leads directly to agreement of our theory
with the experimental results, provided we ensure that crucially the
paraxial fields obey duality.

Our theory here is specifically concerned with linearly-polarised
vortex light of an arbitrary kind, so in addition to showing that the
dual fields we start with lead to results confirming the experimental
result by Wozniak et al. [18], we aim to explore whether or not this
type of vortex light has optical spin angular momentum and whether

the chirality results show that it has a Hopf index and an action
constant. We find that, in general, uniformly linearly-polarised paraxial
optical vortex modes carrying orbital angular momentum ℏ𝓁 where 𝓁

is the winding number all have zero optical spin angular momentum,
but display non-zero distributions of the helicity and the chirality
densities and can interact with chiral matter. However, the total (space-
integrated) densities vanish identically when the modes are uniformly
linearly-polarised for all winding numbers 𝓁. Thus we find that all
linearly-polarised paraxial twisted light modes have zero total helicity
and chirality as well as zero total optical spin angular momentum and
they all possess a zero Hopf index.

The evaluation of the above cycle-averaged densities of any optical
vortex mode requires the formal knowledge of both the electric field
𝐄 and the corresponding magnetic field 𝐁. Any optical vortex beam
invariably has a longitudinal electric field component in addition to
the transverse electric field components, as in the case of a Laguerre–
Gaussian mode [16]. The importance of the longitudinal component
in the context of optical vortex light was first pointed out by Rosales
Guzman et al. [22] who were first to realise that longitudinal fields
of optical vortices contribute unique terms to the helicity/chirality
density.

Our plan here is to present an analytical treatment of optical helicity
and chirality as well as optical spin angular momentum which ad-
dresses all uniformly linearly polarised paraxial optical vortex modes,
without saying which, then deduce the Hopf index  and derive a
general expression for the action constant .

We begin by considering the fields for the general uniformly
linearly-polarised paraxial optical vortex field of frequency 𝜔 and axial
wavevector component 𝑘𝑧 propagating along the 𝑧-axis. Such a field
is derivable from a vector potential 𝐀𝓁𝑚(𝐫, 𝑡) given in cylindrical polar
coordinates in the form

𝐀𝓁𝑚(𝐫, 𝑡) = 𝒙̂𝓁𝑚(𝜌, 𝜙)𝑒
(𝑖𝑘𝑧𝑧−𝑖𝜔𝑡) (7)

where, without loss of generality, we have assumed that the mode is
uniformly linearly-polarised along 𝒙̂. The indices 𝓁 and 𝑚 are such that
𝓁 is the winding number of the vortex mode, while 𝑚 may be a radial
number, as in Laguerre–Gaussian modes, but could be redundant as in
the case of Bessel modes. Note that the mode function 𝓁𝑚 depends
only on (𝜌, 𝜙) and conforms to the paraxial regime. The magnetic field
follows as 𝐁𝓁𝑚 = 𝛁 × 𝐀𝓁𝑚

𝐁𝓁𝑚 = 𝑖𝑘𝑧𝒚̂𝓁𝑚𝑒
𝑖𝑘𝑧𝑧 − 𝒛̂(𝜕𝑦𝓁𝑚)𝑒

𝑖𝑘𝑧𝑧 (8)

where we have dropped the time exponential exp(−𝑖𝜔𝑡) for ease of no-
tation. It is straightforward to check that the magnetic field satisfies 𝛁 ⋅

𝐁𝓁𝑚 = 0. The corresponding electric field must follow as a consequence
of duality which requires that 𝐄𝓁𝑚 is related to 𝐁𝓁𝑚 by the Maxwell
equation for a monochromatic field, which is 𝐄𝓁𝑚 = (𝑖𝑐2∕𝜔)𝛁 × 𝐁𝓁𝑚.
Thus the electric field must be of the form

𝐄𝓁𝑚 = 𝑖𝑐𝑘𝑧𝒙̂𝓁𝑚𝑒
𝑖𝑘𝑧𝑧 − 𝑐𝒛̂(𝜕𝑥𝓁𝑚)𝑒

𝑖𝑘𝑧𝑧 (9)

This electric field also conforms with the transversality condition 𝛁 ⋅

𝐄𝓁𝑚 = 0. Furthermore, we have to confirm that the paraxial magnetic
field expression 𝐁𝓁𝑚, as displayed in Eq. (8) (and recalling that this
has emerged as 𝐁𝓁𝑚 = 𝛁 × 𝐀𝓁𝑚) must also emerge from 𝐄𝓁𝑚 in Eq. (9)
using the second Maxwell equation for a monochromatic field, namely
𝐁𝓁𝑚 = (1∕𝑖𝜔)𝛁 × 𝐄𝓁𝑚. The expressions in Eqs. (8) and (9) indeed con-
form to this, ensuring that the set of paraxial electromagnetic optical
vortex modes satisfy duality. It is clear that both 𝐄𝓁𝑚 and 𝐁𝓁𝑚 have
z- (longitudinal) components in addition to the transverse 𝑥− and 𝑦−

components.

The amplitude function of the general vortex mode bearing the
phase factor 𝑒𝑖𝓁𝜙 is as follows

𝓁𝑚(𝜌, 𝜙) ≡ 𝓁𝑚(𝜌)𝑒
𝑖𝓁𝜙 (10)

2
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The vortex feature of 𝓁𝑚 is such that this function vanishes at 𝜌 = 0

at the vortex core and must also vanish at 𝜌 → ∞

𝓁𝑚(𝜌) = 0 for 𝜌 = 0 and 𝜌 → ∞ (11)

It is also clear from Eq. (10) that such a vortex mode is an eigen-
function of the z-component of the orbital angular momentum operator
𝐿̂𝑧 = −𝑖ℏ𝜕∕𝜕𝜙 with eigenvalue ℏ𝓁.

As briefly pointed out earlier one of the effects that become manifest
due to the increase in the significance of the longitudinal field of an
optical vortex is that this type of light is endowed with the property
whereby two beams which are identical except for the sign of the
winding number 𝓁 are distinguishable. This is because one beam is a
phase-inverted mirror image of the other and so the two modes possess
different helicity and chirality [3,4,8,9,23–25]. More recent accounts
have revived interest in these beam properties and their relation to
optical spin [14,15,22,26–34].

With the dual electric and the magnetic fields of our general optical
vortex mode as detailed in Eqs. (7) to (9), correct to leading paraxial
order, we can now proceed to evaluate the cycle-averaged spin an-
gular momentum density and the helicity density 𝜂̄ and this suffices
as regards consideration of the chirality since they are related by a
proportionality constant.

First it is straightforward to check that the linearly-polarised optical
vortex mode carries no total optical spin angular momentum for which
the cycle-averaged density is given by Eq. (3). Using Eq. (9) we obtain
for the spin density components

𝑠̄𝑥 = 0; 𝑠̄𝑦 = 0; 𝑠̄𝑧 = 0, s𝑜 𝐒̄ = 𝟎 (12)

This null (SAM) property is applicable to all linearly-polarised optical
vortices in general.

Next we evaluate the cycle-averaged helicity density 𝜂̄ and this
suffices as regards consideration of the chirality since they are related
by a proportionality constant. Substituting for the electric and magnetic
fields using Eqs. (8) and (9) we have for the dot product 𝐄∗

⋅ 𝐁

𝐄
∗
⋅ 𝐁 = 𝑐

{
(𝜕𝑥 )∗

}{
(𝜕𝑦 )

}
(13)

where for ease of notation, we do not show the labels 𝓁𝑚 and the
argument 𝜌, 𝜙 in the field function  , as defined in Eq. (10). In Eq. (13)
we identify the derivative terms as contributions to the helicity density
due to the z-components (longitudinal components).

Since  is a function only of (𝜌, 𝜙), it is straightforward to evaluate
the x- and y- derivatives. We obtain,

𝜕𝑥 =  ′ cos𝜙 − 𝑖
𝓁

𝜌
 sin𝜙 (14)

and

𝜕𝑦 =  ′ sin𝜙 + 𝑖
𝓁

𝜌
 cos𝜙 (15)

where  ′ = 𝜕 ∕𝜕𝜌.
Continuing with the evaluation of the general helicity density, we

obtain for the dot product 𝐄∗
⋅ 𝐁 after some algebra

𝐄
∗
⋅ 𝐁 = 𝑖𝑐

𝓁

𝜌
 ′ (16)

where we have used Eqs. (14) and (15), together with Eq. (10) enabling
the expression to be written in terms of  . Thus we find for the
cycle-averaged helicity density, as defined in Eq. (4)

𝜂̄ = −𝓁
𝜖0𝑐

2

2𝜔

{
1

𝜌
 ′

}
(17)

Characteristically, this contribution is directly proportional to 𝓁.
Note that the helicity density distribution is in general non zero. To
illustrate the chirality nature we consider a Laguerre–Gaussian mode
for which  is given by

 (𝜌) = 0
√

𝑝!

(𝑝 + |𝓁|)!
𝑒
−

𝜌2

𝑤2
0

(√
2𝜌

𝑤0

)|𝓁|

𝐿|𝓁|
𝑝

(
2𝜌2

𝑤2
0

)
(18)

Fig. 1. The spatial variations within a mode cross section of the helicity density
(arbitrary units) for a Laguerre Gaussian (doughnut) mode for which 𝓁 = +1. Here
𝑤0 = 5𝜆.

Fig. 2. The spatial variations within a mode cross section of the helicity density
(arbitrary units) of Laguerre Gaussian (doughnut) mode for which 𝓁 = −1. Here
𝑤0 = 5𝜆.

where 0 is a normalisation constant, 𝑤0 is the beam waist and the
subscript 𝑚 is now identified as 𝑝, the radial number. We show in Figs. 1
and 2 the variations of the helicity density Eq. (17) for the linearly-
polarised doughnut modes 𝓁 = 1 and 𝓁 = −1 with 𝑝 = 0 for both. These
figures show clearly the chirality feature which was demonstrated
experimentally [18], namely that the two density distributions cannot
be superimposed on each other.

However, we now show that the total (space-integrated) helicity per
unit length of the general linearly polarised mode is identically zero.
We have

̄ = ∫
2𝜋

0

𝑑𝜙∫
∞

0

𝜌 𝑑𝜌 𝜂̄(𝜌)

= −𝓁
𝜖0𝑐

2

2𝜔 ∫
2𝜋

0

𝑑𝜙∫
∞

0

( ′(𝜌) (𝜌)

𝜌

)
𝜌 𝑑𝜌

= −𝓁
𝜖0𝜋𝑐

2

4𝜔 ∫
∞

0

(
𝑑

𝑑𝜌
2

)
𝑑𝜌 = −𝓁

𝜖0𝜋𝑐
2

4𝜔

[2(𝜌)
]∞
0

= 0 (19)

3
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where the last equality follows from the fact that 2(𝜌 = 0,∞) = 0, as
defined in Eq. (11). Thus we have discovered the general result that,
although the helicity density of a linearly-polarised vortex mode has
non-zero variations which exhibit chirality, the space integral ̄ of the
density vanishes identically for such an arbitrary mode. The statement
̄ = 0, as far as we know, has not been emphasised before as a general
property of uniformly linearly-polarised vortex modes carrying orbital
angular momentum ℏ𝓁

The significant point here is that without optical spin due to, for
example, elliptical wave polarisation, an optical vortex alone cannot
possess total helicity, even though it exhibits helicity density distribu-
tions, which in turn indicates that on radial integration the different
regions of the helicity density distribution are cancelled out by other
regions. As we have seen at the outset, the chirality density is pro-
portional to the helicity density, so we have the same conclusion of a
vanishing total cycle-averaged chirality for a linearly-polarised general
vortex mode.

The situation changes drastically once the optical mode has wave
polarisation different from linear, as for example elliptical polarisation,
with which is associated optical spin 𝜎 = ±1. Recently, we consid-
ered the particular case in which vortex mode is elliptically polarised
Laguerre–Gaussian light for which 𝜎 ≠ 0 [32] for which  is as given
by Eq. (18). We have now carried out explicit evaluations for a general
optical vortex without specifying the form  and so confirmed that
the total helicity ̄𝜎 of the general polarised optical vortex mode is
proportional to 𝜎 and can be written succinctly as follows

̄𝜎 = 𝜎 (20)

Since 𝜎 = ±1, this follows the familiar pattern of optical spin helicity
due to wave polarisation, but note that here it is modified by the
presence of the optical vortex from which we deduce that the Hopf
index as  = 𝜎 and the action constant  is given by the general
expression

 =
𝜋𝜖0𝑐

2

2𝜔 ∫
∞

0

[
2𝑘2

𝑧
2(𝜌) +  ′2(𝜌) +

𝓁
2

𝜌2
2(𝜌)

]
𝜌 𝑑𝜌 (21)

The action constant  represents the helicity strength per unit length.
Unlike the Hopf index, which is common to all vortex modes, and equal
to 𝜎, the value of the action constant for an arbitrary paraxial vortex
mode, as given by the integral in Eq. (21), clearly depends on what
kind of optical vortex one is dealing with and can be evaluated once
 is specified. Note that besides the first term in the integrand, which
stems directly from the transverse field components, the second and the
third terms depend on 𝓁 and so constitute spin–orbit coupling terms.
These terms could increase or decrease the spin chirality, but we should
note however that these terms must vanish in the far field leaving only
the first term which leads to the spin chirality [28,33]. This behaviour
involving a general  in Eq. (21) has been demonstrated in the case of
a specific  corresponding to a Laguerre–Gaussian mode [32].

In conclusion, we have focused here on the optical chirality and
helicity as well as optical spin angular momentum of an arbitrary
linearly-polarised paraxial optical vortex mode. We have shown that
such a general vortex mode displays has zero spin angular momentum,
but non-zero cycle-averaged helicity and chirality density distributions.
However, the total helicity and chirality of the mode arising from the
space integrals of the densities all vanish identically. Interestingly a
very recent article by Forbes [34] extended the consideration to the
case of unpolarised Laguerre–Gaussian light and showed that such
a light possesses chirality and helicity densities. We have identified
the source of the densities when the general vortex mode is linearly-
polarised as due entirely to the presence of the longitudinal field
components. When the general mode is elliptically-polarised in the
chirality density only the 𝜎-dependent contribution results in a non-
zero total spin helicity. Note that, besides the illustrations focusing on
Laguerre–Gaussian modes leading to Figs. 1 and 2, we have a theory
which is applicable to a general optical vortex.

Finally, we comment on the interaction of vortex light with chiral
matter. We have shown that for a linearly-polarised mode the helicity
density does not vanish even if optical spin is zero. As helicity density
for monochromatic light is proportional to the chirality density, and
chiral density is related to the chiral response in linear light-matter
interactions [23], this scenario leads to the suggestion that it is always
possible to excite a chiral response even with a linearly-polarized
vortex light beam whose density presents space variations with which
a chiral object interacts differently when located in different parts of
the beam. Moreover, the variations of the chirality across the beam are
proportional to the derivatives of the transverse field components. This
suggests the possibility of optimizing the characteristics of the vortex
mode in order to achieve superchirality [23] with twisted light and so
improve the optical sensitivity to chiral matter.
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