
This is a repository copy of On the Trade-offs between Generalization and Specialization 
in Real-Time Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190960/

Version: Accepted Version

Proceedings Paper:
Bruggen, G. von der, Burns, Alan orcid.org/0000-0001-5621-8816, Chen, Jian-Jia et al. (2 
more authors) (2022) On the Trade-offs between Generalization and Specialization in 
Real-Time Systems. In: 28th IEEE International Conference on Embedded and Real-Time 
Computing Systems and Applications. 28th IEEE International Conference on Embedded 
and Real-Time Computing Systems and Applications, 23-25 Aug 2022 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



On the Trade-offs between Generalization and

Specialization in Real-Time Systems
(Invited Paper)

Georg von der Brüggen
Department of Computer Science

TU Dortmund University, Germany

Alan Burns
Department of Computer Science

University of York, UK

Jian-Jia Chen
Department of Computer Science

TU Dortmund University, Germany

Robert I. Davis
Department of Computer Science

University of York, UK

Jan Reineke
Saarland Informatics Campus

Saarland University, Germany

Abstract—While academia favours general research that is applicable
to a large class of systems, this paper highlights the necessity of research

into specific scenarios and aims to increase its acceptance in the real-time

systems community. We argue that such research is not only motivated

by greater applicability to industry, but that specialization can also

provide valuable information from a purely academic perspective. In

addition, the trade-offs between generalization and specialization are

examined, considering not only theoretical performance, but also the

impact on essential non-functional properties that are important for

industry, namely composability, robustness, extensibility, and parametric

simplicity.

PREAMBLE

The intended audience for this paper is researchers (students

to seniors and practitioners to theoreticians) who are involved in

the derivation and use of analysis techniques used in the off-line

verification of timing constraints and hence timing guarantees for

embedded real-time systems. In particular those techniques relating to

scheduling and schedulability analysis. We critique the way in which

research in this area often emphasizes a theory-centric approach that

seeks to solve general problems in ever increasing detail, rather

than considering specific problems and practical implications. As

there is no coherent view of generalization in the literature, we

first investigate different perspectives on generalization followed by a

series of highlighted observations. These observations come from our

experience as researchers, and are supported by examples. They are

not laws that are universally true and hence can be proven correct,

rather they identify trade-offs that can and do happen, and hence

warrant careful consideration. These observations support a shift in

perspective, summarized in the conclusions, that we hope readers will

consider in their current and future research.

I. INTRODUCTION

When analysing a specific problem, two approaches are possible.

A practice-oriented approach focuses on the specific problem at hand

and provides a tailor-made solution. It solves the specific problem,

perhaps only to the degree that is necessary in the given situation.

This approach is common in industry, but is often seen as less

appealing by academia. The reason being that while such solutions

may be easier to develop and work well for the specific problem

considered, they may be difficult or impossible to generalize. On

the other hand, a theory-oriented approach tries to find solutions

for a class of problems with similar characteristics. Such general

solutions can then be applied to a class of specific problems that

have something in common with the original one, i.e., they have some

similar characteristics. The underlying assumption here is that if an

excellent solution can be developed for the general problem, then it

can be applied to all of the specific problems covered, and hence is

much more valuable in the long run. Thus, real-time systems research,

and for that matter any research, has a natural bias towards general

models, general system implementations, and general analyses, and

it is often much harder to establish results that focus on special

cases. This concept effectively focuses on maximizing the size of the

problem domain covered by a solution. Figure 1 depicts the problem

domain and solution domain, showing how a specific solution covers

a smaller part of the problem domain, but may include many practical

problem instances, whereas a more general solution can cover a larger

part of the problem domain, but may still not cover all problem

instances of practical relevance.

Our aim in writing this perspective paper is to increase the

acceptance of research into specific problems, special cases, and

restricted scenarios in the real-time systems research community.

Our goal is not to discourage or question the need for research into

general problems and solutions, but to provide arguments for, and to

increase the acceptance of, research into specialized problems and

their specific solutions. The main reason for this position is that such

results are more likely to be useful to industry and therefore applied

in practice, since industry has a strong preference for solutions that

are simple to implement and easy to understand. Further, we argue

that examining special cases can also provide valuable insights from

a purely theoretical perspective.

The paper provide a systematic view of the value of special

cases and the possible drawbacks of placing too much emphasis on

generalization (i.e. general cases) in real-time systems research1. The

key areas we examine in this paper are:

• Special Cases: When are special cases useful? Why is the

exploration of special cases important and valuable?

• General Cases: When are general cases useful? What should be

considered when evaluating the quality of solutions and analyses

for general cases?

We motivate, and provide evidence for, a series of observations

that distil the key differences between a focus on special rather than

1This work covers a broad spectrum of topics related to real-time systems.
We assume that the reader is familiar with basic concepts from the real-
time systems literature, and therefore, to increase the reading flow, we do
not introduce them in detail. Less common concepts and terminology related
to a specific sub-problem are introduced in the appropriate section of the
paper. A glossary of common real-time systems terminology can be found at
https://site.ieee.org/tcrts/education/terminology-and-notation/.



Problem domain Solution domain

General solution

Specific solution

Practical problem instance

Fig. 1. Depicts the problem domain and solution domain, showing how
a specific solution covers a smaller part of the problem domain, but may
include many practical problem instances, whereas a more general solution
can cover a larger part of the problem domain, but may still not cover all
problem instances of practical relevance.

general cases.

There are different notions of generalization that are quite different

in nature. Therefore, in Section II, we distinguish four classes of

generalization that are discussed individually in subsequent sections.

The first three of these generalizations are related to the system

model, while the fourth relates to the system implementation:

1) Abstraction refinement (Section III): Involves describing

a problem in more detail, in a way that is still able to

fully describe simpler instances of the problem. For example,

multiframe task systems2 are more general than periodic task

systems.

2) Parameter relaxation (Section IV): Involves supporting a

wider range of problem instances with the same behaviour. For

example, constrained-deadline task sets are more general than

implicit-deadline task sets.

3) Behaviour relaxation (Section V): Involves supporting prob-

lem instances that allow additional behaviour. For example,

sporadic tasks are more general than periodic tasks.

4) Implementation relaxation (Section VI): Involves the inclu-

sion of additional solutions. For example global multiprocessor

scheduling can be viewed as an implementation relaxation of

partitioned scheduling that allows tasks to migrate between

processors.

We examine these four classes of generalization individually,

and also the topic of abstraction levels, observing advantages and

disadvantages of generalization based on examples from the real-

time systems literature. Their interplay and possible system-level

implications are discussed afterwards in Section VII. Specifically,

a further important topic in the context of generality is that, in

addition to simplicity, industry also calls for solutions that fulfil other

important non-functional properties, for example: composability, ro-

bustness, and extensibility (definitions are given in Section VII). The

reason is that in industry real-time systems are developed by multiple

teams and go through a number of updates both before and after

deployment. Hence systems that are not easily composed, are fragile

or brittle to change, or hard to extend, are seen as problematic by

industry, since they incur substantially higher on-going development

costs. We discuss the interplay of abstraction levels, industry’s need

for simplicity, and the importance of these non-functional properties.

2With a multiframe task, an array of values is used to represent the largest
execution times of a repeating sequence of jobs of the task, that is, the
execution time of the jobs repeat in a cyclic pattern given by the array. Each
of these values is bounded by the worst-case execution time of the task, as
used in the periodic task model.

II. CLASSES OF GENERALIZATION

The main focus of real-time systems research is to provide timing

guarantees for the functionality of a system. We examine the con-

cept of generality in different areas of real-time systems research,

considering modelling, system implementation, and analysis. This

section classifies the different concepts of generality and establishes

our terminology. As the perspectives of the system specification

are different from those of the implementation, generalization in

these two directions are different and are discussed separately. We

then discuss how generalization impacts the analysis of algorithmic

behaviour and the resulting solutions. There is a strong interplay

between the model, the system implementation, and the analysis.

In particular, the applicability of a system implementation relies on

certain characteristics of the model. The analysis relies on the model

as well as the system implementation. Further, often the only way to

observe the impact of a modelling change or an algorithmic change is

to look at how an analytical result changes. Hence, when we discuss

changes that affect the model or the algorithm, we often discuss the

effect as shown by the analysis.

A. Generalization in the input space

A more general model can imply greater expressiveness (abstrac-

tion refinement), less constrained parameters (parameter relaxation),

or inclusion of additional behaviours (behaviour relaxation) compared

to a less general model.

• Abstraction refinement is a generalization that enables a

given problem instance to be described more accurately. This

increased expressiveness provides the potential for a more ac-

curate analysis and optimization. Model A is an abstraction

refinement of another model B if model A is able to describe

all instances described by model B, and to describe at least

some of them more accurately. Conversely, model B is said to

be an abstraction approximation of model A if it is able to

describe all instances described by model A, but in some cases

with less accuracy. For example, the multiframe task model is

an abstraction refinement of the periodic task model, since it

includes more accurate information when the runtime behaviour

of a task has a cyclic pattern of execution times. Abstraction

refinement and abstraction approximation are transitive (i.e., if

C refines B and B refines A, then C also refines A).

• Parameter relaxation is a generalization that includes more

instances, but with the same runtime behaviour. More specif-

ically, model A is a parameter relaxation of model B if A
and B have the same parameters and the parameter range of

model B covers only a subset of the parameter range of model

A, and models A and B describe the same runtime behaviour

for the parameter range that they share. Conversely, model B is

said to be a parameter restriction of model A. For example,

the constrained-deadline task model is a parameter relaxation

of the implicit-deadline task model. Parameter relaxation and

parameter restriction are transitive.

• Behaviour relaxation is a generalization that enables additional

behaviour to be modelled. More specifically, model A is a

behaviour relaxation of model B if the runtime behaviours

of the systems described by model A are strict supersets of

the runtime behaviours of the corresponding systems described

by model B. Note that in many cases this relaxation implies

that some system behaviours described by model B are relaxed

by potentially discarding structural information, which cannot

be preserved in model A. Conversely, model B is said to be



(cyclic) GMF

(sporadic)

[15]

Digraph [62]

Sporadic

Multiframe

non-cyclic

GMF [55]

Sporadic

[53]

Periodic Multiframe

(unspecified offsets)

[54]

Periodic

(unspecified offsets)

[52]

Periodic

(specified offsets)

[49]

Fig. 2. Behaviour relaxations (dashed arrows) and abstraction refinements
(solid arrows) between a selection of sporadic and periodic real-time task
models. Non-cyclic GMF [55] is an abstraction refinement of the sporadic task
model, which does not follow immediately from the other relations depicted.

a behaviour restriction of model A. For example, a sporadic

task model can be used to model a periodic task, but it is more

general, since it includes additional job release patterns that do

not exist in the strictly periodic setting. Behaviour relaxation

and behaviour restriction are transitive.

Figure 2 illustrates the relations between task models in terms

of abstraction refinement (solid arrows) and behaviour relaxation

(dashed arrows). Note, we have omitted relations that are implied by

the transitivity of abstraction refinement and behaviour relaxation.

B. Generalization in the implementation space

An implementation A is an implementation relaxation of another

implementation B if the solutions allowed by A are a strict superset of

the solutions allowed by B. For example, dynamic-priority scheduling

is more general than static-priority scheduling in the sense that

each static-priority schedule is also a dynamic-priority schedule,

but a dynamic-priority schedule is not always a valid static-priority

schedule. Another example is the way in which caches can be used

in a single core system, where a cache that is shared between tasks

such that the sets of cache blocks that are used by the tasks may

overlap is an implementation relaxation of a partitioned cache where

no such overlap can happen. Note that some implementations may

share similar concepts but they are unrelated to implementation

relaxations. For example, global EDF and partitioned EDF both

exploit EDF as the underlying implementation based on a global

queue among all processors and an individual queue per processor,

respectively. However, global EDF is not an implementation relax-

ation of partitioned EDF, since the the former always produces work-

conserving schedules, whereas the latter may produce non-work-

conserving schedules.

C. Historical perspectives of generalization

We note that the term generalization is used in the real-time

systems literature in a number of different ways, some of which

may seem counter to the common use of the term. In particular,

consider abstraction refinement, and as an example the multiframe

task model which is an abstraction refinement of the periodic task

model. The multiframe task model can be used to describe, with

exactly the same degree of accuracy and hence information content,

any system described using the periodic task model. However, the

multiframe task model can also be used to describe some systems

(e.g. where the execution time of jobs follows a repeating cyclic

pattern) with a higher degree of accuracy and hence more information

content than the periodic task model. Thus the multiframe task model

subsumes the periodic task model and is thus referred to in the

literature, and in this paper, as a generalization of it. Conversely,

the relationship between the periodic task model and the multiframe

task model can also be viewed in terms of abstraction approximation.

The precise behaviour of a multiframe task (where the execution time

of jobs follows a repeating cyclic pattern) can be approximated by

the periodic task model, with a lower degree of accuracy and less

information, using only the worst-case execution time of the task.

One might naively consider that the periodic task model abstracts

the multiframe task model and could therefore be considered a

generalization of it. For example, the periodic task model can be

used to describe, in an approximate way, systems where the jobs of

a task exhibit execution times that are dependent in some way that is

not expressible as a simple cycle, and so cannot be described via the

multiframe task model with any higher degree of accuracy. However,

the point here is that the multiframe task model can still be used to

describe such systems with precisely the same level of accuracy and

information as the periodic task model. In other words there is no

increase in generality in moving to the periodic task model, rather

there is just a reduction in the information provided by the multiframe

task model to the trivial case of a cycle of length one and a single

bound that equates to the worst-case execution time of the task.

These commonly adopted relations have been widely used in

the literature of real-time systems research. Generalizations defined

in this paper follow the descriptions in the literature. To avoid

confusion, generalization should be precisely specified by stating its

concrete perspective, i.e., with respect to expressiveness, parameters,

behaviour, and implementation. In this paper, we therefore use the

four classes discussed above to avoid confusion and ambiguity.

D. Analysis of models and implementation

The primary purpose of schedulability analysis is to determine

whether a specific problem instance is schedulable or not. Such

schedulability tests can be classified into (i) sufficient tests, which

may give false negatives, but no false positives, (ii) necessary tests,

which may give false positives, but no false negatives, and (iii) exact

tests, which are both sufficient and necessary, and therefore give

neither false positives nor false negatives.

The different types of model generalization and implementation

relaxation (as well as their counterparts) result in different impacts

on how sufficient, necessary, and exact tests retain or change these

properties when examining task sets that were originally specified in

another model. To apply a test for model A to another model B,

the considered instance of B must be transferred to an instance of A
before the related test is applied. For example, considering abstraction

refinement/approximation, a test for the multiframe task model (i.e.,

the refined model in this case) can be applied to an instance of the

periodic task model (i.e., the approximated model in this case) by

transforming the periodic tasks into multiframe tasks with one frame

each. On the other hand, if a test for the periodic task model is applied

to the multiframe task model, then all the frames of a multiframe task

have to be represented by a single periodic task, where the WCET

of the periodic task equates to the maximum WCET of any frame of

the multiframe task.

The impact of such transformations on the tests are depicted in

Figure 3 with (S) denoting sufficient tests, (E) exact tests, and (N)

necessary tests. A solid black arrow means that the test retains this

property (e.g., a sufficient test for an abstraction refinement is also

sufficient for the abstraction approximation and vice versa). A red

dashed arrow means that the test does not retain all of its properties.

Note that red dashed arrows only start from exact tests, meaning



that those tests lose one of their properties (i.e., they become

either not necessary or not sufficient). Thus, an exact test for an

abstraction approximation remains sufficient, but is not guaranteed

to remain necessary. For example, if a multiframe task set is deemed

schedulable by a test that is exact for the periodic task model, then

it is schedulable, since the test remains sufficient. However, due to

the precision lost in the transformation, an exact test for the periodic

task model may deem another task set unschedulable (e.g., due to

utilisation greater than 1) that is actually schedulable in the original

multiframe description. A circle without any outgoing arrow implies

that such a test does not always retain its properties in the other

case (although there may be some exceptions where it does).

Parameter restriction is the only case where none of the tests retain

their properties on relaxation. (We discuss why it is still meaningful to

consider such restricted scenarios in Section IV). The reason is that, in

this case, it is not clear how an instance under parameter relaxation

can be transformed to the restricted case, since certain parameter

combinations under parameter relaxation are simply not allowed

under parameter restriction. How the transformation is achieved

affects whether or not the test retains its properties. For example,

consider a constrained-deadline sporadic task set where the deadlines

are strictly smaller than the periods, and the task set needs to be

modelled as having implicit deadlines, i.e., a parameter restriction.

In this case, the transformation can be made in such a way that

sufficient tests for static-priority scheduling retain their properties.

This is achieved by setting the tasks’ periods equal to their deadlines.

The sufficiency of the schedulability tests holds in this case, since

static-priority scheduling of sporadic tasks is sustainable [14] with

respect to increases in task periods (i.e., the transformation back to the

original constrained-deadline task set). We note that the same would

not be true of periodic task sets with fixed offsets, since static-priority

scheduling that utilises the values of the offsets is not sustainable with

respect to increases in task periods.

III. ABSTRACTION REFINEMENT VERSUS

ABSTRACTION APPROXIMATION

In this section, we discuss abstraction refinement (i.e., supporting

more detailed information to describe behaviour) and its counterpart

abstraction approximation. On the face of it, abstraction refinement

appears preferable, as the additional information available in refined

abstractions may be required to show schedulability. However, to ex-

ploit this advantage in the analysis and optimization, the information

must be precise. For example, the (cyclic) generalized multiframe3

(GMF) [15] model can only be applied once a precise cyclic pattern

of job releases and execution times has been determined. Hence,

additional effort is required to obtain the more detailed information

and to process it.

Observation 1: Detailed information used in abstraction refine-

ments has a cost (in terms of time and effort) associated with obtain-

ing it and in ensuring and maintaining its correctness (i.e. accuracy

as a representation of the real system).

A hidden cost of abstraction refinement is the sacrifice of robust-

ness. Since the information is refined, stricter guarantees are needed.

With the GMF task model, multiple minimum inter-arrival times

between the different frames of each task must be ensured, along

with adherence to specific execution time budgets for each frame.

This may require further fine-grained inspection of the specification

3Both the execution times and the inter-arrival times are specified by a
cyclic pattern.

or system design. When we use more approximate information (e.g.

the sporadic task model), compliance is simplified, since there is only

one minimum inter-arrival time and one execution time budget for

each task. In this respect, simpler models, with less information, are

more robust. They can tolerate some changes in parameter values

with no impact on computed results that would not be tolerated by

a more refined abstraction and analysis that relies on precise values

for those parameters rather than some upper bounds.

Observation 2: Abstraction refinement may ultimately result in

analysis results that are brittle rather than robust, and can be

invalidated by any minor change to the system or its parameters.

Abstraction refinement does not always yield tighter or better

results. For example, if the only GMF task in a system has the lowest

priority, then there will typically be no improvement in schedulability

compared to using the simpler sporadic task model.

Observation 3: Abstraction approximation may reduce analysis

complexity without significantly impacting upon analysis accuracy.

Summary

Considering abstraction approximations can be beneficial in many

situations. Abstraction approximation reduces the effort and costs

related to obtaining detailed information and ensuring its correctness.

In some cases, detailed information may not improve the accuracy

of analysis or optimization results. Abstraction approximation may

also be unavoidable to reduce the complexity to an affordable level.

Further, abstraction approximation can yield analysis results that are

more robust to changes in information or underlying assumptions.

IV. PARAMETER RELAXATION VERSUS

PARAMETER RESTRICTION

In this section, we discuss parameter relaxation (i.e., supporting

more problem instances, with the same runtime behaviour) and its

counterpart parameter restriction. Here, a solution under parameter

relaxation is also always a solution for restricted parameters. It is,

however, still meaningful to examine solutions for the restricted

setting.

Consider the case where under parameter relaxation approximated

solutions are used to solve complex problems (e.g., NP -hard prob-

lems) efficiently. Such an approximation can happen within the

algorithm itself (e.g., when a heuristic is used for priority assignment)

or within the analysis (e.g., when a sufficient rather than exact

schedulability test is used). One well-known class of sufficient

schedulability tests are utilisation bounds, where the schedulability

of a system is determined by evaluating whether the utilisation of

the system is no greater than a specific bound. The seminal paper

by Liu and Layland in 1973 [52] established that this bound is

ln(2) ≈ 0.693 for implicit-deadline task sets under preemptive rate-

monotonic scheduling. If the periods of all tasks are restricted to be

harmonic (i.e., for each pair of tasks the period of one is an integer

multiple of the period of the other) this bound is increased to 1 [46].

In this case, the utilisation-based test becomes exact, and preemptive

rate-monotonic scheduling becomes an optimal algorithm.

Observation 4: The quality or accuracy of a solution or an

analysis can become better, even optimal or exact, under parameter

restriction.

When an exact solution for a parameter relaxation is known, it

may seem questionable to examine restricted cases, as the exact

solution applies to them as well. However, even though there can



Abstraction

Refinement Approximation

S

E

N

S

E

N

Parameter

Relaxation Restriction

S

E

N

S

E

N

Behaviour

Relaxation Restriction

S

E

N

S

E

N

Implementation

Relaxation Restriction

S

E

N

S

E

N

Fig. 3. Impact of the different classes of generalization on sufficient (S), exact (E), and necessary (N) tests, with black arrows showing where the properties
of a test are retained in the other case, and red arrows showing where they are changed.

be no improvement in accuracy, investigating the scenario with

parameter restriction can still be meaningful. For instance, EDF is

an optimal scheduling algorithm for preemptive implicit-deadline

task sets [52], but for harmonic periods rate-monotonic scheduling,

which is easier to implement, is optimal as well. With respect

to schedulability analysis, time demand analysis (TDA) [48] is an

exact schedulability test with pseudo-polynomial time complexity

for rate-monotonic scheduling of implicit-deadline tasks. However,

for harmonic task sets, the utilisation-based test with linear time

complexity becomes exact. We note that this behaviour is not limited

to corner cases (e.g., with utilisation 1). For some semi-harmonic

task sets, prevalent in automotive applications, where task periods

are in the set {1, 2, 5, 10, 20, 50, 100, 200, 1000}ms [45], an exact

test based on utilisation [72] is also known.

An optimal solution under parameter restriction can have properties

that make it easier to apply. For example, when considering static-

priority scheduling of sporadic arbitrary-deadline tasks, finding an

optimal priority ordering requires the use of Audsley’s algorithm [6]

for each task set, considering the period, deadline, and execution

time of each task. However, for constrained- and implicit-deadline

task sets deadline-monotonic [49] and rate-monotonic [52] priority

ordering, respectively, are optimal, regardless of the task execution

times. Further, they are also always the most robust priority orderings

in these cases, irrespective of the actual form that any additional

interference (e.g. omitted overheads, under-estimated task execution

times, etc.) may take [33].

Observation 5: Optimal solutions under parameter restriction are

often simpler and more efficient, or have preferred properties

compared to optimal solutions under parameter relaxation.

The examination of special cases is common practice when deriv-

ing theoretical results, since only one specific example is needed to

establish lower bounds for utilisation bounds or speedup factors [44].

For example, considering implicit-, constrained-, and arbitrary-

deadline task-sets under preemptive scheduling [52] the lower bound

speedup factor4 for static priority scheduling with optimal priority

assignment, compared to an optimal dynamic scheduling algorithm

is 1/ln(2) (approximately 1.44269), 1
Ω

(approx. 1.76322) [38] and

2 [35] respectively. Each of these results is derived from a different

task set with very specific parameters. Interestingly, the upper bound

on the speedup factor for the constrained-deadline case (also 1
Ω

) holds

under abstraction approximation, when a sufficient utilisation-based,

hyperbolic test is used instead of an exact test. This results in a greatly

simplified proof [28] for the upper bound with an exact test, since

4The maximum speedup factor ρA→B between two scheduling algorithms
A and B is the minimum increase in speed that is necessary to guarantee that
every task set that is schedulable with algorithm B can also be scheduled
with algorithm A.

that can be no greater than the bound determined under abstraction

approximation. Similarly, in the arbitrary-deadline case, the upper

bound of 2, holds even when the priority assignment policy used

is deadline monotonic, a parameter restriction that is not optimal in

this case, and a simple linear time schedulability test is used, again

leading to a greatly simplified proof [69] for the upper bound with

an exact test and optimal priority ordering.

This relation extends to complexity results (i.e., showing that a

restricted model is NP -hard directly translates to the relaxed model).

Restricted scenarios can also help to pinpoint the actual cause of the

complexity. For example, Ridouard et al. [60] showed in 2004 that

the scheduler design problem for segmented self-suspending tasks5

is NP -hard in the strong sense, even if each task only has two

computation segments and one suspension interval. In 2019, Chen

et al. [27] remarked that this already holds in the simplest setting

where each task only releases one job and all computation segments

have the same execution time [74], which means that the complexity

results directly from the self-suspending behaviour.

Observation 6: Negative theoretical results derived via parameter

restriction directly translate to more complex scenarios via param-

eter relaxation, and can thus simplify proofs.

Summary

Considering scenarios under parameter restriction can be beneficial

in multiple situations. Good solutions under parameter restriction

can be much simpler, more efficient, and have preferred properties.

Such solutions can be more robust to small changes and more easily

extended, both of which are qualities that are highly appreciated by

industry. Further, examining parameter restrictions enables negative

results, such as complexity results, utilisation bounds, and speedup

factors that provide fundamental properties of the studied problem to

be extended to more complex scenarios via parameter relaxation.

V. BEHAVIOUR RELAXATION VERSUS BEHAVIOUR RESTRICTION

Considering a model that permits additional behaviour (i.e., a be-

haviour relaxation) sounds promising, as it directly enables additional

systems to be covered. However, since a behaviour relaxation usually

results in losing some information (compared to behaviour restriction)

this generality often leads to an imprecise analysis for the restricted

scenario.

We first examine the downside that, when including additional

behaviour, the scenario with restricted behaviour may be modelled

less accurately (i.e., information is discarded), which can result in

5In the segmented self-suspension model, the execution behaviour of a task
is specified by an interleaving array of m execution intervals with related
WCET and m − 1 suspension intervals with related maximum suspension
time.



a less accurate analysis. For example, consider three tasks with

parameters (WCET, deadline, period, offset): periodic task τ1 (0.5,

0.5, 2, 0), periodic task τ3 (0.5, 1.5, 2, 0.5), and sporadic task

τ2 (1, 2, 2, -). If they are scheduled with static-priority scheduling

according to the task indexes (i.e., τ1 has the highest priority and τ3
the lowest), then an exact analysis for sporadic systems deems the

task set unschedulable as it assumes all tasks could be released at

time 0 and in this scenario task τ3 would miss its deadline. However,

when considering the offset of the periodic tasks, the task set is in

fact correctly determined schedulable under the given priority order.

In some situations, only highly relaxed or highly restricted models

are available and the trade-offs between these models have to be

examined. Consider tasks with self-suspension behaviour, where

the majority of research uses one of two models [29], [30]. The

segmented self-suspension model describes tasks via one specific

interleaving execution-suspension pattern, which all jobs of the task

must comply with. This enables an accurate analysis, but only covers

a very specific behaviour (i.e., it is often too restricted). By contrast,

the dynamic self-suspension model is very flexible but imprecise.

The dynamic self-suspension model, compared to the sporadic task

model, only assumes an upper bound on the total suspension time as

additional information, and jobs are permitted to alternate between

execution and suspension as many times as they like provided that

the given bounds on total WCET and suspension time are not

violated. This model can therefore cater for any task with suspension

behaviour, but its flexibility results in a very pessimistic analysis if

the tasks behaviour can be described more precisely [71] (i.e., it

is arguably too relaxed). Models with different trade-offs provide a

potential solution to the “Goldilocks” [32] issue of too much relax-

ation or too much restriction. For example, hybrid self-suspension

models [71] provide improvements in schedulability compared to the

dynamic self-suspension model if additional information about the

task behaviour can be obtained. Knowing the number of suspension

intervals and upper bounds on the execution times of the individual

segments can increase the analysis accuracy considerably. Accuracy

can be further improved if all possible execution-suspension patterns

are known offline or even online [71]. Again there is the trade-off

between analysis accuracy and the amount of information that needs

to be provided.

Observation 7: Behaviour relaxation may ultimately result in the

description of the behaviour becoming too imprecise, leading to

pessimism or inaccuracy in the analysis. By contrast, the additional

information considered through behaviour restriction can make the

analysis more complex, but also has the potential to improve its

accuracy. It may however also result in not all of the required

problems being covered.

This example shows that separating different kinds of generaliza-

tion is not always easy and that there is some overlap. On the one

hand, hybrid self-suspension is a behaviour restriction of the dynamic

self-suspension model and a behaviour relaxation of the segmented

self-suspension model. On the other hand, starting from the seg-

mented self-suspension model, the hybrid self-suspension model can

also be seen as an abstraction refinement: the hybrid model describes

the system with a set of execution/suspension patterns, while the

segmented model is an abstraction approximation that (assuming

the number of suspension intervals is constant) upper-bounds all

execution segments and suspension intervals with the maximum

execution time/suspension time value over all these patterns for the

related segment/interval.

Summary

Behaviour relaxations cover systems with additional, often more

flexible behaviour. However, this may come at a price of reduced

analysis accuracy, since behaviour relaxation discards information

that was available in the restricted case. It can thus be beneficial to

choose the right level of behaviour restriction to obtain the desired

trade-off between generality of the model and analysis accuracy.

VI. GENERALIZATION IN IMPLEMENTATION SPACE

This section discusses generalization of system implementation

(i.e., the inclusion of additional possible solutions for a given prob-

lem). In this sense, global scheduling is more general than partitioned

scheduling on a multiprocessor, and dynamic-priority scheduling is

more general than static-priority scheduling. By this we mean that

global scheduling, which is able to support task migration, can be

tailored to replicate any form of partitioned scheduling, but the

converse is not true. Similarly, dynamic-priority scheduling can be

tailored to replicate any form of static-priority scheduling, but the

converse is not true.6

One might assume that the inexorable rise in demand for ever more

complex functionality implemented in software and the associated

increases in processor performance required would result in a high

demand for solutions that enable the capacity of processors, networks

and other components of real-time systems to be fully utilised.

However, a recent survey [1], [2] examining industrial practice in

the field of real-time systems, found that this is often not the

case. Instead, simple and well understood solutions and analyses are

typically preferred.

Further, applying a more general system implementation may be

prevented by constraints and limitations. These can be the result of

external requirements (e.g., that a certain COTS hardware platform

must be used), compliance to certain standards (e.g., AUTOSAR [8])

is required, or restrictions of the middleware used (e.g., many

commercial RTOS support static-priority scheduling, but support for

EDF is less common).

Observation 8: In real-world situations applying a more general

solution can be prevented by constraints and limitations on the

system.

Even if there are no such restrictions and concerns, providing a

more general system implementation will usually also have some

downside that needs to be considered. A more general system

implementation is often more complex to implement and to analyse.

Therefore, investing this effort is only sensible when the expected

gains are high enough, which is not always the case. For example,

global scheduling is theoretically able to achieve the highest processor

utilisation. However, a study by Brandenburg and Gul [24] showed

that for implicit-deadline task sets, semi-partitioned approaches are

able to schedule task sets with very nearly 100% processor utilisa-

tion, demonstrating that the potential for improvement under global

scheduling is very limited in practice.

A choice of solution that appears to be beneficial in theory can

also be sub-optimal in practice due to increased system overheads.

One well-known example is the comparison between preemptive and

non-preemptive scheduling. While preemptive scheduling in theory

6 Note, this does not mean that any global scheduling algorithm is superior
to any partitioned scheduling algorithm, for example global EDF does not
dominate partitioned fixed priority scheduling. Similarly, it does not mean that
any dynamic-priority scheduling algorithm is superior to any static-priority
scheduling algorithm, for example, non-preemptive EDF does not dominate
non-preemptive fixed priority scheduling.



increases system schedulablity, due to the fact that it assigns the

processor to an arriving high-priority job immediately, the cache-

related preemption delays resulting from context switches can negate

this effect, since they may increase the WCET of tasks by up to

40% [56].

Another example is multiprocessor scheduling, where global

scheduling in theory enables 100% utilisation of the processors, while

partitioned scheduling leaves empty capacity due to the underlying

bin-packing problem. However, since partitioned scheduling allows

the effective use of caches, avoids migration overheads, and reduces

RTOS overheads as well as access contention compared to global

scheduling, it has been shown that in practice global scheduling

is not preferable to partitioned scheduling as the number of cores

increases [16].

Observation 9: The gain of implementation relaxation (i.e., a

more general system implementation) can be minimal or non-

existent when a restricted implementation is already nearly optimal.

Further, the resulting overheads of the relaxed implementation may

completely negate any theoretical gain.

When the additional possibilities resulting from an implementation

relaxation can be exploited without any significant drawback, these

possibilities can often result in higher performance. For example,

consider dynamic-priority and static-priority preemptive scheduling

of sporadic tasks in a single processor system. Here, an optimal

dynamic-priority scheduling algorithm such as EDF strictly domi-

nates static-priority scheduling assuming optimal priority assignment:

Every task set that is schedulable using a static-priority scheduling

algorithm is also schedulable using EDF; however, the converse is

not true. This dominance is reflected in the empirical performance of

the corresponding exact schedulability tests.

When the additional analytical complexity (e.g., due to additional

interference between system components that now has to be consid-

ered) results in a less precise analysis, then this effect may counter the

potential gain of an implementation relaxation. Consider, for example,

global and partitioned multiprocessor scheduling. Some exact schedu-

lability tests for global static-priority [63], [65] and global EDF [12],

[19], [39] scheduling are known, but their scalability is such that

they cannot be applied to anything more than toy examples (from an

industrial perspective). When sufficient schedulability tests are used,

the current state-of-the-art analyses for global scheduling, both for

static-priority [31], [40], [41], [63] and EDF [11], [13], [64], stem

from the seminal work by Baker [10], which leads to an interference

upper bound with a multiplicative factor of 1/m in the resulting tests,

where m is the number of processors. These analyses are, however,

not able to show any gain compared to partitioned scheduling, even if

task migration costs are ignored. On the contrary, it has been shown

for global static-priority scheduling [66] as well as for global EDF

and global FIFO scheduling [17] that the sufficient analysis for global

scheduling is dominated by partitioned scheduling (i.e., all task sets

that are deemed schedulable under global scheduling according to

these tests are also schedulable under partitioned scheduling when

a certain partitioning algorithm is used). Hence, a fundamentally

different analysis technique is needed to exploit the potentially higher

utilisation of global scheduling compared to partitioned scheduling.

Observation 10: The analysis for the general case of an imple-

mentation relaxation can be too imprecise to exploit the theoretical

gain, due to high problem complexity and/or the complexity of the

analysis itself.

While special cases often have simpler structures that can signifi-

cantly simplify the studied problem, these simplifications may sacri-

fice optimality or analysis accuracy. We use two concrete examples

to discuss these potential pitfalls.

Federated scheduling was proposed by Li et al. [51] to handle

implicit-deadline sporadic real-time directed acyclic graph (DAG)

tasks on multiprocessor platforms. However, “in terms of the speedup

metric with respect to any optimal scheduling algorithm, federated

scheduling strategies do not yield any constant speedup factors for

constrained-deadline task systems with DAG structures” [26]. Al-

though federated scheduling has been adopted as a simplified schedul-

ing paradigm, an optimal federated schedule may have unbounded

performance loss in comparison to the actual optimal solution.

Considering resource sharing on multiprocessors, Brandenburg and

Anderson [22] showed that Ω(m) priority-inversion blocking (pi-

blocking) is unavoidable under suspension-oblivious schedulability

analysis for multiprocessor locking protocols [22], where m is the

number of processors. The underlying intuition is that a task may

in the worst case be blocked by one task on each processor. Several

protocols are known that are asymptotically optimal for minimizing

the pi-blocking when using FIFO-waiting queues (e.g., FMLP [18],

FMLP+ [21], OMLP [23], and DFLP [20]). However, the actual

performance bottleneck is the way in which the tasks are partitioned

(respectively, the way task instances are assigned to the processors

under global scheduling), as this can potentially avoid the worst case

of Ω(m) pi-blocking. Therefore, algorithms that consider partitioning

strategies and resource sharing protocols simultaneously have the

potential to reduce the blocking time and as a result improve

schedulability. Resource-oriented partitioned scheduling [42], [70]

focuses on the shared resources instead of the processor workload

(i.e., it partitions the shared resources first) and can result in a huge

gain in schedulability [42], [70].

Observation 11: The gain of an optimal algorithm under an imple-

mentation restriction can be negated by the fact that the restricted

implementation is far from optimal, or because the performance

bottleneck results from a different aspect of the problem.

Summary

The gain of implementation relaxation (i.e., a more general system

implementation) can be minimal or non-existent when a restricted

implementation is already (nearly) optimal. Further, the resulting

overheads of the relaxed implementation may completely negate any

theoretical gain. The analysis for the general case of an implemen-

tation relaxation can be too imprecise to exploit the theoretical gain,

due to high problem complexity and/or the complexity of the analysis

itself.

VII. ABSTRACTION LEVELS AND

INDUSTRY’S NEED FOR SIMPLICITY

Industry has a strong preference for solutions that are both simple

to implement and easy to understand. Industry practitioners, responsi-

ble for designing, developing, and verifying real-time systems, often

follow the KISS (“Keep It Simple Stupid”) principle, originally

coined by Kelly Johnson [59], lead engineer at Lockheed Skunk

Works, responsible for the U-2 and SR-71 aircraft. This maxim

follows from a quote attributed to Albert Einstein7 “make everything

as simple as possible, but not simpler”. In practice, real-time systems

are developed by multiple teams of people, and typically go through

7https://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363



a number of revisions and updates before and after deployment. This

life cycle of continuous development lends increased importance to

a set of non-functional properties (criteria) that apply both to the

system itself and to its analysis and verification:

• Composability: A system and its analysis are said to be

composable, if changes to a component can be made, within

some predefined limits (e.g., an execution time budget), without

requiring changes to other components or impacting upon their

analysis results.

• Robustness: The concept of robustness implies that small per-

turbations, either changes or errors in the values of parameters,

or online behaviour, or extra interference or overheads, should

not change the timing correctness of the system or the validity

of the analysis results. Hence, a robust system and analysis will

ensure that, as far as possible, a system remains schedulable

when subject to small perturbations, while a fragile system and

analysis will not.

• Extensibility: A system is extensible if new components can

be added, without the need to make modifications to the exist-

ing system configuration and components. Appropriate analysis

methods can be useful as part of a design approach that

optimizes extensibility.

• Parametric Simplicity: There is a cost to collecting the infor-

mation required by an analysis method, and to ensuring that

it is correct (i.e., precise values or upper / lower bounds as

appropriate). This cost may need to be paid each time a system

is modified.

There is typically a trade-off between the abstraction level used in

analysis, the accuracy of the analysis results, and the four criteria

stated above. A high level of abstraction that has good parametric sim-

plicity, may be composable, extensible, and robust, but the analysis

of it may result in classifying some systems as unschedulable when

in fact they are schedulable. This could lead to changes having to be

made to the system in order to render it schedulable according to the

simple analysis. On the other hand, a lower (i.e., more detailed) level

of abstraction and a more complex analysis may sacrifice parametric

simplicity, robustness, extensibility, and composability, in an effort

to avoid revisions to a system that is in fact already schedulable. It

is our contention that industry has a strong preference for keeping

things simple, and that this principle extends to the choice of analysis

methods, with simple analyses preferred, even if the downside of

that trade-off is some wasted system capacity. Simple analyses are

easier to understand and to support, and can enhance composability,

extensibility, and robustness. In the following three subsections we

provide examples and observations that support this view.

We note that different industry sectors, companies, and product

developments may value these four non-functional properties differ-

ently, and thus choose to make different trade-offs between those

properties and the accuracy of the analysis techniques employed.

A. Controller Area Network (CAN)

Controller Area Network (CAN) is widely used in automotive ap-

plications. The CAN protocol is an excellent example of design, based

on fixed priority non-preemptive scheduling, that has the potential

to support composability, robustness, extensibility, and parametric

simplicity. However, whether or not these properties hold for a

particular schedulability analysis for CAN depends on the level of

abstraction used, as the following discussion illustrates.

The first correct schedulability analysis of CAN [36] provided

exact and sufficient schedulability tests, assuming a sporadic model

of message releases. Later work extended the analysis to periodic

transactions (groups of messages with offsets) again providing both

exact and sufficient schedulability tests [73]. More recent works have

investigated robust [34], [37] and extensible [57] priority and message

ID assignments for CAN.

It is interesting to consider the simplest form of sufficient analysis

for CAN, discussed in [37]. This analysis effectively makes three sim-

plifying assumptions: (A1) message releases are sporadic, (A2) every

message is considered as having the maximum permitted length,

(A3) there are soft real-time messages of the maximum length at low

priorities, hence the blocking factor always takes a fixed maximum

value. These assumptions can impact the accuracy of the analysis;

however, for many automotive systems, the pessimism caused by

(A2) and (A3) is minimal or non-existent. Typically, the majority

of messages are of the maximum length, since CAN has a large

message overhead compared to payload, and thus it is efficient to

pack data into maximum length (8 data byte) messages. Further, there

are mandatory diagnostic messages that are of the maximum length

and are assigned background (low) priorities. These simplifying

assumptions are specific to the analysis of CAN, and would not apply

to fixed priority non-preemptive systems in general. There are many

positive aspects to using such a specific and simplified analysis:

• Composability: Changes can be made to the content of the mes-

sages increasing the number of data bytes up to the maximum

without any changes in the analysed worst-case response times

or network schedulability. Further, the sender of a message can

be changed8, provided that the same basic timing parameters

are respected (i.e., message periods and release jitter), without

any change to schedulability. Note, this is not the case when the

more sophisticated periodic transaction model and its analysis

are used [73], since the offset between messages sent by different

nodes is subject to clock drift.

• Robustness: Deadline-minus-Jitter monotonic priority ordering

has been proven optimal [75], [37] with respect to the simple

analysis. In this case, it is also optimally robust [37] with respect

to message delays due to re-transmissions caused by errors on

the CAN bus.

• Extensibility: As shown in [57], the simple analysis facilitates

the use of a priority ordering and an initial message ID assign-

ment that maximizes extensibility in terms of future upgrades,

i.e., the addition of further messages without having to change

the IDs of the existing messages or the software on the other

nodes.

• Parametric Simplicity: The simple analysis does not need to

know the length of any of the CAN messages, or their sending

nodes, only their basic timing parameters. Subsystem developers

are therefore free to change these aspects without compromising

network schedulability.

There is of course a trade-off here, with many recent CAN systems

developed using more detailed analysis, for example taking into

account different message lengths; however, this unavoidably sac-

rifices flexibility (the above properties) in exchange for more precise

analysis of the available bandwidth (schedulability). In our view,

practitioners may well benefit from being mindful of the properties

that are being sacrificed in the quest for improved schedulability, and

thus only make choices that compromise those properties when it is

necessary to do so, rather than by default.

It is interesting to note that early commercial use of flawed analysis

for CAN (see [36] for a discussion) fortuitously avoided issues

8As would happen if a task processing data obtained via the CAN bus and
outputting its results back on to the bus were moved from one node to another.



in deployed systems because simplifying assumptions were used,

namely (A3). This meant that the flawed analysis did not manifest in

incorrect schedulability results. Here, the KISS principle delivered a

welcome additional benefit.

Observation 12: Taking account of the specific details of an

application domain can lead to a simplified analysis that makes

a trade-off in analysis accuracy (pessimism) that is acceptable to

industry, while meeting other important criteria, such as compos-

ability, robustness, extensibility, and parametric simplicity.

B. Static-priority co-operative scheduling

Arguably two of the greatest advances in real-time systems re-

search during the 1990s were the development of response time

analysis as a practical engineering approach [43], [7] to analysing

single core systems that use static-priority scheduling, and the coin-

cidental development of effective resource locking protocols, e.g., the

Stack Resource Protocol [9]. The standard response time analysis

formulation for static-priority preemptive scheduling is reproduced

below. Ci and Ti are the execution time budget and minimum inter-

arrival time or period of task τi. Ri is its computed response time.

If Ri ≤ Di then the task is schedulable, where Di is the task’s

constrained deadline (Di ≤ Ti).

Ri = Bi + Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj (1)

Assuming that the Stack Resource Protocol [9] is used, then the

blocking factor Bi is given by the longest time for which any task

of lower priority than task τi holds a resource that is also accessed

by a task of the same as or higher priority than task τi. To compute

the blocking factor Bi, it is therefore necessary to know: (i) which

tasks access each resource, and (ii) the maximum length of time that

each task holds each of the resources that it accesses. The need for

this information places a burden on system developers to provide it

and to ensure that it is correct. It also damages composability and

extensibility, since adding a new resource access to a task can impact

the schedulability of other tasks, even if the task still complies with its

execution time budget. Similarly, adding a task at the lowest priority

that locks a resource that is shared with the highest priority task

potentially impacts the schedulability of every task in the system.

An alternative approach is to set Bi = Cs, where Cs is a budget on

the maximum length of any critical section in any task, where either

preemption is disabled or a resource is locked. The formulation then

becomes a sufficient test for static-priority co-operative scheduling,

where Cs is an upper bound on the time that any task may execute

non-preemptively before it yields a scheduling point. The use of such

a critical section budget decouples the analysis from a reliance on

information about other tasks, save for their execution time budgets

and periods, thus supporting composability and extensibility. Further,

this formulation belongs to a category of analyses where Deadline

Monotonic priority assignment has been proven to provide optimal

robustness [33] with respect to any reasonable9 additional interference

function. Examples of such additional interference functions include

scheduler, RTOS, and interrupt handler overheads, and underestima-

tion of the execution times of other tasks.

This alternative formulation corresponds to what is now common

practice in the automotive industry, where a small number of tasks

with nearly harmonic periods are used as containers for hundreds

9Reasonable meaning that the maximum additional interference is no
smaller in a longer time interval than it is in a shorter one.

of “runnables” [45]. The runnables execute sequentially within their

task, and preemption is only permitted at explicit preemption points

between them. (This structure was designed to make the development

of large numbers of runnables manageable and to simplify the

run-time environment / operating system.) Provided that the total

execution time of the runnables in a task does not exceed the task’s

execution time budget, and no runnable executes for longer than

the critical section budget, then the analysis holds. Thus the system

and its analysis are both composable and extensible. Further, the co-

operative scheduling behaviour enables all shared resource accesses,

which can amount to thousands of accesses to global variables

(referred to as “labels”) [45], to take place without the need for,

or overhead of, explicit resource locking.

Observation 13: Co-design of analysis and runtime behaviour

specific to an application domain can produce solutions that

are more efficient, have simpler analysis, and support industry-

relevant criteria, including composability, robustness, extensibility,

and parametric simplicity.

C. Cache-related preemption delays

As a final example, we consider a single core system with a shared

cache. With static-priority preemptive scheduling, a preempting task

can evict cache lines that a preempted task was using, and hence

the analysis needs to account for Cache-Related Preemption Delays

(CRPD). Schedulability analysis accounting for CRPD in static-

priority preemptive scheduling [4] can be achieved at various levels

of abstraction, using more or less information. In the following, ECB

refers to the Evicting Cache Blocks of a preempting task and UCB

to the Useful Cache Blocks of a preempted task.

• Coarse approximation: Assumes that on each preemption, the

whole cache is evicted. In this case, only information about the

hardware (i.e., the size of the cache, block reload time etc.) is

required, no information is needed about the ECBs or UCBs

of each task. A composable analysis is thus possible, since

the software for the tasks may be changed, respecting their

execution time budgets, without impacting analysed response

times including the impact of CRPD on schedulability.

• ECB-Only approximation [25], [68]: Assumes that on each

preemption, all the ECBs of the preempting task are evicting

useful cache blocks of preempted tasks that will subsequently

need to be reloaded. In this analysis, the additional cost can be

added to the execution time of the preempting task, and amounts

to the size of the set of ECBs that the task uses multiplied by

the block reload time. This approximation is less coarse than the

one above, but requires more information. In this respect, the

size of the set of ECBs for a task is relatively easy to obtain,

as compared to UCBs, at least considering instruction caches.

Further, if each task is given an ECB set size budget, then the

analysis can still be composable, since it supports changes to the

software of other tasks that respects their execution time budgets

and ECB set size budgets. Experimental evaluation of CRPD

analysis techniques [61] shows that ECB-Only comes close in

accuracy to significantly more complex and brittle approaches,

such as Multi-set approaches discussed below.

• UCB-Only approximation [47]: Assumes that on each preemp-

tion by a task τj , the maximum size UCB of all the tasks that

may be preempted by τj and have higher or equal priority to

task τi (the task under analysis) are evicted. This analysis needs

only the size of the UCBs of the tasks; however, this information

is typically more difficult to obtain than that for ECBs. Again



the analysis could potentially be composable if tasks were given

UCB set size budgets; however, compliance with these budgets

would be much more difficult to achieve in practice than with

ECB set size budgets.

• ECB-Union [3], UCB-Union [67], and Multi-set approaches [4]:

These provide the most precise analysis, but require detailed

information about the UCB and ECB sets for all tasks. As these

approaches use the intersection of the sets of UCBs and ECBs,

rather than just their sizes, these analyses are not composable.

Changing a task’s code, even staying within budgets for the size

of its UCB and ECB sets could impact the schedulability of other

tasks, since the size of the UCB and ECB set intersections may

change.

• Further improvements to the analysis of static-priority preemp-

tive systems with CRPD can be achieved by considering cache

lines that are able to persist in the cache between the execution

of jobs of the same task, without being evicted by interleaving

execution. This analysis focuses on Cache Persistence Reload

Overheads (CPRO) [58], and dominates equivalent analyses that

only consider CRPD.

The above example illustrates how different levels of abstraction

and corresponding analyses are possible when considering the same

problem.

Observation 14: Deeper levels of abstraction support more complex

analyses that can theoretically provide more accurate results;

however, they also require more information to be collected, which

is typically more costly to obtain, and the use of which is often

detrimental to other desirable properties, such as composability,

extensibility, and robustness.

There is an age-old philosophical argument, attributed to Voltaire,

that “the perfect should not be the enemy of the good”. Stated

otherwise, achieving a perfect solution may be impossible and since

increasing effort results in diminishing returns, further activity be-

yond a certain point becomes increasingly inefficient. Thus solutions

with a theoretical advantage when complex analyses are used (e.g.,

non-partitioned caches versus cache partitioning [5]) may see this

advantage eroded or negated when simpler analyses are employed.

Observation 15: The levels of abstraction and complexity of

analyses that are viable for industry to use may be such that

the “good enough” solutions that provide the best performance in

practice take a quite different form from those that provide the best

performance in theory.

D. Summary

In this section, we have considered the different levels of ab-

straction that may be used in modelling a system and hence in

its analysis. Here, we see that there is typically a trade-off, with

deeper abstraction levels enabling a more accurate but also more

complex analysis, at the expense of non-functional properties such

as composability, extensibility, robustness, and parametric simplicity.

While it is appropriate for researchers in the real-time systems

community to work towards improved solutions and analyses that can

provide the most precise results, it is also important to consider other

significant factors that impact adoption by industry. In many cases,

careful consideration of the details of a specific problem domain

can enable a simple solution and corresponding analysis approach

that in practice trades-off little in terms of accuracy, with substantial

improvements to other important non-functional properties. In our

opinion, such work is more likely to have an impact on industry

practice.

VIII. CONCLUSIONS

In 1966, Levins [50] discussed the philosophy of modelling,

arguing that there is an inevitable and unavoidable trade-off between

three properties of a model: precision, realism, and generality. Levins

argues that no useful model can exist that maximises precision

(accuracy of results with respect to the model), realism (accuracy

of replicating what is being modelled), and generality (applicability

to multiple problems). For a model to be useful it must be tractable,

thus introducing a forth dimension into this inevitable compromise.

In this paper, we have discussed different ways in which real-time

systems research seeks to progress towards more general and realistic

models (in Levins’ terminology) and their accompanying analyses.

This is achieved via parameter relaxation, abstraction refinement,

behaviour relaxation, and implementation relaxation, discussed in

Sections III, IV, V, and VI respectively, while specific problems with

their constraints, restrictions, and limitations are given less attention.

However, by focusing on the general rather than the specific, the

system models and analyses developed inevitably become more

complex and less tractable. Crucially, continual progress in the

direction of high fidelity general models and analyses inevitably

results in severe compromises to other non-functional properties, such

as composability, robustness, extensibility, and parametric simplicity.

These properties are arguably of greater value to industry than eking

out the last percentage point of system capacity through ever more

detailed modelling and analysis, as discussed in Section VII.

In conclusion, we argue that while real-time systems researchers

should still investigate improvements and refinements to models and

analyses in the direction(s) of generality, there are significant benefits

to be had from allocating more effort to exploring specific problem

instances that are relevant to industry, and also by looking at other

important fundamental properties of analyses beyond their accuracy

and complexity. Considering specific industry relevant problems,

there are often constraints, restrictions, and limitations, that can be

brought to bear to simplify the models and analyses used. The result

being viable techniques that give little away in terms of accuracy

and capability, yet provide strong support for key non-functional

properties that are important to industry. Indeed, co-design of analysis

and restrictions on the implementation focusing on a specific problem

may combine to bring both a simpler analysis and efficiency gains.

We would like to encourage real-time systems researchers to think

carefully about how their research can actually be applied. There

may be some simplifications or constraints that emanate from specific

practical examples of a problem that can make the difference between

industry viewing the resulting analysis as an interesting intellectual

curiosity that they will never use or as a viable method where they

can see the potential for significant impact.

Finally, our advice to practitioners involved in developing real-

time systems using tools that implement schedulability analysis

or other timing verification techniques is as follows. To consider

carefully the level and detail of information required by those tools

and the implications that has on non-functional properties, such as

composability, robustness, extensibility, and parametric simplicity.

Choosing simpler analysis configurations and techniques may be

preferable. Or where that is not possible, treating parameters as

budgets (with headroom to accommodate change) rather than precise

values, may bring substantial benefits.



Acknowledgement: The research in this paper is partially funded

by the EPSRC grant STRATA (EP/N023641/1) and the Innovate UK

HICLASS project (113213). EPSRC Research Data Management:

No new primary data was created during this study. This result is

part of three projects that have received funding from the European

Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No. 803111,

grant agreement No. 865170, and grant agreement No. 101020415).

REFERENCES

[1] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. An
empirical survey-based study into industry practice in real-time systems.
In 41st IEEE Real-Time Systems Symposium, RTSS 2020, Houston, TX,

USA, December 1-4, 2020, pages 3–11. IEEE, 2020.

[2] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. A
comprehensive survey of industry practice in real-time systems. Real-

Time Syst., page 41, 2021.

[3] S. Altmeyer, R. I. Davis, and C. Maiza. Cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems. In
Proceedings of the 32nd IEEE Real-Time Systems Symposium, RTSS

2011, Vienna, Austria, November 29 - December 2, 2011, pages 261–
271. IEEE Computer Society, 2011.

[4] S. Altmeyer, R. I. Davis, and C. Maiza. Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-
emptive systems. Real Time Syst., 48(5):499–526, 2012.

[5] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis. On the effective-
ness of cache partitioning in hard real-time systems. Real Time Syst.,
52(5):598–643, 2016.

[6] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times, 1991.

[7] N. C. Audsley, A. Burns, M. M. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority pre-emptive
scheduling. Softw. Eng. J., 8(5):284–292, 1993.

[8] AUTOSAR. AUTOSAR standards. https://www.autosar.org/standards/,
2021.

[9] T. P. Baker. A stack-based resource allocation policy for realtime
processes. In Proceedings of the Real-Time Systems Symposium - 1990,

Lake Buena Vista, Florida, USA, December 1990, pages 191–200. IEEE
Computer Society, 1990.

[10] T. P. Baker. Multiprocessor EDF and deadline monotonic schedulability
analysis. In Proceedings of the 24th IEEE Real-Time Systems Symposium

(RTSS 2003), 3-5 December 2003, Cancun, Mexico, pages 120–129.
IEEE Computer Society, 2003.

[11] T. P. Baker and S. K. Baruah. An analysis of global EDF schedulability
for arbitrary-deadline sporadic task systems. Real Time Syst., 43(1):3–
24, 2009.

[12] T. P. Baker and M. Cirinei. Brute-force determination of multiprocessor
schedulability for sets of sporadic hard-deadline tasks. In Principles

of Distributed Systems, 11th International Conference, OPODIS 2007,

Guadeloupe, French West Indies, December 17-20, 2007. Proceedings,
pages 62–75, 2007.

[13] S. K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller.
Implementation of a speedup-optimal global EDF schedulability test. In
21st Euromicro Conference on Real-Time Systems, ECRTS 2009, Dublin,

Ireland, July 1-3, 2009, pages 259–268. IEEE Computer Society, 2009.

[14] S. K. Baruah and A. Burns. Sustainable scheduling analysis. In
Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS

2006), 5-8 December 2006, Rio de Janeiro, Brazil, pages 159–168. IEEE
Computer Society, 2006.

[15] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok. Generalized
multiframe tasks. Real Time Syst., 17(1):5–22, 1999.

[16] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. An empirical
comparison of global, partitioned, and clustered multiprocessor EDF
schedulers. In Proceedings of the 31st IEEE Real-Time Systems

Symposium, RTSS 2010, San Diego, California, USA, November 30 -

December 3, 2010, pages 14–24. IEEE Computer Society, 2010.

[17] A. Biondi and Y. Sun. On the ineffectiveness of 1/m-based interference
bounds in the analysis of global EDF and FIFO scheduling. Real Time

Syst., 54(3):515–536, 2018.

[18] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson. A
flexible real-time locking protocol for multiprocessors. In 13th IEEE

International Conference on Embedded and Real-Time Computing Sys-

tems and Applications (RTCSA 2007), 21-24 August 2007, Daegu, Korea,
pages 47–56. IEEE Computer Society, 2007.

[19] V. Bonifaci and A. Marchetti-Spaccamela. Feasibility analysis of spo-
radic real-time multiprocessor task systems. Algorithmica, 63(4):763–
780, 2012.

[20] B. B. Brandenburg. Blocking optimality in distributed real-time locking
protocols. Leibniz Trans. Embed. Syst., 1(2):01:1–01:22, 2014.

[21] B. B. Brandenburg. The FMLP+: an asymptotically optimal real-time
locking protocol for suspension-aware analysis. In 26th Euromicro

Conference on Real-Time Systems, ECRTS 2014, Madrid, Spain, July

8-11, 2014, pages 61–71. IEEE Computer Society, 2014.

[22] B. B. Brandenburg and J. H. Anderson. Optimality results for multi-
processor real-time locking. In Proceedings of the 31st IEEE Real-Time

Systems Symposium, RTSS 2010, San Diego, California, USA, November

30 - December 3, 2010, pages 49–60. IEEE Computer Society, 2010.

[23] B. B. Brandenburg and J. H. Anderson. The OMLP family of optimal
multiprocessor real-time locking protocols. Des. Autom. Embed. Syst.,
17(2):277–342, 2013.

[24] B. B. Brandenburg and M. Gul. Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations. In 2016 IEEE Real-Time Systems Symposium, RTSS 2016,

Porto, Portugal, November 29 - December 2, 2016, pages 99–110. IEEE
Computer Society, 2016.

[25] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. J. Gil, and A. J. Wellings.
Adding instruction cache effect to schedulability analysis of preemptive
real-time systems. In 2nd IEEE Real-Time Technology and Applications

Symposium, RTAS ’96, Boston, MA, USA, June 10-12, 1996, pages 204–
212. IEEE Computer Society, 1996.

[26] J. Chen. Federated scheduling admits no constant speedup factors for
constrained-deadline DAG task systems. Real Time Syst., 52(6):833–838,
2016.

[27] J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen.
Scheduling self-suspending tasks: New and old results. In 31st Euromi-

cro Conference on Real-Time Systems, ECRTS 2019, July 9-12, 2019,

Stuttgart, Germany, volume 133 of LIPIcs, pages 16:1–16:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[28] J. Chen, W. Huang, and C. Liu. k2u: A general framework from k-point
effective schedulability analysis to utilization-based tests. In 2015 IEEE

Real-Time Systems Symposium, RTSS 2015, San Antonio, Texas, USA,

December 1-4, 2015, pages 107–118. IEEE Computer Society, 2015.

[29] J. Chen, G. Nelissen, W. Huang, M. Yang, B. B. Brandenburg, K. Blet-
sas, C. Liu, P. Richard, F. Ridouard, N. C. Audsley, R. Rajkumar,
D. de Niz, and G. von der Brüggen. Many suspensions, many problems:
a review of self-suspending tasks in real-time systems. Real Time Syst.,
55(1):144–207, 2019.

[30] J. Chen, G. von der Brüggen, W. Huang, and C. Liu. State of the art
for scheduling and analyzing self-suspending sporadic real-time tasks.
In 23rd IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, RTCSA 2017, Hsinchu, Taiwan,

August 16-18, 2017, pages 1–10. IEEE Computer Society, 2017.

[31] J. Chen, G. von der Brüggen, and N. Ueter. Push forward: Global fixed-
priority scheduling of arbitrary-deadline sporadic task systems. In 30th

Euromicro Conference on Real-Time Systems, ECRTS 2018, July 3-6,

2018, Barcelona, Spain, volume 106 of LIPIcs, pages 8:1–8:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[32] J. Cundall. Treasury of Pleasure Books for Young Children. Grant and
Griffith successors to Newbery and Harris, 1850.

[33] R. I. Davis and A. Burns. Robust priority assignment for fixed priority
real-time systems. In Proceedings of the 28th IEEE Real-Time Systems

Symposium (RTSS 2007), 3-6 December 2007, Tucson, Arizona, USA,
pages 3–14. IEEE Computer Society, 2007.

[34] R. I. Davis and A. Burns. Robust priority assignment for messages on
controller area network (CAN). Real Time Syst., 41(2):152–180, 2009.

[35] R. I. Davis, A. Burns, S. Baruah, T. Rothvoß, L. George, and O. Gettings.
Exact comparison of fixed priority and EDF scheduling based on
speedup factors for both pre-emptive and non-pre-emptive paradigms.
Real Time Syst., 51(5):566–601, 2015.

[36] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Controller area
network (CAN) schedulability analysis: Refuted, revisited and revised.
Real Time Syst., 35(3):239–272, 2007.



[37] R. I. Davis, A. Burns, V. Pollex, and F. Slomka. On priority assignment
for controller area network when some message identifiers are fixed.
In Proceedings of the 23rd International Conference on Real Time

Networks and Systems, RTNS 2015, Lille, France, November 4-6, 2015,
pages 279–288. ACM, 2015.

[38] R. I. Davis, T. Rothvoß, S. K. Baruah, and A. Burns. Exact quantifi-
cation of the sub-optimality of uniprocessor fixed priority pre-emptive
scheduling. Real Time Syst., 43(3):211–258, 2009.

[39] G. Geeraerts, J. Goossens, and M. Lindström. Multiprocessor schedu-
lability of arbitrary-deadline sporadic tasks: complexity and antichain
algorithm. Real-Time Systems, 49(2):171–218, 2013.

[40] N. Guan, M. Han, C. Gu, Q. Deng, and W. Yi. Bounding carry-in
interference to improve fixed-priority global multiprocessor scheduling
analysis. In 21st IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications, RTCSA 2015, Hong Kong,

China, August 19-21, 2015, pages 11–20. IEEE Computer Society, 2015.

[41] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds
for fixed priority multiprocessor scheduling. In Proceedings of the 30th

IEEE Real-Time Systems Symposium, RTSS 2009, Washington, DC, USA,

1-4 December 2009, pages 387–397. IEEE Computer Society, 2009.

[42] W. Huang, M. Yang, and J. Chen. Resource-oriented partitioned
scheduling in multiprocessor systems: How to partition and how to
share? In 2016 IEEE Real-Time Systems Symposium, RTSS 2016, Porto,

Portugal, November 29 - December 2, 2016, pages 111–122, 2016.

[43] M. Joseph and P. K. Pandya. Finding response times in a real-time
system. Comput. J., 29(5):390–395, 1986.

[44] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.
J. ACM, 47(4):617–643, 2000.

[45] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmarks for free. In 6th Internat. Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems (WATERS), 2015.

[46] T. Kuo and A. K. Mok. Load adjustment in adaptive real-time systems.
In Proceedings of the Real-Time Systems Symposium - 1991, San

Antonio, Texas, USA, December 1991, pages 160–170. IEEE Computer
Society, 1991.

[47] C. Lee, J. Hahn, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and
C. Kim. Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling. In Proceedings of the 17th IEEE Real-Time

Systems Symposium (RTSS ’96), December 4-6, 1996, Washington, DC,

USA, pages 264–274. IEEE Computer Society, 1996.

[48] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: Exact characterization and average case behavior. In Proceedings

of the Real-Time Systems Symposium - 1989, Santa Monica, California,

USA, December 1989, pages 166–171. IEEE Computer Society, 1989.

[49] J. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evaluation, 2:237–
250, 1982.

[50] R. Levins. The strategy of model building in population biology.
American Scientist, 54(4):421–431, 1966.

[51] J. Li, J. Chen, K. Agrawal, C. Lu, C. D. Gill, and A. Saifullah. Analysis
of federated and global scheduling for parallel real-time tasks. In 26th

Euromicro Conference on Real-Time Systems, ECRTS 2014, Madrid,

Spain, July 8-11, 2014, pages 85–96. IEEE Computer Society, 2014.

[52] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–61,
1973.

[53] A. K. Mok. Fundamental design problems of distributed systems for the
hard-real-time environment. Technical report, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1983.

[54] A. K. Mok and D. Chen. A multiframe model for real-time tasks.
In Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS

’96), December 4-6, 1996, Washington, DC, USA, pages 22–29. IEEE
Computer Society, 1996.

[55] N. T. Moyo, E. Nicollet, F. Lafaye, and C. Moy. On schedulability
analysis of non-cyclic generalized multiframe tasks. In 22nd Euromicro

Conference on Real-Time Systems, ECRTS 2010, Brussels, Belgium, July

6-9, 2010, pages 271–278. IEEE Computer Society, 2010.

[56] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha. Coscheduling
of CPU and I/O transactions in cots-based embedded systems. In
Proceedings of the 29th IEEE Real-Time Systems Symposium, RTSS

2008, Barcelona, Spain, 30 November - 3 December 2008, pages 221–
231. IEEE Computer Society, 2008.

[57] F. Pölzlbauer, R. I. Davis, and I. Bate. A practical message ID assign-
ment policy for controller area network that maximizes extensibility.

In Proceedings of the 24th International Conference on Real-Time

Networks and Systems, RTNS 2016, Brest, France, October 19-21, 2016,
2016.

[58] S. A. Rashid, G. Nelissen, S. Altmeyer, R. I. Davis, and E. Tovar.
Integrated analysis of cache related preemption delays and cache persis-
tence reload overheads. In 2017 IEEE Real-Time Systems Symposium,

RTSS 2017, Paris, France, December 5-8, 2017, pages 188–198. IEEE
Computer Society, 2017.

[59] B. R. Rich. Clarence leonard (kelly) johnson 19101990: A biographical
memoir. National Academies Press, 1995.

[60] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling
independent hard real-time tasks with self-suspensions. In Proceedings

of the 25th IEEE Real-Time Systems Symposium (RTSS 2004), 5-

8 December 2004, Lisbon, Portugal, pages 47–56. IEEE Computer
Society, 2004.

[61] D. Shah, S. Hahn, and J. Reineke. Experimental evaluation of cache-
related preemption delay aware timing analysis. In 18th International

Workshop on Worst-Case Execution Time Analysis, WCET 2018, July 3,

2018, Barcelona, Spain, volume 63 of OASICS, pages 7:1–7:11. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[62] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The digraph real-time
task model. In 17th IEEE Real-Time and Embedded Technology and

Applications Symposium, RTAS 2011, Chicago, Illinois, USA, 11-14

April 2011, pages 71–80. IEEE Computer Society, 2011.
[63] Y. Sun and G. Lipari. A weak simulation relation for real-time schedu-

lability analysis of global fixed priority scheduling using linear hybrid
automata. In 22nd International Conference on Real-Time Networks and

Systems, RTNS ’14, Versaille, France, October 8-10, 2014, 2014.
[64] Y. Sun and G. Lipari. Response time analysis with limited carry-in

for global earliest deadline first scheduling. In 2015 IEEE Real-Time

Systems Symposium, RTSS 2015, San Antonio, Texas, USA, December

1-4, 2015, pages 130–140. IEEE Computer Society, 2015.
[65] Y. Sun and G. Lipari. A pre-order relation for exact schedulability test of

sporadic tasks on multiprocessor global fixed-priority scheduling. Real-

Time Systems, 52(3):323–355, 2016.
[66] Y. Sun and M. D. Natale. Assessing the pessimism of current multicore

global fixed-priority schedulability analysis. In Proceedings of the 33rd

Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France,

April 09-13, 2018, pages 575–583. ACM, 2018.
[67] Y. Tan and V. J. M. III. Timing analysis for preemptive multitasking real-

time systems with caches. ACM Trans. Embed. Comput. Syst., 6(1):7,
2007.

[68] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache-
related preemption delay in preemptive real-time systems. In Pro-

ceedings of the Eighth International Workshop on Hardware/Software

Codesign, CODES 2000, San Diego, California, USA, 2000, pages 67–
71. ACM, 2000.

[69] G. von der Brüggen, J. Chen, R. I. Davis, and W. Huang. Exact speedup
factors for linear-time schedulability tests for fixed-priority preemptive
and non-preemptive scheduling. Inf. Process. Lett., 117:1–5, 2017.

[70] G. von der Brüggen, J. Chen, W. Huang, and M. Yang. Release en-
forcement in resource-oriented partitioned scheduling for multiprocessor
systems. In Proceedings of the 25th International Conference on Real-

Time Networks and Systems, RTNS 2017, Grenoble, France, October 04

- 06, 2017, pages 287–296. ACM, 2017.
[71] G. von der Brüggen, W. Huang, and J. Chen. Hybrid self-suspension

models in real-time embedded systems. In 23rd IEEE International

Conference on Embedded and Real-Time Computing Systems and Ap-

plications, RTCSA 2017, Hsinchu, Taiwan, August 16-18, 2017, pages
1–9. IEEE Computer Society, 2017.

[72] G. von der Brüggen, N. Ueter, J. Chen, and M. Freier. Parametric
utilization bounds for implicit-deadline periodic tasks in automotive
systems. In Proceedings of the 25th International Conference on Real-

Time Networks and Systems, RTNS 2017, Grenoble, France, October 04

- 06, 2017, pages 108–117. ACM, 2017.
[73] P. M. Yomsi, D. Bertrand, N. Navet, and R. I. Davis. Controller area

network (CAN): response time analysis with offsets. In 9th IEEE

International Workshop on Factory Communication Systems, WFCS

2012, Lemgo, Germany, May 21-24, 2012, pages 43–52. IEEE, 2012.
[74] W. Yu, H. Hoogeveen, and J. K. Lenstra. Minimizing makespan in a

two-machine flow shop with delays and unit-time operations is np-hard.
J. Sched., 7(5):333–348, 2004.

[75] A. Zuhily and A. Burns. Optimal (d-j)-monotonic priority assignment.
Inf. Process. Lett., 103(6):247–250, 2007.


	Introduction
	Classes of Generalization
	Generalization in the input space
	Generalization in the implementation space
	Historical perspectives of generalization
	Analysis of models and implementation

	Abstraction Refinement versus Abstraction Approximation
	Parameter Relaxation versus Parameter Restriction
	Behaviour Relaxation versus Behaviour Restriction
	Generalization in Implementation Space
	Abstraction Levels andIndustry's Need for Simplicity
	Controller Area Network (CAN)
	Static-priority co-operative scheduling
	Cache-related preemption delays
	Summary

	Conclusions
	References

