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Abstract

This paper addresses fluid-driven crack propagation in a porous medium. Cohe-

sive interface elements are employed to model the behaviour of the crack. To

simulate hydraulic fracturing, a fluid pressure degree of freedom is introduced

inside the crack, separate from the fluid degrees of freedom in the bulk. Powell-

Sabin B-splines, which are based on triangles, are employed to describe the

geometry of the domain and to interpolate the field variables: displacements and

interstitial fluid pressure. Due to their 1-continuity, the stress and pressure gra-
dient are smooth throughout the whole domain, enabling a direct assessment of

the fracture criterion at the crack tip and ensuring local mass conservation. Due

to the use of triangles, crack insertion and remeshing are straightforward and

can be done directly in the physical domain. During remeshing a mapping of the

state vector (displacement and interstitial fluid pressure) is required. For this, a

newmethodology is exploited based on a least-square fit with the energy balance

and mass conservation as constraints. The accuracy to model free crack propa-

gation is demonstrated by two numerical examples, including crack propagation

in a plate with two notches.

KEYWORDS
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1 INTRODUCTION

Production of natural gas and oil from hydrocarbon-rich shale formations has become popular and exploits hydraulic

fracturing at a large scale. Yet, hydraulic fracturing as a well stimulation technique for improving hydrocarbon produc-

tion has been known since the late 1940s. The technique involves the fracturing of a porous medium by a pressurised

liquid. The process consists of high-pressure injection of a fracking fluid into a well-bore to create cracks in the deep

porous medium. In the early stages of hydraulic fracturing modelling, analytical solutions1,2 were derived on the basis of

simplifying assumptions, such as homogeneity and impermeability, an idealised geometry and linear elasticity. The first

numerical model of the fluid flow in a porousmediumwith a discontinuity was done by Boone and Ingraffea,3 using finite

elements for the porous medium and finite differences for the fluid in the crack. Since then a host of numerical models
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2 CHEN et al.

have been proposed, such as finite elements,4 the extended finite elementmethod,5–7 isogeometric analysis,8 extended iso-

geometric analysis,9 embedded strong discontinuities,10 the phase-field method,11 a coupled finite element-peridynamics

model,12 interfaces elements equipped with a cohesive zone model13 and a combined finite-discrete element method.14

Due to their simplicity and robust performance interface elements have gained popularity for modelling fracture ini-

tiation and propagation in a poroelastic medium.15,16 The interface elements are placed in the mesh a priori, requiring

information of the crack location. This limits the application of the interface elements in a general framework. Remeshing

can however remove this limitation and has been used successfully in the simulation of fracturing in a porousmedium.17,18

For the interpolation of the field variables several basis functions have been employed in this context. Lagrange basis

functions have been used frequently,15,16 due to their simplicity and ease of implementation. However, the 0-continuity
nature of the basis function deteriorates the accuracy of the simulation. The stress is generally discontinuous at element

boundaries and the crack tip. Normally, several elements are needed to well capture the fracturing behaviour, such as

the crack initiation and propagation direction. Furthermore, 0-continuous Lagrange bases lead to a discontinuous inter-
element pressure gradient. Accordingly, a local mass balance is not be guaranteed.

Due to their higher-order continuity, the basis functions used in isogemetric analysis –NURBS and T-splines – normally

avoid the discontinuous stress field and a loss of local mass balance, and have been used for discrete crack modelling,19

including in simulations of fracture in a fluid-saturatedmedium.8,9 However, in discrete crackmodelling the isogeometric

approach requires the introduction of 0-lines in cracked elements to confine the influence of cracks locally,20 thus elimi-
nating locally the advantage of isogeometric analysis, namely higher-order continuity. Moreover, new crack segments are

inserted in the parameter domain, rather than in the physical domain, and a reparameterisation of the domain is required

to align the mesh with the crack path in the physical domain. This makes it mandatory that the initial mesh is sufficiently

aligned with the final crack path a priori.20

In this contribution, we employ Powell-Sabin B-splines to simulate hydraulic fracturing in a fluid-saturated porous

medium. Powell-Sabin B-splines are defined on triangles, holding 1-continuity throughout the entire domain, even at
crack tips. This avoids the inaccuracy of the stress evaluation when employing Lagrange basis functions. Due to the flex-

ibility of triangular elements crack insertion is carried out directly in the physical domain, thus avoiding the limitation

adhering to isogeometric analysis. After the crack insertion the domain is remeshed to avoid elements with unsuitable

aspect ratio, resulting in new Powell-Sabin B-splines on a new mesh. Then, a mapping of the state vector (displacements

and pressure) is performed from the old onto the new mesh.

We start with an introduction of the governing equations for the hydraulic fracturing analysis. Section 3 derives the

weak form of the governing equations. Next, we present the Powell-Sabin finite element discretisation. The basis functions

and poromechanical interface elements are introduced here. In Section 5, we discuss the algorithm to insert a new crack

segment, including the algorithm for remeshing and state vector mapping. In Section 6, numerical examples are given

which demonstrate the versatility and accuracy of the method.

2 GOVERNING EQUATIONS FOR THE POROUSMEDIUM

Hydraulic fracturing in porous media is a complex physical phenomenon, including fluid flow in fractures, the pore fluid

flow in the porousmedium, and the deformation of the porousmedium. In this contribution, we confine the discussion to

(1) a fully saturated porous medium, (2) a Newtonian fluid, (3) infinitesimal strains and linear elastic material behaviour,

(4) nomass transfer or chemical interaction between the solid and the fluid, (5) no consideration of gravity, and convective

and inertia effects and (6) the fluid fully occupying the fracture, thus not considering possible fluid lag.We refer to Figure 1

for a graphical illustration of the investigated problem. The porous medium is split into two parts by an interface Γ𝑐. Biot’s

theory is used to model the porous media.21 The cohesive-zone model is used to model the fracturing behaviour.22,23

2.1 Deformations of the porous media

The fully saturated porous medium is modelled as a two-phase system with the solid skeleton fully filled with pore fluid.

The deformation of the solid develops fast compared to the pore fluid pressure change. Thus, the deformation of the porous

media can be considered as a quasi-static process, governed by the conservation of the hydro-static linear momentum24:

∇ ⋅ 𝜎𝜎𝜎 = 𝟎 on Ω (1)



CHEN et al. 3
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F IGURE 1 (A) A solid body𝛀 with an internal discontinuity Γ𝑐 . Γ𝑐 is an interface boundary with positive and negative sides, Γ
+
𝑐 and Γ

−
𝑐 ,

respectively. Boundary Γ𝑢 is prescribed with a displacement 𝐮̄; Γ𝑡 with a prescribed traction 𝐭̂; Γ𝑝 with a prescribed fluid pressure 𝑝̄; Γ𝑞 with a

prescribed inflow 𝑞̂; and Γ𝑄 with a prescribed inflow of fluid 𝑄̂; (B) pressure around the internal discontinuity Γ𝑐 .

where 𝜎𝜎𝜎 is the total stress, composed of the solid and pore fluid parts

𝜎𝜎𝜎 = 𝜎𝜎𝜎𝑠 − 𝛼𝑝𝐈 (2)

in which 𝑝 represents the apparent fluid pressure, 𝐈 denotes the unit tensor and 𝛼 is the Biot coefficient. 𝜎𝜎𝜎𝑠 is the stress

inside the solid material, which is linearly related to the strain by

𝜎𝜎𝜎𝑠 = 𝐃 ∶ 𝜀𝜀𝜀 (3)

with 𝐃 the elastic stiffness tensor, which is a function of two material constants – the Young’s modulus and the Poisson’s

ratio for isotropy.

2.2 Interstitial fluid pressure

The governing equations of the pressure in the interstitial fluid are obtained from the mass balance of the mixture13

𝛼∇ ⋅ 𝐮̇ − ∇ ⋅
(
𝑘𝑓∇𝑝

)
+

1

𝑀

𝜕𝑝

𝜕𝑡
= 0 on Ω (4)

in which 𝑘𝑓 denotes the effective permeability coefficient of the porous medium, 𝑘𝑓 = 𝑘∕𝜇. 𝑘 and 𝜇 are the intrinsic

permeability of the porous medium and the viscosity of the fluid, respectively, and𝑀 is the Biot modulus:

1

𝑀
=
𝛼 − 𝑛𝑓

𝐾𝑠
+
𝑛𝑓

𝐾𝑓
(5)

with 𝐾𝑠 and 𝐾𝑓 the solid and fluid moduli, respectively, and 𝑛𝑓 the porosity. 𝐮̇ represents the velocity of the solid and □̇

denotes the time derivative:

□̇ =
𝜕□

𝜕𝑡
𝐮̇ =

𝜕𝐮

𝜕𝑡
(6)

As starting point for the derivation of Equation (4), Darcy’s law is used:

𝐪 = −𝑘𝑓∇𝑝 = 𝑛𝑓(𝐯 − 𝐮̇) (7)

with 𝐪 the fluid flux and 𝐯 the velocity of the fluid.



4 CHEN et al.

2.3 Fluid flow in the fracture

To characterise the fluid flow inside the crack Γ𝑐, we consider a fully open crack filled with a Newtonian fluid,24 see

Figure 1A. The crack opening is assumed to be small compared to its length. In a two-dimensional setting themass balance

for the flow inside the crack reads:

𝜕𝑣

𝜕𝑠
+
𝜕𝑤

𝜕𝑛
= 0 (8)

with 𝑣 = 𝐯 ⋅ 𝐬 and𝑤 = 𝐯 ⋅ 𝐧 being the tangential and normal components of the fluid velocity 𝐯 in the crack, respectively.

𝐬 and 𝐧 are the tangential and normal vectors at the crack Γ𝑐, see Figure 1A, and (𝑠, 𝑛) denotes the local coordinate system

along the crack Γ𝑐. Integrating Equation (8) over the fracture height ℎ leads to the difference in the fluid velocity normal

to crack faces:

𝑤+ − 𝑤− = −∫
ℎ∕2

−ℎ∕2

𝜕𝑣

𝜕𝑠
d𝑛 (9)

where𝑤+ and𝑤− are the normal fluid velocities at the interfaceΓ𝑐
+ andΓ𝑐

−, respectively. In this contribution, the fracture

height ℎ is taken as the normal displacement jump in the fracture.

We assume that the tangential fluid velocity 𝑣 inside the crack ismuch higher than the normal fluid velocity𝑤. Since the

fracture height ℎ is much smaller than its length, we consider a constant fluid pressure 𝑝𝑑 inside the crack, see Figure 1B.

The balance of momentum in the tangential direction is then derived as

−
𝜕𝑝𝑑
𝜕𝑠

+
𝜕𝜏

𝜕𝑛
= 0 (10)

with 𝜏 being the shear stress, which is derived from 𝜏 = 𝜇
𝜕𝑣

𝜕𝑛
. Now, we reformulate Equation (10) as

−
𝜕𝑝𝑑
𝜕𝑠

+
𝜕

𝜕𝑛

(
𝜇
𝜕𝑣

𝜕𝑛

)
= 0 (11)

and the tangential fluid velocity is obtained by solving Equation (11) with no-slip boundary conditions at 𝑛 = ±ℎ∕2:

𝑣(𝑛) =
1

2𝜇

𝜕𝑝𝑑
𝜕𝑠

(
𝑛2 −

(
ℎ

2

)2
)

(12)

Substituting Equation (12) into Equation (9) yields

𝑤+ − 𝑤− =
1

𝜇

𝜕

𝜕𝑠

(
𝜕𝑝𝑑
𝜕𝑠

ℎ3

12

)
(13)

To obtain the normal fluid velocity difference in Equation (13), we assign the fluid pressure 𝑝+ to Γ+𝑐 , 𝑝
− to Γ−𝑐 and 𝑝𝑑

to Γ𝑑𝑐 , respectively. The existence of an independent pressure 𝑝𝑑 inside the crack allows to model pressurising the crack.

The inflow of the fluid through the interface Γ+𝑐 and Γ
−
𝑐 could be different due to the insertion of the interface Γ

𝑑
𝑐 and the

independent pressure 𝑝𝑑. In principle, the resistances at Γ
+
𝑐 and Γ

−
𝑐 can be different, but we assume them to be equal, so

that the interface permeability reads 𝑘𝑖 . Analogous to Darcy’s law, the normal fluid velocity 𝑤 is determined as24:

𝑤+ = 𝑘𝑖
(
𝑝𝑑 − 𝑝+

)
+
1

2

𝜕ℎ

𝜕𝑡
𝑤− = 𝑘𝑖(𝑝

− − 𝑝𝑑) −
1

2

𝜕ℎ

𝜕𝑡
(14)

Substituting Equation (14) into Equation (13) yields the mass balance equation for the flow within Γ𝑐

𝑘𝑖
(
𝑝𝑑 − 𝑝+

)
+ 𝑘𝑖(𝑝𝑑 − 𝑝−) +

𝜕ℎ

𝜕𝑡
−

𝜕

𝜕𝑠

(
ℎ3

12𝜇

𝜕𝑝𝑑
𝜕𝑠

)
= 0 on Γ𝑐 (15)
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2.4 Initial and boundary conditions

The governing equations of the porous medium are completed by the initial and boundary conditions. The Dirichlet

boundary conditions read

𝐮(𝐱) = 𝐮̄ on Γ𝑢, 𝑝(𝐱) = 𝑝̄ on Γ𝑝 (16)

where 𝐮̄ and 𝑝̄ denote the prescribed displacement and pressure, respectively. The Neumann boundary conditions are

given by

𝜎𝜎𝜎 ⋅ 𝐧 = 𝐭̂ on Γ𝑡, 𝐪 ⋅ 𝐧 = 𝑞̂ on Γ𝑞 (17)

in which 𝐭̂ and 𝑞̂ represent the prescribed traction and inflow, respectively. For the flow in the fracture, the boundary

conditions read

𝑝𝑑 = 𝑝̂𝑑 on 𝜕Γ𝑐 𝑞𝑑 = 𝑄̂ on Γ𝑄 (18)

𝑝̂𝑑 is the pressure imposed on 𝜕Γ𝑐. 𝑄̂ denotes the inflow imposed on Γ𝑄, see Figure 1A.

Finally, the initial conditions give as

𝐮(𝐱, 0) = 𝐮0, 𝐮̇(𝐱, 0) = 𝐮̇0, 𝑝(𝐱, 0) = 𝑝0 on Ω (19)

where 𝐮0, 𝐮̇0 and 𝑝0 represent initial displacements, velocities and pressures separately.

2.5 Cohesive-zone model

On the crack faces, we consider traction boundary conditions:

𝜎𝜎𝜎 ⋅ 𝐧 = 𝐭𝑐 = 𝐭([[𝐮]]) − 𝑝𝑑𝐧 on Γ𝑐 (20)

with 𝐭([[𝐮]]) the tractions due to the influence of the crack interface. In this study, a cohesive-zonemodel is applied, where

the tractions 𝐭([[𝐮]]) are a non-linear function of the displacement jump across the crack interface Γ𝑐, which in the local

coordinate system (𝑠, 𝑛) reads:

𝐭𝑑 = 𝐭𝑑([[𝒗]]) = [𝑡𝑠 𝑡𝑛]
T

(21)

with [[𝒗]] being the displacement jump across Γ𝑐 in the local coordinate system (𝑠, 𝑛). The traction vector 𝐭𝑑 relates to the

traction in the global coordinate system via a standard transformation:

𝐭 = 𝐑T𝐭𝑑, [[𝒗]] = [[[𝑣𝑠]] [[𝑣𝑛]]]
T
= 𝐑[[𝐮]] = 𝐑

[[[
𝑢𝑥1

]] [[
𝑢𝑥2

]]]T
(22)

with 𝐑 the rotation matrix.25

In this study, an exponential traction-separation law is used, defining the traction in the normal and shear directions

as:

⎧⎪⎨⎪⎩

𝑡𝑛 = 𝑡𝑢 exp

(
−
𝑡𝑢
𝑐 𝜅

)

𝑡𝑠 = 𝑑int exp (ℎ𝑠𝜅)[[𝑣𝑠]]

(23)
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with 𝑡𝑢 the tensile strength of the material, 𝑐 the fracture energy, 𝑑int the initial crack shear stiffness (when 𝜅 = 0), and

ℎ𝑠 = ln(𝑑𝜅=1.0∕𝑑int). 𝜅 is a history parameter, set through a loading function 𝑓 = 𝑓([[𝑣𝑛]], [[𝑣𝑠]], 𝜅):

𝑓 = [[𝑣𝑛]]or[[𝑣𝑠]] − 𝜅 ⩽ 0 𝜅̇ ⩾ 0 𝜅̇𝑓 = 0 (24)

For the unloading (𝑓 < 0), the tractions are derived from a secant relation. To prevent interpenetration, a penalty stiffness

𝑘𝑝 is specified in the normal direction.

3 WEAK FORMOF THE GOVERNING EQUATIONS

The weak form of balance equations (1), (4) and (15) is obtained through multiplication by the test functions 𝜂𝜂𝜂, 𝜁 and

𝜉 for the solid skeleton, the interstitial pressure and the fluid pressure within the fracture, respectively. Employing the

divergence theoremand considering the internal boundariesΓ+𝑐 andΓ
−
𝑐 aswell as the conditions at the external boundaries

Γ𝑢, Γ𝑡, Γ𝑝 and Γ𝑞, yields the weak form:

∫
Ω

∇𝜂𝜂𝜂 ∶ (𝜎𝜎𝜎𝑠 − 𝛼𝑝𝐈)dΩ− ∫
Γ+𝑐

𝜂𝜂𝜂+ ⋅
(
𝐧+ ⋅ 𝜎𝜎𝜎+

)
dΓ − ∫

Γ−𝑐

𝜂𝜂𝜂− ⋅ (𝐧− ⋅ 𝜎𝜎𝜎−)dΓ = ∫
Γ𝑡

𝜂𝜂𝜂 ⋅ 𝐭̂dΓ (25a)

∫
Ω

𝛼𝜁∇ ⋅ 𝐮̇dΩ+ ∫
Ω

𝑘𝑓∇𝜁 ⋅ ∇𝑝dΩ+ ∫
Ω

1

𝑀
𝜁𝑝̇dΩ+ ∫

Γ+𝑐

𝜁+
(
𝐧+ ⋅ 𝐪+

)
dΓ

+∫
Γ−𝑐

𝜁−(𝐧− ⋅ 𝐪−)dΓ = −∫
Γ𝑞

𝜁𝑞̂dΓ

(25b)

∫
Γ𝑐

𝜉
𝜕ℎ

𝜕𝑡
dΓ + ∫

Γ𝑐

𝜕𝜉

𝜕𝑠

ℎ3

12𝜇

𝜕𝑝𝑑
𝜕𝑠

dΓ − ∫
Γ+𝑐

𝜉𝑘𝑖
(
𝑝+ − 𝑝𝑑

)
dΓ

−∫
Γ−𝑐

𝜉𝑘𝑖(𝑝
− − 𝑝𝑑)dΓ = ∫

𝜕Γ𝑄

𝜉𝑄̂dΓ𝑄

(25c)

Considering force equilibrium conditions at crack faces, we have

−𝐧+ ⋅ 𝜎𝜎𝜎+ = 𝐧− ⋅ 𝜎𝜎𝜎− = 𝐭([[𝐮]]) − 𝑝𝑑𝐧 (26)

with 𝐧 = 𝐧− = −𝐧+. Reformulating Equation (25a) with the aid of Equation (26) leads to

∫
Ω

∇𝜂𝜂𝜂 ∶ (𝜎𝜎𝜎𝑠 − 𝛼𝑝𝐈)dΩ+ ∫
Γ𝑐

[[𝜂𝜂𝜂]] ⋅ (𝐭([[𝐮]]) − 𝑝𝑑𝐧)dΓ = ∫
Γ𝑡

𝜂𝜂𝜂 ⋅ 𝐭̂dΓ (27)

with [[𝜂𝜂𝜂]] = 𝜂𝜂𝜂+ −𝜂𝜂𝜂−.

The fluid transport across the crack interface Γ+𝑐 and Γ
−
𝑐 is formulated in a Darcy-like manner

24:

𝐧− ⋅ 𝐪− = 𝑘𝑖
(
𝑝− − 𝑝𝑑

)
across Γ−𝑐 , 𝐧+ ⋅ 𝐪+ = 𝑘𝑖

(
𝑝+ − 𝑝𝑑

)
across Γ+𝑐 (28)

Substituting this equation into the weak form of the mass balance, Equation (25b), results in

∫
Ω

𝛼𝜁∇ ⋅ 𝐮̇dΩ+ ∫
Ω

𝑘𝑓∇𝜁 ⋅ ∇𝑝dΩ+ ∫
Ω

1

𝑀
𝜁𝑝̇dΩ− ∫

Γ+𝑐

𝜁+𝑘𝑖
(
𝑝𝑑 − 𝑝+

)
dΓ

+∫
Γ−𝑐

𝜁−𝑘𝑖
(
𝑝− − 𝑝𝑑

)
dΓ = −∫

Γ𝑞

𝜁𝑞̂dΓ

(29)
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Triangulation PS refinement PS triangles

(A)

(D)

crack

(B)

(C)

F IGURE 2 (A) Example of a cracked domain

Ω; (B) triangulation  (thick black lines) of the

domain, Powell-Sabin refinement  ∗ (thin black

lines) of  , Powell-Sabin triangles (red) and
Powell-Sabin points (green). In (C) each triangle 𝑒 is

subdivided into six mini-triangles. In (D) each

mini-triangle has a barycentric coordinate system 𝜏̄

4 POWELL-SABIN FINITE ELEMENT DISCRETISATION

In this section, we will succinctly summarise the finite element discretisation. Powell-Sabin B-splines are used to approx-

imate the trial functions in the solution space, and to parameterise the geometry.26 Poromechanical interface elements

are used to consider the porous effect on the crack faces. The linearised set of equations for the Newton-Raphson iterative

scheme are given as well.

4.1 Powell-Sabin finite elements

Powell-Sabin B-splines are employed to discretise Equations (27) and (29). They are defined on triangles, maintaining 1-
continuity throughout the whole domain, even at crack tips. They describe the geometry and interpolate the displacement

field 𝐮 and the fluid pressure 𝑝 in an isoparametric sense:

𝐱 =

𝑁𝑣∑
𝑘=1

3∑
𝑗=1

𝑁
𝑗

𝑘
𝑿
𝑗

𝑘
𝐮 =

𝑁𝑣∑
𝑘=1

3∑
𝑗=1

𝑁
𝑗

𝑘
𝑼
𝑗

𝑘
𝑝 =

𝑁𝑣∑
𝑘=1

3∑
𝑗=1

𝑁
𝑗

𝑘
𝑝
𝑗

𝑘
(30)

where 𝑿
𝑗

𝑘
represent the coordinates of Powell-Sabin triangle corners 𝑸

𝑗

𝑘
, see Figure 2B. 𝑼

𝑗

𝑘
and 𝑝

𝑗

𝑘
denote the degrees of

freedom at 𝑸
𝑗

𝑘
. The indices 𝑗 = 1, 2, 3 imply that each vertex 𝑘 has three Powell-Sabin B-splines attached, Figure 2B. 𝑁𝑣

denotes the total number of vertices on the triangulation  .
A cracked domainΩ is considered, cf. Figure 2A. In Figure 2B, it is discretised by a triangulation  , and can be generated

by any package for standard triangular elements, such as Gmsh.27 On the triangulation  , there are 𝑒 = 1, 2, … , 𝔼 triangles

and𝑁𝑣 vertices, represented by thick black lines in Figure 2B. Each triangle 𝑒 is split into six (𝑛 = 1, 2, … , 6)mini-triangles,

cf. Figure 2B. We perform the Powell-Sabin refinement  ∗ and get Powell-Sabin points, green dots in Figure 2B. Then,

we define a Powell-Sabin triangle for each vertex 𝑘,25,28 drawn in red in Figure 2B. Finally, we follow the procedure given

in29 to define the Powell-Sabin triangles on the boundary.

The Powell-Sabin B-splines 𝑁
𝑗

𝑘
over each mini-triangle in Figure 2C are obtained using the Bézier ordinates 𝑏𝑟,𝑠,𝑡

25:

𝑁
𝑗

𝑘
(𝛕̄) =

∑
𝑟+𝑠+𝑡=2

𝑏𝑟,𝑠,𝑡𝐵
2
𝑟,𝑠,𝑡(𝛕̄) with 𝐵2𝑟,𝑠,𝑡(𝛕̄) =

2!

𝑟!𝑠!𝑡!
𝜏̄𝑟1𝜏̄

𝑠
2𝜏̄

𝑡
3 (31)
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Triangulation PS refinement PS triangles triangle vertex

displacement Dof

crack interface

(A) (B) (C)

pressure Dof pressure Dof inside the crackstandard FEM node

F IGURE 3 (A) Powell-Sabin refinement  ∗ (thin black lines), Powell-Sabin triangles (red) and triangle vertices (blue triangles) along

the interface Γ𝑐; (B) enlargement of the interface Γ𝑐; (C) zero-thickness interface elements enriched with pressure degrees of freedom (3PDOF

model).

where the subscript 𝑘 denotes the triangle vertex 𝑘 with a coordinate𝑽𝑘 = (𝑥𝑘1 , 𝑥
𝑘
2 ). The superscript 𝑗 = 1, 2, 3 represents

the three Powell-Sabin B-splines defined on vertex 𝑘. 𝛕̄ =
[
𝜏̄1 𝜏̄2 𝜏̄3

]T
denotes the barycentric coordinate, cf. Figure 2D.

𝐵2𝑟,𝑠,𝑡(𝛕̄) represent the Bernstein polynomials. The Bézier ordinates 𝑏𝑟,𝑠,𝑡 are obtained by considering the properties of

Powell-Sabin B-splines at each vertex 𝑘.26

We now formulate the Powell-Sabin B-splines in a matrix form and implement them in existing finite element codes by

Bézier extraction

𝑵𝑒
𝑛 = 𝑪𝑒

𝑛𝑩 (32)

where𝑵𝑒
𝑛 are Powell-Sabin B-splines associated with each mini-triangle in element 𝑒. 𝑩 are Bernstein polynomials. 𝑪

𝑒
𝑛 is

a matrix filled by Bézier ordinates.

Powell-Sabin B-splines do not hold the Kronecker-delta property and are non-interpolatory at the vertex.29 Thus,

imposing Dirichlet boundary conditions on Γ𝑢 and Γ𝑝 is not as straightforward as for standard finite elements. In this

contribution, we will employ Lagrange multipliers to weakly impose essential boundary conditions.29

4.2 Poromechanical interface elements in the Powell-Sabin finite element scheme

The fluid inside the crack Γ𝑐 induces a pressure on the crack faces. To include this effect we will apply interface elements

enhanced with porosity. Powell-Sabin B-splines do not satisfy the Kronecker-delta property and are non-interpolatory at

the vertex. The augmentation with pressure degrees of freedomis not as standard as in Lagrange basis functions. For the

three pressure degrees of freedom (3PDOF) model, three pressure degrees of freedom are added (Figure 3): one on each

side of the crack face, and one inside the crack, which allows the discontinuity in the pressure field across the crack Γ𝑐
and fluid injections along the crack Γ𝑐.

The 3PDOF model assigns 𝑝+ to Γ+𝑐 , 𝑝
− to Γ−𝑐 and 𝑝𝑑 to Γ

𝑑
𝑐 , respectively. To discretise Equation (25c), Powell-Sabin

B-splines cannot be used because of their definition on triangles, not along a curve. In this study, standard finite elements

(FEM) are used to describe the geometry of the interface Γ𝑑𝑐 and to interpolate the pressure 𝑝𝑑 inside the interface, see

Figure 3C. Here, quadratic Lagrange shape functions are considered.

𝐱 =

𝑛𝑐∑
𝑒=1

𝐍𝑒
𝑑
𝐗𝑒
𝑑
, 𝑝𝑑 =

𝑛𝑐∑
𝑒=1

𝐍𝑒
𝑑
𝐩𝑒
𝑑

(33)

with 𝐩𝑒
𝑑
nodal degrees of freedom,𝐍𝑒

𝑑
quadratic Lagrange shape functions, and𝐗𝑒

𝑑
the coordinates of standard FEMnodes.

The FEM nodes are the triangle vertices itself and the middle points between two vertices, see Figure 3C.
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The mass conservation Equations (25c) and (29) contain time derivatives, which are discretised using the Back-

ward Euler scheme. Considering the Powell-Sabin approximation Equation (30) and standard FEM approximation

Equation (33), the weak form Equations (25), (29) and (25c) yields:

∫
Ω

𝐁T𝝈𝑠dΩ − ∫
Ω

𝛼𝐁T𝐦𝐍𝑝𝒑
𝑡+Δ𝑡dΩ + ∫

Γ𝑐

𝐇T𝐭([[𝐮]])dΓ

−∫
Γ𝑐

𝐇T𝐧𝐍𝑑𝒑
𝑡+Δ𝑡
𝑑

dΓ = ∫
Γ𝑡

𝐍T𝐭̂dΓ

(34a)

∫
Ω

𝛼𝐍T
𝑝𝐦

T𝐁
(
𝐔𝑡 −𝐔𝑡+Δ𝑡

)
dΩ + ∫

Ω

1

𝑀
𝐍T
𝑝𝐍𝑝

(
𝒑𝑡 − 𝒑𝑡+Δ𝑡

)
dΩ

− Δ𝑡 ∫
Ω

𝑘𝑓𝐁
T
𝑝𝐁𝑝𝒑

𝑡+Δ𝑡dΩ − Δ𝑡 ∫
Γ+𝑐

𝑘𝑖
(
𝐍+
𝑝

)T
𝐍+
𝑝𝒑

𝑡+Δ𝑡dΓ

− Δ𝑡 ∫
Γ−𝑐

𝑘𝑖
(
𝐍−
𝑝

)T
𝐍−
𝑝𝒑

𝑡+Δ𝑡dΓ + Δ𝑡 ∫
Γ+𝑐

𝑘𝑖
(
𝐍+
𝑝

)T
𝐍𝑑𝒑

𝑡+Δ𝑡
𝑑

dΓ

+ Δ𝑡 ∫
Γ−𝑐

𝑘𝑖
(
𝐍−
𝑝

)T
𝐍𝑑𝒑

𝑡+Δ𝑡
𝑑

dΓ = Δ𝑡 ∫
Γ𝑝

𝐍T
𝑝𝑞̂dΓ

(34b)

∫
Γ𝑐

𝐍T
𝑑
𝐧T𝐇

(
𝐔𝑡+Δ𝑡 −𝐔𝑡

)
dΓ + Δ𝑡 ∫

Γ𝑐

𝜕𝐍T
𝑑

𝜕𝑠

(
𝐧T𝐇𝐔𝑡+Δ𝑡

)3
12𝜇

𝜕𝐍𝑑

𝜕𝑠
𝒑𝑡+Δ𝑡
𝑑

dΓ

− Δ𝑡 ∫
Γ+𝑐

𝑘𝑖𝐍
T
𝑑

(
𝐍+
𝑝

)
𝒑𝑡+Δ𝑡dΓ − Δ𝑡 ∫

Γ−𝑐

𝑘𝑖𝐍
T
𝑑

(
𝐍−
𝑝

)
𝒑𝑡+Δ𝑡dΓ

+ 2Δ𝑡 ∫
Γ𝑐

𝑘𝑖𝐍
T
𝑑
𝐍𝑑𝒑

𝑡+Δ𝑡
𝑑

dΓ = Δ𝑡 ∫
Γ𝑄

𝐍T
𝑑
𝑄̂ dΓ𝑄

(34c)

where𝐍+
𝑝 and𝐍

−
𝑝 are shape functions of 𝒑 related to interfaces Γ+𝑐 and Γ

−
𝑐 , respectively.𝐍𝑑 and

𝜕𝐍𝑑

𝜕𝑠
are shape functions

and their derivatives related to the pressure degree of freedom 𝒑𝑑 inside the interface Γ𝑐.

Linearisation of Equation (34) leads to equations for the Newton-Raphson iterative scheme:

⎡⎢⎢⎢⎢⎢⎣

𝐊Ω
uu +𝐊

Γ𝑐
uu 𝐊Ω

up 𝐊
Γ𝑑
ud

𝐊Ω
pu 𝐌Ω

pp +𝐊Ω
pp +𝐊

Γ𝑐
3D 𝐊

Γ𝑑
pd

𝐊
Γ𝑑
du

𝐊
Γ𝑑
dp

𝐊
Γ𝑑
dd

⎤⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Δ𝐔

Δ𝒑

Δ𝒑𝑑

⎤
⎥⎥⎥⎥⎦
= 𝐅ext − 𝐅int (35)

with the tangential stiffness matrices𝐊 given in Appendix A. 𝐅ext and 𝐅int are external and internal force vectors, which

could be obtained from Equation (34).

5 ADAPTIVE ANALYSIS FOR CRACK GROWTH

Due to the 1-continuity of Powell-Sabin B-splines at the crack tip, point𝐴 in Figure 4A, we can directly assess the fracture

criterion at this point. The Rankine criterion has been used here to check crack initiation, comparing the major principal

stress 𝜎1 with the tensile strength 𝑡𝑢. If 𝜎1 ⩾ 𝑡𝑢, a crack is inserted through the entire element, 𝑒0 in Figure 4B, in front the

crack tip. There is no information about the curvature of the crack segment within the element 𝑒0. Therefore, a straight

line is inserted within 𝑒0, shown in Figure 4C. The normal vector 𝐧1 of the new crack segment, 𝐴𝐶 in Figure 4 (B, can

directly be obtained from the stress tensor at the crack tip. A further improvement of the quality of the crack direction

prediction can be obtained by averaging the stress tensor over a finite space around the tip.
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mesh)(newremeshdomain(C)insertioncrack(B)meshold(A)

F IGURE 4 An example of crack insertion in the case of crack propagation. (A) Old mesh before the crack insertion. The blue solid curve

denotes the crack interface Γ𝑐 . (B) Crack insertion in the old mesh. Point 𝐴 gives the old crack tip, while point 𝐶 denotes the new crack tip.

(C) Domain remesh after the crack insertion. Segment 𝐴𝐶 represents the new crack interface. Ω𝑐 is the remeshing domain, confined in the

red polygon. Ω𝑏
𝑐 and Ω

𝑟
𝑐 are the mesh before and after remeshing Ω𝑐 .

After crack insertion element 𝑒0 is divided into two triangles 𝑒1 and 𝑒2, Figure 4B. The triangular element next to the new

crack tip, 𝑒3 in Figure 4B, will have four vertices. It is impossible to define Powell-Sabin B-splines on this element. Thus,

remeshing is needed to remove triangles with four vertices or with a bad aspect ratio. We employ the algorithm proposed

in25 to remesh the domain, see Figure 4C. In the figure, the original mesh is denoted by Ω𝑏
𝑐 , while after remeshing the

mesh is represented by Ω𝑟
𝑐. To determine the domain Ω𝑐 we stand at the element with the newly inserted crack segment,

shaded grey in Figure 4A. Then, a radial marching is done until three elements have been crossed in all directions, see

Figure 4. The elements along one side of the crack interface are excluded, which avoids updating the field variables along

the crack interface.

After remeshing new elements and vertices can be added, and old elements may be moved to ensure elements with

a suitable aspect ratio, see Figure 4. Consequently, the mesh is modified and Powell-Sabin B-splines are required to be

computed on new triangles. Furthermore, due to non-interpolatory property of Powell-Sabin B-splines, the state vector,

displacement and interstitial fluid pressure, needs to be mapped from the old mesh Ω𝑏
𝑐 onto the new mesh Ω𝑟

𝑐 at time

step 𝑡 and 𝑡 + Δ𝑡. We take the mapping at time step 𝑡 + Δ𝑡 for illustrative purposes. The mapping of the state vector is

completed with a least-square fit subject to certain constraints. We first map the displacement 𝑡+Δ𝑡𝐔 from Ω𝑏
𝑐 to Ω

𝑟
𝑐:

min ∫
Ω𝑐

‖‖‖𝑡+Δ𝑡𝐍𝑢
𝑏
𝑡+Δ𝑡𝐔𝑏 −

𝑡+Δ𝑡𝐍𝑢
𝑟
𝑡+Δ𝐔𝑟

‖‖‖dΩ

subject to: 𝑊int,𝑏 +𝑊coh,𝑏 −𝑊int,𝑟 −𝑊coh,𝑟 = 0 on Ω𝑏
𝑐 and Ω𝑟

𝑐

𝐮 = 𝐮̂ on Γ𝑢Γ𝑐

(36)

in which the subscript ‘b’ represents the matrix or vector associated with the old mesh Ω𝑏
𝑐 , while the subscript ’r’ related

to the new mesh Ω𝑟
𝑐. 𝐍

𝑢 denotes the matrix with the shape functions for the displacements. 𝐔 and 𝐮 are displacement

vectors, and Γ𝑢𝑐 is the boundarywith prescribed displacement.We fix the degree of freedom on the red polygonal boundary

and along the crack path of Ω𝑐, see Figure 4C.

In Equation (36), we consider the energy balance as the constraint equation, which matches the energy linked to Ω𝑏
𝑐

and Ω𝑟
𝑐. The internal work𝑊i𝑛𝑡 and the work𝑊c𝑜ℎ related to the cohesive traction on the crack surface are considered

due to their direct relation with the displacement 𝐮, and given as

𝑊i𝑛𝑡 = ∫
Ω𝑐

𝜀𝜀𝜀 ∶ 𝜎𝜎𝜎𝑠dΩ 𝑊c𝑜ℎ = ∫
Γ𝑐

[[𝐮]] ⋅ (𝐭[[𝐮]])dΓ (37)
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For the interstitial fluid pressure, the mapping is performed in a similar way as for the displacement, the optimisation

problem being

min ∫
Ω𝑐

‖‖‖𝑡+Δ𝑡𝐍
𝑝

𝑏
𝑡+Δ𝑡𝐩𝑏 −

𝑡+Δ𝑡𝐍
𝑝
𝑟
𝑡+Δ𝑡𝐩𝑟

‖‖‖dΩ

subject to: ∫
Ω𝑏
𝑐

𝑘𝑓∇𝑝 ⋅ ∇𝑝dΩ− ∫
Γ𝑏+𝑐

𝑝+
(
𝐧 ⋅ 𝐪+

)
dΓ + ∫

Γ𝑏−𝑐

𝑝−(𝐧 ⋅ 𝐪−)dΓ

= ∫
Ω𝑟
𝑐

𝑘𝑓∇𝑝 ⋅ ∇𝑝dΩ− ∫
Γ𝑟+𝑐

𝑝+
(
𝐧 ⋅ 𝐪+

)
dΓ + ∫

Γ𝑟−𝑐

𝑝−(𝐧 ⋅ 𝐪−)dΓ

𝑝 = 𝑝̄ on Γ
𝑝

Ω𝑐

(38)

where 𝐍𝑝 is the fluid pressure shape function matrix, 𝐩 is the fluid pressure vector, and Γ
𝑝
𝑐 is the boundary with the

prescribed fluid pressure. In the constraint equation, we force the mass to be conserved between Ω𝑏
𝑐 and Ω

𝑟
𝑐. Only mass

terms directly linked to the fluid pressure 𝑝 are considered. For the fluid pressure 𝑝𝑑 inside the crack Γ𝑐, after the crack

insertion, we assign zero pressure values to the new crack segment. For the old crack segments, the value does not change.

In this study, theMATLAB function fmincon is used to find the optimum in Equations (36) and (38). Alternatively, one can

use optimisation packages like MOSEK30 or ALGLIB,31 which may provide a better efficiency for large-scale problems.

In general, the constraint equations from the energy balance and mass conservation reduce the error level of state vector

update. A detailed error analysis of the state vector update with a constraint equation for energy conservation under

dynamic loading has been carried out in elsewhere.28

The computation efficiency in the proposed method is somewhat lower than that in standard finite element analysis.

In the evaluation of Equations (36) and (38), we need to find the state vector of Gauss points on the refined mesh from the

old mesh.32 For each triangular element, there are six mini-triangles used to carry out the integration. Thus, the number

of triangles used in the integration is 𝑁𝑒 × 6, and the number of Gauss points on the refined mesh is 𝑁𝑔 × 𝑁𝑒 × 6, where

𝑁𝑒 denotes the total number of triangular elements and 𝑁𝑔 is the number of Gauss integration points inside each mini-

triangle. In standard FEM the number of Gauss points is 𝑁𝑔 × 𝑁𝑒, which is smaller than that in the proposed method.

Thus, the computation time in the proposed method will be increased in comparing to standard FEM.

6 NUMERICAL EXAMPLES

Belowwewill consider two examples. The first example deals with a pre-fractured specimen, assessing the accuracy of the

method. The last example features crack propagation under mixed-mode loading conditions, demonstrating the ability of

the method to analyse the propagation of curved cracks.

6.1 Single-edge notched plate

The problem consists of a square plate with dimensions 250 mm × 250 mm, with a horizontal crack through the cen-

tre of the plate, shown in Figure 5. The first 50 mm of the crack is pre-fractured, and an inflow of 𝑄t𝑖𝑝 = 50mm2∕s is

imposed on the left end of the crack. The pressure is zero at the top, bottom and right boundaries. The displacement in the

horizontal direction is constrained at the right boundary, while the displacement in the vertical direction is fixed at the

top and bottom boundaries, see Figure 5A. The following material properties are employed in the simulation: Young’s

modulus 25.85 × 103 MPa, Poisson’s ratio 𝜈 = 0.18, porosity 𝑛𝑓 = 0.2, intrinsic permeability 𝑘 = 2.78 × 10−16 m2, vis-

cosity 𝜇 = 10−9 MPa s, Biot coefficient 𝛼 = 1, bulk modulus of the solid 𝐾𝑠 = 13.46 × 103 MPa and the fluid modulus

𝐾𝑓 = 200 MPa. The cohesive zone model in Equation (23) is used with the tensile strength 𝑡𝑢 = 2.7 MPa and fracture

energy 𝑐 = 0.095N/mm. Only mode I fracture is considered, that is, 𝑑int = 0 in Equation (23). To avoid interpenetration,

a penalty stiffness 𝑘𝑝 = 1010 MPa/mm is specified in the normal direction of the crack. The interface permeability, 𝑘𝑖 , is

set as the effective permeability coefficient of the porous medium 𝑘𝑓 . The plate has been discretised by the triangulation

presented in Figure 5B. A constant time step size Δ𝑡 = 0.01s is used in the simulation.
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crack

(A) geometry and boundary condition (B) initial triangulation

F IGURE 5 Square plate with an edge crack.

(A) Geometry and boundary condition of the

problem; (B) initial triangulation of the domain. In

the figure, the crack is represented by the red line.
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F IGURE 6 Crack opening (A) and pressure (B) along the crack interface Γ𝑐 .

Figure 6A shows the crack opening along the crack interface Γ𝑐 for different time steps. Obviously, the crack opening

increases as the time evolves. This evolution is also evident from the pressure along the crack interface, see Figure 6B. In the

figure, the pressure inside the crack is higher than the pressure on either side of the interface. The results match well with

those in ref.,8 validating the proposedmethod. Indeed, in ref.8 the set-up of the problem is similar to the KGDproblem.33,34

Figure 7 presents the contour plot of the interstitial fluid pressure, the flux in the 𝑦-direction and the displacement norm.

As shown in the Figure 7A, almost the entire crack interface Γ𝑐 is pressurised due to the flow injection at the left edge,

except the small part around the crack tip. The pressurisation along the crack interface can also be observed from the flux

profile in the 𝑦-direction, that is Figure 7B. Due to the symmetric setup of the problem, the displacement profile shows a

symmetric distribution along the middle plane of the plate, see Figure 7B.

6.2 Arbitrary propagation: A plate with two propagating cracks

We next consider the specimen of Figure 8 to demonstrate the ability of the proposed method to properly analyse mixed-

mode crack problems. The specimen has a thickness of 50 mm and has two initial horizontal notches. Figure 8 (A shows

the geometry and the boundary conditions. In the analysis, the specimen is subjected to a prescribed horizontal velocity
̇̄𝑢𝑥 and a vertical velocity ̇̄𝑢𝑦 . Fluid is injected at the inlet of the initial notches at a constant rate 𝑄t𝑖𝑝. The time increment

is set as Δ𝑡 = 0.005s.

The following material parameters are used in the analysis: Young’s modulus 𝐸 = 30 GPa, Poisson’s ratio 𝜈 = 0.2, Biot

coefficient𝛼 = 1, porosity𝑛𝑓 = 0.2, intrinsic permeability 𝑘 = 2.78 × 10−16m2, solid bulkmodulus𝐾𝑠 = 13.46 × 103MPa,

fluid bulk modulus 𝐾𝑓 = 200MPa, fluid viscosity 𝜇 = 10−9 MPa s. The exponential decohesion relation in Equation (23)

is employed to describe the fracturing process with a tensile strength 𝑡𝑢 = 3.0MPa and a fracture energy 𝑐 = 0.11N/mm.

Mode-II crack behaviour is considered:𝑑int = 10N/mmandℎ𝑠 = 0 in Equation (23).35 Plane-stress conditions are assumed

and the loading condition is set up as:
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F IGURE 7 Interstitial fluid pressure, flux in the 𝑦-direction (𝑞𝑦 = −𝑘𝑓𝜕𝑝∕𝜕𝑦) and displacement norm. Each column presents the results

at time step 𝑡. The displacements have been amplified by a factor 100.

F IGURE 8 A plate with two propagating cracks.

Step 1 The displacement in the 𝑥-direction is constrained at the upper left and bottom right edges. The top and bottom

edges are fixed in the 𝑦-direction. Correspondingly, we have the value of the velocities: ̇̄𝑢𝑥 = 0 mm/s and ̇̄𝑢𝑦 =

0mm/s at this stage. Fluids are injected at the inlet of pre-fractured cracks at a value 𝑄t𝑖𝑝 = 50mm2∕s. The total

loading time is 𝑇 = 0.05s.
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F IGURE 9 Load (kN)-displacement (mm) response and predicted crack path.

Step 2 The specimen is then subjected to a prescribed horizontal and vertical velocity ̇̄𝑢𝑥 = ̇̄𝑢𝑦 = 2 × 10−2 mm/s, see

Figure 8. A displacement control is employed to apply the velocity ̇̄𝑢𝑥 and ̇̄𝑢𝑦 in the simulation, Δ𝑢𝑥 = Δ𝑢𝑦 =
̇̄𝑢𝑥 × Δ𝑡 = ̇̄𝑢𝑦 × Δ𝑡 = 1.0 × 10−4 mm. The displacement is imposed by Lagrange multiplier method in.29 At this

stage, fluid injects are terminated.

The load-displacement diagram in Figure 9A presents the relation between the vertical resultant force 𝐹𝑦 and the ver-

tical displacement 𝑢𝑦 on the top edge at loading Step 2. In the process of crack propagation, the fluid pressure inside the

crack and on the crack interface will gradually impose a tensile stress (negative fluid pressure) on the crack faces, see

Figure 10A-middle and 10A-right. In the course of time nearly the entire crack interface will come in tension, as illus-

trated in Figure 10A-right, which induces the increase of the force on the top panel. The prediction of the crack path is

presented in Figure 9B. The curved crack path shows the refinement ability of the Powell-Sabin B-splines. There is a kink

on the crack path, due to the change of loading conditions from Step 1 to Step 2. In Figure 10, the profiles of the interstitial

fluid pressure, the flux and the displacement are illustrated. At the loading Step 1, the crack interface is pressured due

to the fluid injection 𝑄t𝑖𝑝, Figure 10A-left. The pressurisation can also be observed in the flux plot, Figure 10B-left. After

terminating fluid injection at loading Step 2, the fluid will gradually flow back into the fracture, Figure 10A-middle and

10A-right. The flux profile also presents this flowing back, see Figure 10B-middle and 10B-right. The displacement in the

𝑦-direction is increases as time evolves due to the monotonic loading conditions, Figure 10C.

7 CONCLUSIONS

Powell-Sabin B-splines have been used in the analysis of hydraulic fracturing. Cohesive interface elements are employed

to model the interface behaviour of the solid part, while a three-pressure degree of freedommodel describes the fluid flow

inside the fracture.

Powell-Sabin B-splines are 1-continuous throughout the domain, even at crack tips. Such higher-order continuity

remedies the inaccurate stress issue in employing Lagrange basis functions. Due to the definition of Powell-Sabin B-splines

on triangles, crack insertions and crack path tracking are directly performed in the physical domain, circumventing the

initial mesh alignment issue in the isogeometric analysis. After inserting new crack segments, remeshing is required to

avoid elements with unsuitable aspect ratios, which necessitates a mappling of the state vector from the old onto the

new mesh. A novel least-square fit methodology is introduced in combination with constraint equations from the energy

balance and mass conservation.

Numerical examples show that the refinement ability of the Powell-Sabin B-splines is very suitable for the analysis of

hydraulic fracturing.When fluids are injected into the fracture, the crack interfacewill be pressured, rendering an increase

of the crack opening and forcing the crack propagate. Supposing that no fluids are injected into the fracture, under tensile

loading conditions, the existence of fractures will induce tensile stresses on the crack interface, preventing crack openings.

The fluid then flows from the porous medium into the fracture.
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F IGURE 10 Interstitial fluid pressure, the flux and displacement in the 𝑦-direction at different time steps. The displacements have been

amplified by a factor 100.

The extension of Powell-Sabin B-splines to three-dimensional problems is non-trivial due to certain constraints with

neighboring tetrahedrons.36,37 Alternatively, one can construct prisms as a tensor product of two-dimensional Powell-

Sabin B-splines and Non-Uniform Rational Basis splines (NURBS) in the third dimension.
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APPENDIX A: TANGENTIAL STIFFNESS MATRIX

The tangential stiffness matrices in Equation (35) are given as

𝐊Ω
uu = ∫

Ω

𝐁T𝐃𝐁dΩ 𝐊
Γ𝑐
uu = ∫

Γ𝑐

𝐇T𝐑Ty𝑑𝐑𝐇dΓ

𝐊Ω
up = −∫

Ω

𝛼𝐁T𝐦𝐍𝑝dΩ 𝐊Ω
pu =

(
𝐊Ω
up

)T

𝐌Ω
pp = −∫

Ω

1

𝑀
𝐍T
𝑝𝐍𝑝dΩ 𝐊Ω

pp = −Δ𝑡 ∫
Ω

𝑘𝑓𝐁
T
𝑝𝐁𝑝dΩ

𝐊
Γ𝑐
3D = −Δ𝑡 ∫

Γ+𝑐

𝑘𝑖
(
𝐍+
𝑝

)T
𝐍+
𝑝dΓ − Δ𝑡 ∫

Γ−𝑐

𝑘𝑖
(
𝐍−
𝑝

)T
𝐍−
𝑝dΓ

𝐊
Γ𝑑
ud

= −∫
Γ𝑐

𝐇T𝐧𝐍𝑑dΓ

𝐊
Γ𝑑
pd

= Δ𝑡 ∫
Γ+𝑐

𝑘𝑖
(
𝐍+
𝑝

)T
𝐍𝑑dΓ + Δ𝑡 ∫

Γ−𝑐

𝑘𝑖
(
𝐍−
𝑝

)T
𝐍𝑑dΓ

𝐊
Γ𝑑
du

= ∫
Γ𝑐

𝐍T
𝑑
𝐧T𝐇dΓ + Δ𝑡 ∫

Γ𝑐

𝜕𝐍T
𝑑

𝜕𝑠

(
𝐧T𝐇𝐔𝑡+Δ𝑡

)2
4𝜇

𝐧T𝐇

(
𝜕𝐍𝑑

𝜕𝑠
𝒑𝑡+Δ𝑡
𝑑

)
dΓ

𝐊
Γ𝑑
dp

= −Δ𝑡 ∫
Γ+𝑐

𝑘𝑖𝐍
T
𝑑

(
𝐍+
𝑝

)
dΓ − Δ𝑡 ∫

Γ−𝑐

𝑘𝑖𝐍
T
𝑑

(
𝐍−
𝑝

)
dΓ

𝐊
Γ𝑑
dd

= 2Δ𝑡 ∫
Γ𝑐

𝑘𝑖𝐍
T
𝑑
𝐍𝑑dΓ + Δ𝑡 ∫

Γ𝑐

𝜕𝐍T
𝑑

𝜕𝑠

(
𝐧T𝐇𝐔𝑡+Δ𝑡

)3
12𝜇

𝜕𝐍𝑑

𝜕𝑠
dΓ (A.1)

with 𝐑 the rotation matrix,25 y𝑑 the tangent stiffness of traction-opening law at the interface Γ𝑐.
25
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