
S.I. : Modeling for Advancing Regulatory Science

Contribution of Shape Features to Intradiscal Pressure and Facets Contact

Pressure in L4/L5 FSUs: An In-Silico Study

AMIN KASSAB-BACHI ,1,2 NISHANT RAVIKUMAR,2 RUTH K. WILCOX,1

ALEJANDRO F. FRANGI,2,3 and ZEIKE A. TAYLOR
1,2

1Institute of Medical and Biological Engineering (iMBE), School of Mechanical Engineering, University of Leeds, Leeds, LS2
9JT, UK; 2Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing,

University of Leeds, Leeds LS2 9BW, UK; and 3Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds, LS2 9JT, UK

(Received 13 May 2022; accepted 27 August 2022; published online 14 September 2022)

Associate Editor Joel Stitzel oversaw the review of this article.

Abstract—Finite element models (FEMs) of the spine com-
monly use a limited number of simplified geometries.
Nevertheless, the geometric features of the spine are impor-
tant in determining its FEM outcomes. The link between a
spinal segment’s shape and its biomechanical response has
been studied, but the co-variances of the shape features have
been omitted. We used a principal component (PCA)-based
statistical shape modelling (SSM) approach to investigate the
contribution of shape features to the intradiscal pressure
(IDP) and the facets contact pressure (FCP) in a cohort of
synthetic L4/L5 functional spinal units under axial compres-
sion. We quantified the uncertainty in the FEM results, and
the contribution of individual shape modes to these results.
This parameterisation approach is able to capture the
variability in the correlated anatomical features in a real
population and sample plausible synthetic geometries. The
first shape mode (/1) explained 22.6% of the shape variation
in the subject-specific cohort used to train the SSM, and had
the largest correlation with, and contribution to IDP (17%)
and FCP (11%). The largest geometric variation in (/1) was
in the annulus-nucleus ratio.

Keywords—Finite element models, Statistical shape models,

Sensitivity analysis, Spine biomechanics, Virtual subjects.

INTRODUCTION

We investigate the shape features that influence fi-
nite element model (FEM) results in a cohort of L4/L5
spinal segments. While spinal FEM studies commonly

use simplified and/or limited geometries, the detailed
anatomy at each spinal level is known to influence
strongly the spine’s mechanical behaviour.33,43 In
addition to improving the fundamental understanding
of biomechanics of the lumbar spine, identifying the
most influential shape features is important for iden-
tifying the anatomical features that should be captured
with high fidelity during model construction. Various
authors have explored this using FEM cohort-based
studies.3,29,32–34,43 Such studies have been valuable in
elucidating the biomechanical impact of inter-patient
anatomical variability. However, two common and
interlinked challenges in such investigations are: (1)
effectively parameterising the relevant anatomical
geometry so that geometric features may be investi-
gated systematically; and (2) sampling the resulting
geometry spaces so that the range of anatomical vari-
ability relevant to a target population is adequately
covered. The second is to some extent a practical
challenge, since both generating and solving FEMs for
each sample may be computationally demanding.
Geometry parameterisations with large numbers of
parameters will obviously exacerbate this situation.
The first challenge, on the other hand, is critical to
ensuring meaningful geometric variations are repre-
sented. Moreover, it may ease or exacerbate the second
by making generation of individual FEMs less or more
difficult.

Having created a shape parameterisation, model
instances may either be generated from real subjects,
e.g., by extracting geometries from images and then
fitting these to the shape model, or by randomly
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sampling parameter values and reconstructing the
corresponding geometry. While the former guarantees
that only realistic anatomies will be used, it is also
limited by the availability of relevant image data. Such
data, by definition, will also be biased towards
anatomical averages, and will provide sparser sam-
plings of anatomical extremes. Therefore, the latter
approach has generally been favoured when investi-
gating shape effects, and several automated spinal
FEM generators have been developed.5,6,23 Lavecchia
et al.23 generated full lumbar spine geometries from
independently sampled geometric parameters. In con-
trast, Campbell et al.5,6 used a statistical shape mod-
elling (SSM) approach, based on principal component
analysis (PCA), for parameterising the shape of ver-
tebral bodies in a group of full lumbar spines. They
reported a specificity of 3.11mm and 3.76 mm at one
and 17 shape modes, respectively, and a generalisation
error of 3.65mm and 2.78mm at one and 16 shape
modes, respectively.

Niemeyer et al.33 investigated the sensitivity of
spinal FEMs to geometric variations in the L3/L4
segment using a comprehensive set of around 500
samples generated from a parametric geometry model.
Their model consisted in an idealised representation of
the vertebrae and disc geometries with 40 parameters
associated with key anatomical features. Their inves-
tigation showed that geometry strongly influences the
outcomes of FEMs of the lumbar spine. Zander et al.43

also showed that morphological features, as well as
material properties, affect the outcomes of spinal
FEMs using 1200 simulations based on a generic
geometry of the full lumbar spine.Their model incor-
porated two geometric parameters representing the
overall lordosis of the lumbar spine and the facet joint
gap. Among other things, the findings of these studies
highlight the limitations of employing averaged
geometries or a small number of subject-specific
geometries in spinal FE studies, as these cannot cover
the full range of geometric variability present in a
target cohort, rendering it difficult to generalise their
conclusions to the underlying populations.

While previous studies successfully revealed the
influence of various geometric features on spinal FEM
predictions, the involved models contained no infor-
mation about correlations between these features that
are known to occur in real populations. That is, dis-
crete features of spinal anatomies, such as distances
between specific points, or areas/volumes of specific
regions, do not vary independently of each other, but
are correlated—often strongly so. By omitting these
correlations, and instead allowing independent geo-
metric feature variations, these parameterisation and
sampling approaches likely produce geometries (or,

specifically, combinations of geometric features) that,
in practice, are not found in real cohorts.

Building on these previous works, and addressing
the issue just described, we used a PCA-based SSM to
parameterise the L4/L5 segment geometry.9 This
model was subsequently sampled to generate realistic
new geometries, which were used to assess the influence
of naturally occurring shape variations on intradiscal
pressure (IDP) and facet joint contact pressure (FCP)
under pure axial compression. This method can pro-
duce segment samples that reflect the shape variability
in a real cohort. Furthermore, although individual
shape modes (SMs) are independent in the principal
component space, each principal component (i.e., SM)
will normally affect more than one anatomical feature
in the Cartesian space. Correspondingly, this parame-
terisation approach is able, by construction, to capture
the correlations between anatomical features in real
populations and produce plausible new (sampled)
geometries.

MATERIALS AND METHODS

The overall workflow for this study is shown in
(Fig. 1) and each stage is described in more detail in the
subsequent sections. Briefly, a dataset of 152 subject-
specific L4/L5 functional spinal unit (FSU) geometries
was used for two purposes, (1) develop a template
FEM of the L4/L5 FSU and (2) train a principal
component-based statistical shape model. The Latin
hypercube method was used to generate 500 synthetic
geometries from the SSM, meshed using a thin plate
splines approach. Then, the FEM parameters were
propagated from the template model to the synthetic
geometries. The IDP and FCP outcomes of the train-
ing and synthetic FEMs were used for indirectly vali-
dating the FEM parameters. This workflow is shown
in Fig. 1. Finally, the influence of shape features on the
IDP and FCP in the synthetic subjects was evaluated
through correlation and Shapley value analyses.

Template L4/L5 FE Model

Abaqus/CAE 2017 (Dassault Systèmes Simulia
Corp, US) was used for developing and analysing the
FEMs of the L4/L5 segments.

Geometries

A cohort of 152 subject-specific, volumetric meshes
of the L4/L5 FSU meshes were sourced from the
MySpine project dataset.7 Each mesh was originally
divided into regions representing the L4, L5, facet
joints cartilage, nucleus pulposus and annulus fibrosus,
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including cartilaginous endplates (CEPs), as shown in
Fig. 1 of the supplementary materials (Fig. 1S).1 The
meshes had the same number of nodes with identical
connectivity across subjects. Meshes were imported to
Abaqus while preserving the anatomical structures’
original distinction. A single sample was chosen as a
basis for the template FEM. Correspondingly num-
bered nodes and elements in different models repre-
sented the same anatomical structures, allowing the
loads, BCs and material properties to be defined
globally for specific numbered nodes and elements.
Subsequently, these model parameters were propa-
gated to the remaining 151 geometries using their
corresponding node indices.

Materials

The FSU was modelled using tri-linear solid hexa-
hedral elements (Table 1). The mesh was divided into
sections representing the material properties of differ-
ent structures, based on regions defined in the original
MySpine meshes (Table 2). Therefore, the vertebrae
were divided into cancellous bone and cortical bone
sections, with the cortical bone forming a two-element
thick shell of variable thickness around the vertebral
bodies. The upper and lower CEPs were sectioned
from the top and bottom of the annulus region

(Fig. 2a). The mesh between the CEPs, which repre-
sents the annulus fibrosus itself, was laterally divided
into seven concentric layers (Fig. 2b).

The bony and cartilaginous structures of the verte-
brae were modelled as linear elastic materials. The
nucleus was modelled as a fully incompressible Neo-
Hookean hyperelastic material. Holzapfel–Gasser–
Ogden hyperelastic material model was used to model
the fibre-embedded layers of the annulus fibrosus, with
an alternating angle of approximately �30� fibre ori-
entation, as shown in (Fig. 2S).

Loading and Boundary Conditions

An axial load was applied to the upper bony end-
plate of the L4 vertebral body as a uniformly dis-
tributed pressure with a total resultant force of 400 N.
The bottom bony endplate of the L5 was fixed entirely
(Fig. 3S). All anatomically connected structures were
modelled as fully bonded. Hard, frictionless contact
was defined at the facet joint articulation surfaces.

Outputs and Validation

Several key outcomes are commonly measured
when studying FSUs under different loading condi-
tions. These include the range of motion in various
directions, the facet joint forces or contact pressure
and the intradiscal pressure. The intradiscal pressure
(IDP) and the facets contact pressure (FCP) clearly

FIGURE 1. Workflow for acquiring FEA-based outcomes from synthetic L4/L5 FSUs generated using principal component-based
statistical shape model.

1Figure numbers appended with an ’S’ indicate those appearing in

the supplementary materials
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reflect the FSU’s response to pure axial compression.
Hence, they were chosen as key outcomes. The means
of these outcomes, from the training and synthetic
cohorts, were indirectly validated against values from
previous in-vivo and computational studies performed
under similar loading conditions.12,22,26

The IDP was measured as the maximum pressure
within the nucleus pulposus. The FCP was measured as
the maximum contact pressure over both the left and
right facet joints of the L4/L5 segment. The means of

these outcomes were calculated for the training and
synthetic cohorts separately.

PCA-based Statistical Shape Modelling

Ordered lists of 3-dimensional coordinates corre-
sponding to n= 14,015 surface points from each of the
training shapes (t=152) were used to train a statistical
shape model, such that

si ¼ fxi1; . . . ; xp; yi1; . . . ; yip; zi1; . . . ; zipg; ð1Þ

TABLE 1. Mesh details by structure.

Structure Number of nodes Number of elements Element type

Cancellous bone 67,898 61,236 C3D8R

Cortical bone 35,612 22,360 C3D8R

Annulus fibrosus 8640 7040 C3D8

Nucleus Pulposus 8433 7168 C3D8RH

CEPs 7702 5184 C3D8R

Facets cartilage 1136 560 C3D8R

Total 108909a 103548 –

aExcluding duplicates of nodes shared between multiple structures.

TABLE 2. Material parameters by structure.

Structure Young’s modulus (MPa) Poisson’s ratio

Cancellous bone38,44 100 0.2

Cortical bone38,44 12,000 0.3

CEPs27 23 0.4

Facets cartilage37 35 0.4

C10 (MPa) D (MPa�1) K1 (MPa) K2 K

Annulus fibrosus15 0.34 0.306 1.8 11 0

Nucleus pulposus30 0.16 0.024 – – –

FIGURE 2. FEM materials definition in an exemplar L4/L5 spinal segment. (a) Cross sectional view, colour-coded according to
different materials. (blue) Cortical bone, (beige) Cancellous bone, (orange) Nucleus, (red) CEPs, (dark green) Annulus, (light green)
Facet joint cartilage. (b) cross sectional view of the annulus revealing the concentric layers.
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where si is the ith shape and p is the number of surface
points. Surface points were taken from all exterior
surfaces of the vertebrae and IVD, as well as internal
boundaries at the annulus-nucleus and CEP-nucleus
interfaces. The latter enables variations in the nucleus
and CEP geometries, as distinct from the overall IVD
geometry, to be captured. Other interior nodes from
the volumetric meshes were omitted since their spatial
positions do not correspond to real anatomical fea-
tures (they were originally positioned so as to maximise
finite element mesh quality); hence they do not carry
meaningful anatomical information. The surface
points from shapes {s2; . . . ; st} were aligned with the
first sample s1. Size difference effects were also elimi-
nated by applying rotations, translations and scaling
through a Procrustes analysis.13,18 PCA was then per-
formed, such that each shape (si) can be represented as
a sum of the mean shape (�s) and a linear combination
of shape modes (/m) Eq. (2).

si ¼ �sþ
XM

m¼1

wm/m , ð2Þ

where wm is the weight associated with the mth shape
mode, which represents its contribution to the shape
change (i.e., deviation from the mean), and M is the
total number of shape modes.

The model compactness with an increasing number
of retained SMs was calculated as the cumulative sum
of explained variance [3].

CðMÞ ¼ 1

ktotal

XM

m¼1

km; ð3Þ

where C(M) is the model compactness , km is the mth
eigenvalue, ktotal is the sum of all model eigenvalues
and M is the total number of SMs produced by the
model (i.e., 151 SMs).

The number of retained shape modes was chosen
using a modified Kaiser’s rule,21 Eq. (4) which deter-
mines a minimum shape mode variance threshold such
that,

kK ¼ 0:7�k , ð4Þ

where kK is the shape mode variance threshold and
�k ¼ 1:0039� 103 is the mean shape mode variance.
Accordingly, the first 30 SMs were retained, explaining
86% of total shape variation. The effect of retaining
more SMs on shape generation accuracy was also
assessed at 41 and 64 SMs, explaining 90 and 95%
shape variation, respectively.

The performance of the SSM was assessed in terms
of accuracy, specificity, and generalisation ability.
Accuracy estimates the model’s ability to regenerate
the training samples by measuring the error between

the training shapes and their corresponding shapes
generated using the chosen subset of SMs. Specificity
measures the model’s ability to generate shapes similar
to the training shapes by calculating the error between
statistically generated shapes and the most similar
training shapes. The model’s generalisation ability
measures its ability to generate new shapes of the same
class as the training shapes. This was achieved using a
leave-one-out cross- validation, where the SSM was
trained using (t� 1) of the training shapes, then
applied to the remaining shape. The generalisation
error is then calculated as an error between the original
shape and its corresponding shape reconstructed using
the chosen subset of SMs.

The average root mean squared error (RMSE) of
the Euclidean distance between shapes was used to
assess the different performance measures.

Ei ¼ jjpi � p̂ijj2; i¼ f1; . . . ; ng ; ð5Þ

RMSEs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 E
2
i

n

r
, ð6Þ

RMSE ¼
Pt

s¼1 RMSEs

t
, ð7Þ

where Ei is the Euclidean distance between the ith
corresponding points p and p̂, RMSEs is the root mean
squared error across all points for shape s, RMSE is
the root mean squared error across shapes, t is the
number of test shapes and n is the number of points in
a shape.

For a better understanding of the generalisation
ability of the SSM, we calculated the generalisation
error with an increasing number of SMs.

Synthetic Shapes Generation

A power analysis was conducted to calculate the
sample size required for estimating the multiple cor-
relations of 30 SMs with the chosen FEA outcomes.
An exact test for linear multiple regression problems
was employed in the G*Power package.17 For a study
with 30 predictors, a medium detectable effect

q2 ¼ 0:15,8,16 a significance level a ¼ 0:05 and a power
ð1� bÞ ¼ 0:95, the minimum required sample size was
found to be 229 samples. Since around 40% of the
FEMs failed in the preliminary tests due to element
quality errors, it was decided that at least double the
minimum calculated sample size must be used. There-
fore, we generated 500 synthetic models.

We used the Latin Hypercube method39 to sample
new instances from normally distributed SMs weights
(wm) shown in Ref. [2]. Latin Hypercube is a popular
method used for efficiently sampling high dimensional
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spaces by dividing each dimension into intervals equal
to the number of required samples, then sampling a
single point from each interval. It can be applied
according to a specific criterion, such as maximising
the minimum interval between the points or minimis-
ing their correlations. Since we are conducting a cor-
relation study, we implemented the Latin Hypercube
according to the correlations minimisation criterion.19

A ½500� 30� matrix of wm was generated, where rows
correspond to shapes and columns correspond to
individual SMs. The weights ranged between �2SD

and þ2SD from the mean shape (i.e., �2
ffiffiffiffiffiffi
km

p
and

þ2
ffiffiffiffiffiffi
km

p
).

Meshing

As mentioned, each of the meshes from the My-
Spine dataset contained the same number of nodes and
shared a common element connectivity. This common
size and connectivity were also carried over to the
SSM-generated synthetic subjects. However, the SSM
generates new positions for surface nodes only (in-
cluding those on internal anatomical boundaries, as
described). Hence, a procedure is needed for re-posi-
tioning the remaining interior nodes to reflect the new
positions of surface nodes. This mesh morphing was
done using 3-dimensional thin plate splines (TPS)4 as
implemented within the vedo library.31 The positions
of corresponding surface nodes on the SSM-generated
models and a template mesh were used as target and
source points, respectively, to drive the TPS volumetric
deformation. This deformation was then applied to all
other interior nodes.

To create the template mesh, the nodes of each
training model (i.e., each MySpine model, containing
108,909 nodes) were aligned by applying the transfor-
mation matrices from the earlier Procrustes analysis.
As described, the Procrustes analysis was performed
only on the extracted surface nodes; the resulting
transformations were now applied on all nodes. The
mean volumetric geometry (node positions) was cal-
culated and, with the original connectivity also carried
over, used as the template. Ideally, all synthetic sub-
jects’ surface points and corresponding template sur-
face points would serve as control points. However, the
TPS algorithm is computationally demanding, and
using all surface points leads to prohibitive processing
times. Hence, a random sample of 1000 surface points
(from 14,015 total) was used. The same 1000 points
were used throughout for consistency across all syn-
thetic subjects.

Outcomes Uncertainty Quantification

FEM outcomes are considered as random variables
associated with a certain level of uncertainty in eval-
uation. We quantified the uncertainty of the FE out-
comes for the synthetic models by calculating the 95%
confidence interval of the outcomes’ means estimations
using a bootstrap sampling method with 1000 itera-
tions. Bootstrapping creates new samples by repeatedly
and randomly sampling from the original sample (i.e.,
the synthetic model results) with replacement. 1000
bootstrap iterations create 1000 new samples, other-
wise known as bootstrap samples. Each sample has the
same size as the original sample from which they were
created, but they do not necessarily contain all the
original sample members. This leads to dispersion of
the outcomes around a mean. Calculating the confi-
dence interval of this dispersion quantifies the uncer-
tainty in the outcomes of the original sample (i.e.,
synthetic models) by estimating the limits within which
the outcomes are expected to vary in the underlying
population from which the original sample was taken.
We used bootstrap sampling with 1000 iterations with
gradually increasing sample sizes to gain a better
understanding of the influence of sample size on the
uncertainty of our FE outcomes.

Shape Mode Importance Analysis

Levels of correlation between IDP or FCP and
individual SMs were assessed through Pearson’s linear
correlation, and Spearman’s ranked correlation. Both
correlation measures were used to investigate the lin-
earity in input-output relationships. Global sensitivity
was analysed by estimating Shapley values using the
SHAP kernel.28 Shapley analysis, theoretically, con-
siders all possible combinations (i.e., coalitions) of
predictors to assess individual predictor contributions
to the deviation of an outcome from the fitted mean.
Considering all the possible combinations of 30
parameters is impractical. Therefore, the algorithm
default of 1,024 most influential combinations were
considered.28 Normalised averaged absolute Shapley
values showed the percentage of contribution of each
shape mode to IDP and FCP, and the most influential
SMs were deemed as ‘‘important’’ in predicting the
outcomes.

RESULTS

Indirect FE Model Validation

The training models had a mean IDP of 0.45 MPa,
which is reasonably close to the computational and
experimental value found in literature.12,22 The mean
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FCP of 0.88 MPa was reasonably close to the experi-
mental result reported by Lorenz et al.26 under similar
loading magnitude. Also, FCP values within the
interquartile range (Fig. 3) were close and generally
smaller than values reported under extension, axial
torsion, and lateral bending,22 which is expected for
the pure axial compression case. Keeping in mind that
these results are only valid for the specific models in-
cluded in this study, they were considered an indication
of the training models producing the expected results.

The synthetic models had mean IDP and FCP of
0.51 MPa and 0.77 MPa, respectively. This indicated a
good agreement with values from the literature and the
training models. As shown in (Fig. 3), the training and
synthetic models’ results were also similar in terms of
their interquartile ranges and the location of the
medians within the interquartile ranges. On the other
hand, there was a clear difference between the two
cohorts in terms of the range of extreme (i.e., minimum
and maximum) values. It may be worth noting that
while the range of IDP in the synthetic cohort
increased, the range of FCP values decreased.

Statistical Shape Model

Kaiser’s Rule showed that 30 SMs should be suffi-
cient for representing the shapes. The 30 SMs ex-
plained 86% of the shape variation while increasing
the explained variation to 90%, or 95% required 41
and 64 SMs, respectively, as shown in (Fig. 4a). The
generalisation error was expressed as the average
RMSE of all test samples reconstructed with an

increasing number of SMs [7]. The generalisation error
curve begins to level at around the 30 SMs mark
(Fig. 4b). The model’s compactness, accuracy, speci-
ficity and generalisation ability are presented in (Ta-
ble 3).

Uncertainty Quantification

Plotting the synthetic FEMs sample means against
the sample size showed that the confidence interval
(CI) bounds decreased steadily with the increase in
sample size (Fig. 5). For both FE outcomes, this de-
crease in the CI bounds become very small, starting at
around 300 samples. Estimating the sample means
probability density at multiple sample sizes also shows
that the sample means probability densities converge
towards specific values. At 377 bootstrapped samples,
the estimated maximum sample means probabilities
were at 0.504 (CI [0.495–0.512]) MPa and 0.76 (CI
[0.69–0.86]) MPa for IDP and FCP, respectively. Un-
like the training FEMs, FCP showed higher variability
than IDP. The FCP is associated with a higher
uncertainty, with its confidence interval an order of
magnitude larger than that of the IDP.

Shape Mode Importance

We found generally weak correlations between the
SMs and the FE outcomes using Pearson’s and
Spearman’s correlations (Fig. 6). Nevertheless, 15 of
the correlations were considered significant at 0.05
significance level, except Spearman’s correlation for
the IDP, where 14 SM correlations were considered
significant. The two correlation methods had very close
results in terms of levels and significance of correlation.
Therefore, the relationship between SM and the FE
outcomes was assumed to be close to linear. Per-
forming sensitivity analysis based on a linear regres-
sion model was, therefore, appropriate.

The first SM (/1) was found to contribute the most
to both the IDP and FCP (Fig. 7). In the case of IDP,
/1’s contribution is considerably larger than the rest.
In contrast, FCP shows a more distributed dependence
on more shape modes. For both outcomes, the vast
majority of SMs had less than a 5% contribution. A
relatively larger drop in contribution percentage was
noticed after the first four most influential contribu-
tors, as can be seen in (Fig. 7). For simplicity, this
relatively larger drop in contribution was considered a
reasonable cutoff for considering an SM as ‘‘impor-
tant’’ for visualisation and discussion.

An SSM represents shape variation in a very effi-
cient way. Where complex variations are involved,
describing or even visualising the details of such vari-
ations becomes difficult. Figure 8 compares the mean

FIGURE 3. The FE outcomes of the training (IDP_t and
FCP_t) and synthetic (IDP_s and FCP_s) models. The boxes
represent the interquartile ranges, the red lines represent the
medians and the whiskers show the range of values.
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shape to shapes at �2SD of each important shape
mode, and Table 4 briefly explains their most signifi-
cant morphological effects (i.e., patterns of shape
variation) noticed.

The first shape mode (/1), which explains 22:6% of
the shape variation in the training dataset, was the
largest contributor for both the IDP (� 17%) and FCP
(� 11%). It also produced the largest shape change in
terms of Euclidean distance. This perhaps explains /1

being the largest contributor to the outputs. The lar-
gest effect it had, as described in (Table 4), was on the
nucleus. This is shown in (Fig. 8b).

It may also be worth noting that the main mor-
phological effects due to each important SM produced
the expected effect on each relevant FEA outcome. For
example, a higher weight of /1 increases the size of the
nucleus and is negatively correlated to IDP. Similarly,
a higher /4 weight produces larger facet joint contact
surfaces and is negatively correlated to FCP. These
results seem sound in terms of the expected effect on
mechanical behaviour.

FIGURE 4. SSM performance change with number of retained SMs. (a) Model compactness, (b) model generalisation error, (c)
specificity error.

TABLE 3. SSM performance measures.

Shape modes Explained shape variation Accuracy (RMSE) Specificity (RMSE) Generalisation (RMSE)

30 86% 1.22 �0:12 mm 3.00 �0:29 mm 1.60 �0:34 mm
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DISCUSSION

The statistical shape modelling approach facilitates
an efficient generation and analysis of virtual geome-
tries of the L4/L5 spinal segment. It naturally allowed
the most dominant shape variations in the training
data to emerge from the dataset. Therefore, efficiently
presenting the most relevant (i.e., most dominant and
most important) shape features holistically. While
discrete geometric features (e.g., intervertebral disc
height, facet joints contact clearance, etc.) may be
useful in some contexts, they are largely inaccurate in
describing the realistic shape changes presented here.
That is because shape features do not change rigidly.
For instance, the disc height might increase greatly in
the central region of the disc while the height around
the edges of the disc stays constant. Furthermore,

independently sampled discrete geometric features are
likely to produce feature combinations that do not
occur in real populations. In contrast, the statistical
shape modelling approach provides insight into the
natural co-variations between different geometric fea-
tures. For example, a higher /11 weight results in a
decrease in overall segment height is expected when the
anterior regions of the segment (i.e., vertebral bodies
and IVD) have larger diameters. A limitation of this
approach is its inability to explore anatomical extremes
beyond the range of the training shapes.

Furthermore, PCA, as a linear approach, is limited
in its ability to model the rigid angular motions
between articulating structures. Visual inspection of
the full lumbar spine geometries from which our
samples were extracted suggested no significant inter-
subject postural variability (i.e., underlying images

FIGURE 5. Bootstrapped sample means distribution and 95% confidence interval bounds (red curves) over sample size, with
darker dots representing higher probability densities (left). Corresponding probability distribution of sample means at various
sample sizes (right).

FIGURE 6. Individual shape mode correlations coefficients and significance levels. r and q are Pearson’s and Spearman’s
correlation coefficients, respectively. White cells represent no correlations, or insignificant correlations with p-value >0:05.
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were acquired in a neutral spine position). Neverthe-
less, it is inevitable that some variability remains. Such
postural differences may affect the fidelity of some
shape features that are directly impacted by the relative
positions of the vertebrae, such as the segment lordosis
or the facets’ contact clearance, while other features,
such as the annulus-nucleus ratio and the facet joint
articulation surface area are not likely to be affected.
Also, it is assumed when using PCA that the training
data are normally distributed. A deviation from this
assumption results in non-linear correlations between
principal components, which may affect the SSM’s
specificity and compactness. It has been suggested that
nonlinear models, such as kernel PCA, principal
polynomial shape analysis and principal geodesic
analysis can overcome these limitations, possibly
leading to models with improved specificity and com-
pactness, capable of capturing complex deformation
patterns better than linear methods such as PCA.1,14,42

Use of such non-linear shape parameterisation
approaches in assessing the FE models’ sensitivity is an
interesting future direction.

While size change is commonly the primary source
of shape variation in a given biological cohort,2,21

which may, unintentionally, diminish the contribution
of more subtle shape features that distinguish subjects
more objectively in a given target cohort. Therefore,
eliminating any size (i.e., scale) mismatch between
training samples during Procrustes registration is ex-
pected to produce a more effective sensitivity analysis.
Nevertheless, the shapes generated from the statistical
shape model will all have similar sizes. The similarity
between FE results from the training and synthetic
cohorts indicates that the effect of minimising size
variation in the synthetic cohort on FEA outcomes
was not great. Nonetheless, it may partially explain the

observed difference in the range of values shown in
(Fig. 3).

The 30 retained SMs produced shapes with rea-
sonable overall accuracy. During accuracy analysis,
the local error patterns in individual training geome-
tries that were reconstructed using the retained SMs
showed lower local accuracy in the posterior region of
the spine. This was mainly around the posterior as-
pects, the superior and inferior facets in the L4 and L5,
respectively, and at the root of the lateral aspects.
Nonetheless, these structures were still plausible rep-
resentations of the training geometries. Furthermore,
the affected regions are not expected to significantly
impact the FEA or the importance results presented in
this work. Therefore, it was decided that the amount of
error was acceptable for the application.

The large decrease in the sample mean confidence
intervals until around 300 samples suggests that the
small sample sizes commonly used in spinal FE studies,
whether of simplified or realistic FSU geometries,
would have substantial uncertainty in representing the
underlying cohort from which the FSUs were sampled.
Furthermore, in addition to the spatially variable
material properties, studies suggest a large inter-sub-
ject variation in material properties of the spine.10

Therefore, the uncertainty is expected to increase fur-
ther with the inclusion of more complexities, such as
material properties that vary spatially within a subject
and/or across subjects.

FCP exhibited substantially larger uncertainty than
IDP. Because only a small decrease in the confidence
intervals for both outcomes was seen after the 300
samples mark, increasing the sample size is unlikely to
greatly improve the FCP certainty. This is expected,
partly due to its sensitivity to the shape of the contact
surfaces. Capturing such details of the facet joint car-
tilage, such as its thickness, using an imaging system is
exceedingly difficult. Therefore, shape variations rele-
vant to these details, such as the facets contact clear-
ance, can be considered as rough approximations.
More importantly, FCP is highly mesh dependant,
because its value will depend on the location of the
actual maximum contact pressure with respect to the
node where the maximum value was calculated, which
adds another level of randomness that contributes to
the uncertainty of its results. Mesh dependence of the
FCP could have been minimised through a mesh
independence study. However, this was not possible
with the mesh generation process used here. This is
indeed expected to have an impact on the accuracy of
FEMs and, consequently, on the sensitivity analysis for
both outcomes, but more so for the FCP.

Pearson’s and Spearman’s correlation coefficients
were similar. This showed that the relationship
between the SMs and either FE outcomes is close to

FIGURE 7. Individual shape mode percentage of
contribution to IDP (a) and FCP (b).
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linear. Therefore, it was appropriate to base the
Shapley analysis on a linear regression system. Sensi-
tivity analysis showed that both the IDP and the FCP
are dominantly sensitive to the first SM (/1). Also,
IDP is more sensitive to /1 than FCP. In (Table 4), it
was noted that the first SM predominantly affects the

width of the nucleus pulposus. This effectively changes
the nucleus-annulus ratio in the IVD. This shows that
this aspect of the geometry is highly variable in the
dataset and that both the IDP and FCP are highly
sensitive to it. The number of considered predictor
combinations, also called feature subsets, in the

FIGURE 8. Visualisation of the seven most important SMs (i.e., one common to IDP and FCP, and three others specific to each
outcome—(cf. Table 4)). The heat map represents the Euclidean distance from the mean shape in (mm) at �2SD (left of colour bar)
and þ2SD (right of colour bar) for /1 (a,b), /3 (c), /4 (d), /6 (e), /7 (f), /9 (g) and /11 (h). The largest geometric effect in /1 is on the
size of the nucleus, and for this reason the nucleus is separately depicted in (b).
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Shapley analysis was relatively small compared to the

number of possible combinations (i.e., 230). The impact
of this on the sensitivity analysis was not directly
determined in this study. Nonetheless, The SHAP
algorithm used calculates the weight of each subset
based on its cardinality (i.e., the number of predictors
in the subset), where subsets with very high and very
low cardinality values have higher weights.28 The
algorithm includes predictor combinations in
descending order of weights. Therefore, minimising the
effect of not using all possible combinations.

While the results of this subject-specific study may
only apply to the specific samples involved in this
analysis, it showed that using PCA-based synthetic
spinal cohorts can provide valuable insight into the
mechanical responses in a target population and their
sensitivity to specific shape features. A more anatom-
ically objective representation of the samples provided
a better understanding of the natural and complex
anatomical combinations on the FE outcomes.The
results suggest that such an anatomical objectiveness
plays an important role in understanding the
mechanical behaviour of the FSU in a more realistic
sense. For instance, Niemeyer et al.33 found that the

IVD height is the most important predictor of IDP.
However, although disc height was observed in one of
the important SMs, it is shown here that disc height
had much less influence on the IDP value than the
annulus-nucleus ratio. Also, as mentioned in (Table 4),
the weight of /9 is directly proportional to the clear-
ance between facet joints contact surfaces. FCP is ex-
pected to be directly proportional to facets contact
clearance.33 Nonetheless, results here (Fig. 6) show
that FCP is negatively correlated with /9. These dif-
ferences can be explained, at least in part, by the dif-
ferent combinations of anatomical features that
emerged from the training data at hand. A clear
example of the effect of the co-variation of shape fea-
tures is noticed with /4, where a larger w4 clearly de-
creases the facets clearance, which is expected to
increase the FCP. Nonetheless, a larger w4 greatly
increases the facets contact surfaces area, as well as
changes their angles, eventually leading to a negative
correlation between /4 and FCP. Therefore, it shows
that it’s hard to draw conclusions about the underlying
populations in studies employing simplified or aver-
aged geometries that do not represent the evidently
relevant anatomical features or natural combinations

TABLE 4. morphological effects of important SMs.

Shape

mode num-

ber

Shape variation

explained (%)

Relevant outcome

(importance rank) Morphological effects (þ2SD) from mean shape

/1 22.6 IDP (1), FCP (1) A general decrease in spinal segment height with an increase in the circumfer-

ential size. A large increase in the nucleus pulposus size in the lateral and

posterior directions, with a slight decrease in the anterior nucleus pulposus

thickness. This increased the IVD bulge in the posterior direction in particular

/11 1.9 IDP (2) An increase in the circumferential size of the vertebral bodies and IVD, and a

slight decrease in the segment height. This resulted from an increase in the

nucleus height and a decrease in the vertebral bodies’ heights. In addition to the

increase in height, the nucleus increases in size in the anteroposterior direction

and slightly decreases laterally

/7 4.2 IDP (3) A large increase in the anterior IVD bulge due to an anterior increase in the

nucleus pulposus size. This is associated with a decrease in the posterior IVD

bulge. The vertebral bodies increase in circumferential size and become more

skewed in the frontal plane

/3 7.7 IDP (4) An Increase in the circumferential size of the vertebral bodies and IVD, especially

in the bottom anterior region of the L5. A general, almost uniform, increase in

the nucleus size. A large change in the facet joints’ orientation as they become

oriented more posteriorly

/4 6.1 FCP (2) A large change in the relative anteroposterior positions of L4 and L5. The segment

also exhibits an overall lordosis increase. The nucleus shows a general de-

crease in height, with an increase in anterior circumferential size. A large de-

crease in the facets clearance is noticed. Contact surfaces extend inferiorly on

the L4 side and posteriorly on the L5 side. Increasing the facet joint area

/6 4.9 FCP (3) A decrease in segment lordosis associated with a decrease in the anterior nucleus

height

/9 2.9 FCP (4) Larger facet joints, especially on the right side. It also tightens the clearance

between contact surfaces. The frontal alignment of the two vertebrae is also

affected
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of these features. The same principle can be applied to
investigate the influence of naturally occurring-
anatomical features combinations on stress and strain
levels and distributions in implanted models rather
than the natural ones used in this study. Therefore,
using this approach can improve the design process of
spinal implants.

Furthermore, a relatively limited number of subject-
specific training samples can be used to generate a
large number of plausible models. It is also shown that
a small number of important SMs can be used to
generate much larger synthetic cohorts that represent
the most important shape variations. This will signifi-
cantly reduce the dimensionality, allowing a more
efficient sampling of the shape space and increasing the
efficiency of device design and testing during optimi-
sation studies and in-silico trials, respectively.

A limitation of the presented FEMs is the use of
only axial compression loading. Applying other load-
ing conditions involving bending or rotation motions
would require the inclusion of ligaments. Nonetheless,
the proper modelling of ligaments is a complex aspect
that requires careful consideration of appropriate
material models and pre-loads that are hard to mea-
sure and an experimental validation step that was not
possible for the considered training models.

The FEMs utilised a set of homogeneous materials,
as well as propagating the same material properties
across all subjects. However, studies suggest a high
inter-subject variability in material properties,10 as well
as a correlation between shape and the spatial distri-
bution of material properties.24,25 Therefore, the
inclusion of spacial material properties in the param-
eterisation process is likely to produce more objectively
realistic results.

A relatively small number of shape modes was used
for generating synthetic subjects. Using more than 30
SMs (e.g., explaining 90% or 95% shape variation)
would increase the SSM accuracy by 16% and 40%,
respectively. It is also known that lower variance shape
modes can be crucial in predicting an output,
depending on the specific data being analysed.21

Nonetheless, increasing the number of shape modes
means increasing the number of predictors to be con-
sidered in subsequent steps, which would have resulted
in a larger minimum samples size, as it would have
impacted the performance of the computationally
intensive Shapley analysis. Therefore, a balance had to
be struck between the number of included shape modes
and the target statistical power of the study. Correla-
tion and importance analyses showed a larger pro-
portion of higher correlation coefficients and
contributions in the first half of the included 30 SMs
and a general trend of decreasing correlation and
contribution with the increase of SM number. There-

fore, excluding the remaining shape modes is believed
to have little or no adverse impact on the importance
analysis in this study.

As mentioned, 3-dimensional TPS is computation-
ally intensive. Hence, a balance had to be struck
between the mesh warping quality and the required
computation time, which required down-sampling the
control points instead of using all points produced by
the SSM. The mean and maximum RMSE across
synthetic shapes due to mesh warping are 0.37 mm and
0.56, respectively. Figure 4S shows the distribution of
the node-to-node Euclidean distances between the
corresponding SSM-generated and TPS-generated
shapes associated with the maximum RMSE. Errors
due to mesh warping are much smaller than errors
induced by the SSM itself. On the other hand, it was
noticed, as seen in (Fig. 4S), that this error can reach
relatively high local values. Unlike SSM-induced er-
rors, the error distribution pattern here is unpre-
dictable. In other words, such large local errors can
misrepresent some structures that have a significant
impact on FE outcomes of interest, as well as the
sensitivity analysis in this case. Therefore, a more
efficient method for selecting appropriate control
points should be considered to minimise the impact of
mesh warping errors.

A relatively large sample size of 500 synthetic FEMs
was generated and analysed. Both the power and the
uncertainty quantification analyses showed that the
sample size was sufficient for the application at hand.
Nonetheless, even with the use of highly efficient
sampling approaches, such as the Latin Hypercube
method, 500 samples cannot effectively sample the
whole 30-dimensional space to cover the possible range
of anatomies present in a target (i.e., training) cohort,
not to mention the inclusion of spatially varying
material properties, consideration of multiple loading
scenarios, or abnormal anatomies. Therefore, achiev-
ing the full potential of synthetic cohorts for large-scale
applications such as in-silico trials would require much
larger sample sizes. While generating the shapes as
point clouds from the SSM is not computationally
demanding, the subsequent mesh warping and finite
element modelling steps would not be practical. Al-
though the use of faster mesh generation tools may be
possible, the time required for running finite element
models is a barrier that cannot be easily overcome.
Therefore, we believe that taking full advantage of
synthetic cohorts requires FE simulation acceleration
strategies,20,40 or incorporating data-driven mechanical
analysis approaches.11,35

Conventional clinical trials are limited in terms of
subject availability, in addition to other limitations
such as long study times and inability to apply testing
conditions that may be considered unethical, in which
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case they are applied experimentally and/or computa-
tionally in very limited sample sizes and/or animal
models in the pre-clinical testing stage. Therefore, in
silico trials have been proposed as a viable solution to
such limitations by rigorously testing devices in com-
putational studies employing a large number of sam-
ples and under comprehensive boundary
conditions.36,41 This type of studies would require a
data-driven based approach to overcome the compu-
tational load limitations mentioned above. Therefore,
a large number of samples (i.e., FEMs) is required for
algorithm training as well as for conducting the in
silico trial itself. The presented workflow may be used
for generating such a large number of samples.

In conclusion, The proposed method can produce
spinal samples that reflect the shape variability in a real
cohort. Furthermore, although individual shape modes
(SMs) are independent in the principal component
space, each SM normally affects more than one
anatomical feature in the Cartesian space. Hence, this
parameterisation approach is able, by construction, to
capture correlations between anatomical features in
real populations and produce plausible new (sampled)
geometries.
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