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Background climate conditions regulated the
photosynthetic response of Amazon forests to the
2015/2016 El Nino-Southern Oscillation event
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Amazon forests have experienced multiple large-scale droughts in recent decades, which

have increased tree mortality and reduced carbon sequestration. However, the extent to

which drought sensitivity varies across Amazonian forests and its key controls remain poorly

quantified. Here, we analyse satellite remotely-sensed Solar Induced Fluorescence anomalies

to investigate responses in Amazon forest photosynthetic activity to the 2015-2016 El Nino-

Southern Oscillation (ENSO) drought. Using multivariate regression analysis, we examine the

relative importance of ENSO-associated climate anomalies, background climate and soil

characteristics in controlling basin-wide forest photosynthetic activity differences. Our model

explains 25% of forest photosynthetic response and indicates background climate and soil

conditions had a greater influence than the climatic anomalies experienced. We find marked

sensitivity differences across Amazonia, with North-Western forests being the most sensitive

to precipitation anomalies, likely relating to variation in forest species composition and

background water stress. Such factors should be considered in climate change impact

simulations.
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The tropical forests of Amazonia provide extensive ecosys-
tem services both locally and globally1 including unpar-
alleled biodiversity provision2,3, regulation of regional

climate4 and substantial carbon storage5. The high and multi-
dimensional nature of their value means that it is critical to better
understand their ability to resist stressors and maintain the
provision of these services. Extreme climatic anomalies are a
major threat to the services provided by Amazon forests. In
recent decades, Amazon forests have been exposed to a number of
large climatic anomalies including in 20056, 20107, and 2015/168.
These droughts have resulted in losses of aboveground biomass
due to widespread tree mortality7,9 and decreased Gross Primary
Productivity (GPP)10.

Previous assessments of Amazonian droughts based on forest
inventory plots have sought to quantify the impact on the basin-
wide carbon sink7,9,11 but have not explicitly addressed the extent
to which Amazon forests differ in their response to such climatic
anomalies at sub-basin scales. The variance in response may be
substantial as plot scale studies of plant hydraulic properties
suggest that forest sensitivity to water stress can vary greatly even
at a local level12,13. However, scaling up plot-based responses to
climatic anomalies in order to explore the implications across
larger scales in Amazonia is difficult, because of the limited
number of sampling sites that can be realistically be measured
following an extreme climate anomaly.

Remotely sensed data allows for variation in the sensitivity of
forest productivity to climatic anomalies to be more fully
explored across space with the caveat that photosynthesis is not
directly being measured, but instead inferred from spectral sig-
natures. Remote sensing of solar-induced fluorescence (SIF) is a
particularly powerful proxy of forest productivity and has been
shown to strongly track GPP at seasonal timescales, including in
tropical forests10,14. SIF has been used previously to evaluate the
effects of several large climatic anomalies, including the impacts
of the 2015/2016 ENSO on tropical forests10,15,16. Although these
studies have highlighted the widespread negative SIF anomalies
associated with the ENSO event across Amazonia, they involved
no formal pixel-level analysis of SIF anomalies across space.

The response of forest productivity to extreme climatic
anomalies is moderated by a wide range of factors which can be
broadly classified into three groups: (i) the intensity of the climate
anomaly itself, (ii) the background (long-term mean) climatology
and (iii) soil characteristics. Forest plot studies have highlighted
significant relationships between drought intensity based on
precipitation anomalies and biomass losses following large
drought events9,11. Temperature anomalies have the potential to
amplify these effects17. Background climate and soil character-
istics can substantially modulate the impacts of anomalous cli-
matic events. Forest sensitivity to water stress may be related to
background climate as forests found in drier regions have been
shown to be better adapted hydraulically to drought than those
found in wetter environments18. Mean annual precipitation varies
widely across Amazonian forests, as does the seasonality and
interannual variability in rainfall, greatly affecting species
composition19 and forest resilience to drought15. Soil properties
can further strongly modulate responses to drought events20. Soil
texture exerts a strong control on water holding capacity and
hydraulic conductivity21 while water table depth can greatly
influence forest access to water, with forests on deeper water
tables expected to be more at risk of water shortage during
drought events compared to shallower water table areas12. This
relative vulnerability of deep water table forests is despite these
forests containing more drought-tolerant species22, and is driven
by the ability of shallow water table areas to buffer the negative
effects of drought through the groundwater memory effect22.
While it is clear that each of these variables plays a role in

determining Amazon forest response to climate, their relative
importance in regulating response to natural climatic anomalies
remains unclear.

In this study, we use a multivariate regression framework to
explicitly evaluate the relative importance of ENSO-associated
climate anomalies, soil characteristics and background climate
variables as controls of Amazon forest photosynthetic anomalies
during the drought associated with the 2015/16 ENSO. The 2015/
16 ENSO event was associated with the most extreme drought
and period of warming on record16 and thus offers an ideal case
study in terms of the strength of signal-to-noise ratios. Using this
methodology we found that background climate and soil condi-
tions were more important controls on forest photosynthesis
responses than the magnitude of the climate anomalies associated
with the ENSO in explaining the variance in SIF anomalies. Our
results reveal marked differences in sensitivity Amazonian
regions response, with Northwestern Amazonian forests being the
most and the Southwestern forests the least sensitive to pre-
cipitation anomalies. These differences in sensitivity likely relate
to community species compositional differences across Amazo-
nian forests, which vary greatly in the extent to which they are
pre-adapted to water stress, and need to be accounted for in
simulations of climate change impacts.

Results and discussion
Solar Induced Fluorescence during the 2015/2016 ENSO. To
evaluate the impact of 2015/2016 ENSO on Amazon forest
photosynthesis we computed standardised anomalies defined as:

Standardised anomaly ¼ Xt � �X
σ

ð1Þ

where Xt represents the mean SIF/climatic value during the
October to December 2015 period, �X represents the mean and σ
the standard deviation of the baseline period (October to
December) between 2007 and 2014 (excluding 2015). In line with
the findings of previous studies10,16,23, retrievals based on
SIFTERv2.0 show widespread negative SIF anomalies, across
Amazonia. Indeed, 93% of forested pixels in our study domain
exhibited negative SIF anomalies during October–December
2015, and mean pixel-level SIF over this time window was
1.03 standard deviations lower than baseline values. Moreover,
anomalies during this time period (delineated by the vertical
dashed lines in Fig. 1) are the most negative on record in all
Amazonian regions except the Southwestern (SW) Amazon.

Climate anomalies during the 2015/2016 ENSO. Surprisingly,
we find that ENSO-associated climate anomalies (anomalies in
precipitation, temperature, and Maximum Cumulative Water
Deficit (MCWD)) were very poor predictors of the observed
variation in the mean standardised SIF anomaly for Oct-Dec 2015
(hereafter referred to as the standardised SIF anomaly) during the
peak of the drought associated with the ENSO. Indeed, a linear
model constructed exclusively with variables describing ENSO-
associated climate anomalies explained only 2% of the regional
variation in SIF anomalies (Table 1). This contrasts significantly
with our final multivariate linear model, which models SIF
anomaly as a function of soil characteristics and background
climate variables in addition to ENSO-associated climate
anomalies and which accounted for 25% of the variation in SIF
anomaly (for full model see Supplementary Table 1). Given the
relatively coarse scale at which this study is being conducted, and
the fact that forest-scale ecological responses are typically noisy,
the amount of variance explained by our final model is reasonable
and comparable with that found in plot scale studies. For
instance, the best model of Sullivan et al.24 for woody
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productivity (based on changes in diameter over time), explained
30% of the observed variation.

The relatively low importance of the ENSO-associated climate
anomalies is further highlighted by the fact that removal of soil
characteristics and background climate variables from this final
model resulted in a far greater reduction in explanatory power as
observed in change in adjusted R², and in the increase in Aikaike
Information Criteria (AIC) than dropping variables denoting
ENSO strength (Table 1). Of the three groups, the background
climate variables were found to be particularly important, as its

removal resulted in a substantial lowering of R² from 0.25 to 0.14,
and an increase in AIC of +270.

The role of soil characteristics and background climate vari-
ables in explaining photosynthetic response. The importance of
soil characteristics and background climate variables on photo-
synthetic anomalies is further confirmed through the evaluation
of the standardised regression coefficients of individual predictors
in this final model which is summarised visually in Fig. 2. The

Fig. 1 Spatial distribution of Solar Induced Fluorescence Anomaly during the 2015/16 ENSO and temporal trends in SIF anomaly at a regional scale.
a Spatial distribution of mean standardised SIF anomaly for October-December 2015. b–f Monthly Standardised Solar Induced Fluorescence (SIF)
anomalies from January 2007 to December 2017. Results are split by geographical regions established by Feldpausch et al.44. Vertical dashed lines signify
the 2015 Oct-Nov-Dec period used in this study. b SW South West, c NW North West; d GS Guiana Shield, e EC East Central, f BS Brazilian Shield.
Analysis is restricted to natural forests as defined by the Intact Forest data product46. See methods for details.

Table 1 Proportion of variation explained by groups of predictor variables and the impact of their removal on the explanatory
power of the final model.

ENSO-associated climate
anomalies

Background climate Soil characteristics Adjusted R² Drop in R² compared to
full model

Change in AIC compared to
full model

√ √ √ 25% - -
√ √ 24% 1% +28

√ √ 14% 11% +270
√ √ 19% 6% +165
√ 2% 23% +553

√ 17% 8% +215
√ 12% 13% +319

The final, full model is highlighted in bold. All values are rounded to nearest integer.
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sign and magnitude of the standardised regression coefficients in
Fig. 2 describe the relationship between SIF Anomaly and the
explanatory variable as part of the overall contribution of all
variables towards the model prediction of SIF anomaly, all other
variables being held constant. Positive coefficient values, for
instance, indicate a positive relationship between explanatory
variables and SIF Anomaly. Hence, a unit increase in the expla-
natory variable will contribute a positive amount to the SIF
anomaly model prediction, all other variables being held constant.
Applying this logic to our explanatory variables allows under-
standing of which traits contribute positively and negatively to
SIF anomalies.

The five most important variables in the final model, ranked in
order of descending importance based on the magnitudes of the
standardised regression coefficients were: (1) rainfall seasonality,
(2) cation exchange capacity, (3) water table depth, (4) variation
in monthly max temperature, and (5) mean annual precipitation.
Precipitation anomaly during the peak of the drought emerged as
only the ninth most important explanatory variable. Overall, our
results suggest that forests found in regions with high rainfall
seasonality, high soil fertility, lower water table depth, and which
have a higher monthly variation in max temperature and lower
mean annual precipitation are more resistant to the drought
associated with the ENSO than wetter, more aseasonal forests and
forests on lower fertility soils and deeper water tables. However,
we do not find evidence that forests exposed to higher interannual
rainfall variability were more resistant to the drought, as has been
inferred in previous studies based on examination of tree cover
distributions15 nor do we find a significant role of soil texture in
mediating photosynthetic response to this drought. (The spatial
distribution of all predictor variables are shown in Supplementary
Fig. 3).

The overarching importance of background climate, water
table depth and soil fertility relative to ENSO-associated climate
anomalies helps to explain the weak spatial structure in SIF
anomalies observed (Fig. 1), despite substantial spatial variation
in the ENSO-associated climatic anomalies (Supplementary
Fig. 1). Amazonian forests vary greatly in background climate25,
soils26 and water table depth27 and these system properties
translate into considerable differences across forests in sensitivity
to this drought. Using SIF anomaly and climate anomaly data, we

calculated sensitivity (defined as standardised SIF anomaly/
climate anomaly) of Amazon forest photosynthesis to precipita-
tion and temperature anomalies at the pixel level (Fig. 3). Using
this approach, we identified marked variation in sensitivity to
climate in forests in different biogeographical regions. North-
western (NW) Amazonia is the wettest and least seasonal region
in Amazonia in terms of rainfall and temperature seasonality
(Supplementary Fig. 3 for spatial variation) although variation in
temperature seasonality is generally low across the entire study
domain. Forests in the NW region were found to be the most
sensitive to precipitation reduction being twice as sensitive as the
Amazon-wide mean, and more than 12 times as sensitive as the
least sensitive BS region. On the other hand, the forests of the
Brazilian Shield (BS) which are the driest and most seasonal in
the Basin were found to be least sensitive to precipitation
reduction and were five times less sensitive than the Amazon-
wide mean. The Guiana Shield (GS) region, simulated by many
climate models to be the region most likely to be affected by
future rainfall reduction28 was found to be the third most
sensitive to rainfall change during this drought after NW and EC
Amazonia. Whereas there is clear evidence of different sensitivity
to precipitation across Amazonian regions, differences in
sensitivity to temperature are less obvious (Fig. 3), and might
reflect the fact that spatial variation in temperature across
Amazonia is much less marked than the spatial variation in
precipitation.

The role of community species composition in determining
variance in response. The effects of background climate, water
table depth and soils on forest resistance to this drought, and
droughts more generally, are ultimately mediated via tree species
composition. Seasonal water stress has been found to exert a
fundamental control on the biogeographical distributions of
Amazonian tree species, with many species being restricted in
range to the wetter regions of the Amazon19. Over more local
scales, variation in water table depth can also strongly influence
community species composition, with near complete species
turnover observed in closely occurring forest plots on shallow
water tables compared to those on deeper water tables29. Such
large differences in floristic composition along water availability
axes are likely associated with differences in community-level

Fig. 2 Scaled and centred regression coefficients of final model variables. Scaled and centred regression coefficients for all variables found in the final
model. Variables have been ranked by absolute magnitude of regression coefficient. Wings are standard errors and bars represent the 95% confidence
intervals estimated via a bootstrapping analysis. Bars are coloured and numbered according to variable group: a yellow indicating ENSO-associated climate
anomalies variables, b red denotes background climate variables and c blue represents soil characteristics.
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drought tolerance. It has been shown for example that species
occurrence along hydro-topographic gradients in Central Ama-
zonia is underpinned by differences in embolism resistance30, as
species occurring on water-limited plateau areas are considerably
more embolism-resistant than those occurring in valley areas with
more access to water30. Community-level differences in hydraulic
traits have been found to explain why a more seasonal Amazon
forest experiencing a strong drought anomaly during the 2015/16
ENSO presented a similar canopy conductance response to a less
seasonal forest experiencing a weaker climatic anomaly13. Our
results raise the prospect that such a compensatory mechanism
may have been in operation at a Basin-wide scale during the
drought associated with the 2015/16 ENSO as forests that
experienced less severe climatic anomalies but are less adapted to
water stress experienced similar reductions in photosynthesis to
forests that experienced more severe climatic anomalies but are
more adapted to seasonal drought.

The positive relationship between cation exchange capacity and
SIF anomaly may reflect differences in the life history strategies of
species along fertility gradients. Amazon forests on fertile soils are
generally more dynamic and more productive than those found
on infertile soils26. The functional attributes of tree species
occurring on fertile soils, such as low leaf mass per area (LMA)
and high foliar N and P content31 are indicative of species with

acquisitive (high resource acquisition rates and high growth that
tend to do better in high resource habitats32) rather than
conservative life histories (geared towards high resource con-
servation, high-stress tolerance and high survival which tend to
be more successful in lower resource habitats32) and thus
prioritising growth over survival. Forest communities consisting
largely of acquisitive species would be more likely to maintain
photosynthesis rates high under drought, despite increased risk of
hydraulic cavitation, than communities consisting of more
conservative species33,34. Although the interaction between
nutrient availability and drought impact has been largely
unstudied in tropical forests, our results are consistent with
analyses of temperate systems which found that more fertile soils
enhanced resistance of tree growth to drought35.

Our finding that Amazon forest response to ENSO-associated
climatic anomalies is controlled more by the sensitivity of the
forests and less by the intensity of the event has important
implications. It suggests that insights derived from well-studied
sites in Central and Eastern Amazonia e.g. Barros et al. 2015, and
Rowland et al. 201513,36 may not be readily generalisable to other
regions of the Amazon, which may be more sensitive (e.g., NW
Amazonia) or less sensitive (e.g. SW Amazonia) to reduced
rainfall. Our results also highlight the pitfalls of assuming a
universal sensitivity of Amazonian forests to drought in

Fig. 3 Spatial distribution and regional averages of SIF sensitivity to temperature and precipitation anomalies. a, b Show precipitation (a) and
temperature (b) regionally averaged sensitives. SIF Sensitivity is calculated as Log10(Standardised SIF Anomaly /Standardised PPT Anomaly) and
Log10(Standardised SIF Anomaly/Standardised Temp Anomaly) respectively. Box plot centre line, top, and bottom line represent the median, 75th, and
25th percentile, respectively. Upper and lower whiskers represent the largest and smallest value within 1.5 times the interquartile range above and below
the 75th/25th percentile respectively. Results are split by geographical regions established by Feldpausch et al.44. c, d Spatial distribution of SIF sensitivity
to precipitation (c) and temperature (d). Sensitivity was calculated only for pixels that represented, negative precipitation, and positive temperature
anomalies respectively. Temperature sensitivity has been inverted to aid in visual interpretation.
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ecosystem models. Most widely employed global vegetation
models incorporate a very limited functional diversity across
Amazonian forests37, restricting confidence in future projections
of climate change over the region. Indeed, most of the dynamic
global vegetation models (DGVMs) included in the TRENDY
project (e.g., Friedlingstein et al.38) and which are used to inform
our best estimates of the global carbon budget assume that
Amazon forests are represented by 1–2 discrete plant functional
types (PFTs). For example, in the LPJ model39 and the
ORCHIDEE model40 Amazon forest vegetation is described by
a tropical evergreen PFT and a tropical deciduous PFT, while
other vegetation models have an even more limited description of
functional diversity (e.g., Galbraith et al.41). Such architectural
restrictions mean that spatial variation in forest biomass storage
and dynamics is poorly captured by many DGVMs42 and limit
ability to capture variation in forest sensitivity to drought.
However, there have been notable recent attempts to improve the
description of functional diversity in DGVMS which replace
prescribed trait values with more flexible trait values shaped by
climate and competition (e.g. Thonicke et al. 202043). Such
approaches present promising avenues for better representation
of variation in forest sensitivity to climate in global models.

While our study documents spatial patterns and large-scale
controls on forest sensitivity to drought in Amazonia, it does not
allow for the determination of the specific mechanisms which
underpin these differences. These may include variation across
forests in ability to withstand negative xylem tensions under
drought or belowground rooting properties. Elucidating these
mechanisms is of high importance to enable more informed
predictions of the impact of climate on this critically important
biome, but is not yet possible due to the lack of Amazon basin
scale databases of relevant plant traits. Thus while our study
identifies patterns of varying climatic sensitivity across Amazon
forests and the overarching controls of climate and soils, an
understanding of the specific mechanisms will only be possible
with new basin-wide products of plant functional properties.

Methods
Study area. This study focuses on forested areas with minimal human impacts
within Amazonia. Amazonia was delineated using the geographical boundaries
described by Feldpausch et al.44 which is based on a combination of climate,
hydrology, flora, fauna and biogeography criteria. These regions vary markedly in
forest composition and dynamics and have been used extensively to evaluate how
forest structure and function vary across different biogeographical regions42,44,45.
We restrict our analysis to Amazonian forests defined using the Intact Forest data
product which maps unbroken expanses of natural ecosystems within the zone of
current forest extent, having a minimum tree cover of 20%, and with no remotely
detected signs of human activity46. Savanna ecosystems as identified using the
WWF Ecoregions47 were excluded from the analysis to restrict our study to forest
areas. As a final step, any forested pixels that experienced a fire in 2015 were
identified using the MOD14A2 8-day fire product48 and removed.

Overarching approach. We modelled 2015/16 ENSO-associated anomalies in
photosynthetic activity over Amazonia as a function of variables representing the
ENSO-associated climate anomalies, soil characteristics, and background clima-
tology. The relative importance of each of these groups of variables and of the
individual variables within these groups was then explored using multivariate
regression analysis with final model selection based on Akaike’s Information Cri-
teria (AIC) and model stability analysis. The full model and explanation of vari-
ables are provided in the supplementary information (Supplementary Table 1).

SIF data. Photosynthetic activity was proxied using SIF retrieved at 09:30 hrs local
time using the SIFTERv2 algorithm49. The SIFTERv2 algorithm retrieves SIF from
GOME-2A reflectance spectra in the 734–758 nm window, by examining the filling
in of Fraunhofer lines relative to the depth of the Fraunhofer lines observed over
the non-vegetated reference region of the Sahara, while accounting for the influ-
ence of the surface albedo and atmospheric transmission49. The algorithm
improves on previous versions of the SIFTER algorithm used by previous studies10

by explicitly attempting to correct for sensor degradation effects post 2013 (Sup-
plementary Fig. 5) and by using narrower spectral windows that avoid oxygen
absorption and are less sensitive to water vapour. The SIFTERv2 product corrects

for sensor degradation through analysis of changes in reflectance over the sites
where reflectance is known to be stable49. Data from this analysis was used to
calculate degradation correction spectra for all seasons post July 2014, and these
correction spectra were subsequently applied prior to the spectral retrieval to
stabilise the observed declines. The corrected product removes any large-scale SIF
trends over our study period (up to the end of 2016) and also reveals a rebound in
SIF values in 2017 (Fig. 1). We note, however, that caution should be applied when
using the product beyond the timeframe of this study as post-2017 SIF values
appear to be associated with lower seasonal maxima and minima than values up to
that point (Supplementary Fig. 5).

Daily SIF Retrievals from 2007 to 2017 from the SIFTERv2 algorithm50 were
resampled to a monthly mean 0.5° × 0.5° gridded resolution using an inverse
distance weighting algorithm implemented using the python library Pyresample51.
Following the advice set out in the SIFTERv2 Algorithm Theoretical Basis
Document52, pixel-level retrievals with QA values less than 0.6 were excluded from
the study to ensure that only high-quality (low cloud fraction, small spectral
residual) retrievals were used. QA values are calculated pixel wise from cloud
faction and spectral residual, pixels with high cloud faction and high spectral
residual will have a small QA value.

The monthly mean gridded data were then used to calculate a standardised SIF
anomaly (Eq. 2):

StandardisedAnomaly ¼ Xt � �X
σ

ð2Þ

where Xt represents the mean SIF value during the October to December 2015 period,
�X represents the mean and σ the standard deviation of the baseline period (October to
December) between 2007 and 2014 (excluding 2015). Information after the ENSO
period was not included in the calculation of the baseline as evidence suggests that
Amazonian forest dynamics following ENSO have changed significantly53. Wigneron
et al. 202053 for instance show that above-ground biomass (AGB) had not recovered
by the end of 2017. Thus, we excluded post ENSO years in the calculation of the
baseline as a precaution. October to December was chosen as the analysis period as
this corresponded to the period of most negative SIF anomalies across all Amazon
regions, as shown in previous studies that examined the SIF response to the 2015/
2016 ENSO event10,54 and shown in Fig. 1.

The interpretation of changes in SIF as changes in productivity has been used
by several studies10,23,55 including this one. However, the relationship is
complicated, and the use of SIF as a proxy in this manner comes with a number
sources of uncertainty and assumptions that must be taken into consideration
when interpreting the results. Porcer-Castell et al.56, summarised the key
uncertainties surrounding interpreting SIF as productivity and we recommend the
reader to read their work for a comprehensive summary. However, the key
uncertainties relevant to this study include56: 1. A lack of understanding of how
alternative energy sinks e.g. photorespiration may help sustain electron transport
during stress conditions when carbon assimilation and thus productivity is
impaired resulting in a potential decoupling of SIF and productivity. 2. Uncertainty
due to variation in species and leaf biochemistry, canopy architecture and the
presence of non-photosynthetic material 3. Uncertainty arising from the
integration of SIF controls across space and time that may strengthen or disrupt the
SIF-GPP relationship. While it is important to acknowledge these uncertainties
when interpreting the results, we remain confident in our findings, as many
studies57–60 examining SIF-GPP relationships to date find strong agreement in-
terms of variance explained, between SIF and GPP when using data collected from
flux-towers, ground measured SIF, and remote sensing SIF products at spatio-
temporal scales both finer and coarser than used in this study.

Climate anomalies associated with the ENSO. ENSO-associated climate
anomalies were calculated as anomalies in mean monthly temperature, precipita-
tion and Cumulative Water Deficit (CWD) using Eq. 1 where in this case Xt

represents the mean temperature, precipitation or CWD value during the October
to December 2015 period, �X represents the mean, and σ the standard deviation of
the baseline period (October to December) between 2007 and 2014 (excluding
2015). Temperature data was retrieved from ERA5 monthly aggregates61, and
precipitation data from TRMM 3B43 monthly precipitation product62. CWD was
computed monthly as the difference between precipitation and potential evapo-
transpiration (PET)63 (i.e., vegetation is assumed to experience stress when
PET > precipitation), with deficits accumulated over all months where precipitation
was inferior to PET and being reset to zero when precipitation exceeded PET. The
evapotranspiration threshold was explored using two different methods, the first
being a constant threshold set at 100 mm a month, based on mean water fluxes
from tower networks and remote sensing products64 and in line with many other
studies on Amazon forests65. However, we acknowledge that evapotranspiration
can vary substantially across different Amazonian forest as studies have found that
some regions have a monthly evapotranspiration closer to 150 mm66. Thus, we also
explored the implications of computing MCWD using other absolute thresholds.
The conclusions of our analysis did not change for a range of evapotranspiration
thresholds (Supplementary Fig. 2). The second method we tested, was using a
satellite (MODIS) derived Potential Evapotranspiration48 product. This product
allowed us to calculate estimates of PET at a monthly timescale. Each month’s PET
average was subtracted from that month’s rainfall to calculate the water deficit.
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This was then accumulated over time to calculate MCWD resetting to zero if
rainfall exceeded PET as before. This methodology arguably allows for a more
realistic variation and estimation of PET than a simple threshold applied across all
Amazonian forests. The results shown in this paper are based on this methodology.

Where required, climatic data were temporally and spatially resampled to
match the resolution of the SIF data to ensure consistency of scale. After processing
and applying quality filters, standardised anomalies were calculated for each
ENSO-associated climate anomalies using Eq. 1.

Soil properties. Percentage sand and cation exchange capacity for different hor-
izons from 0 to 30 cm depth were extracted from the SoilGrids dataset at a 1 km
resolution67. These were averaged over the entire 30 cm depth and resampled to
match the SIF dataset spatial dimensions. Water table depth was retrieved from the
water table depth map produced by Fan et al.27, based on a data-model fusion
approach. As with all other data layers, this product was spatially resampled to the
resolution of the SIF data.

Soils grids are produced through interpolation from ground collected data
accounting for a range of environmental covariates using machine learning
algorithms. The quality of this product at any particular point, therefore, relies on
number of points in the region, the distance from those points, and the scale of the
analyses. The spatial coverage of the Amazon is good67, especially when
considering that this study is at a scale of 0.5 × 0.5 degrees with over 8000 soil
profiles distributed across the study area. If this study was looking at finer scales,
then issues of data validity may be of much higher concern, however at this scale it
means that each of our pixels is covered by a good number of points, and thus is
likely to be representative of the regional gradients in soil characteristics.

The Water table depth product used published by Fan et al.27 interpolates globally
from 1,603,781 observations of water table collected from government archives and
published literature using a groundwater model forced by present-day climate, terrain
and sea level27. Observation density over the Amazon, is relatively low compared to
other regions and this should be taken into account when interpreting water table
depth. However, while water table depth at finer scales may differ from reality due to
low data density, at the scale we are using, the data available should be sufficient to
provide regional trends allowing us to test its importance. The Fan et al. product has
been used extensively to evaluate the impacts of water availability on vegetation
structure and function (e.g. Costa et al. 2022)68.

Background climate variables. Background climate variables considered included
mean annual precipitation and temperature, the interannual variability in mean
annual precipitation and temperature and the seasonality of monthly precipitation
and temperature. These variables were calculated using data from all years prior,
and after ENSO, but excluding data from during the event itself (2015/16 data
excluded). Temperature data was obtained from ERA5 and precipitation from
TRMM 3B42, the same data used for the computation of ENSO-associated climate
anomalies. The interannual variability was assessed by computing the coefficient of
variation (CoV) across all years (except 2015), while the seasonality of precipitation
was expressed as a seasonality index69 using Eq. 3:

SI ¼ 1
�R
∑
12

n¼1
�Xn �

�R
12

�
�
�
�

�
�
�
�

ð3Þ

where �Xn is the mean precipitation of month n, and �R is the mean annual pre-
cipitation. Seasonality in temperature was calculated as the average annual CoV of
temperature. All data processing was performed using Google Earth Engine70.

Statistical analysis. Explanatory variables were split into three overarching groups
representing ENSO-associated climate anomalies, (temperature, precipitation, and
CWD anomalies), soil characteristics (percentage sand, cation exchange capacity
and water table depth) and background climatology (mean annual precipitation/
temperature, interannual variability in precipitation/temperature and seasonality of
precipitation/temperature). We considered both linear and quadratic terms for
temperature anomaly to better represent its non-linear relationship with pro-
ductivity, whereas all other variables were included as linear terms only. The full
model and predictor variable description are provided in Supplementary Table 1.
Model fit was assessed using standard model diagnostics in R, including calculating
of model R², QQ plots, leverage plots, plots for heteroscedasticity and a plot of
fitted vs observed values (Supplementary Fig. 4).

Variable selection for the final model was undertaken using a backwards
elimination algorithm based on AIC. During a single step variables are removed
one at a time from the model and the change in AIC calculated. The variable which
resulted in the greatest decrease in AIC was then eliminated. This process was
repeated until the elimination of any variable results in a decrease in AIC of less
than 2 producing the final model for interpretation. To remove confounding effects
due to correlation between variables, variance inflation factors (VIF) were
calculated for all variables before backward elimination was conducted and all
variables with VIF greater than 10, indicating likely multicollinearity, were
removed. K fold cross-validation was performed (k= 10) to check for overfitting.
Root mean squared error of the final selected model was calculated as 0.862, and
the average k-fold validation was 0.866, the similarity indicating that the selected
model does not exhibit significant overfitting.

Model stability was investigated using a bootstrapping approach71 to quantify
the extent to which our final model was stable to mild to moderate perturbation,
and thus to what extent we can rely on the final model for inference. The
underlying dataset was bootstrapped (n= 1000), and backward elimination used
to produce a final model as outlined previously. Mean, standard deviation and
2.5/97.5 quantiles were then calculated from the bootstrapped population.
Variables for which the 95 quantiles crossed zero were excluded from analysis as
the direction of their relationship with SIF anomaly could not be reliably
inferred.

Variable importance was assessed at two levels: (1) at a group level by
calculating the change in final model R² when either ENSO-associated climate
anomalies, soils or background climatology groups were eliminated and (2) at the
level of the individual variable through direct comparison of scaled regression
coefficients in the final model.

All statistical analysis was conducted using R version 4.0.0. Data visualisation
was performed in R using the ggplot2 package72 and QGIS73.

Data availability
All data made available through Google Earth Engine require the creation of a Google
Earth Engine account https://earthengine.google.com/ The daily level 2 SIF data are
publically available at https://www.temis.nl/surface/sif/sif_daily_gome2a.php, the Temis
team request that authors send them a copy of any publications made using their data. A
monthly averaged 0.5×0.5 gridded product created by the authors for this study can be
found at https://code.earthengine.google.com/?asset=users/MaxFancourt/
updatedSIFTERID. TRMM 3B43: Monthly Precipitation Estimates was used to calculate
precipitation anomalies, mean annual precipitation, precipitation seasonality, variation in
precipitation and MCWD is publically available. This data is publically available at
https://developers.google.com/earth-engine/datasets/catalog/TRMM_3B43V7 ERA5
Monthly Aggregates - Latest Climate Reanalysis Produced by ECMWF/Copernicus
Climate Change Service was used to calculate temperature anomalies, mean annual
temperature, and variation in temperature. This data is publically available at https://
developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_MONTHLY
MOD16A2.006: Terra Net Evapotranspiration 8-Day Global 500 m was used to calculate
potential evapotranspiration as part of the calculation of MCWD. The data is publically
available at https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_
MOD16A2 Cation Exchange Capacity, as well as soil clay and sand content was obtained
from SoilGrids is publically available at https://www.isric.org/explore/soilgrids Water
table depth depth was provided by Fan et al.27 and is available upon request of Fan et al,
contact details in their paper. All anomalies, and explanatory derived variables are
available via the Google Earth Engine Code Link in the code availability section.

Code availability
The remote sensing portion of this analysis was conducted in Google Earth Engine, the
code for which is publically available via the links below upon the creation of a Google
Earth Engine account. The SIF and Climate Anomalies data was produced using Google
Earth Engine, the code to reproduce this data: https://code.earthengine.google.com/
9813c6ed96a952f8e0380cc19d1b594a The explanatory variables (mean annual
precipitation, mean annual temperature, inter and intra annual variation in precipitation
and temperature, seasonality in precipitation and variance in temperature and
precipitation are available using the following link: https://code.earthengine.google.com/
619ee4021025e179d2dc4b1e0f0e1753 The statistical analysis to conduct this analysis, was
conducted in R and is available along with the data to replicate this analysis for download
from https://zenodo.org/badge/latestdoi/51423121174 The code and data to replicate all
figures in the main text and supplementary information is available from https://zenodo.
org/badge/latestdoi/51423121174.
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