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ABSTRACT
Model averaging (MA) is a modelling strategy where the uncertainty
in the configuration of selected variables is taken into account by
weight-combining each estimate of the so-called ‘candidate model’.
Some studies have shown that MA enables better prediction, even
in high-dimensional cases. However, little is known about the model
predictionperformance at different types ofmulticollinearity in high-
dimensional data. Motivated by calibration of near-infrared (NIR)
instruments,we focus on MA prediction performance in such data.
The weighting schemes that we consider are based on the Akaike’s
information criterion (AIC), Mallows’ Cp, and cross-validation. For
estimating the model parameters, we consider the standard least
squares and the ridge regression methods. The results indicate that
MA outperforms model selection methods such as LASSO and SCAD
in high-correlation data. The use of Mallows’ Cp and cross-validation
for the weights tends to yield similar results in all structures of cor-
relation, although the former is generally preferred. We also find
that the ridgemodel averaging outperforms the least-squaresmodel
averaging. This research suggests ridge model averaging to build a
relatively better prediction of the NIR calibration model.
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1. Introduction

In a calibration of near-infrared (NIR) instruments, wemodel the concentrations of chem-
ical compositions as a function of their NIR spectra measured at hundreds or thousands
of wavelengths [8]. The main objective of the calibration is to build a model with the best
prediction. The spectra data are generally known to have some characteristics that pose
a challenge in the modelling: first, the number of variables (wavelengths) far exceeds the
number of observations and, second, the variables are highly correlated.When facing these
challenges in the modelling, we usually consider a variable selection or model selection
method. Some candidate models with different configurations of variables are identified
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first. One may then consider forward selection, backward selection, Akaike’s informa-
tion criterion (AIC), Mallows’ Cp, or cross validation (CV), to arrive at the ‘best’ model.
Rather than focusing only on the ‘best’ model, a different approach called model averag-
ing (MA) has been proposed to consider all candidate models. These candidate models are
constructed by different subsets of predictors. The prediction is performed by combining
predictions from these candidate models, in which higher weights are given to better mod-
els. In effect, the configuration of variables is taken into account in the prediction [6]. This
MA approach has also been shown to have a good prediction, even in the case of high-
dimensional data [2]. We know little, however, whether MA would be advantageous for
prediction in the case of high-dimensional and highly correlated data such as the context
of a calibration of NIR instruments. Therefore, this study investigates the prediction per-
formance of MA in such a situation and compares it with MA in data with low correlation
and ‘block’ correlation within a simulation study.

Just like in any general statistical modelling, there are two main approaches to MA
that reflect different schools of thought: Bayesian model averaging (BMA) and frequen-
tist model averaging (FMA). In BMA, we require a prior distribution and compute the
posterior probability of each candidate model and use them as weights in the averaging
[6,12,15]. On the other hand, the FMA does not require any prior assumption and fully
depends on the considered data. Its result, however, is mainly determined by (1) the pro-
cedure to construct candidate models, (2) the method to estimate model parameters, and
(3) the calculation of weight (for each candidate model). This study focuses only on the
FMA and the context is only on high-dimensional data.

With regard to the calculation of candidate model weights, some proposals have been
put forward. Buckland et al. [3] proposed the use of the Akaike’s information criterion
(AIC). Hansen [9] proposed Mallows’ Cp and Hansen & Racine [10] later suggested the
use of cross-validation (CV) criterion (jackknife MA) for the weights. For the procedure
to construct candidate models, Salaki et al. [16] proposed a random partition to select
the variables into candidate models. Hansen [9] and Hansen and Racine [10] proposed a
nested model set-up, while Ando and Li [2] proposed a marginal correlation of covariate
with response variable to construct candidate models. Magnus et al. [13] proposed a sep-
aration of focus variables, the ones that must be included in each candidate model, from
auxiliary variables in the construction. With the exception of Salaki et al. [16], Zhao et al.
[20], andAndo andLi [2],many of literatures donot specifically focus onhigh-dimensional
data when proposing methods for candidate model construction. This point is critical to
note since this is related to themethods to estimatemodel parameters. Unfortunately, most
studies restrict themselves to use ordinary least squares (OLS) to estimate model param-
eters (e.g. [2,10]) even in the context of high-dimensional data. It is well known that OLS
estimates tend to be unstable in the presence of correlation between variables and this could
negatively affect the model prediction.

The objective of this study is to investigate how themethod to calculate weights of candi-
date models and the method of parameter estimation affect the prediction performance of
MA in modelling high-dimensional data containing different correlation structures: high
correlation, low correlation, and ‘blocks’ correlation. We consider three different methods
to calculate the weights of candidate models: AIC, Mallows’ Cp, and cross validation. For
the method to estimate model parameters, we consider both the OLS method and ridge
method [11]. Ridge regression is considered to specifically deal with the problem of (high)
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multicollinearity between variables such as the case in our application. For the method
to construct the candidate models, we only consider the marginal correlation between the
response variable and predictors as previously done byAndo and Li [2]. They reported that
this method to construct candidate models produced better prediction power compared
to other methods.

We compare the model performance of MA in the above different situations with those
of model selection methods: least absolute shrinkage and selection operators (LASSO)
[17] and smoothly clipped absolute deviation (SCAD) [7]. These methods are known and
widely used to perform variable selection and parameter estimation simultaneously by
imposing a certain penalty on amodel fitting criterion. Our simulation study indicates that
the prediction performance of MA is determined by the correlation structure of the data,
method of parameter estimation, and the calculation method for the weights. In general,
we find that MAworks better than penalised regression methods in high-dimensional and
highly correlated data. In terms of the method of parameter estimation, we also find that
ridge regression MA outperforms the least-squares MA as the candidate models contain a
larger number of predictors.

The rest of this paper is organised as follows. Section 2 describes the methodology of
this study. A simulation study to assess prediction performance of MA in different settings
is presented in Section 3, meanwhile, Section 4 describes the results. Section 5 presents the
discussion and concluding remarks of this study.

2. Methods

In this section, we describe the MA methodology. Specifically, the setting and notation of
the relevantmodels are defined in Section 2.2. Section 2.3 outlines theMA framework with
several different weighting schemes and methods of parameter estimation. However, first,
we shall describe the NIR calibration dataset that motivated our study.

2.1. NIR calibration dataset

In this study, we consider two real datasets on the calibration of near-infrared spectrometer.
The datasets are spectra from 80 corn specimens measured on two different spectrom-
eters (mp5 and mp6) at 700 wavelengths between 1100 and 2496 nm in 2 nm intervals.
Each spectrometer generates a spectra matrix of size 80 × 700. From each corn specimen,
moisture, oil, protein and starch concentrations are measured. The average correlation
between variables in the corn mp5 and mp6 datasets are 0.997 and 0.982, respectively. The
datasets are originally available from http://www.eigenvector.com [1] and the spectra data
are presented in Figure 1(a ,b).

2.2. Models and notation

Let y ≡ (y1, y2, . . . , yn)T be a vector of response variable, where n is the number of observa-
tions and ‘T’ denotes transposition. Let x1, x2, . . . , xp be vectors of predictors, each ofwhich
is an n-vector, and let β1,β2, . . . ,βp be the corresponding model parameters, respectively.
The predictors can be summarised in amatrix of predictorsX of size n × p, where of p (the

http://www.eigenvector.com
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Figure 1. The spectra data involved in this study: (a) corn data using mp5 spectrometer, (b) corn data
using mp6 spectrometer. The scale on vertical axis is arbitrary. The lines connect the absorbances of the
same experimental specimen across different wavelengths. See the main text in Section 2.1 for more
details.

number of predictors) is allowed to exceed n. Consider a linear regression model

y =
p∑

j=1
βjxj + ε (1)

where β ≡ {βj} is a p-vector of unknown regression model parameters, ε is an n-vector
of random error term. We assume that εi independently follows a normal distribution
with mean zero and variance σ 2 > 0, for i = 1, 2, . . . , n. Without loss of generality, we
assume that all the variables are centred to have zero mean so that we do not need to worry
about the intercept. The objective of model fitting is to estimate β1, . . . ,βp, not only for
interpreting the relationship between each predictor and the response variable but also for
prediction of future observations.

In the ordinary least-squares (OLS) method, β is estimated as

β̂OLS = arg minβ

{
(y − Xβ)T(y − Xβ)

}
(2)

which is given by

β̂OLS = (XTX)−1XTy. (3)

When n<p, Equation (2) is over-parameterised and the estimates in Equation (3) are
not attainable. Even when n>p, the estimates in Equation (3) tend to be unstable when
high multicollinearity is present in X. To deal with this problem, we usually moderate the
objective function in Equation (2) with a penalty function pλ(·):

(y − Xβ)T(y − Xβ) + pλ(β1, . . . ,βp) (4)

for some ‘tuning’ parameter λ > 0. Different penalty function pλ will arrive at different
solutions for β . In the ridge regression (RR), the estimates β̂RR can be obtained by setting
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pλ(β1, . . . ,βp) = λ
∑p

j=1 β2
j . It can be shown that the estimates can be written as

β̂RR = (XTX + λR)−1XTy (5)

where R is the identity matrix of the appropriate size. Equation (5) indicates that the
estimates β̂RR are shrunk towards zero compared to β̂OLS and the amount of shrinkage
depends on λ.

In the context of model selection, we can consider the penalty function such that some
of the estimates of β1,β2, . . . ,βp are estimated to be zero. In effect, a variable selection is
performed by negating the contribution of some variables in the prediction. As a compar-
ison to the MA framework, we consider LASSO [17,18], Adaptive LASSO [21], MCP [19],
SCAD [7], and Elastic Net [22] to represent model selection methods, although we illus-
trate here the penalty functions for LASSO and SCAD. To get an estimate based on LASSO,
the penalty function is defined as pλ(β1, . . . ,βp) = λ

∑p
j=1 |βj|. This penalty function pro-

duces a sparse solution, i.e. some of the parameters are estimated to be zerowhile the others
are estimated to be away from zero. To get estimates based on SCAD, the penalty function
is defined such that the first derivative (with regard to β) is given by

p′
λ(β) = λ

{
I(β ≤ λ) + (aλ − β)+

(a − 1)λ
I(β ≥ λ)

}
for some a>2, where pλ(0) = 0, and I(·) is an indicator function that equals one if the
condition inside the brackets is true and zero otherwise. In our study, the parameter λ in
these different estimation methods is estimated using a cross-validation method.

2.3. Model averaging

In this section, we now describe the MAmethodology that we consider for our calibration
problem. Consider the linear regression model in Equation (1) and the set of predictors
{x1, x2, . . . , xp} that is partitioned into K subsets (described in Section 2.3.1 below). For
k = 1, 2, . . . ,K, the k-th subset of predictors is considered to construct the design matrix
X(k) of the k-th candidate modelMk. The k-th candidate modelMk can be written as

Mk : y = X(k)β(k) + ε(k) (6)

where X(k) is a matrix of predictors of size n × p(k), β(k) is a p(k)-vector of model parame-
ters associated withX(k), and ε(k) is the random error term. Themodel parameters β(k) are
estimated according to different estimation methods as described in Section 2.3.2 below.

Once we obtain the estimates β̂(k), we define ŷ(k) as a fitted vector based on modelMk,
i.e. ŷ(k) = X(k)β̂(k). The fitted vector for MA, ŷMA, in model (1) can be written as

ŷMA =
K∑

k=1

wk̂y(k), (7)

where wk is the weight corresponding to the k-th candidate model, 0 ≤ wk ≤ 1 ∀k and∑K
k=1 wk = 1, and is described below in Section 2.3.3. The MA parameter estimate for
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βj, j = 1, . . . , p, of Equation (1) is calculated by

β̂j =
K∑

k=1

wkβ̂j,(k), (8)

where β̂j,(k) is the estimate of βj based on the k-th candidate model. Note that, if predictor
j is not in the candidate model k, then β̂j,(k) = 0 for j = 1, 2, . . . , p, and k = 1, 2, . . . ,K.

2.3.1. Model construction
To construct the candidate models, X(k), k = 1, 2, . . . ,K, we consider the marginal corre-
lation of predictors with the response variable as previously considered in Ando and Li [2].
There are two main reasons behind the adoption of this approach. First, Ando and Li [2]
have indicated that this method generally gives better prediction, and second, this method
is a common practice in MA to construct candidate models, and we wish our conclusion
of this study to be relevant to this common practice. As an alternative method to construct
the candidate models, we consider a random partition approach for practical reasons [16].
The main idea is to select the predictors without any prior knowledge of their association
with the outcome variable, unlike the marginal correlation approach.

For the marginal correlation approach, recall the response variable y and the corre-
sponding design matrix X = (x1, x2, . . . , xp) in Equation (1). By noting that the variables
are centred to have zero mean, let

ρ̂j =
xTj y√

xTj xj
√
yTy

be the (sample) marginal correlation between y and xj, j = 1, 2, . . . , p. Based on the abso-
lute values of the observed correlations, all the variables are then ordered in decreasing
order to get {x(1), x(2), . . . , x(p)}.

We assume, without loss of generality, that the set of p predictors can be partitioned
exhaustively into K subsets with the same number of predictors v in each subset, i.e.
v = p/K. We then build each of K candidate models by incorporating v predictors from
{x(1), x(2), . . . , x(p)} at a time. The matrix X(1) of model M1 consists of the first v ordered
predictor or X(1) = (x(1), x(2), . . . , x(v)). Similarly, X(2) consists of the second v ordered
predictors orX(2) = (x(v+1), . . . , x(2v)), and so forth until K candidate models are created.

For the randompartition approach,we randomly and exhaustively partition ppredictors
into K subsets with the same number of predictors v in each subset. We then construct the
matrices X(1),X(2), . . . ,X(K), each of which contains v randomly selected predictors.

2.3.2. Model estimation
Once the candidatemodelsMk’s in Equation (6) are constructed, we consider two different
estimation methods to estimate the corresponding model parameters β(k). First, the OLS
estimate for β(k) is given by

β̂(k),OLS = (XT
(k)X(k))

−1XT
(k)y. (9)

Secondly, the ridge estimate for β(k) is given by

β̂(k),RR = (XT
(k)X(k) + λR)−1XT

(k)y. (10)



JOURNAL OF APPLIED STATISTICS 7

To our knowledge, recent studies in MA only consider the OLS estimates, even in the con-
text of high-dimensional data. This is possible because n > j(k) in the candidate models.
Our proposal to also consider the ridge estimate is to deal with high correlation that can
still be present in the candidate model’s predictors X(k), as motivated by our NIR calibra-
tion problem. In such a situation, even if n > j(k), themodel parameter estimates generally
have very large standard errors. We believe that this can be detrimental to the prediction
performance in the context of our application.

In the estimation of parameters of candidate models, we do not consider LASSO or
SCAD estimates because in principle they fall in the model selection methodology. The
MA does not focus on selection, but rather on incorporating predictors and weighting
different plausible (candidate) models in prediction. The prediction performance of the
MA, however, will be compared to that of the LASSO and SCAD models in our study. It
is currently our active research to investigate the impact of considering model selection
within a MA framework and is beyond the scope of this manuscript.

The tuning parameter λ in the ridge regression estimation or model selection methods
(LASSO and SCAD) is estimated using a cross-validation method. This cross-validation is
separated fromcross validation to estimate the candidatemodelweights (Section 2.3.3) and
from that to assess model prediction performance in the simulation study (Section 3.2).To
describe this briefly, the observations are randomly split into s subsets or folds, F1, . . . , Fs.
In our study, we consider s = 5 (i.e. five-fold cross-validation). For each fold, we leave out
the fold and fit the model at a given λ on the remaining folds. For each observation in the
left-out fold, we calculate the predicted value using the corresponding predictors but using
parameter estimates when the model was fitted using the other folds, denoted ŷCVi (λ). We
write the cross validation error as

CV(λ) = 1
n

n∑
i=1

{
yi − ŷCVi (λ)

}2
, (11)

and the optimal λ is estimated as

λ̂ = argmin
λ

CV(λ).

2.3.3. Weight criteria
One key aspect in the prediction using model averaging methodology is the choice
of weight for each candidate model, or wk’s, k = 1, 2, . . . ,K, where wk ∈ [0, 1] and∑K

k=1 wk = 1. With the constraint that the weights sum up to one, they can be consid-
ered as the probability of an associated candidate model to be the best model. In this study,
we consider three types of weights: Akaike’s information criterion (AIC), Mallows’ Cp, and
cross-validation (CV).

Akaike’s information criterion (AIC)
The AIC indicates the relative quality of a statistical model given the data. Consider the

AIC of a candidate modelMk, denoted as

AIC(Mk) = −2�n(β(k)) + 2d(Mk)
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where �n(β(k)) is the log-likelihood of β(k), and d(Mk) is effective dimension of the
parameter vector fitted in the model. The log-likelihood is given by

�(β(k)) = − log p(y|β(k)) = −1
2
log |�(k)| − 1

2
(y − Xβ(k))

T�−1
(k) (y − Xβ(k)),

where �k is a diagonal matrix of the error variance inMk, i.e. �k = Var(εk). The effective
dimension d(Mk) is equal to j(k) (the number of columns of X(k)) when β(k) is estimated
using the OLS method (9), and is equal to [14]

trace
{(

XT
(k)X(k) + λR

)−1
XT

(k)X(k)

}
when β(k) is estimated using the ridge estimation (10).

Based on the value of AIC(Mk), Burnham and Anderson [5] proposed to rescale the
information criterion as a relativemeasure for each candidate model called AIC difference,
and it is denoted as

	k = AIC(Mk) − AICmin,

where AICmin is the minimum AIC among all candidate models. Therefore, the AIC
weights to be assigned in the candidate modelMk is given by

wk = exp(−	k/2))∑K
k=1 exp(−	k/2)

(12)

The weights (wk’s) based on AIC in this case indicate the probability of model Mk being
the best model in the set of considered candidate models [5].

Mallows’s Cp
Mallows’ Cp model averaging (MMA) was proposed by Hansen [9] and it is based on

the well-knownMallows’Cp criterion in calculating the weightswk’s. It involves an average
of residuals sum of squares and a penalty term for complexity with an unknown σ 2, which
has to be estimated. The Mallows’ Cp criterion for MA estimator is given by:

CM(w) = wT ε̂
T
ε̂w + 2σ̂ 2
Tw (13)

wherew ≡ (w1,w2, . . . ,wK)T is a vector of weights for different candidate models, ε̂ is the
matrix of all residual vectors across K candidate models of size n × K,
 is a vector of φk’s
(i.e. 
 ≡ (φ1, . . . ,φK)T), and φk is the number of predictors used in the k-th candidate
model, k = 1, . . . ,K. Considering this as an estimation problem, the weight vector w is
estimated by

ŵ = argmin
w∈W

CM(w) (14)

where W = {wk ∈ [0, 1],
∑K

k=1 wk = 1; k = 1, . . . ,K}. This is a classical linear program-
ming problem and can be calculated using standard optimisation procedures.

Cross-validation (CV)
Model averaging weights based on the principle of cross-validation (CV) were previ-

ously proposed by Hansen and Racine [10]. The idea is that the cross-validation criterion
indicates a quality of themodel given the data, especially to balance themodel fit andmodel
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prediction. In our study, we consider the case of leave-one-out cross validation, in which
we make a prediction on every i-th observation based on the model parameter estimates
in which the i-th row was deleted.

Let x(k)
i be the i-th row of the predictor matrix X(k) inMk, k = 1, 2, . . . ,K. Let X(k)

−i and
y−i respectively be the predictor matrix X(k) inMk and the response variable y where the
i-th row (or i-th element in y) is deleted. Furthermore, let μ̃k

i be the prediction on the i-th
observation based on the model parameter estimates in which the i-th row was deleted, or
(in the case of OLS estimates)

μ̃k
i = x(k)

i (X(k)
−i

T
X(k)

−i )
−1X(k)

−i
T
y−i. (15)

In the context of ridge regression estimate, then the estimate on the right-hand side of the
above equation is adjusted accordingly.

Let μ̃k = (μ̃k
1, μ̃

k
2, . . . , μ̃

k
n)

T be an n-vector of predicted values from the cross-validation
in the k-th candidatemodel. The CV residual vector of the k-th candidatemodel is denoted
by ε(k) = y − μ̃k. Across K candidate models, the residuals can be summarised into a
matrix (of size n × K) denoted as E = (ε1, . . . , εK). Therefore, the optimal weight based
on CV can be calculated by minimising

CJ(w) = 1
n
wTETEw, (16)

or

ŵ = argmin
w∈W

CJ(w). (17)

3. Simulation study

3.1. Simulation setting

To understand the prediction performance of MAmethodology in our context of interest,
we perform a simulation study where some simulation parameters are varied. In particular,
we are interested to understand how the different number of variables included in the can-
didate models (v), how the model parameter is estimated, and how the candidate model
weights (wk’s) affect the prediction performance in different correlation structures of data.

The simulation data matrix X of size n × p, with n = 300 and p = 1000, is generated
according to the multivariate normal distribution with mean zero and covariance matrix
C, or X ∼ MVN(0,C). The way we consider C defines the correlation structure of the
simulated data. In this study, we consider different correlation structures as follows. First,
we define C as

C =

⎡⎢⎢⎢⎢⎢⎣
1 τ 2 τ 2 · · · τ 2

τ 2 1 τ 2 · · · τ 2

τ 2 τ 2 1 · · · τ 2

...
...

...
. . .

...
τ 2 τ 2 τ 2 · · · 1

⎤⎥⎥⎥⎥⎥⎦
where τ 2 = 0.1, 0.75, 0.85, and 0.95. The value τ 2 = 0.1 represents the case of low correla-
tion while the other values represent the case of high correlation. The different values of τ 2
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in representing high-correlation case is to highlight our attention on the high-correlation
data we encounter in the calibration of NIR instruments.

Second, we consider independent block correlation data so that C is defined as

C =

⎡⎢⎢⎢⎣
C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · CQ

⎤⎥⎥⎥⎦ , (18)

where

Cq =

⎡⎢⎢⎢⎢⎢⎣
1 τ 2 τ 2 · · · τ 2

τ 2 1 τ 2 · · · τ 2

τ 2 τ 2 1 · · · τ 2

...
...

...
. . .

...
τ 2 τ 2 τ 2 · · · 1

⎤⎥⎥⎥⎥⎥⎦ ,

0 is a sub-matrix of zeros with a corresponding conformable size to that of Cq, and τ 2 =
0.95. Q here denotes the number of correlation blocks in the data and we consider Q =
2, 5, 10 so that each Cq, q = 1, . . . ,Q, is of size 1000/Q.

Third, we consider correlated-block correlation data so that C is defined as

C =

⎡⎢⎢⎢⎣
C1 Cr · · · 0
Cr C2 · · · 0
...

...
. . .

...
0 0 · · · CQ

⎤⎥⎥⎥⎦ ,

where Cq is as defined above and Cr is a sub-matrix that contains the correlation between
blocks with elements crij = 0.7,∀i, j.

The simulated response variable y ≡ (y1, y2, . . . , yn)T is generated as

yi =
p∑

j=1
βjxij + εi ; i = 1, . . . , n, (19)

where βj = 1 for j = 1, . . . , 200, and βj = 0 for j = 201, . . . , 1000, and the error terms ε

are sampled fromN (0, 0.3).
As a summary, for each correlation structure, we vary the following simulation param-

eters:

(1) The numbers of predictor included in the candidate models v are set at 10, 20, 40, 100,
and 200, which correspond to the number of candidate models K =100, 50, 25, 10,
and 5, respectively.

(2) The methods of constructing candidate models are set to be based on marginal
correlation and random partition.

(3) Themethods to estimate candidate model parameters are set to be least squares (OLS)
and ridge (RR).

(4) The candidate model weights are set to be based on AIC, Mallows’ Cp, and CV.
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Based on Points No 2–4 above, we have 12 MA frameworks: MOA, MOM, MOC, MRA,
MRM, MRC, ROA, ROM, ROC, RRA, RRM and RRC. For the first letter, ‘M’ refers to
marginal correlation and ‘R’ refers to random partition to construct the candidate mod-
els. The second letter corresponds to the candidate model parameter estimation (‘O’ for
OLS, and ‘R’ for RR), and the third letter corresponds to the weights (‘A’ for AIC, ‘M’ for
Mallows’ Cp, and ‘C’ for CV).

For each setting, we generated simulated data 500 times and calculate the model pre-
diction performance in terms of root mean square prediction error (RMSEP) as described
next. We compare the model prediction performance of MA with those from LASSO,
adaptive LASSO, MCP and SCAD models that represent model selection.

3.2. Rootmean squared error of prediction (RMSEP)

In order to evaluate the prediction performance of those frameworks over several struc-
tures of correlation, we perform five-fold cross-validation by randomly splitting the obser-
vations into training set and validation set.While a fold is used as a validation set, the others
serve as a training set. Let yvi of the i-th observation that is considered when it falls in the
validation set, and let ŷvi be the predicted value based on xi,1, . . . , xi,1000 in the validation
set using β̂ from the training set. The root mean squared error of prediction (RMSEP) of
a framework π is calculated via this equation,

RMSEP(π) =
{
1
n

n∑
i=1

(yvi − ŷv,πi )2

} 1
2

(20)

where π represents a framework type or method. This cross validation is separated from
cross-validation to estimate λ in ridge regression estimation and from that to estimate
candidate model weights.

4. Results

4.1. Simulation results

The results of simulation study are presented in Tables 1 and 2 and Figures 2 and 3. In
Tables 1 and 2, the root mean squared error of prediction (RMSEP) of different simula-
tion settings across 500 simulated datasets are presented for candidate model construction
based on the marginal correlation and random partition, respectively. As a comparison,
the RMSEP from model selection methods (LASSO, Adaptive LASSO, MCP, SCAD, and
Elastic Net) are also presented in the tables.

In Table 1, there are a few situations in which MA has higher RMSEP than model
selection methods. This is true in the case of low correlation, 10 independent block cor-
relation, and 5 independent block correlation. Other than those, MA manages to obtain
lower RMSEP than themodel selectionmethods. In Table 2,MAmanages to obtain a lower
RMSEP than the model selection methods in all situations, except the low-correlation set-
ting. This is encouraging, considering that the simulation settings considered are relatively
challenging with different correlation structures.

In terms of the number of predictors in the candidate models, Tables 1 and 2 indicate
that the RMSEP decreases as the number of predictors in the candidate models increases.
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Figure 2. RMSEP for several model averaging (MA) frameworks each with five different numbers of pre-
dictors in high-correlation simulated data (Corr: 0.95). There are six MA frameworks: MOA, MOM, MOC,
MRA, MRM and MRC. The first letter (‘M’) refers to marginal correlation to construct the candidate mod-
els, the second letter corresponds to the candidate model parameter estimation (‘O’ for OLS, and ‘R’ for
RR), and the third letter corresponds to the weights (‘A’ for AIC, ‘M’ for Mallows’ Cp, and ‘C’ for CV). As
a comparison, RMSEP from penalised regression are included: LASSO, Adaptive LASSO, MCP, SCAD, and
Elastic Net. Figures for RMSEP of MA based on random partition model construction are presented in
Figure 3. Figures for other correlation structures are presented in the Supplementary Material.

However, when the model parameters are estimated using OLS, the RMSEP tends to
increase again when the number of predictors is 200 in the candidate models. This indica-
tion is generally not seen when we consider ridge regression estimates. This is reasonable
because when the number of predictors in the candidate models increases to n, then the
OLS estimation becomes unstable and the ridge regression estimate is known to be able
to deal with this problem. Furthermore, having 100 (n/3) and 200 (2n/3) predictors in the
candidate models tends to give optimal predictions when using ridge regression estimates.
When the OLS estimation is considered, the general tendency is to consider having 100
predictors in the candidate models for a good prediction. These results indicate that the
estimation of model parameters interacts with the number of predictors in the candidate
models for an optimal prediction in MA.
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Figure 3. RMSEP for several model averaging (MA) frameworks each with five different numbers of pre-
dictors in high-correlation simulated data (Corr: 0.95). There are six MA frameworks: ROA, ROM, ROC,
RRA, RRM and RRC. The first letter (‘R’) refers to random partition to construct the candidate models, the
second letter corresponds to the candidate model parameter estimation (‘O’ for OLS, and ‘R’ for RR), and
the third letter corresponds to the weights (‘A’ for AIC, ‘M’ for Mallows’ Cp, and ‘C’ for CV). Figures for
RMSEP of MA based on marginal correlation model construction are presented in Figure 2. Figures for
other correlation structures are presented in the Supplementary Material.

In terms of methods to construct candidate models, we find from Tables 1 and 2 that
both marginal correlation and random partition methods have comparable performance,
except in the case of block correlation with 5 and 10 independent blocks. In these two
cases, the tables suggest that random partition is preferable to construct candidate models.
In the context of high correlation between variables such as the case in the calibration
of NIR instruments, the tables show that the RMSEP is quite similar and they both give
lower RMSEP than that from model selection methods. Lastly, in terms of methods to
calculate weights for candidate models in MA, Tables 1 and 2 show that the weights based
on Mallows’ Cp and cross-validation criteria give lower RMSEP than those based on AIC,
across different correlation structures of the simulated data.

4.2. NIR calibration data

The results of the MA on real NIR calibration data are presented in Table 3. The table
shows the RMSEP on the two NIR datasets across different numbers of predictors in the
candidate models (v). The numbers of predictors tested in the real data are n/4, n/3, and
n/2. This is based on a ratio over n that gives the optimal RMSEP in the simulation study
of approximately n/3. The table indicates that in the Corn (mp5) data, the MA gives lower
RMSEP than the model selection methods in all outcome variables. However, in the Corn
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Table 1. Root mean squared error of prediction (RMSEP) from different model averaging (MA) frame-
works for different number of variables in the candidatemodels (v) and in various correlation structures.

MA framework

Structure of correlation v MOA MRA MOM MRM MOC MRC Penalised regression

Low 10 19.240 19.308 16.743 17.325 16.514 17.355 9.193 (LASSO)
20 17.092 17.244 14.019 15.092 13.279 14.438 10.686 (A-LASSO)
40 15.960 15.948 11.825 13.331 11.233 12.603 14.961 (MCP)
100 13.618 13.112 10.025 11.749 9.753 11.193 14.226 (SCAD)
200 19.186 11.450 12.978 10.724 12.947 10.477 8.088 (Enet)

10 Indep. Block 10 20.913 20.941 18.399 19.053 23.356 24.301 3.728 (LASSO)
20 19.963 19.870 17.549 18.393 22.291 23.836 4.679 (A-LASSO)
40 20.168 19.333 17.063 17.905 20.664 22.987 8.222 (MCP)
100 23.848 18.401 17.140 16.886 18.098 21.204 7.740 (SCAD)
200 42.854 16.719 27.624 15.223 26.946 18.560 2.904 (Enet)

10 Corr. Block 10 12.236 12.393 4.250 5.022 5.305 6.593 4.009 (LASSO)
20 9.020 9.503 3.805 4.057 4.025 4.740 7.397 (A-LASSO)
40 7.994 7.582 3.625 3.668 3.618 3.907 14.927 (MCP)
100 7.113 5.463 4.527 3.514 4.510 3.578 7.182 (SCAD)
200 12.071 5.138 8.711 3.707 8.742 3.705 3.954 (Enet)

5 Indep. Block 10 21.093 20.885 16.645 17.205 27.216 28.480 4.628 (LASSO)
20 20.415 19.687 15.906 16.439 23.892 27.154 6.377 (A-LASSO)
40 20.424 19.043 15.465 15.978 20.653 24.764 9.647 (MCP)
100 23.829 18.891 15.287 14.652 16.202 21.389 9.600 (SCAD)
200 42.402 17.455 26.858 13.141 26.538 19.620 3.198 (Enet)

5 Corr. Block 10 7.516 7.634 2.986 3.435 4.642 5.923 4.181 (LASSO)
20 5.661 5.601 2.644 2.843 3.108 4.281 7.989 (A-LASSO)
40 4.619 4.195 2.516 2.554 2.548 3.201 11.160 (MCP)
100 4.191 2.983 2.595 2.420 2.597 2.416 6.868 (SCAD)
200 6.482 2.698 4.059 2.542 4.073 2.524 3.884 (Enet)

2 Indep. Block 10 7.137 7.141 2.726 3.315 9.748 11.718 4.969 (LASSO)
20 5.451 5.309 2.570 2.788 5.940 10.355 7.662 (A-LASSO)
40 4.612 4.362 2.484 2.582 2.803 8.611 14.010 (MCP)
100 4.096 3.127 2.543 2.466 2.548 5.972 10.419 (SCAD)
200 7.991 2.801 4.363 2.423 4.369 2.423 3.883 (Enet)

2 Corr. Block 10 7.354 7.173 2.805 3.262 5.507 7.484 4.351 (LASSO)
20 5.738 5.482 2.708 2.868 3.949 5.895 9.004 (A-LASSO)
40 4.463 4.312 2.672 2.750 2.704 4.664 17.298 (MCP)
100 4.153 3.172 2.677 2.606 2.677 3.269 6.740 (SCAD)
200 6.231 2.893 3.998 2.679 4.001 2.649 3.961 (Enet)

High (Corr: 0.95) 10 6.714 6.741 2.312 2.845 2.225 2.742 4.699 (LASSO)
20 5.084 5.025 2.237 2.437 2.224 2.424 9.087 (A-LASSO)
40 4.150 3.954 2.196 2.380 2.192 2.382 15.367 (MCP)
100 3.640 3.033 2.173 2.514 2.174 3.074 5.992 (SCAD)
200 5.711 3.277 3.149 3.023 3.149 3.499 3.807 (Enet)

High (Corr: 0.85) 10 12.058 12.961 4.456 5.068 4.322 4.873 5.536 (LASSO)
20 9.693 9.548 4.118 4.554 4.098 4.510 11.663 (A-LASSO)
40 8.023 7.369 3.945 4.322 3.941 4.286 20.328 (MCP)
100 6.699 5.813 3.764 4.056 3.765 4.048 7.930 (SCAD)
200 9.896 4.687 5.432 3.845 5.432 3.842 5.235 (Enet)

High (Corr: 0.75) 10 15.279 15.751 5.822 6.927 5.822 6.659 6.467 (LASSO)
20 12.053 12.444 5.270 6.080 5.270 5.961 11.389 (A-LASSO)
40 9.707 9.849 4.917 5.648 4.917 5.594 23.358 (MCP)
100 7.486 6.515 4.801 5.218 4.801 5.193 8.732 (SCAD)
200 11.863 5.846 6.622 5.058 6.622 5.048 6.090 (Enet)

Notes: There are sixMA frameworks:MOA,MOM,MOC,MRA,MRMandMRC. The first letter (‘M’) refers tomarginal correlation
to construct the candidate models, the second letter corresponds to the candidate model parameter estimation (‘O’ for
OLS, and ‘R’ for RR), and the third letter corresponds to the weights (‘A’ for AIC, ‘M’ for Mallows’ Cp , and ‘C’ for CV). For
RMSEP figures where the construction of candidate models is based on random partition, see Table 2. The RMSEP from
model selection methods (LASSO, Adaptive LASSO, MCP, SCAD, and Elastic net) are also presented as a comparison.
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Table 2. Root mean squared error of prediction (RMSEP) from different model averaging (MA) frame-
works for different number of variables in the candidatemodels (v) and in various correlation structures.

MA framework

Structure of correlation v ROA RRA ROM RRM ROC RRC Penalised regression

Low 10 22.715 21.872 17.105 18.028 16.905 17.805 9.193 (LASSO)
20 18.378 17.363 13.418 14.333 13.025 14.317 10.686 (A-LASSO)
40 16.169 16.304 10.759 11.839 10.578 11.833 14.961 (MCP)
100 14.848 12.393 9.557 10.025 9.453 9.964 14.226 (SCAD)
200 23.837 10.604 12.975 9.432 12.924 9.378 8.088 (Enet)

10 Indep. Block 10 11.547 11.983 7.178 8.108 11.385 13.202 3.728 (LASSO)
20 6.223 5.165 2.905 3.168 4.931 4.675 4.679 (A-LASSO)
40 4.209 4.232 2.273 2.583 2.276 2.598 8.222 (MCP)
100 3.887 2.804 2.191 2.232 2.190 2.225 7.740 (SCAD)
200 5.760 2.559 3.112 2.135 3.112 2.131 2.904 (Enet)

10 Corr. Block 10 9.376 9.352 3.079 3.707 3.299 4.119 4.009 (LASSO)
20 5.796 5.760 2.521 2.741 2.526 2.775 7.397 (A-LASSO)
40 4.506 4.246 2.367 2.450 2.367 2.450 14.927 (MCP)
100 3.875 3.028 2.278 2.339 2.278 2.338 7.182 (SCAD)
200 6.039 2.462 3.206 2.381 3.206 2.391 3.954 (Enet)

5 Indep. Block 10 7.707 8.209 2.900 3.932 6.564 9.245 4.628 (LASSO)
20 6.215 5.525 2.552 2.673 2.575 2.695 6.377 (A-LASSO)
40 4.726 4.519 2.394 2.440 2.392 2.429 9.647 (MCP)
100 3.753 3.238 2.375 2.367 2.375 2.359 9.600 (SCAD)
200 6.304 2.753 3.461 2.321 3.461 2.316 3.198 (Enet)

5 Corr. Block 10 7.268 7.275 2.522 3.034 2.655 3.409 4.181 (LASSO)
20 5.434 5.264 2.290 2.460 2.286 2.468 7.989 (A-LASSO)
40 4.257 3.988 2.203 2.279 2.202 2.278 11.160 (MCP)
100 3.744 2.411 2.185 2.210 2.185 2.215 6.868 (SCAD)
200 5.955 2.570 3.147 2.424 3.147 2.456 3.884 (Enet)

2 Indep. Block 10 6.916 6.830 2.475 2.944 2.435 2.974 4.969 (LASSO)
20 5.211 5.017 2.321 2.442 2.320 2.440 7.662 (A-LASSO)
40 4.222 3.883 2.234 2.307 2.234 2.304 14.010 (MCP)
100 3.762 2.971 2.233 2.219 2.232 2.217 10.419 (SCAD)
200 6.012 2.464 3.216 2.181 3.216 2.179 3.883 (Enet)

2 Corr. Block 10 7.019 6.871 2.442 2.848 2.370 2.832 4.351 (LASSO)
20 5.328 5.242 2.323 2.454 2.315 2.447 9.004 (A-LASSO)
40 4.325 3.927 2.257 2.333 2.255 2.331 17.298 (MCP)
100 3.829 2.425 2.258 2.286 2.258 2.293 6.740 (SCAD)
200 6.142 2.673 3.294 2.534 3.294 2.572 3.961 (Enet)

High (Corr: 0.95) 10 6.265 6.524 2.214 2.770 2.154 2.690 4.699 (LASSO)
20 4.920 4.700 2.164 2.328 2.151 2.306 9.087 (A-LASSO)
40 3.959 4.046 2.232 2.305 2.231 2.305 15.367 (MCP)
100 3.326 2.987 2.019 2.716 2.019 2.808 5.992 (SCAD)
200 5.669 3.265 2.853 3.132 2.853 3.162 3.807 (Enet)

High (Corr: 0.85) 10 11.533 11.415 4.248 4.706 4.184 4.658 5.536 (LASSO)
20 8.929 8.641 3.928 4.197 3.927 4.190 11.663 (A-LASSO)
40 7.152 6.726 3.796 3.951 3.795 3.943 20.328 (MCP)
100 6.404 5.074 3.763 3.770 3.762 3.764 7.930 (SCAD)
200 10.001 4.334 5.395 3.707 5.395 3.702 5.235 (Enet)

High (Corr: 0.75) 10 14.834 14.752 5.565 6.215 5.524 6.181 6.467 (LASSO)
20 11.348 10.983 4.968 5.436 4.962 5.425 11.389 (A-LASSO)
40 9.168 8.563 4.756 5.042 4.753 5.032 23.358 (MCP)
100 8.190 6.466 4.727 4.789 4.726 4.777 8.732 (SCAD)
200 12.837 5.563 6.874 4.704 6.873 4.694 6.090 (Enet)

Notes: There are six MA frameworks: ROA, ROM, ROC, RRA, RRM and RRC. The first letter (‘R’) refers to random partition
method to construct the candidate models, the second letter corresponds to the candidate model parameter estimation
(‘O’ for OLS, and ‘R’ for RR), and the third letter corresponds to the weights (‘A’ for AIC, ‘M’ for Mallows’ Cp , and ‘C’ for CV).
For RMSEP figures where the construction of candidate models is based on marginal correlation, see Table 1. The RMSEP
frommodel selection methods (LASSO, Adaptive LASSO, MCP, SCAD, and Elastic net) are also presented as a comparison.
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Table 3. RMSEP’s of the calibrationmodels in the NIR datasets under the different frameworks ofmodel
averaging (MA) in comparison with model selection methods (LASSO, Adaptive LASSO, MCP, SCAD, and
Elastic Net).

Data Response v MA framework Penalised

Corn (mp5) Moisture 20 0.510 0.456 0.472 0.319 0.374 0.302 0.341 (LASSO)
28 0.512 0.485 0.517 0.318 0.379 0.377 0.588 (A-LASSO)
35 0.528 0.523 0.510 0.317 0.377 0.402 0.401 (MCP)

0.470 (SCAD)
0.401 (Enet)

Oil 20 0.218 0.209 0.216 0.172 0.183 0.180 0.184 (LASSO)
28 0.233 0.215 0.223 0.172 0.176 0.178 0.451 (A-LASSO)
35 0.242 0.234 0.254 0.172 0.177 0.176 0.179 (MCP)

0.436 (SCAD)
0.196 (Enet)

Protein 20 0.636 0.576 0.673 0.469 0.496 0.489 0.536 (LASSO)
28 0.669 0.642 0.653 0.491 0.500 0.499 0.805 (A-LASSO)
35 0.705 0.687 0.674 0.490 0.494 0.494 0.497 (MCP)

1.151 (SCAD)
0.568 (Enet)

Starch 20 1.021 1.036 0.986 0.490 0.834 0.840 0.832 (LASSO)
28 1.031 0.988 1.026 0.836 0.869 0.833 0.644 (A-LASSO)
35 1.088 1.053 1.073 0.836 0.906 0.804 1.006 (MCP)

0.790 (SCAD)
0.912 (Enet)

Corn (mp6) Moisture 20 0.499 0.451 0.446 0.318 0.378 0.383 0.248 (LASSO)
28 0.518 0.475 0.478 0.317 0.382 0.379 0.239 (A-LASSO)
35 0.529 0.518 0.525 0.381 0.301 0.379 0.275 (MCP)

0.316 (SCAD)
0.379 (Enet)

Oil 20 0.222 0.210 0.196 0.176 0.178 0.179 0.240 (LASSO)
28 0.223 0.212 0.218 0.177 0.208 0.178 0.283 (A-LASSO)
35 0.243 0.234 0.235 0.177 0.179 0.174 0.182 (MCP)

0.235 (SCAD)
0.184 (Enet)

Protein 20 0.645 0.593 0.683 0.497 0.508 0.503 0.244 (LASSO)
28 0.678 0.637 0.608 0.493 0.497 0.500 0.531 (A-LASSO)
35 0.704 0.679 0.674 0.494 0.484 0.495 0.548 (MCP)

0.360 (SCAD)
0.496 (Enet)

Starch 20 1.088 1.045 0.894 0.835 0.852 0.835 0.891 (LASSO)
28 1.018 0.974 0.984 0.832 0.822 0.832 0.848 (A-LASSO)
35 1.072 1.051 1.046 0.834 0.887 0.836 0.832 (MCP)

0.964 (SCAD)
0.589 (Enet)

Notes: There are sixMA frameworks:MOA,MOM,MOC,MRA,MRMandMRC. The first letter (‘M’) refers tomarginal correlation
to construct the candidate models, the second letter corresponds to the candidate model parameter estimation (‘O’ for
OLS, and ‘R’ for RR), and the third letter corresponds to the weights (‘A’ for AIC, ‘M’ for Mallows’ Cp , and ‘C’ for CV).

(mp6) data, MA only gives lower RMSEP when the outcome variable is oil content. For the
other outcome variables, MA gives a higher RMSEP than the model selection methods.

Table 3 indicates that MA frameworks with ridge estimation produce less RMSEP than
those with OLS estimates. This reflects the situation that we observed previously in the
simulation study. It is also interesting to note that the application of MA on real datasets
indicates that the choice of weights is less crucial. The lowest RMSEP within each outcome
variable in theMA framework can be obtained by weights based on AIC, Mallows’ Cp, and
cross validation. Although, it is important to note that all these minimums are achieved
only when the parameters are estimated using ridge regression.
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5. Discussion and concluding remarks

We have investigated the impact of different numbers of predictors, parameter estimation
methods, andweighting schemes on predictionwithin theMA frameworks. Our investiga-
tion indicates that increasing the number of predictors in the candidate model is expected
to better the prediction performance in general. However, this is consistent when we con-
sider the ridge regression to estimate the candidate models’ parameters.When we consider
OLS estimates, the prediction starts to be negatively affected when the number of predic-
tors is getting closer to the number of observations. This is a main result that is important
to note as all known studies in MA, to our knowledge, have consistently utilised only the
OLS estimation method. With the ridge estimates, our simulation study has indicated a
stable performance in prediction.

The results of the simulation study also indicated that the Mallows’ Cp and CV weights
are more beneficial for prediction compared to the AIC weights. Overall, the Mallows’ Cp
is generally preferred, as this is shown to be consistent across different correlation struc-
tures of simulated data. The advantage of MA compared to the model selection methods
(LASSO, Adaptive LASSO, MCP, SCAD, and Elastic Net) is visible in all correlation struc-
tures within the simulated data, except in the case of lower correlation setting. In the
context of ten and five independent block correlation, MA still has the advantage com-
pared to the model selection methods when we construct the candidate models using
random partition, but not when using marginal correlation. In the different settings of
high-correlation simulated data, such as the case in the calibration of NIR instruments, we
find that the MA is generally better than the model selection methods. These simulation
results are important to guide researchers on whether to consider MA or model selection
approach in prediction. In particular, many areas such as molecular biology, medicine, and
social sciences usually deal with clusters of variables in their data. So, a careful check on
the correlation structure of data is necessary when considering which approach to use.

The principles that we learned from the simulation study, to much extent, are also seen
in the real data application. The ridge model averaging is shown to be generally superior
compared to the more commonOLSMA. The ridgeMA also produces lower RMSEP than
themodel selectionmethods in theCorn (mp5) data. In theCorn (mp6) data, the ridgeMA
only produces lower RMSEP than themodel selectionmethods when the outcome variable
is oil. This suggests that, in the context of calibration of NIR instruments with correlated
high-dimensional data, we still consider the MA approach to be a preferred alternative.

For the number of predictors in the candidate models v, we find from the simulation
study that n/3 is generally preferable to achieve an optimal prediction for both OLS and
ridge regression estimation in the MA framework. This should be considered as a rule of
thumb rather than a prescription. In the real data application where v is set to be n/4, n/3
and n/2, MA managed to achieve better RMSEP than the model selection methods in the
majority of outcome variables.

As an idea for extension, we can consider e.g. a model selection approach for each
candidate model within the MA framework. This is currently our active research and is
beyond the scope of this manuscript. There are some complications to consider in this
‘hybrid’ approach. However, we believe that this research is still necessary to arrive at a
MA framework that potentially improves further its prediction ability in data with dif-
ferent correlation structures. Lastly, it is important to note that in the calibration of NIR
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instruments, it is common to have multivariate outcomes such as in our datasets. In this
case, we can consider the MA framework in a multivariate response setting, although we
did not consider that in this study. Overall, we feel that MA provides an opportunity for
better prediction in the calibration problem compared tomodel selectionmethods, despite
some remaining issues for future works.
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