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ABSTRACT: Climate change is expected to increase the frequency and intensity of rainfall extremes. Understanding
future changes in rainfall is necessary for adaptation planning. Eastern Africa is vulnerable to rainfall extremes because of
low adaptive capacity and high future population growth. Convection-permitting climate models have been found to better
represent moderate (yearly) rainfall extremes than parameterized convection models, but there is limited analysis of rare
extremes that occur less frequently than once per year. These events often have the largest socioeconomic impacts. We use
extreme value theory and regional frequency analysis to quantify rare rainfall extremes over East Africa in a convection-
permitting climate model (CP4A). We compare the results with its parameterized counterpart (P25), the Coordinated
Regional Climate Downscaling Experiment for the African region (CORDEX-Africa) ensemble, and observations to un-
derstand how the convection parameterization impacts the results. We find that CP4A better matches observations than
the parameterized models. With climate change, we find the parameterized convection models have unrealistically high
changes in the shape parameter of the extreme value distribution, which controls the tail behavior (i.e., the most extreme
events), leading to large increases in return levels of events with a return period of.20 years. This suggests that parameter-
ized convection models may not be suitable for looking at relative changes in rare rainfall events with climate change and
that convection-permitting models should be preferred for this type of work. With the more realistic CP4A, RCP8.5
end-of-century climate change leads to 1-in-100-yr events becoming 1-in-23-yr events, which will necessitate serious adapta-
tion efforts to avoid devastating socioeconomic impacts.

SIGNIFICANCE STATEMENT: We use a new, high-resolution climate model to examine how rare extreme rainfall
events in East Africa might change in the future with climate change and compare the results with those from standard-
resolution climate models. We find that the standard-resolution models have unrealistically large increases in rainfall
for events that occur less frequently than every 20 years. The high-resolution model is more realistic and is required to
illustrate possible future changes in rare rainfall extremes. Extreme events will become more common with climate
change, and in the more realistic model we show that a 1-in-100-yr event may become a 1-in-23-yr event by the end of
the century if greenhouse gas emissions are not significantly reduced.
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1. Introduction

Extreme rainfall can lead to floods, loss of water quality,
disease, and damage to property and agriculture as well as
loss of life (Tarhule 2005; de Paola et al. 2014; Chamani et al.
2018). In the present climate, extreme rainfall regularly affects
large numbers of people in eastern Africa; on average,
1002000 people are impacted each year in Malawi (World
Bank 2019), while in 2019 between October and December
extreme rainfall caused floods and landslides in eastern

Africa, affecting an estimated 2.8 million people (Wainwright
et al. 2020). While there is large uncertainty in the sign and
magnitude of climate change impacts on mean rainfall in east-
ern Africa (Rowell and Chadwick 2018; Kendon et al. 2019;
Chapman et al. 2020), the intensity of rainfall is expected to in-
crease (Trenberth et al. 2003; Cioffi et l. 2016; Han et al. 2019;
Kendon et al. 2019; Finney et al. 2020; Onyutha 2020), suggest-
ing a likely increase in extremes and associated impacts.

Understanding present-day and future rainfall extremes is
essential for quantifying and managing risks to lives and liveli-
hoods. The characteristics of extreme rainfall can be studied
using a variety of indices, such as the frequency of wet days or
percentile-based indices that represent moderate extremes,
which occur on a yearly basis (i.e., 90th percentile of daily
rainfall), or by looking at rare extremes with return periods of
several years or more (Wang et al. 2013). Globally, moderate
extremes have been more frequently studied than rare extremes
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due the difficulties studying rare events in the relatively short
observational record (Alexander 2016). However, rare extremes
that occur roughly once per 10–500 years are more relevant for
infrastructure design than moderate, yearly extremes (Jalbert
et al. 2017; Kharin et al. 2018; Do Lago et al. 2019; Wright et al.
2019) and may also have more severe impacts on lives and
livelihoods.

The focus of this paper is therefore on rare rainfall extremes,
which occur less frequently than once a year. Rare extremes
can be studied using extreme value theory (EVT). EVT pro-
vides a method for extrapolating beyond the bounds of the
available data, whether they are observations or simulations, to
estimate the return levels (i.e., amount of rainfall) of events
rarer than those observed (Stephenson and Tawn 2004). EVT
has previously been applied to parameterized convection
climate models (e.g., Kharin et al. 2007; Hanel et al. 2009;
Overeem et al. 2009; Knote et al. 2010) including in eastern
Africa (de Paola et al. 2014; Garcia-Aristizabal et al. 2015;
Cioffi et al. 2016). However, convection parameterized
models are known to produce rainfall that is too frequent
and light, and insufficient heavy rain (Prein et al. 2015;
Kendon et al. 2017). A pan-Africa convection-permitting
climate model simulation (CP4A) has been found to better
represent rainfall occurrence, intensity, and moderate ex-
tremes than its parameterized counterpart (Stratton et al.
2018; Finney et al. 2019; Kendon et al. 2019; Senior et al.
2021). This is due to improved physics that allow better
modeling of storm life cycles and mesoscale convective sys-
tems and improved coupling between land–sea breezes and
convective activity, among other things (Senior et al. 2021).
Numerous challenges still remain with convection-permitting
model (Senior et al. 2021); however, despite this, CP4A still
represents a step-change improvement over its parameterized
counterpart, and the differences in physics between it and its
parameterized counterpart also lead to different climate
change impacts, the causes of which are likely to be relevant
for all parameterized models (Senior et al. 2021).

CP4A has not been analyzed for rare extremes, however, it has
been found that moderate extremes tend to intensify with climate
change more in CP4A than in its parameterized counterpart, in
part due to intensification of updrafts, which are underestimated
in the parameterized model counterpart (Berthou et al. 2019;
Kendon et al. 2019; Finney et al. 2020; Jackson et al. 2020; Misiani
et al. 2020). Given that CP4A’s explicit representation of convec-
tion improves the representation of moderate extremes and af-
fects associated climate change impacts, it may also affect rare
extremes. Therefore, we use this convection-permitting model to
analyze rare rainfall extremes in eastern Africa and compare the
results with its parameterized counterpart and the Coordinated
Regional Climate Downscaling Experiment for the African re-
gion (CORDEX-Africa) ensemble of regional climate models.

There are few published applications of EVT using convection-
permitting models, and those that exist have found that during
the season of convective activity parameterized models may over-
estimate the increase in rainfall with climate change for very rare
events in midlatitude regions (Chan et al. 2014; Ban et al. 2020).
Previous work has only compared one convection-permitting
model with one parameterized model and has only examined

European climates. Here, we examine the end-of-century cli-
mate change impact (RCP8.5) on rare extremes in all available
CORDEX-Africa models, in addition to CP4A and its param-
eterized counterpart, in order to make our results relevant to
parameterized models in general. Further, our work focuses
on the tropics, an area where convection-permitting and
parameterized models have not previously been compared for
rare extremes.

2. Methods

a. Study area

We focus on the East Africa region from 198S to 08 and from
198 to 428E (Fig. 1). In parts of northern Tanzania, the rainy sea-
son is bimodal (October–December and March–May). Farther
south, in Zambia and Malawi, the wet season is from November
to April.

b. Models

This work uses the CORDEX-Africa atmosphere-only re-
gional climate models (RCMS; Jones et al. 2011), and a pair of
RCM simulations: one convection-permitting (CP4A) and one
with parameterized convection (P25; Stratton et al. 2018; Kendon
et al. 2019). CP4A and P25 are atmosphere-only simulations and
cover the pan-Africa region with a horizontal grid spacing at the
equator of 4.5 km 3 4.5 km and 26 km 3 39 km, respectively
(Stratton et al. 2018). Further details on CP4A and P25 are avail-
able in Stratton et al. (2018) and Kendon et al. (2019).

The CORDEX-Africa model data are given at 0.448 3 0.448
horizontal resolution (approximately 44 km3 44 km at the equa-
tor) and the multimodel ensemble includes 6 RCMs with 11 dif-
ferent GCMs providing initial and boundary driving conditions.
The matrix of GCM–RCM combinations is presented in Table 1.

For all models, we compare the “historical” period and the
“business-as-usual” end-of-century RCP8.5 scenario. RCP8.5
was selected because it has a strong climate change signal rel-
ative to natural climate variability and is the only scenario for
which CP4A and P25 simulations are available.

To determine the impact of time series length on return levels,
we examine 10-, 20-, and 30-yr time periods for the CORDEX
data, covering 1989–99, 1979–99, and 1969–99 for the historical
scenario, and 2089–99, 2079–99, and 2069–99 for the RCP8.5
climate change scenario, hereinafter referred to as COR10,
COR20, and COR30. CP4A and P25 only have 10 years of data
available, from 1997 to 2006 and 2097 to 2106 (see Table 2).
While CP4A and P25 cover only a small portion of the time peri-
ods of CORDEX, there is a 100-yr difference between the future
and historical periods for all sets of models, and so it is reason-
able to compare them.

All analysis was carried out on daily rainfall data from the
rainy season (October–May), which for CP4A and P25 means
only having nine seasons of data. Discarding January–September
of 1997 also allows for spinup.

c. Observations

We used the Climate Hazards Group Infrared Precipitation
with Station Data (CHIRPS), version 2.0, and Tropical Rainfall
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Measuring Mission (TRMM) 3B42 satellite data as a compari-
son for the model data. The TRMM data combine satellite ob-
servations (microwave and infrared) and rain gauges and is
available from 1998 to 2019; however, we have only used data
up to 2014 as at this point the input data and calibration for the
3B42 dataset changed due to the end of the TRMM satellite
mission, which may have introduced inhomogeneities into the
dataset (Huffman et al. 2007; Huffman 2019). We used the daily
TRMM data at a resolution of 0.2583 0.258.

CHIRPS v2.0 is a daily rainfall dataset based on infrared
satellite observations and station data and is available at a
0.058 3 0.058 resolution, from 1981 to the present (Funk et al.
2015). Prior to analysis, the CHIRPS data were regridded to
the TRMM grid for the purposes of comparison.

The time periods examined for each dataset are shown in
Table 2. Multiple 10-yr time series are examined for CHIRPS
to ensure overlap with models and with TRMM. The TRMM
10- and 15-yr time slices will hereinafter be referred to as
TRMM10 and TRMM15, whereas the CHIRPS 15-, 20-, 30-,
and 38-yr time slices will be referred to as CHIRPS15,
CHIRPS20, CHIRPS30, and CHIRPS38, respectively. We
have not used the GPM satellite rainfall data because of the
time period covered.

Other studies indicate that both TRMM and CHIRPS
agree well with station data in Africa when it comes to mean
rainfall, though both products have difficulty in mountains
(Cattani et al. 2016; Kimani et al. 2017; Dinku et al. 2018;
Monsieurs et al. 2019; Muthoni et al. 2019). However, there is

TABLE 1. The GCM–RCM combinations that are available for CORDEX Africa for historical and future (RCP8.5) scenarios.

RCM

GCM SMHI-RCA4
CLMcom-

CCLM4–8-17
MPI-CSC or GERICS

REMO2009
KNMI-

RACMO22T
DMI-

HIRHAM5
CCCma-
CanRCM4

HadGEM2-ES X X X X
EC-EARTH X X X X X
MPI-ESM-LR X X X
CNRM-CM5 X X
MIROC5 X X
CSIRO Mk3.6.0 X
IPSL-CM5A-MR X
IPSL-CM5A-LR X
CanESM2 X X
GFDL-ESM2M X
NorESM1-M X

FIG. 1. The study area (black-outlined box). Shading shows the topography, as represented in
CP4A (m). Locations of weather stations used are shown as black dots with red outline. The
mean average elevations for the stations are 719 m for Malawi and 1089 m for Zambia.
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more disagreement among the satellite products for extreme
rainfall (Sylla et al. 2013; Shiferaw et al. 2018; Timmermans
et al. 2019), so in this study we use two observational gridded
datasets rather than relying on only one. It is for this reason
that we also perform EVT analysis on individual rain gauge
data from stations within the study region (see Fig. 1 for sta-
tion locations), which allows us to compare how results differ
between the gridbox scale and the point location scale. Ex-
tremes at point locations are expected to be systematically
higher than gridbox aggregates (e.g., Mannshardt-Shamseldin
et al. 2010), and knowledge of how rainfall extremes spatially
downscale in eastern Africa would be required to combine
EVT with climate projections in real-world applications, such
as the design of climate resilient infrastructure projects. Sta-
tion data for the southern half of the study region were pri-
vately shared with us by the Department of Climate Change
and Meteorological Services (DCCMS) and the Zambia Me-
teorological Department (ZMD) for Malawi (5 stations) and
Zambia (4 stations), respectively. The mean length of the sta-
tion rain gauge time series is 73 years in Malawi, 38 years in
Zambia, and 59 years across all stations.

d. Analysis

EVT shows that extremes can be described by one of three
related types of statistical distribution, Gumbel, Fréchet, or
Weibull, which can be expressed as the generalized extreme
value distribution (GEVD) for block maxima (i.e., annual max-
ima), or generalized pareto distribution (GPD) for threshold
exceedances (Coles 2001; Gilleland and Katz 2006). The fitted
GEVD or GPD gives the estimated relationship between the
return period and return value, that is, the average time interval
between events of a given magnitude (Knote et al. 2010).

We examine return levels of extreme rainfall events using
the block-maxima approach (BM). Using BM, the GEVD
[see Eq. (1)] is fitted to the maximum daily rainy season rain-
fall, using maximum likelihood estimation (MLE). A draw-
back of the BM approach is that it does not retain as much
data as the peaks-over-threshold (POT) approach; however,
an advantage is that it does not require a threshold to define
extremes, unlike POT. Selecting a threshold can be a subjec-
tive and time-consuming process, particularly for a large en-
semble of climate models (Scarrott and MacDonald 2012).

With a poor threshold choice, the GPD will not provide as
good an estimate of the distribution as a GEV (Gilleland and
Katz 2006; Knote et al. 2010).

The GEVD is defined by the shape, scale, and location
parameters (Coles 2001). The location parameter is a measure
of central tendency of the GEVD, the scale parameter is a
measure of variance, and the shape parameter defines the tail
behavior and is analogous to skewness:

F(x) 5 exp 2 1 1 j
x 2 m

s

( )[ ]21/j⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

defined on x: 1 1 j(x 2 m)/s . 0, where m, j, and s are the
location, shape, and scale parameters, respectively.

The behavior of the GEVD is strongly determined by
the shape parameter j. If j , 0, the distribution follows the
Weibull distribution and is bounded, meaning that the ex-
tremes tend asymptotically to a maximum limit. In contrast, if
j . 0 the Fréchet distribution is obtained, and the distribution
has no upper limit. The Gumbel distribution is obtained in
the limit that j " 0 (Gilleland and Katz 2006). The Gumbel
distribution gives a light tail, and the probability of obtaining
extremely high values decays exponentially. By comparison,
the Fréchet distribution is heavy tailed, and the probability of
obtaining extremely high values decays polynomially so that
higher values are obtained with greater probability than
would be obtained with a light tail (Gilleland and Katz 2006).
Accurately estimating the shape parameter is, therefore,
important for obtaining physically realistic values of rare
extremes.

e. Regionalization

A drawback of using CP4A and P25 is that only a short
time series (i.e., 10 years) is available. Larger sample sizes (or
longer time series) of extremes tend to offer more accurate es-
timates of the parameters of the GEVD/GPD because the
variance of an estimator decreases as the sample size in-
creases (Papalexiou and Koutsoyiannis 2013). The length of
the time series influences the estimates of all the parameters
of the GEVD, but the shape parameter is of particular note
as it controls the tail behavior of the GEVD and the return
levels of events with a high return period. With shorter time
series, the uncertainty in the estimate of the shape parameter
is higher, which increases the uncertainty in estimates of
events with a higher return period. Therefore, for example,
with 30 years of data we might reasonably say something
about a 1-in-50-yr event, but beyond that the uncertainty is so
large it is not useful to say something about a 1-in-200-yr
event. Likewise, with a 10-yr time series we might be able to
say something about a 1-in-20-yr event, but not a 1-in-50- or
1-in-100-yr event.

Given the short time series for CP4A and P25 we use re-
gional frequency analysis (RFA) and “trade space for time”
(Hosking and Wallis 1997). RFA assumes that the scale and
shape parameters of the GEVD are fixed by region, and that
only the location parameter varies spatially within a region.
Therefore, prior to estimating the GEVD for the spatially

TABLE 2. Historical time periods used for each model and
observational dataset. Only data for the rainy season (October–May)
were used for analysis. Note that, for row 1 (10 years), CP4A/P25
only has data for 9 full rainy seasons, rather than 10.

Years CORDEX CP4A/P25 TRMM CHIRPS

10 years } 1997–2006 } 1997–2006
} } 1998–2008 1998–2008

1989–99 } } 1989–99
15 years } } 1998–2014 1998–2014
20 years 1979–99 } } }

} } 1981–2001
30 years 1969–99 } } }

} } } 1981–2011
38 years } } } 1981–2019
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pooled data we split our study area into regions with similar
extreme rainfall characteristics using cluster analysis. Pooling
data across regions with similar rainfall characteristics should
increase the accuracy of parameter estimates and allow a
shorter time series to be used to estimate the GEVD (Overeem
et al. 2009). However, selecting regions is also a fairly subjective
step, and there is no consensus in the literature about the best
method (Badr et al. 2015). Other methods are available that in-
volve spatial pooling, such Bayesian hierarchical analysis, which
does not require the subjective step of defining regions; how-
ever, as far as we are aware this method has not been applied to
a time series as short as 9 years, whereas RFA has (Overeem
et al. 2009; Jalbert et al. 2017). For RFA, Hosking and Wallis
(1997) recommend clustering methods that give clusters of
roughly similar size, such as Ward’s, as preferable to methods
that give very large or very small clusters. We used Ward’s min-
imum variance method, which minimizes the total within cluster
variance by minimizing the sum of squares of the difference be-
tween clusters and creates compact clusters. This approach split
the data into 30 regions based on a time series of maximum
daily rainfall in each rainy season in the historical period (see
Table 1), applied using the R HiClimR software package
(R Core Team 2013; Badr et al. 2015). We used the longest
time series for each model and each set of satellite observations
to determine regions. We used maximum daily rainy season
rainfall as we are looking for regions with homogenous extreme
rainfall characteristics. Because of the number and size of the
regions, they do not entirely blend into the pattern of local to-
pography; however, they do distinguish between the eastern
and southern African climate regimes, coastal regions, and hu-
mid and semiarid inland regions.

An assumption of previous applications of RFA is that 10 years
of daily data are sufficient with spatial pooling to calculate return
levels of rare extremes, in some cases up to 1-in-100-yr events
(Groupe de Recherche en Hydrologie Statistique 1996). To test
the idea that 10 years of spatially pooled data are adequate for
EVT, we also use the CORDEX-Africa ensemble of regional cli-
mate models to examine the impact of 30, 20, and 10 years of
data on the estimates of return-levels, and the associated confi-
dence intervals.

f. Estimation of return levels

We applied maximum likelihood estimation (MLE) to each
region to estimate the GEVD. We have selected MLE over
other popular methods, such as L-moments, because while
L-moments lead to less biased estimates of the GEV parame-
ters than MLE for small to moderate sample sizes (Martins
and Stedinger 2000), Overeem et al. (2009) show that, for a
very small sample size such as our 9-yr sample for CP4A and
P25, MLE may be less biased than L-moments.

We first applied MLE to pooled data for each region and
estimated the shape and scale parameters. We then reapplied
MLE to each grid cell, holding the scale and shape parameters
constant and allowing only the location parameter to vary.
This method is also known as the index-flood method in hy-
drology and assumes that variables within a homogenous re-
gion are identically distributed after scaling with a site-specific

factor, the index flood (Hanel et al. 2009). The index flood is
estimated using measures of central tendency, such as the
mean, median or trimmed mean (Hosking and Wallis 1997).
For estimating the GEVD, the location parameter, which is a
measure of central tendency for the GEVD, is used as the in-
dex flood (Hanel et al. 2009). Biases will be introduced into
the analysis if the assumption of homogeneity within regions
is not met; however, simulation studies have shown that RFA
with moderate amounts of heterogeneity can still be more ac-
curate than analysis using information only from individual
sites or grid cells (Hosking and Wallis 1997; Hanel et al.
2009). The assumption that the shape parameter is constant
within regions is reasonable, given research has found that it
is constant over large areas (i.e., small countries), though may
vary in mountainous regions (Ragulina and Reitan 2017). The
scale parameter also appears to vary slowly over space,
though as far as we are aware there is less specific research on
this than on spatial variation in the shape parameter (Acero
et al. 2011; Golroudbary et al. 2016).

To test goodness of fit of our annual maximums to the
GEVD we used the Anderson–Darling test. The null hypoth-
esis is that the data are drawn from a GEVD. The majority of
the seasonal maximum rainfall for individual grid cells fit the
GEVD for both models and observations. On average, 90%
of grid cells fit the GEVD for the observations and the 10-yr
time series from the climate models. For each model within
COR20 and COR30, on average 89% and 87% of grid cells
respectively fit the GEVD. For the rain gauge data, all sta-
tions fit the GEVD.

An assumption of EVT is that the data are stationary. We
tested for stationarity using the augmented Dickey–Fuller test
and confirmed that in all models and all regions that the daily
rainy season rainfall data were stationary at p , 0.05. This is
not surprising as observational datasets show no significant
trend for extreme rainfall indices for the study area between
1983 and 2013 (Harrison et al. 2019).

g. Bootstrap samples

MLE provides confidence intervals for parameter estimates;
however, MLE assumes the data are spatially independent,
which is not the case for climate data, and so these confidence
intervals may be underestimated (Overeem et al. 2009). Instead,
we have used bootstrapping (40 samples) with replacement to
create additional samples drawn from the original data and
used these to calculate confidence intervals (Knote et al. 2010).
To maintain the same spatial dependence in the bootstrap sam-
ple as in the original data, we use all grid cells for each boot-
strap sample, rather than select individual grid cells (Hanel
et al. 2009). We obtained bootstrap samples as follows:

• Draw a random sample with replacement from the series of
year numbers, that is, 1997 . . . 2006 to obtain a set of years
with the same time series length for each model.

• Select the rainfall maxima from all grid cells for the sam-
pled year numbers. This leads to a sample of the same
length (i.e., 10 maxima for COR10 models, 20 maxima for
COR20 models, etc.), and the same number of grid cells as
the original sample.
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• Repeat this 40 times for each model, scenario and time
period.

• Apply MLE to each region to estimate the scale and shape
parameters for each bootstrap sample, and then apply
MLE to each grid cell to estimate the location parameter,
as with the original sample.

Testing showed that 40 bootstrap samples are a sufficient
number to explore sampling uncertainty (see the online
supplemental material; bootstrap resampling). We analyzed
40 bootstrap samples for COR20 and COR30, TRMM15,
CHIRPS15, and CHIRPS 38. We then calculated confidence
intervals for each individual model.

h. Comparison with station point data

We compare the gridcell GEVD parameter and return-
level estimates with point-location (station) estimates to ex-
plore how daily rainfall extremes may spatially downscale in
eastern Africa. We do not apply RFA methods to the station
data because the data are spatially uneven, and site-specific
factors that affect rain gauge readings are likely to be more
prevalent than at the gridcell scale (Sieck et al. 2007). The
length of the station time series is also not as limiting for EVT
as it is for some of the gridded products (Table 2). We subset
the rain gauge time series data from 1981 to 2019, making the
data comparable to the longest gridded dataset (38 years in
CHIRPS; see Table 2). We otherwise prepare the station data
using the same method described above and use MLE to esti-
mate the GEVD parameters from the block maxima of daily
rainfall at each station. We compare the station-derived param-
eter and return-level estimates with estimates from correspond-
ing grid cells in TRMM and CHIRPS to test for a spatial scaling
factor between daily rainfall extremes in our study region.

We also compare parameter estimates from the stations
with the corresponding estimates from the climate models.
While we do not expect the models to represent extremes
true to the observations, it has been argued that the modeled
change in extremes may still be robust (Fowler et al. 2010).
Under this assumption, we apply a delta change (DC) to the
station parameter estimates:

ustation future 5 ustation historical 1 uDC, (2)

where u represents a GEV parameter estimate (either loca-
tion, scale, or shape), and uDC is the change in the correspond-
ing parameter from the climate model, defined as

uDC 5 uclimate model future 2 uclimate model historical: (3)

We adapt this method from (Fontolan et al. 2019). The delta
change method is essentially a form of bias correction and
statistical downscaling, which gives a more realistic indica-
tion of future change in local-scale daily rainfall extremes
than using the model alone We calculate confidence inter-
vals for future return levels at each of the stations by boot-
strap sampling from the adjusted GEVDs in the extRemes
R package (Gilleland and Katz 2006), using 200 bootstrap
samples for each return level.

3. Results

a. Parameter estimates

The mean GEVD parameters from the satellite and station
observations are shown in Tables 3 and 4. The choice of satel-
lite product has a much larger impact on the parameters than
the length of the time series (Table 3). One of the 30 regions
has been removed from the CHIRPS TRMM years set as it
was an extreme outlier and had a negative location parame-
ter. This may be due to an unrealistic rainfall event included
in this time period, or the regions not fitting well for this time
period. The shape parameter increases for CHIRPS with in-
creasing time series length, though relative to the standard
deviation this increase is small. The increasing shape param-
eter may be due to capturing rarer extremes with a longer
time series and is in line with other observational work (e.g.,
Papalexiou and Koutsoyiannis 2013). However, the increas-
ing shape parameter with time series length may also be due
to the 10–15-yr time series missing the 1981–96 period, dur-
ing which there were strong El Niño events, 1982/83 and
1987/88 (Climate Prediction Center 2020), which may be
dominating the extremes for CHIRPS.

In comparing the GEVD parameters from TRMM, CHIRPs,
and CP4A with the station data, we find that the parameters
estimated TRMM grid cells at the station locations are largely
in agreement with the corresponding station-derived estimates
(Table 4). In contrast, we find that CHIRPS grid cells have
small location and scale parameters and large shape parameters
relative to TRMM and the station data. For the historical pe-
riod of the CP4A climate model, the location and scale parame-
ters are also comparable to station and TRMM estimates,
although the shape parameters are generally larger. There is

TABLE 3. Average location (mm day21), scale (mm day21), and shape parameters for TRMM and CHIRPS data. The standard
deviation across the study area is shown in parentheses. See Table 1 for information on years covered by each set of observations.
One outlier region was removed from the CHIRPS (TRMM years) set (see the text for details).

10 years 15 years

20 years 30 years 38 years
Parameter TRMM

CHIRPS
(TRMM
years)

CHIRPS
(CORDEX

years)
CHIRPS

(CP4 years) TRMM CHIRPS CHIRPS CHIRPS CHIRPS

Location 61.7 (12.02) 33.56 (9.21) 33.93 (8.86) 33.01 (9.17) 58.8 (10.96) 32.90 (8.6) 34.30 (7.36) 33.76 (7.89) 33.76 (8.10)
Scale 17.7 (4.03) 8.80 (5.46) 9.53 (5.65) 8.60 (5.25) 17.74 (4.06) 8.62 (5.15) 9.86 (4.32) 9.48 (4.66) 9.49 (4.96)
Shape 0.05 (0.04) 0.06 (0.09) 0.10 (0.08) 0.04 (0.08) 0.04 (0.03) 0.06 (0.08) 0.14 (0.10) 0.14 (0.10) 0.14 (0.09)
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spatial variation in the parameters describing the extreme rain-
fall distributions (Table 4); this is expected, as factors such as
geography and elevation will influence the characteristics of
rainfall and rainfall extremes.

The mean of the location, scale, and shape parameters for
the observations and climate models is shown in Fig. 2. There
is a large range in all parameters among the CORDEX mod-
els. CP4A is close to the TRMM and station observations for

TABLE 4. Average location (mm day21), scale (mm day21), and shape parameters for station data and at TRMM15, CHIRPS38,
and CP4A grid cells that correspond to the coordinates of each station. The standard deviation across the study area is shown in
parentheses. We use the longest time series available for each TRMM and CHIRPS to get best estimates of the GEV parameters for
each dataset. We tabulate the full range of parameter estimates across all stations and station grid cells in Table S4 in the online
supplemental material.

Parameter Station TRMM15 (station grid cells) CHIRPS38 (station grid cells) CP4A (station grid cells)

All stations Location 66.0 (7.6) 55.6 (8.6) 35.7 (4.5) 68.6 (10.8)
Scale 19.0 (3.3) 15.8 (2.5) 9.8 (2.2) 22.9 (8.7)
Shape 0.03 (0.17) 0.02 (0.02) 0.11 (0.06) 0.08 (0.10)

Malawi Location 67.8 (7.9) 61.5 (3.2) 38.7 (2.2) 75.9 (5.9)
Scale 18.9 (3.8) 17.5 (1.1) 10.9 (1.9) 27.1 (9.1)
Shape 0.07 (0.20) 0.02 (0.02) 0.13 (0.05) 0.12 (0.10)

Zambia Location 63.2 (7.0) 46.7 (5.4) 31.3 (3.0) 57.5 (4.2)
Scale 19.1 (2.8) 13.2 (1.3) 8.1 (1.4) 16.6 (1.3)
Shape 20.03 (0.14) 0.03 (0.03) 0.07 (0.06) 0.02 (0.04)

FIG. 2. Average location, scale, and shape parameters for the study area, determined from re-
gional MLE in 10-, 20-, and 30-yr CORDEXmodels (black and gray curves), CP4A, and P25 for
historical and RCP8.5 scenario. TRMM15 (dotted line), CHIRPS38 (dashed line), and stations
(dot–dash line) are also shown. CORDEX is an ensemble of 23 model simulations, which is why
it is presented as a curve, and the observations, P25, and CP4A are shown as vertical lines. Ker-
nel density is estimated from the regional mean from individual models.

C HA PMAN E T A L . 991 JANUARY 2023

Brought to you by UNIVERSITY OF LEEDS | Unauthenticated | Downloaded 03/30/23 08:53 AM UTC



the location and scale parameters (Figs. 2a,b). For the shape
parameter, which is critical for very rare extremes, CP4A is
closest to the observations and toward the lower end of the
range of the models, while P25 is toward the higher end.
While CHIRPS has a higher shape parameter than the sta-
tions and TRMM, it is still toward the lower end of the range
from the parameterized models.

Climate change moves all parameters higher for the major-
ity of models, which means extremes would also become
more severe. The change in the shape parameter with climate
change is very small for CP4A relative to P25 and the major-
ity of CORDEX models (Fig. 2). The length of the time series
has only a minor impact on the estimated parameters (and
change in parameters) for the CORDEXmodels.

Figure 3 shows the range in the parameters of the CORDEX
models by GCM for the historical scenario, as well as the
confidence intervals (CI) from the bootstrap resampling
(5%–95%). The range in the parameters of the CORDEX
models is mainly due to the RCM, rather than the driving
GCM (Fig. 3). Given the large domain covered by the
CORDEX-Africa models, the RCM dynamics may have a
larger influence than lateral boundary conditions on not
only fine-scale processes (such as those related to topogra-
phy) but also large-scale processes (Mariotti et al. 2011;
Dosio et al. 2019). The importance of RCM physics is also

why CP4 and P25 give such different results, even though
their driving GCM and boundary conditions are the same.
All CORDEX models and P25 give shape parameter esti-
mates higher than TRMM, and the majority give shape param-
eter estimates higher than CHIRPS. For some CORDEX
models, the shape parameter is over double that found from
TRMM, while the CP4A shape parameter is in line with
TRMM (Fig. 3).

b. Return levels

The choice of satellite product has more of an impact on re-
turn levels than time series length (Fig. 4, comparing TRMM
with CHIRPs), which we also found for the GEVD parame-
ters in section 3a. The TRMM return levels are generally
higher than the CHIRPS return levels (80%–92%, with larger
differences at higher return levels), except along the coast of
Tanzania, which includes the coastal plain and mountainous
areas, due to the higher location and scale parameters. This is
in line with previous work looking at moderate extremes that
found that TRMM had higher-intensity rainfall than CHIRPS
(Shiferaw et al. 2018). As the return period increases, CHIRPS
becomes wetter than TRMM in eastern Tanzania due to the
higher shape parameter. In contrast to most of the study area,
TRMM has much lower return levels than CHIRPS38 in

FIG. 3. Average present-day shape, location, and scale parameters across the study area in
COR30. Colors show different GCMs; the RCM is given by the x axis. CP4 and P25 values are
also shown to the right (black symbols). TRMM15 and CHIRPS38 region average are shown as
dotted and solid red lines, respectively. Confidence intervals (5th and 95th percentile) from
40 bootstrap samples are shown as vertical black lines for the climate models and as fainter lines
for observations.
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FIG. 4. Percentage difference between estimated return levels from TRMM, and CHIRPS10, 15, 20, and 30
and the return levels estimated from CHIRPS38.
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coastal areas. This region also includes mountainous areas.
Satellite products in eastern Africa tend to struggle in moun-
tainous areas, with many products underestimating rainfall in
this area (Cattani et al. 2016). Difficulties with orographic rain-
fall may be why the relationship between TRMM and CHIRPS
reverses in mountainous regions.

For the CHIRPS10 TYRS (TRMM years) time slice, there
is a region in the south that is much wetter than CHIRPS38.
This clear outlier may be due to the regionalization, which
was based on CHIRPS38, not working well for this particular
region and year, or unusual climate conditions in that region
and year, which CHIRPS10 TYRS may have been sensitive to
due to the shortness of the time slice.

The return levels from the climate models are shown in
Fig. 5. The length of the time series has a negligible overall
influence on the CORDEX ensemble mean of the return
levels (i.e., the mean of the return levels calculated from in-
dividual models, black lines, Fig. 5a), although some minor

difference is apparent when looking at individual models
(Figs. 5b–d). The influence of time series length is more ap-
parent in the width of the confidence intervals, which get
smaller with increasing time series length. The relationship
between CP4A and the parameterized models remains the
same when grid cells in mountainous areas and at the coast
are removed, both of which have higher return levels (not
shown).

For events with a return period of 2 years, the CP4A model
gives higher return levels than CORDEX and P25 (Fig. 5a).
This is in line with previous work showing that for extreme in-
dices (i.e., 95th percentile), CP4A is wetter than P25 (Kendon
et al. 2019). However, for events with a return period of
20 years or higher, the return levels in CP4A are lower than
in P25. At events with a return period of 100 years, CP4A and
CORDEX converge, as the CORDEX models have a higher
shape parameter than CPA, so the probability of events with
very high return levels occurring is higher than in CP4A. P25

FIG. 5. (a) Return levels in the present day for the ensemble mean for COR30, 20, and 10, CP4A and P25, and TRMM15 and
CHIRPS38 for return periods of 2–100 years, and confidence intervals for TRMM15 and CHIRPS38. Return periods of 2, 20, 50, and
100 are calculated on the basis of gridcell GEV. The lines are indicative of return levels and are based on GEV applied to region-level
parameters. (b)–(d) Confidence intervals for individual CORDEX models (5th and 95th percentile) from 40 bootstrap samples, colored
by RCM. All data regridded to CORDEX 0.448 3 0.448 grid for the purposes of comparison. Points show return levels calculated from
gridcell-level GEV; the lines are estimated between points using a logarithmic function.
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sits toward the upper end of the range of the CORDEX mod-
els, and gives return levels higher than the CORDEX ensem-
ble mean.

In comparing the station-derived return-level estimates
with the satellite-derived estimates (Table 5), we find that sta-
tion return levels are on average 19%–26% larger than in
TRMM across all return periods. This systematic difference is
primarily related to the higher average shape and location pa-
rameters at the stations in comparison with TRMM (Table 4).
For CHIRPS, we find that daily rainfall extremes are under-
estimated by an average of 77%–85% in comparison with
station-derived estimates, which is related to the much smaller
average location parameters in CHIRPS.

In CP4A, return levels are progressively overestimated rel-
ative to the observations as return period increases in Malawi.
This is because of the larger shape parameter (Table 4), which
likely arises from the moderate wet bias in extreme precipita-
tion over eastern Africa, and Malawi in particular, in CP4A
(Kendon et al. 2019), in combination with the short time
series length of CP4A. This overestimation of extreme rainfall
in Malawi may also be partly due to the geography of Malawi.
Both CP4A and P25 have the tendency to overestimate ex-
treme rainfall over mountains and lakes (Kendon et al. 2019),
and large portions of Malawi are covered by both; the Great
Rift Valley runs through Malawi from north to south, while
Lake Malawi makes up a large portion of Malawi’s eastern
boundary. Return-level estimates for Zambia in CP4A more
closely align with station-derived estimates but are slightly
underestimated.

c. Climate change impacts on return levels

Climate change increases the regional mean return levels
for the CORDEX ensemble and for CP4A and P25 (Fig. 6).
The increase in return levels with climate change of very rare
events (return period . 20 years) is overestimated in the
parameterized models relative to CP4A because of large
changes in the shape parameter with climate change. How-
ever, the increase in extreme rainfall is still large in CP4A,
with return levels increasing by 36% on average. This means
that 1-in-100-yr events in the present day becoming 1-in-23-yr
events at the end of the century. For all models, there are
some parts of the study area with decreases in return levels
due to rainfall declines (not shown).

The difference between CP4A and the parameterized mod-
els is more apparent when looking at the climate change im-
pacts on return levels than at the historical return levels. For

events with a 2-yr return period, the absolute increase in
return levels with climate change is higher for CP4A than for
the CORDEX ensemble and P25 (consistent with comparison
of previous analysis of CP4A vs P25 for return periods of
around 1 yr; e.g., Kendon et al. 2019; Finney et al. 2020), but
this reverses for higher return periods with CP4A having
smaller increases in return levels for return periods of 50 and
100 years than CORDEX and P25. The difference between
CP4A and P25 and CORDEX is likely due to the shape pa-
rameter. Climate change has little impact on the shape
parameter for CP4A (absolute mean change , 0.001), whereas
the shape parameter increases for the majority of CORDEX
models and for P25, meaning rarer events become more fre-
quent in these models with climate change. This may be an un-
realistic response given that Wilson and Toumi (2005) argue
that the shape parameter should be largely unaffected by climate
change given moisture conservation and also that the shape pa-
rameter is invariant with latitude.

The climate change impact on return levels in CP4A is funda-
mentally different to the parameterized models. Even those
models with realistic (i.e., similar to satellite or station observa-
tions) present-day shape parameters in the parameterized con-
vection models have large changes in the shape parameter with
climate change, while CP4A has near-zero mean change in the
shape parameter (Figs. S2 and S3 in the online supplemental
material). Note that, while the mean change in CanRCM4 is
near zero, the change in the shape parameter is large and varies
spatially (between 0.23 and20.29), while in contrast the change
in the shape parameter in CP4A is small everywhere (between
0.08 and 20.11). Similarly, the parameterized models in Fig. S2
that have a ratio near one like CP4A, meaning that the percent-
age change in 100-yr events is similar to percentage change in
2-yr events, have large spatial variation in the ratio, which is dis-
guised by taking the mean (std dev CP4A 5 4.2, CORDEX
ensemble mean std dev 5 193, with a minimum std dev of 7).
The models with the largest present-day shape parameter also
generally have the largest change in the return levels for
1-in-100-yr events relative to the change in 1-in-2-yr events
(Fig. S2), and large changes in the shape parameter with climate
change (Fig. S3).

d. Climate change impact on return levels at
station locations

Given CP4A better represents observed daily rainfall rela-
tive to the other climate models examined, and better cap-
tures the essential physics of intensification of rainfall under

TABLE 5. Average return levels (mm day21) for return periods of 2, 20, 50, and 100 years. Estimates are provided for the station
data and for TRMM15, CHIRPS38, and CP4A grid cells that correspond to the coordinates of each station. Confidence intervals for
the station return-level estimates are tabulated in Table S5 in the online supplemental material.

All stations Malawi Zambia

2 yr 20 yr 50 yr 100 yr 2 yr 20 yr 50 yr 100 yr 2 yr 20 yr 50 yr 100 yr

Station 73 127 149 168 75 132 158 179 70 119 137 150
TRMM15 61 104 121 133 68 115 133 146 52 88 102 113
CHIRPS38 39 70 84 95 43 78 94 107 34 59 69 77
CP4A 77 153 188 218 86 183 230 271 64 109 126 139
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climate change, such as increases in updraft intensity (Jackson
et al. 2020) and response to changing mesoscale forcings
(Finney et al. 2020), we apply the future shift in GEVD parame-
ters from CP4A to the historical station-derived parameters using
the delta change method previously described to estimate the
future change in return levels at the station locations [Eq. (2)].

The return-level estimates for the proxy future station data
(RCP8.5DC) are on average smaller than those in CP4A under
RCP8.5 (Table 6), indicating that the moderate wet bias in
CP4A is partly accounted for using the delta change method.

These return-level estimates also partly account for the differ-
ence in extreme rainfall characteristics between the gridcell
scale and point location scale. Applying the 100-yr climate
change signal from CP4A to the station data and taking the
all-station average (Table 6), return levels increase by approx-
imately 37% across all return periods under RCP8.5DC rela-
tive to historic return levels (Table 5). However, there is
considerable regional variability in the future estimates, and
the confidence intervals for the future estimates can be wide
(Table S5 in the online supplemental material).

FIG. 6. Percentage change in return levels with end-of-century climate change (RCP8.5) for
COR30, COR20, COR10, CP4, and P25. Confidence intervals (95th and 5th percentile) for
change in return levels with climate change based on 40 bootstrap samples are also shown. One
region from one bootstrap sample was removed from the CI calculation for CP4A as it had a
large negative location parameter. Points show return levels based on gridcell GEV; lines are in-
dicative of return levels on the basis of GEV applied to region-level parameters.

TABLE 6. Average future return levels (mm day21) for station grid cells in CP4A under the RCP8.5 emissions scenario, and
projected return levels at station point locations (RCP8.5DC). Confidence intervals for the future station return-level estimates are
tabulated in Table S5 in the online supplemental material.

All stations Malawi Zambia

2 yr 20 yr 50 yr 100 yr 2 yr 20 yr 50 yr 100 yr 2 yr 20 yr 50 yr 100 yr

CP4A (RCP8.5) 102 203 247 289 116 237 293 341 82 152 179 200
Station (RCP8.5DC) 98 175 206 232 104 186 221 250 88 159 185 205

J OURNAL OF CL IMATE VOLUME 36104

Brought to you by UNIVERSITY OF LEEDS | Unauthenticated | Downloaded 03/30/23 08:53 AM UTC



Table 7 shows the average percentage increase in return
level per kelvin of global temperature rise for station grid cells
in CP4A, and for the future station data under RCP8.5DC.
The modeled increase in global mean air temperature at
1.5 m for the CP4A future period is 5.2 K under RCP8.5
(Kendon et al. 2019). The average percentage increase in re-
turn level per kelvin across all return periods is approximately
7.1% for the station data, which is larger than the change
modeled at the gridcell scale in CP4A (6.1%). This is close to
the upper limit of the Clausius–Clapeyron relation, which
states that air can hold around 6%–7% more moisture per
kelvin of warming at Earth’s surface (Chan et al. 2016),
suggesting that the station return-level estimates under
RCP8.5DC are physically plausible and qualitatively consistent
with other studies (e.g., Shongwe et al. 2009; Pinto et al. 2016;
Kendon et al. 2019).

4. Discussion and conclusions

We used EVT to examine the climate change impact on
rare extreme rainfall events in a novel, convection-permitting
climate model (CP4A) and compared this with its parameter-
ized counterpart (P25), the CORDEX-Africa ensemble and
observations. We used the CORDEX-Africa ensemble to ex-
amine the impact of time series length (10, 20 and 30 years)
on the EVT analysis. In CP4A, which had the best agreement
with the observations, we found that return levels increase by
on average 36% in the future, which results in a 1-in-100-yr
event becoming a 1-in-23-yr event.

We found large differences in the behavior between CP4A
and the parameterized convection models due to differences
in the shape parameter, which controls the tail behavior of
the GEVD. The parameterized models we examined have
shape parameters much higher than TRMM and CP4A, and
most models also had higher estimates than CHIRPS as well.
The TRMM and CHIRPS satellites had shape parameters be-
tween 20.08 and 0.14, depending on time series length, and
the stations had estimates between 20.29 and 0.29. Other
studies based on rain gauges estimate the shape parameter
for daily rainfall to be between 0 and 0.23 (Papalexiou and
Koutsoyiannis 2013; Ragulina and Reitan 2017). With suffi-
cient time series length (.100 yr), a negative shape parameter
is highly unlikely (Papalexiou and Koutsoyiannis 2013). The
mean shape parameter for CP4A in the present day was 0.03,
and for the CORDEX models was between 0.11 and 0.36

depending on time series length. Further, all CORDEX mod-
els (even those with realistic present-day shape parameters)
had large changes in the shape parameter with climate
change, relative to the change in the shape parameter in
CP4A with climate change. Large changes in the shape pa-
rameter may be unrealistic as it should be largely unaffected
by climate change due to moisture conservation and as it is in-
variant with latitude in the present day (Wilson and Toumi
2005). With large changes in the shape parameter, also came
large increases in the return levels for very rare events (return
period . 20 years) with climate change. The change in return
levels for CP4A was mainly due to changes in the location
and scale parameters, not the shape parameter. For events with
return periods . 20 years, the increase in return level with
climate change in CP4A was lower than for the CORDEX
ensemble mean.

Previous applications of EVT to rainfall have made exten-
sive use of parameterized GCMs and RCMs (e.g., Semmler
and Jacob 2004; Frei et al. 2006; Kharin et al. 2007; Fowler
and Ekstrom 2009; Schliep et al. 2010). The assumption of
this work is that even if the present-day extremes are not well
represented, parameterized models can still represent the rel-
ative change in extremes with climate change (Fowler et al.
2010). However, recent work has shown how convection-
permitting models, by explicitly modeling convective updrafts,
capture the intensification of updrafts under climate change
more realistically and give an improved physical basis for
modeling changes in extremes, with larger changes in moder-
ate (approximately annual) extremes (Kendon et al. 2019;
Finney et al. 2020; Jackson et al. 2020). We analyze rarer ex-
tremes, and our results show large differences in the climate
change impact on the parameters of the extreme value distri-
bution between CP4A and the parameterized convection
models, and therefore large differences in the climate change
impact on return levels. Even the more realistic parameter-
ized convection climate models for the present day may have
unrealistic climate change impacts.

The same processes that lead to unrealistic present-day
shape parameters may lead to unrealistic responses of ex-
treme rainfall to climate change in parameterized models. As
EVT is a method for looking at extremes, it is sensitive to out-
liers. An assumption of EVT is that the maximum value found
within a time slice is representative for a return period of the
length of the time slice, that is, the maximum value found
within a 30-yr time period is representative of a 1-in-30-yr
event (Knote et al. 2010). In parameterized convection mod-
els, unrealistic high-intensity gridpoint storms occur (Chan
et al. 2014; Ban et al. 2015; Thomassen et al. 2021). Outliers
have a lot of weight when fitting the GEVD (Knote et al.
2010), and these unrealistic storms therefore have a big im-
pact on the estimation of parameters. There is limited work
on EVT in convection-permitting models, however, those few
other studies have also found large differences in the climate
change signal between convection-permitting and parameter-
ized models, particularly in seasons when convective activity
is most important (Chan et al. 2014; Kendon et al. 2017;
Cannon and Innocenti 2019), likely linked to the ability of
convection-permitting models to model intensification of

TABLE 7. Average percentage increase in return level per
kelvin of global warming in CP4A (5.2 K under RCP8.5) for the
all-station average. We do not compute this at the regional level
because of data sparsity and because local temperature increases
do not match global temperature increases. The typical
Clausius–Clapeyron relationship between rainfall and global
temperature change only emerges when results are averaged
over large areas.

2 yr 20 yr 50 yr 100 yr

Percent increase per kelvin (RCP8.5) 6.2 6.2 6.1 5.9
Percent increase per kelvin (RCP8.5DC) 6.5 7.3 7.3 7.4
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updrafts under climate change (Jackson et al. 2020). In sea-
sons when convective precipitation is less important and
large-scale frontal ascent is more dominant, the differences in
extreme precipitation between convection-permitting and pa-
rameterized models are smaller (Chan et al. 2014; Kendon
et al. 2017). Our results suggest that most parameterized con-
vection models do not capture the behavior of extremes in the
present day, and that for even those models that do capture
present-day behavior, relative changes in extremes (return
period . 20 years) with climate change may be overestimated.
For moderate (yearly) extremes, parameterized convection
models may underestimate climate change impacts (Kendon
et al. 2019). It is likely that the CP4A response to climate
change is more in line with reality than the parameterized
models, and thus, most parameterized convection climate
models are likely not suitable for looking even at relative
changes in extreme events in seasons when convective activity
is important to rainfall.

We found large differences between the TRMM and
CHIRPS satellite data. CP4A parameters and return levels
were closer to TRMM than TRMM was to CHIRPS, while
the parameterized models were different to all observations
and CP4A. This large difference in satellite-derived estimates
would make it difficult to use satellite data as the basis for im-
proving model performance. Station-derived parameters and
return levels were also found to be close to estimates made
form corresponding grid cells in TRMM and CP4A. Differ-
ences in satellite observations have previously been found
when looking at moderate extremes using satellite data, and
when comparing satellites and rain gauges for extremes, par-
ticularly in mountainous areas (Islam 2018; Timmermans et al.
2019). A recent evaluation of satellites in East Africa found
that all satellites struggle with detecting daily extreme rainfall
events, and that CHIRPS may have particularly poor perfor-
mance in this area (Ageet et al. 2022). The large differences
between TRMM and CHIRPS raises the question as to
whether satellite rainfall products are appropriate or useful
for examining rare extreme rainfall events (Timmermans et al.
2019), although if rain gauge data are inaccessible, of poor
quality, or spatially sparse there may not be many other op-
tions. As CP4A is already closer to TRMM than TRMM is to
CHIRPS, it would be difficult to use these satellite products
as a basis for improving CP4As performance. This disagree-
ment between observational products highlights the impor-
tance of collection and accessibility of in situ data rainfall for
informing adaptation, including digitization of old paper rain-
fall records.

The time period examined impacted the return levels esti-
mated from satellite data; though these differences were small
relative to the differences between CHIRPS and TRMM.
There were differences in the estimates of return level for
CHIRPS depending on which 10-yr time period we looked at.
Even with regional frequency analysis (RFA), with a time pe-
riod as short as 10 years the results may be sensitive to the
number of ENSO or IOD events, which impact rainfall in the
region (Black et al. 2003; Kijazi and Reason 2005). Even with
RFA, using a time period longer than 10 years would be pref-
erable, as pooling data does not account for the region being

systematically wetter or drier due to the phase of key telecon-
nections. However, the influence of ENSO and the IOD on
daily rainfall extremes in eastern Africa is beyond the scope
of this paper and requires further analysis.

A further limitation is that we have not examined the im-
pact of spatial resolution on results. In comparing gridded
output to station output, each grid cell represents rainfall
averaged over a greater surface area, which will mean that
extremes are damped and the return levels will be smaller. A
comprehensive analysis of the effects of resolution on ex-
tremes is outside the scope of this study (our principal focus is
on convection-permitting versus parameterized models); how-
ever, future studies should examine this.

We find that there is large variation in the scaling of
return-level estimates between the gridbox scale and the point
location scale, with variation occurring between stations, data-
sets, and return periods. On average, we find that station
return levels are 19%–26% larger than at corresponding grid
cells in TRMM across all return periods and 77%–85% larger
than in CHIRPS. This suggests that there is no constant
downscaling factor that can be applied to satellite-derived
return-level estimates in the study region, and that site-specific
analysis is likely required if stakeholders seek to incorporate
extreme rainfall return levels into the design of large infra-
structure projects. Our work further motivates the need for
ensembles of convection-permitting models for Africa (Senior
et al. 2021) and synthesizing information from observations
and convection-permitting and global models to inform deci-
sions (e.g., Klein et al. 2021; Mittal et al. 2021).
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