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Abstract 13 

Melt transfer and migration occurs through both supra- and sub-solidus rocks. Mechanisms 14 

of melt transfer include dyking, mobile hydrofracturing and diffuse porous melt flow where 15 

melt flow may or may not be channelized via instabilities or into high-strain zones of active 16 

deformation. Here, we highlight the microstructural- and outcrop-scale signatures of syn-17 

deformational melt-migration pathways through high-strain zones that cut sub-solidus 18 

rocks. High-strain zones with high proportions (> 10%) of macroscopic, internally 19 

undeformed, felsic or leucocratic material are readily interpreted as important melt-20 

migration pathways and are most common in supra-solidus host rocks. However, it is 21 

challenging to recognise high-strain melt-migration pathways through sub-solidus rocks; 22 

these pathways may lack noticeable felsic or leucocratic components at the outcrop scale 23 

and share many macroscopic features in common with ‘classic’ sub-solidus mylonite, such 24 

that the two are generally conflated. We contrast field and microstructural characteristics of 25 

‘classic’ mylonite originating from solid-state deformation with those of high-strain zones 26 

that also cut sub-solidus rocks yet have microstructural indicators of the former presence of 27 

melt. We compile several features allowing one to distinguish solid-state from melt-present 28 

deformation in high-strain zones that cut sub-solidus rocks. Our aim is to encourage 29 

geologists to assess such high-strain zones on a case-by-case basis, in view of sub-solidus 30 

(i.e., mylonitic) versus melt-present deformation. Such assessment is crucial as (1) rocks 31 

deformed in the presence of melt, even small percentages of melt, are orders of magnitude 32 
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weaker than their solid-state equivalents, (2) melt-rock interaction in such zones may result 33 

in metasomatism, and (3) such zones may sustain long-lived melt migration and ascent 34 

enabling chemical differentiation at a crustal scale. With this contribution we aim to 35 

increase the ease of recognizing this important subset of melt-migration pathways by 36 

assisting in clarity of description and interpretation of high-strain rocks. 37 

 38 

Introduction 39 

Compositionally varied partial melts are generated in the mantle and/or crust in all 40 

geodynamic settings. The presence and chemical signatures of volcanoes reveal that melt 41 

must commonly ascend from deep in the Earth to its surface (e.g., Tanton et al. 2001, 42 

Aldanmaz et al. 2006). The processes that move melt from source to sink involve 43 

segregation, extraction, migration, and accumulation (Brown, 1994, 2013; Sawyer, 1994; 44 

Rutter & Neuman, 1995; Etheridge et al., 2021). At or close to the source, melt migration 45 

pathways likely occur in supra-solidus rocks. They are thought to be initially dispersed, and 46 

coalesce into channelled pathways (Etheridge et al., 2021). Different to melt migration in 47 

supra-solidus rocks, melt transfer through sub-solidus country rocks requires rapid ascent in 48 

focussed melt-migration pathways to prevent cooling and crystallization. High-strain zones 49 

are an example of such sites of focussed melt flow. It has been shown that high-strain zones 50 

may act as important melt migration pathways – they are recognized in the field as high-51 

strain zones containing high proportions (> 10%) of macroscopic, internally undeformed, 52 

felsic or leucocratic material that is inferred to, at least in part, represent the crystallisation 53 

of former melt (Tommasi et al., 1994; Brown & Solar, 1998a; Marchildon & Brown, 2003; 54 

Weinberg & Mark, 2008; Schulmann et al., 2008; Hasalova et al., 2011; Carvalho et al., 2016, 55 

2017; Piazolo et al., 2020). However, if melt-bearing high-strain zones cut sub-solidus rocks 56 

but lack noticeable felsic or leucocratic components at the outcrop scale (e.g., dykes and 57 

lenses), they are challenging to recognise as melt-migration pathways (e.g., Stuart et al., 58 

2018a,b; Gardner et al., 2020). Additionally, these pathways share many macroscopic 59 

features in common with ‘classic’ sub-solidus mylonite, such that the two may be easily 60 

conflated (compare Figs. 1 & 2). 61 

 62 

The recognition of such dynamic melt-migration pathways through sub-solidus rocks is 63 

significant, as these represent not only zones of major rheological weakening, due to a 64 



 

 

combination of factors that may include grain size reduction, reaction softening, and 65 

enhanced melt-assisted deformation mechanisms (e.g., Arzi, 1978; Hollister & Crawford, 66 

1986; Dell'Angelo & Tullis, 1988; Davidson et al., 1994; Rutter & Neumann, 1995; Paterson 67 

et al., 1998; Piazolo et al., 2020), but are potentially also zones of significant, long-lived melt 68 

migration and ascent enabling chemical differentiation at a crustal scale (e.g., Clemens & 69 

Mawer, 1992; Brown, 1994; Brown & Rushmer, 1997; Sawyer, 2001). 70 

 71 

This contribution focuses on the microstructure of high-strain zones that cut sub-solidus 72 

rocks with the objective to separate high-strain zones into those that form in the solid-state 73 

versus those that act as syntectonic melt migration pathways. We contrast (1) established 74 

field and microstructural criteria used to identify solid-state high-strain zones (i.e., mylonite 75 

zones; Fig. 1) with (2) criteria suggested here for recognising high-strain deformation-76 

assisted melt-migration pathways through sub-solidus rocks (Fig. 2). First, we briefly review 77 

the key characteristics of solid-state high-strain deformation followed by a broad overview 78 

of melt-present deformation, encompassing dykes, mobile hydrofractures, large scale 79 

magmatic flow, and deformation of rocks with high proportions of partial melt. We focus 80 

specifically on characteristics associated with deformation. In addition, we highlight the 81 

microstructural features used to infer the former presence of melt, established from 82 

igneous rocks and migmatites. This is followed by a brief review and synthesis of recent 83 

research that has recognised such microstructures in high-strain zones with two key 84 

features: (1) the high-strain zones lack field evidence commonly used to infer melt-present 85 

deformation, and (2) they cut sub-solidus rocks. We finish with a discussion of the 86 

importance of distinguishing between solid-state vs melt-present deformation in terms of 87 

strain localisation in dominantly sub-solidus rocks, chemical modification, and the efficiency 88 

of melt migration to encourage geologists to carefully assess high-strain zones, particularly 89 

where they cut sub-solidus wall rocks. As such, we hope to increase the recognition of  high-90 

strain melt-migration pathways, i.e., those where the evidence for the former presence of 91 

melt is visible at the thin section scale but not necessarily obvious at the outcrop scale. 92 

 93 

 94 

Solid-state high-strain zones 95 



 

 

Deformation is commonly localised into planar zones of high strain, recognised in the field 96 

by their strongly developed and regularly spaced planar foliation and most commonly a 97 

finer grain size relative to adjacent rocks, resulting in a change in colour (Fig. 1). Such high-98 

strain zones accommodate relative movement of comparatively rigid surrounding rocks 99 

(e.g., White et al., 1980; Ramsay, 1980; Poirier, 1980; Hobbs et al. 1986; Jiang & Williams, 100 

1998). Deformation within these zones results in the formation of new fabrics including 101 

foliation and lineation (Fig. 1), mineral assemblages, and other distinct structural features 102 

including folds (e.g., Carreras et al., 2005). Deflections (‘drag folds’) of pre-existing planar 103 

elements into the high-strain zone with a gradual change in fabric and foliation intensity are 104 

also common. Mineral assemblages and microstructures associated with the high-strain 105 

zone allow deduction of the conditions of deformation including temperature, pressure, 106 

strain rate, type of deformation and the presence of fluid (Tullis et al., 1982; Stipp et al. 107 

2002; Passchier & Trouw, 2005). High-strain zones developed within solid-state rocks are 108 

broadly divided into those dominated by brittle or ductile deformation, forming the 109 

structurally- and process-defined rock types: cataclasite and mylonite, respectively. 110 

 111 

Lapworth (1885) introduced the term mylonite for rocks occurring along the Moine Thrust, 112 

NW Scotland; a well-defined high-strain zone (Fig. 1a,b). He interpreted a cataclastic process 113 

involving strong grinding or milling of the Moine Schists in the high-strain zone, hence 114 

coined a term originating from the Greek mylon, meaning a mill. Christie (1963) identified 115 

widespread recrystallisation in the Moine mylonite, although he interpreted this as post-116 

dating the cataclasis inferred by Lapworth. Subsequent work showed that many mylonitic 117 

rocks contain grains that are strongly distorted due to crystal-plastic deformation (Bell & 118 

Etheridge, 1973; Hobbs et al., 1976; Tullis et al., 1982). Current usage of mylonite is 119 

exclusively for rocks deformed by solid-state ductile deformation in which the “stress-120 

supporting network is affected by crystal-plastic deformation” (e.g., Passchier & Trouw, 121 

2005). Mylonite (sensu lato) with 10–50% matrix (fine-grained, recrystallised grains) is 122 

classified as protomylonite (e.g., Fig. 1f; 3ci), while those rocks with 50–90% or >90% matrix 123 

are called mylonite (sensu stricto, e.g., Fig. 1d,e; 3a,b), or ultramylonite, respectively (e.g., 124 

Passchier & Trouw, 2005). 125 

 126 



 

 

In the last two decades, it has become clear that high-strain zones may show 127 

microstructures indicative of either (1) crystal-plastic deformation and dislocation creep or 128 

(2) diffusion creep sensu lato. The first can be inferred from microstructural observation of 129 

undulous extinction, serrated or curved boundaries, bimodal grain size distribution, overall 130 

bulk grain size reduction, presence of subgrains and small new grains, and crystal preferred 131 

orientation. Diffusion creep sensu lato includes grain boundary sliding accommodated by 132 

diffusion and/or dislocation movement and dissolution-precipitation creep. Some high-133 

strain zones may involve a combination of the two deformation regimes.  134 

 135 

Compositional or grain size banding is common in mylonite (e.g., Fig. 1c,d). In many cases, 136 

high-strain rocks exhibit a well-developed object lineation (Piazolo & Passchier, 2002). 137 

Mylonitic high-strain zones exhibit a fabric gradient from host rock to high-strain zone which 138 

is commonly accompanied by a significant grain size reduction (Fig. 1b,c; Fig. 3b). Incomplete 139 

grain size reduction results in strong grain size variation typically involving porphyroclasts 140 

surrounded by a finer-grained matrix that are easily distinguished in the field and thin section 141 

(Fig. 1d–f; Fig. 3bi,ci). Other key features in thin section have been identified and are expanded 142 

upon next (e.g., White et al., 1980; Lister & Snoke, 1984; Hobbs et al., 1986; Simpson & De 143 

Paor, 1993). The most conspicuous is a bimodal grain size distribution, with uniform small 144 

grains forming a matrix to larger, elongate grains that exhibit deformation lamellae and/or 145 

twins, undulose extinction and subgrains both at grain boundaries and cutting through grains 146 

(Fig. 3aii,bii). So-called core-and-mantle structures or mantled porphyroclasts, where a large 147 

grain is surrounded by small, dynamically recrystallised grains of the same mineral, are 148 

common (Fig. 3aii,cii; White, 1979). Medium- to high-grade deformation at low to 149 

intermediate strain rates forms curved to highly irregular grain boundaries that form window 150 

and pinning structures (Jessell, 1987; Passchier & Trouw, 2005), and the grain size distribution 151 

will tend to be less bimodal (e.g., Piazolo et al. 2002; de Freitas et al, 2021). In rocks that have 152 

undergone subsequent deformation during high grade metamorphism in the solid state, 153 

some of these microstructures may be erased (e.g., by recrystallisation of a former bimodal 154 

grain size distribution; e.g., Heilbronner & Tullis, 2002; Piazolo et al. 2006). Micro-folding (Fig. 155 

3bi) and shape-preferred or crystallographic-preferred orientation of minerals are also 156 

common in mylonitic rocks (e.g., Law, 1990). Elongate grains (particularly quartz) or quartz 157 

ribbons with very high aspect ratios which are several mm long and show a large number of 158 



 

 

grains or subgrains are observed particularly in high grade mylonites (Fig. 3aiii, biii; e.g., Hippert 159 

et al., 2001; Bose & Sengupta, 2003). Furthermore, Commonly, stronger minerals deform in 160 

a brittle manner forming bands of rigid clasts “floating” in a ductile matrix (Fig. 3bii). Many 161 

microstructures are asymmetric and are useful shear-sense indicators (e.g., Hanmer & 162 

Passchier, 1991) including shear bands that are oblique to the main foliation (Fig. 1d,f; Lister 163 

& Snoke, 1984). Nevertheless, it should be noted that some mylonitic rocks may lack such 164 

asymmetric structures due to the deformation regime that the rock analysed was subjected 165 

to (e.g., Baily et al., 2007; Mukherjee, 2017). 166 

 167 

Characteristic microstructures of diffusion creep and grain boundary sliding include very 168 

small grain sizes, presence of shape preferred orientation (lacking both crystallographic 169 

preferred orientation and undulous extinction), subgrain boundaries and necking high-strain 170 

zones (e.g., Svahnberg & Piazolo, 2010, Menegon et al., 2015). Signatures of dissolution-171 

precipitation creep include grain indentations and truncations, grain flattening, enhanced 172 

compositional variations including insoluble seams, strain shadows or beards (e.g., Stokes et 173 

al., 2012). 174 

 175 

Melt-transfer zones 176 

Types and field characteristics 177 

Dyke-like structures that may be continuous or discontinuous at the scale of an outcrop and 178 

mobile hydrofractures represent signatures of melt ascent through rocks which at the time 179 

of melt transfer were behaving in a brittle manner; dyking is an important mechanism of 180 

melt transfer, particularly in the upper crust (e.g., Holness & Watt 2002; Holness et al., 181 

2005), and can either be passive i.e., flow of melt into an open gap or active by dynamic 182 

fracturing at the hydraulic head resulting in so-called mobile hydrofractures (e.g., Clemens 183 

and Mawer, 1992; Petford et al., 1994; Rubin, 1995; Clemens, 1998; Geshi, 2001; Bons et al., 184 

2001; Kisters et al., 2009; Diener et al., 2014; Hall & Kisters, 2016). These geological 185 

structures are readily recognised in the field by their sharp cross-cutting relationships and 186 

their igneous microstructure closely resembling the igneous component of migmatites 187 

reviewed below.  188 

 189 



 

 

The simplest scenario of melt-present deformation occurs during magmatic to submagmatic 190 

flow, involving deformation of crystal-rich magmatic systems. Key evidence of strain in 191 

supra-solidus magmatic systems includes: shape-preferred orientation of elongate crystals 192 

that are not internally deformed, or magmatic foliations that may be concordant with 193 

aligned enclave swarms and mafic schlieren (Vernon 1986; Paterson et al., 1989; Higgins 194 

1998; Wiebe et al., 2002; Yoshinobu & Hirth 2002; Collins et al., 2006, Zibra et al. 2020), 195 

imbrication of elongate euhedral crystals that are not internally deformed (e.g., Vernon 196 

2004; Paterson et al., 2005), insufficient solid-state strain around imbricated crystals if 197 

rotation had occurred in the solid state (Vernon, 2000), and strongly foliated and flattened 198 

enclaves lacking evidence of crystal-plastic deformation (e.g., Wiebe & Collins 1998). 199 

Magmatic flow with minimal solid-state deformation of crystals is inferred in all these cases 200 

(Vernon & Paterson, 2006), as the features are consistent with accommodation of strain by 201 

deformation of a melt phase (Vernon, 2000). These supra-solidus plutonic scenarios of melt-202 

present deformation provide a framework to understanding how rocks behave during melt-203 

present deformation, including brittle processes (e.g., Bouchez et al., 1992), and how the 204 

rock product contrasts to those deformed in the solid-state (Miller & Paterson, 1994; 205 

Vernon, 2000). 206 

 207 

Rocks described as stromatic migmatite have been interpreted to represent zones of melt-208 

transfer active during high-strain deformation (e.g. Park, 1983). These stromatic migmatites 209 

are characterised by numerous thin, parallel and laterally extensive layers or stroma of 210 

coarse grained, felsic material referred to as leucosome (Fig. 3a). The strongly layered 211 

morphology is attributed to transposition of leucosome during melt present high-strain 212 

deformation (Park, 1983), although stromatic migmatites have been shown to form in low-213 

strain settings (Johannes & Gupta, 1982). Likewise, some kilometre-scale regions of 214 

stromatic migmatite hosted in diatexite (a migmatite with high melt fraction; Brown, 1973) 215 

have been interpreted as crustal-scale high-strain magma transfer zones involving migration 216 

and/or draining of melt (e.g., Sleep, 1974; Scott & Stevenson, 1986) from adjacent less 217 

deformed migmatite, i.e., supra-solidus wall rocks (Brown & Solar, 1998a; Marchildon & 218 

Brown, 2003; Weinberg & Mark, 2008; Schulmann et al., 2008; Hasalova et al., 2011). Field 219 

studies link melt ascent and eventual emplacement of plutons based on the close 220 

association between regional deformation, migmatisation, dyking, and zones of strain 221 



 

 

localisation (e.g., Pitcher, 1979; Castro, 1986; Hutton, 1988; Vigneresse, 1995; Brown and 222 

Solar, 1998b; de Saint Blanquat et al., 1998; Rosenburg, 2004; Vernon et al., 2012; Brown, 223 

2013; Zibra et al., 2014). 224 

 225 

Furthermore, as summarised by Cruden & Weinberg (2018), faults and shear zones from all 226 

geodynamic systems have been implicated as high-strain melt-migration pathways through 227 

both supra- and sub-solidus rocks (normal (e.g., Richards & Collins, 2004; Grocott & Taylor, 228 

2002; Grocott et al., 1994, 2009; Hutton et al., 1990; Gardner et al., 2020), thrust/reverse 229 

(e.g., Ingram & Hutton, 1994; Collins & Sawyer, 1996; Stuart et al., 2018a,b; Piazolo et al., 230 

2020; Silva et al., 2022), strike-slip (e.g., Guineberteau et al., 1987; Hutton, 1988; Tikoff & 231 

Teyssier, 1992), transpressional systems (e.g., McCaffrey, 1992; Brown & Solar, 1998b; Benn 232 

et al., 1999; Denèle et al., 2008; Vernon et al., 2012). 233 

 234 

In all of the above cases, syn-deformational melt-transfer zones through both supra- and 235 

sub-solidus rocks have been recognized as such primarily based on observed structural 236 

offsets and the preservation of high proportions (>10%) of internally undeformed felsic or 237 

leucocratic material identifiable as igneous components in outcrop (e.g., Fig. 2b,d,e,f). 238 

The importance of easily recognizable igneous components in the interpretation of such 239 

melt-transfer zones is highlighted by studies questioning the causal link between plutonism 240 

and faults or shear zones based on the lack of igneous components in the field (e.g., 241 

Paterson & Schmidt, 1999; Schmidt & Paterson, 2000). 242 

 243 

Microstructures indicative for the former presence of melt  244 

In general, migmatites (and igneous rocks) contain microstructures indicative the former 245 

presence of melt (Vernon, 2011 and references therein) including (1) minerals with well-246 

defined crystal faces (Platten, 1982), (2) highly cuspate single grains with low dihedral 247 

angles interpreted to represent melt pseudomorphs (Sawyer, 2001; Holness, 2008; Walte et 248 

al., 2005), and (3) strings of beads of round blebs of pseudomorphed former melt (e.g., 249 

quartz) along grain boundaries (Holness, 2008). Specifically, rocks that deform in the 250 

presence of melt exhibit (a) euhedral felsic minerals in shear bands and elongate-cm scale 251 

pockets, and (b) presence of grains pseudomorphing melt films along grain boundaries 252 

and/or fractures (e.g., Daines & Kohlstedt, 1994; Sawyer, 1999; Rosenberg & Handy, 2000; 253 



 

 

Rosenberg & Riller, 2000; Rosenberg & Berger, 2001; Marchildon & Brown, 2003; Walte et 254 

al., 2005; Holness, 2008; Schulmann et al., 2008; Vernon, 2011; Zavada et al., 2007, 2018). 255 

Reaction rims including symplectites may also form in response to the injection of external 256 

melt and its interaction with the host rock in both static and deforming rocks (Stuart et al., 257 

2016, 2017; Daczko et al. 2016; Meek et al., 2019; Gardner et al., 2020; Silva et al., 2022). 258 

 259 

High-strain zones with microstructures atypical of mylonite 260 

We have recently recognized some ductile high-strain zones that have the general field 261 

appearance of solid-state high-strain deformation zones but lack typical mylonitic 262 

microstructures (Daczko et al. 2016; Stuart et al., 2018a,b; Meek et al., 2019; Piazolo et al., 263 

2020; Gardner et al., 2020; Silva et al., 2022). Instead, they exhibit a set of distinct 264 

microstructures that include those commonly interpreted to be indicative of the former 265 

presence of melt, in contrast to the sub-solidus character of their melt-absent low-strain 266 

wall rocks. 267 

 268 

In the field, these high-strain zones look like many mylonitic high-strain zones and exhibit a 269 

change in colour (Fig. 2a,c,f; Fig. 4c,d) due to changes to the mineral assemblage and/or 270 

reduction in grain size, compared to the wall rock. Additionally, they show deflections from 271 

the wall rock into the high-strain zone with a gradual change in fabric and foliation intensity 272 

and are strongly compositionally banded in shear zone centres (Fig. 4c,d). At the thin section 273 

scale, we observe microstructures unusual for mylonite. The most conspicuous 274 

microstructural feature is a general unimodal grain size distribution for each phase, 275 

compared to the common bimodal distributions associated with dynamic recrystallization 276 

commonly observed in mylonite (Figs. 1 & 3). Grains display limited internal deformation 277 

features (i.e., they lack or show very limited development of undulose extinction, 278 

deformation twins, subgrains, etc.), even if they are large grains expected to deform by 279 

dislocation creep. This contrasts with the large, crystal plastically deformed grains observed 280 

in mylonitic high strain rocks. Nevertheless, grains with high aspect ratios (e.g. biotite) may 281 

be strongly aligned (e.g., Fig. 4ai,bi,dii) so that grains or grain aggregates may define a shape-282 

preferred orientation (Fig. 4c,d,di). Relict grains (porphyroclasts) may be observed in the 283 

transition between the high-strain zone and surrounding rocks but are rare within the high-284 

strain zone (only a few grains can be noted on Fig. 4ci,cii,ciii), somewhat similar to the 285 



 

 

transition seen from mylonite to ultramylonite. Micro-folding and asymmetric 286 

microstructures are less common than in typical mylonitic rocks (Fig. 4); although, it should 287 

be noted that some mylonite rocks may lack asymmetric structures. 288 

 289 

Euhedral or partially faceted grains are common for one or two minerals within an 290 

assemblage (e.g., K-feldspar in Fig. 4aii; garnet in Fig. 4biii). The faceted grains are in contact 291 

with other minerals that may form elongate (aspect ratios >10) single grains (Fig. 292 

4aii,aiii,aiv,biii,civ,div) or small (≤ 60°) dihedral angles at the junction of the faceted grains (Fig. 293 

4av,biii,civ,cv,diii,div). Note that careful observation is needed to distinguish a faceted grain 294 

boundary from gently curved grain boundaries in polygonal textures. Typically, within a 295 

neighbourhood of 10–20 grains, several of these xenomorphic grains show the same 296 

crystallographic orientation (i.e., same extinction angle, same interference colour), even 297 

though they are not connected in two dimensions, suggesting a single grain that branches in 298 

3D (e.g., plagioclase in Fig. 4aiii or quartz in Fig. 4bii). Fine grained, intergrown multiphase 299 

aggregates (e.g., quartz–plagioclase–K-feldspar) include the mineral(s) that form the 300 

interstitial textures (Fig. 4cv,diii,div). These are concave-shaped and observed at triple 301 

junctions, along grain boundaries and as mineral inclusions in the euhedral or partially 302 

facetted grains. Strings of rounded bleb-shaped minerals along grain boundaries (‘string of 303 

beads’ textures) are common (Holness et al., 2011; Lee et al., 2018), though, these can also 304 

be observed in mylonite at the start of forming a mortar texture. The ambiguity in some 305 

microstructures highlights the need to evaluate the full range of microstructures present. 306 

 307 

Some high-strain zones that cut sub-solidus rocks that we have studied exhibit enrichment 308 

in biotite (Fig. 4a,b; Piazolo et al., 2020, Ghatak et al. 2022; Silva et al., 2022) or amphibole 309 

content (Fig. 4d; Stuart et al., 2018b). In the biotite-rich examples, felsic components in the 310 

high-strain zone form K-feldspar-plagioclase-quartz-rich lenses of varying thickness (< 5 cm; 311 

Fig. 4a). The minerals within the lenses are not internally deformed at both the outcrop and 312 

thin section scales (Fig. 4a inset; Fig. 4aii,aiii). K-feldspar crystals may form felsic lenses with 313 

quartz (Fig. 4a inset) or isolated grains (Fig. 4b inset). Biotite-rich selvedges (Fig. 4a) and 314 

anastomosing bands (Fig. 4b) may also contain small proportions of muscovite, sillimanite, 315 

magnetite and/or garnet. Fine cuspate grains of quartz and feldspar occur between biotite 316 

and garnet grains (Fig. 4aiii,bii,biii). Reaction textures (Fig. 4biv,bv) may be common, where 317 



 

 

pre-existing grains (e.g., Grt, garnet, in biv and bv, and Cpx, clinopyroxene, in cii) are partially 318 

replaced at grain margins and along dissolution channels and/or fractures (Fig. 4iv,bv). A new 319 

feature noticed in preparing this review and synthesis of microstructures is that the pre-320 

existing grains may be decorated with many fine-scale trails of porosity (e.g., trails of very 321 

fine circular features that are black in BSE and best observed in the garnet in Fig. 4biv,bv) or 322 

tiny inclusions (shown in the inset of Fig. 4bv; grey in BSE), consistent with former fluid-filled 323 

porosity, a key indicator of fluid-mediated coupled dissolution-precipitation (e.g., Putnis et 324 

al., 2009; Varga et al., 2020; Halpin et al., 2020). An important point is that all the delicate 325 

microstructures highlighted on Figure 4 are very rare or absent in classic mylonite. 326 

 327 

Discussion 328 

High-strain zones with microstructures indicative of the former presence of melt but 329 

lacking high proportions of igneous material: characteristics and mechanisms 330 

High-strain zones that display high proportions (>10%) of felsic or leucocratic material in 331 

outcrop, where the leucocratic material lacks internal sub-solidus deformation 332 

microstructures, are distinguished from migmatite subsequently deformed under sub-333 

solidus conditions by the field geologist and therefore recognised as having experienced 334 

melt-present deformation. Such zones are reported from areas of regional supra-solidus 335 

migmatite domains containing overall high leucosome content (e.g., Brown & Solar, 1998a). 336 

However, few such high-strain zones are reported to occur in sub-solidus host rocks where 337 

the high-strain zone contains low proportions of felsic or leucocratic material (e.g., Daczko 338 

et al., 2016; Carvalho et al., 2016, 2017; Stuart et al., 2018a,b; Meek et al., 2019; Piazolo et 339 

al., 2020; Lee et al., 2020; Ghatak et al., 2022; Silva et al. 2022). Is this because they are truly 340 

rare, or perhaps they are under-recognised? Based on the combination of microstructural 341 

features, we interpret the high-strain zones described above as having formed during melt-342 

present deformation in melt migration pathways through sub-solidus rocks, even though 343 

their outcrop pattern is largely compatible with mylonite deformed at sub-solidus 344 

conditions. This interpretation is based on five main sets of observations: these rocks 1) 345 

exhibit microstructures that are indicative of the former presence of melt and inferred to be 346 

associated with crystallisation of the final proportions of melt (in-situ or injected) in igneous 347 

rocks and migmatite (Sawyer, 1999; Holness, 2008; Vernon, 2011), 2) lack many of the 348 

microstructural features common to mylonite, 3) lack indications of later annealing within 349 



 

 

the high-strain zone and adjacent rocks, 4) are commonly too coarse grained to be 350 

interpreted as deforming by diffusion creep, and 5) contain abundant reaction replacement 351 

microstructures suggestive of open system melt-rock interaction during melt migration 352 

through the high-strain zones. 353 

 354 

In equilibrated rocks with low proportions of melt (a few volume percent), the melt–solid 355 

dihedral angles control melt connectivity, such that the melt forms an interconnected grain 356 

boundary network of channels along three-grain junctions if the dihedral angle is less than 357 

60° (Holness et al. 2011). Additionally, isolated pockets of melt may form on four-grain 358 

junctions if the melt–solid dihedral angle is greater than 60° or if the melt proportion in the 359 

rock is higher. The faceted grain boundaries observed in our high-strain rocks (e.g., K-360 

feldspar in Fig. 4aii and garnet in 4biii), where the system is interpreted to have been 361 

chemically open and reaction textures suggest it was in chemical disequilibrium (e.g., Fig. 362 

4biv, cii), are inferred to have crystallised against melt in one of these melt-filled porosity 363 

scenarios. This results in the observed interstitial texture, including xenomorphic grains 364 

forming elongate single grains and those with small (≤ 60°) dihedral angles (Fig. 4; Holness, 365 

2008 and references therein). As these xenomorphic grains pseudomorph the melt-filled 366 

network, some grains pseudomorph melt by forming an ‘overgrowth’ on an existing 367 

framework grain. These overgrowths may grow in a branching 3D structure between the 368 

other nearby solid minerals (fig. 3c in Holness et al., 2011). In this scenario, these 369 

pseudomorphs of melt form very irregularly-shaped, interstitial, single grains that intersect 370 

a 2D section in several places (Fig. 4aiii,bii). During crystallisation, the very last melt 371 

proportions in a rock become isolated and hence trapped along grain boundaries and at 372 

three- or four-grain junctions (Sawyer, 1999; Vernon, 2011; Holness et al., 2011). These 373 

small pockets of isolated melt rarely crystallise into fine-grained, multiphase aggregates or 374 

“nanogranites” (Fig. 4div; Holness & Sawyer, 2008; Cesare et al., 2009). Reaction of an 375 

externally derived hydrous melt (and/or in rare cases the last melt trapped) results in local 376 

hydration reaction textures, where water is sourced from the melt (Fig. 4a,b; e.g., White & 377 

Powell, 2010; Carvalho et al., 2016; Stuart et al., 2016; Meek et al., 2019; Gardner et al., 378 

2020; Piazolo et al., 2020; Ghatak et al., 2022). The melt-rock reaction may result in 379 

significant changes to whole rock major and minor element compositions at the large scale 380 

(Stuart et al., 2018b; Meek et al., 2019, Silva et al. 2022;  Ghatak et al. 2022). 381 



 

 

 382 

The common microstructures observed in typical mylonite form in response to differential 383 

stress at subsolidus conditions (e.g., White, 1979; Hobbs et al., 1986) and some of these are 384 

also observed in the high-strain zones described here. Therefore, the correct interpretation 385 

of the microstructure of a given high-strain rock relies on the weight of evidence for or 386 

against solid-state versus melt-present deformation. In mylonitic rocks deformed at solid-387 

state conditions, the deformation processes involve crystal-plastic deformation and/or 388 

deformation by mass transfer. Further, for some minerals, contemporaneous brittle failure 389 

of grains may occur, forming the array of common microstructures in mylonite (Fig. 3 and 390 

Fig. 5). In contrast, stresses are largely dissipated through melt flow during melt-present 391 

deformation, thus decreasing the effective stress on the solid minerals and reducing the 392 

necessity of crystal-plastic deformation of grains. This is best recognised in magmatic flow 393 

(Nicolas et al., 1988; Paterson et al., 1998; Vernon, 2000), but in high stress situations of low 394 

melt volumes, it is unknown at what point the melt may not be able to accommodate 395 

deformation, thus activating other deformation processes. Consequently, at the grain scale, 396 

we expect to observe less crystal-plastic deformation features in high-strain rocks that 397 

formed during melt-present deformation. However, a shape- and/or crystallographic-398 

preferred orientation may develop in melt-present high-strain zones due to rigid body 399 

rotation of the solid, elongate crystals (e.g., March, 1932; Jeffrey, 1922; Ghosh & Ramberg, 400 

1976; Ildefonse et al., 1992; Ildefonse & Mancktelow, 1993; Arbaret et al., 1996; Piazolo & 401 

Passchier, 2002) and/or crystal growth within a stress field (e.g., Vernon, 1987). The 402 

preservation of the delicate microstructures observed in the studied examples (Fig. 4) 403 

suggests that little solid-state deformation occurred after the melt-present deformation. 404 

Hence, once these high-strain rocks cooled below the solidus or the proportion of melt 405 

decreased, they became rheologically strong and deformation stopped or was partitioned 406 

elsewhere (Carvalho et al., 2016, 2017; Stuart et al., 2018a,b; Prakash et al., 2018; Lee et al., 407 

2018, 2020; Shao et al., 2021). 408 

 409 

We now focus on the mechanism involved in the origin of the cryptic nature of syn-410 

deformational melt-transfer zones through sub-solidus rocks. The microstructural features 411 

typical for melt present high-strain zones, as summarized in Figure 5, suggest that these 412 

zones develop by deformation-assisted porous melt flow (e.g., Meek et al., 2019). During 413 



 

 

porous melt flow (e.g., Kelemen et al., 1995), melt dominantly migrates along grain 414 

boundaries, hence microstructures pseudomorphing melt are preserved as grain boundary 415 

films with low dihedral angles, string of beads microstructures and three-dimensional grain 416 

networks. Such porous melt flow is possible if either there is a pre-existing network of melt 417 

along grain boundaries (case A) or if melt migration occurs in areas of high strain in sub-418 

solidus rocks (case B). In Case A, the host rock is above its solidus with a small percent of 419 

melt present along grain boundaries forming an irregular melt network that can be 420 

exploited by the fluxing, externally derived melt (e.g., Stuart et al., 2016). Simultaneous 421 

deformation results in strain localisation and a local increase in the porosity and 422 

permeability of the high-strain zone (e.g., Edmond and Paterson, 1972, Fischer and 423 

Paterson, 1989; Katz et al., 2006; Hasalova et al., 2008, Schulmann et al., 2008; Stuart et al., 424 

2018b) which lowers fluid pressure and creates sinks that draw melt towards zones of 425 

maximum deformation rate (Etheridge et al., 2021). In this scenario, dynamic opening and 426 

closing of pores in deforming rocks will continuously change local fluid pressure gradients 427 

resulting in a fluid pump (Fusseis et al., 2009; Menegon et al., 2015). The dynamic pressure 428 

changes are mainly facilitated by grain boundary sliding where melt films along grain 429 

boundaries enable sliding and geometric incompatibilities are accommodated dominantly 430 

by melt migration (e.g., Stuart et al., 2018b; Gardner et al., 2020). Consequently, a positive 431 

feedback loop develops where the high-strain zone becomes extremely weak, further 432 

focusing deformation. Melt accommodated grain boundary sliding is in stark contrast to 433 

grain boundary sliding in the solid state where either diffusion or dislocation glide are the 434 

dominant accommodating processes (e.g., Hirth and Kohlstedt, 2003; Svahnberg and 435 

Piazolo, 2010; Hansen et al., 2011). In case B, localised deformation in, for example, pre-436 

existing fine grained host rocks may occur by grain boundary sliding (e.g., Fusseis et al., 437 

2009). If grain boundary sliding occurs without accommodation by diffusion or dislocation 438 

glide, fluid (e.g., melt) will be drawn into the dynamic porosity associated with grain 439 

boundary sliding.  440 

 441 

Microstructures in the host rock will be distinct for the two cases. In case A, the host rocks 442 

are expected to exhibit microstructures typical for low melt proportions, including 443 

asymmetric reaction microstructures. In contrast, in case B, the host rock is not expected to 444 

show any microstructures indicative of the former presence of melt.  Here, field 445 



 

 

relationships would be consistent with syn-deformational melt migration of an externally 446 

derived melt through shear zones cutting solid rocks. In both cases, the concepts of 447 

deformation assisted melt flow through shear zones provides an effective mechanism to 448 

transport large volumes of melt through small volumes of rock (Stuart et al., 2018b; Silva et 449 

al., 2022). Accordingly, even though a large volume of melt may have migrated through such 450 

a high-strain zone, the frozen microstructural signatures of the former presence of melt are 451 

expected to be cryptic, i.e., visible at the thin section scale but not necessarily obvious at the 452 

outcrop scale. However, if melt flux is associated with extensive melt-rock interaction, 453 

microstructures indicative of the former presence of melt may still be cryptic, but 454 

geochemical signatures may be obvious both at the micro- and macroscale (e.g., Daczko et 455 

al. 2016, Stuart et al., 2018b; Meek et al., 2019; Silva et al., 2022). In this case, the 456 

deformation-assisted porous melt flow is highly reactive resulting in reaction front 457 

instabilities (e.g., Stuart et al., 2017; Meek et al., 2019) which may be enhanced by local 458 

deformation.  459 

 460 

In summary, our review shows that rocks formed in melt-present high-strain zones do not 461 

always exhibit a high proportion of felsic or leucocratic material in outcrop when either 462 

small proportions of melt were only ever in the high-strain zone at one time or when 463 

subsequent melt loss occurs. Such high-strain zones are particularly cryptic when they form 464 

high-strain melt-migration pathways through sub-solidus rocks and can be easily overlooked 465 

and conflated with common solid-state mylonite. The mechanisms of deformation assisted 466 

porous melt flow results in the characteristics typical for such high-strain zones (Fig. 5). 467 

 468 

Importance of recognising melt-present high-strain zones  469 

Melt segregation, extraction and transfer through sub-solidus rocks: the type of heat source 470 

is the principal rate control on partial melting of the crust while deformation enables melt 471 

segregation and extraction (Brown, 1994, 2013; Sawyer, 1994; Etheridge et al., 2021). Melt 472 

segregation from a source initially involves grain boundary porous flow to sites of dilation 473 

on a similar time scale to partial melting (Rutter & Neuman, 1995; Brown, 2013 and 474 

references therein), while buoyancy of liquid relative to solid components, in combination 475 

with gravity- or deformation-driven compaction facilitates melt extraction (McKenzie, 1984; 476 

Rutter, 1997), possibly following accumulation in crustal settings (Diener et al., 2014). This 477 



 

 

must be an important process in the crust; for example, Brown (2008) suggests that up to 478 

90% of crustal melt is extracted from its source. 479 

 480 

While melt segregation and extraction in the anatectic zone are relatively well studied, less 481 

is known about melt transfer to the upper crust, especially through sub-solidus rocks. The 482 

current paradigm invokes two main mechanisms for melt transfer through the crust: flow in 483 

(1) dykes/hydrofractures or (2) shear zones (Guineberteau et al., 1987; Hutton, 1988; 484 

Hutton et al., 1990; Clemens & Mawer, 1992; McCaffrey, 1992; Mogk, 1992; Tikoff & 485 

Teyssier, 1992; Ingram & Hutton, 1994; Grocott et al., 1994, 2009; Collins & Sawyer, 1996; 486 

Brown & Rushmer, 1997; Brown & Solar, 1998b; Weinberg & Searle, 1998; Benn et al., 1999; 487 

Grocott & Taylor, 2002; Rosenburg, 2004; Richards & Collins, 2004; Denèle et al., 2008; 488 

Hasalová et al., 2008, 2011; Kisters et al, 2009; Sawyer, 2010; Vernon et al., 2012; Reichardt 489 

& Weinberg, 2012; Brown, 2013; Yakymchuk et al., 2013; Diener et al., 2014; Hall & Kisters, 490 

2016; Daczko et al., 2016; Cavalho et al., 2016; Stuart et al., 2018a,b; Lee et al., 2018; Meek 491 

et al., 2019; Piazolo et al., 2020; Gardner et al., 2020; Etheridge et al., 2021; Silva et al., 492 

2022; Ghatak et al., 2022). Granite (sensu lato) may be observed in shear bands and high-493 

strain zones (Ashworth, 1976; Barr, 1985; Weinberg & Mark, 2008 and references therein; 494 

Hasalova et al., 2011; Carvalho et al., 2016). These relationships advocate for an effective 495 

role for ductile high-strain zones in magma ascent through the crust, where potentially large 496 

volumes of melt may move rapidly through a relatively narrow zone of rock that is heated 497 

by magmatic advection of heat during shearing (e.g., Cavalho et al., 2017). 498 

 499 

Although a very challenging task, Stuart et al. (2018b) calculated minimum volumes of melt 500 

flux through amphibole-rich high-strain zones in the lower crust of magmatic arcs ranging 501 

between 0.26 and 2.0 m3 of melt per m3 of rock depending on the initial water content of 502 

the fluxing melt and the melt flux styles documented. Similarly, Silva et al. (2022) calculated 503 

minimum melt flux volumes through biotite-rich shear zones of Central Australia ranging 504 

between 0.03 to 0.23 m3 of melt per m3 of rock. When integrated over typical shear zone 505 

and crustal thicknesses, these volumes indicate migration of significant volumes of melt can 506 

occur through high-strain zones. 507 

 508 



 

 

The composition of melt migrating through high-strain zones varies widely, being 509 

documented from felsic, such as in Central Australia (e.g., Piazolo et al., 2020; Silva et al., 510 

2022; Ghatak et al., 2022) to mafic, such as in Fiordland, New Zealand (e.g., Daczko et al., 511 

2016; Stuart et al., 2016, 2017, 2018a,b; Meek et al., 2019) and at mid-ocean ridge core 512 

complexes (Gardner et al., 2020; Zhang et al., 2020, 2021; Ghatak et al., 2022). Petrological 513 

and geochemical patterns in high-strain melt-migration pathways are complex and nearly 514 

unique to each study site and even in comparing samples from a single pathway (e.g., Stuart 515 

et al., 2018b). This is due to the highly variable geochemical outcomes of melt-rock 516 

interaction that are controlled by variability in (i) the composition of the melt source, (ii) 517 

extent of geochemical modification of the melt during reactive flow due to things like 518 

armouring, (iii) variation in rock types interacted with along melt migration pathways, and 519 

(iv) possible trapping of early crystallised minerals (i.e., phenocrysts in the migrating melts) 520 

during the collapse of pathways as melt supply is reduced. For these reasons, 521 

generalisations about petrological and geochemical constraints on melt transfer processes 522 

are difficult to make. However, petrological and geochemical information is highly useful in 523 

individual case studies of melt-transfer zones. 524 

 525 

We suggest that high-strain melt-migration pathways might be under-recognised, 526 

particularly through sub-solidus low-strain wall rocks, and advocate for the careful 527 

microstructural assessment of each high-strain zone on a case-by-case basis. 528 

 529 

Rheology: The presence of melt in deforming high-strain zones is thought to have a very 530 

significant rheological effect, where the zones weaken significantly by the physical presence 531 

of melt (e.g., Arzi, 1978; Rosenberg & Handy, 2005), even at low proportions of melt. The 532 

volume of melt and character of its distribution is a key control on the rheological behaviour 533 

of a melt-solid crystal system. Once the melt is interconnected along grain boundaries, the 534 

rheology of the rock will be very significantly weakened. The degree of weakening depends 535 

on the composition of the melt as the melt can interconnect along grain boundaries if the 536 

melt-solid dihedral angle is less than 60° (Holness, 2006, Holness et al., 2011) and the grain 537 

size, i.e., the boundary network length that needs wetting. Within a felsic system, 538 

Dell’Angelo and Tullis (1988) conclude that 2% melt is required for wetting grain boundaries 539 

and approximately 7% melt is required for full interconnectivity resulting in 1-2 orders of 540 



 

 

magnitude rheological weakening as strain is primarily accommodated by the melt (Bruhn et 541 

al. 2000; Rosenberg & Handy, 2005). The suggested weakening effect stems from the low 542 

viscosity of the melt relative to the solid framework of the crystalline rock. Other processes 543 

that may take place simultaneously and further enhance rheological weakening include 544 

grain size reduction (Arzi, 1978; Dell'Angelo & Tullis, 1988; Davidson et al., 1994; Rutter & 545 

Neumann, 1995; Mecklenburg & Rutter, 2003; van der Molen & Paterson, 1979; Paterson et 546 

al., 1998; Jamieson et al., 2011) and growth of rheologically “soft” minerals during melt-rock 547 

interaction, such as biotite (Rutter & Brodie, 1985; White & Powell, 2010; Piazolo et al., 548 

2020; Silva et al., 2022) and sillimanite (Vernon, 2011). Reaction softening because of fluid-549 

rock interaction between the host rock and the migrating fluid occurring in high-strain zones 550 

has been commonly inferred to have a positive feedback effect enhancing rheological 551 

weakening in high-strain zones and hence strain localization (e.g., Rubie, 1983; Rutter & 552 

Brodie, 1985). In addition, the presence of fluid pressure originating from either aqueous 553 

fluid or melt within an actively deforming high-strain zone may enhance rheological 554 

weakening (Hubbert & Rubey, 1959). 555 

 556 

High-strain melt-migration pathways through sub-solidus rocks 557 

The review and synthesis of microstructures presented here (Fig. 4) is inconsistent with the 558 

current usage of ‘mylonite’. In our view, it is a misnomer to call the studied high-strain rocks 559 

‘mylonite’. Rocks that formed during melt-migration through high-strain zones that cut sub-560 

solidus rocks and preserve low proportions of melt are rarely recognised. The above 561 

discussion highlights the potential importance of melt-present high-strain zones in terms of 562 

melt migration through sub-solidus rocks and for rheology of the crust. Consequently, it is 563 

imperative to distinguish between mylonite and high-strain melt-migration pathways 564 

through sub-solidus rocks. We suggest that a new term for crystalline rocks (in contrast to 565 

pseudotachyllite) produced in melt-present high-strain zones that cut sub-solidus rocks will 566 

assist in clarity of description and interpretation. We propose the term melferite, from the 567 

Greek meldein, "melt", and Latin fer, "that which carries", for rocks produced in high-strain 568 

melt-migration pathways though sub-solidus rocks and are currently conflated with genuine 569 

mylonite. We propose that geologists may choose call a rock ‘melferite’ like cataclasite 570 

(formed by cataclasis), or mylonite (formed by mylonitisation), etc. The distinguishing 571 

features of mylonite versus melferite are summarised in Figure 5. We hope that this 572 



 

 

research will encourage geologists to assess each high-strain zone on a case-by-case basis, in 573 

the light of solid-state versus melt-present deformation, particularly where the low-strain 574 

wall rocks are sub-solidus. 575 
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 1002 

Figure Captions 1003 

Figure 1 Field characteristics of mylonitic high-strain zones formed by solid-state 1004 

deformation include compositional banding, fabric gradients adjacent to the high-strain 1005 

zones, changes in colour, grain size reduction, new foliation and lineation and deflection of 1006 

pre-existing foliation or layering. Note also outcrop-scale boudin, S-C’ fabric, mantled 1007 

porphyroclasts and bimodal grain sizes. (a,b) greenschist facies, Glencoul and Arnaboll 1008 



 

 

thrusts, Scotland; (c) greenschist to amphibolite facies Caswell Thrust, Caswell Sound, 1009 

Fiordland, New Zealand (Daczko et al., 2002a); (d,e) Anita Shear Zone, Milford Sound, 1010 

Fiordland, New Zealand (Klepeis et al., 1999; Gardner et al., 2015); (f) Wongwibinda Shear 1011 

Zone, Southern New England Orogen, NSW, Australia (Craven et al., 2013; Jessop et al., 1012 

2020). For typical microstructures, see Figures 3 and 5. 1013 

 1014 

Figure 2 Field characteristics of amphibolite to granulite facies high-strain melt migration 1015 

pathways (i.e., zones of deformation-assisted migration of an externally derived melt) 1016 

include compositional banding, fabric gradients adjacent to the high-strain zones, changes in 1017 

colour, grain size reduction, new foliation and lineation and deflection of pre-existing 1018 

foliation or layering, with or without recognisable igneous components. (a,b) Mt Daniel dyke 1019 

and sheet complex emplaced into the active Mt Daniel Shear Zone, Mt Daniel, Fiordland, 1020 

New Zealand (Daczko et al., 2002b; Bhattacharya et al., 2018), (c) Pembroke Thrust, 1021 

Pembroke Valley, Fiordland, New Zealand (Daczko et al., 2001; Stuart et al., 2018a,b), (d,e) 1022 

Hawes Head shear zone, Hawes Head, Fiordland, New Zealand (Daczko et al., 2012), small 1023 

cross-cutting shear zone in the Doubtful Sound Shear Zone, Doubtful Sound, Fiordland, New 1024 

Zealand (Gibson et al., 1988). For typical microstructures, see Figures 4 and 5. 1025 

 1026 

Figure 3 Field and microstructural characteristics of banded mylonitic high-strain zones 1027 

(between dashed lines); (a) greenschist facies, Moine Thrust, Lake Eriboll, Scotland; black 1028 

lens cap for scale (60 mm across); (b) upper greenschist to lower amphibolite facies 1029 

mylonite zone, with bent earlier foliation (white line), Cap de Creus, NE Spain; chisel (17 cm 1030 

long) for scale; (c) amphibolite facies, Caswell Sound Thrust, New Zealand; marker pen (14 1031 

cm long) in inset for scale. 1032 

(Subscript i in each column) overview photomicrographs in plane (upper) and crossed 1033 

(lower) polarised light; FOV = 2.8 cm; (subscript ii and iii in each column) close-up 1034 

photomicrographs; crossed polarised light showing (aii) elongate, asymmetric 1035 

porphyroclasts of quartz embedded in fine grained matrix; note strong undulose extinction, 1036 

(aiii) bimodal grain size distribution with matrix of fine grains, (bii) fractured feldspar, (biii) 1037 

highly elongate ribbons of quartz embedded in fine-grained matrix of feldspar and quartz; 1038 

note the undulose extinction (white arrow) of the quartz ribbons, (cii) bent twins (white 1039 

arrow) in feldspar, (ciii) micro-fractures (white arrow) in feldspar. 1040 



 

 

(Bottom panels) Summary table of field and microstructural characteristics of mylonite. 1041 

 1042 

Figure 4 Field and microstructural characteristics of amphibolite to granulite facies high-1043 

strain melt migration pathways (i.e., zones of deformation-assisted migration of an 1044 

externally derived melt) with some (a) to very little (b,c,d) outcrop evidence for the former 1045 

presence of melt, i.e., the high-strain zones lack domains of felsic, coarse grained 1046 

(leucocratic) material; black lens cap for scale (60 mm across). (a) Gough Dam shear zone, 1047 

Central Australia (Piazolo et al., 2020; Silva et al., 2022); inset shows a cm-scale felsic 1048 

component with igneous microstructure (i.e., granite lenses) and biotite (Bt) selvages; (b) 1049 

Cattle water pass shear zone, Central Australia (Ghatak et al., 2022); anastomosing Grt-Bt 1050 

(garnet-biotite)-rich foliation; inset shows partially replaced coarse ancient garnet and 1051 

isolated K-feldspar grains; (c, d) Pembroke Valley, New Zealand; pre-existing foliation (S1) 1052 

and dykes deflected (white line) into high-strain zones with new foliations (S2, dashed line); 1053 

note the colour change in the high-strain zones; 1054 

(Subscript i in each column) overview photomicrographs in plane (upper) and crossed 1055 

(lower) polarised light; FOV = 2.8 cm; (subscript ii, iii, iv and v in each column) close-up 1056 

photomicrographs and BSE (back-scattered electron) images with 100m scale bars 1057 

showing: (1) key microstructures of the former presence of melt: euhedral or faceted grains 1058 

(white lines, aii, av, biii); grains displaying interstitial texture (aii–div), including grains with low 1059 

dihedral angles (yellow arrows) and elongate single grains that are inferred to have 1060 

pseudomorphed melt films (white arrows); several closely-spaced xenomorphic grains with 1061 

the same orientation that represent single grains connected along grain boundaries and 1062 

triple junctions in three dimensions (green arrows) – in the examples shown, the 1063 

xenomorphic grains are interstitial to biotite (aiii) and garnet (bii), crossed polarised light 1064 

with the two polarisers at 75°); pseudomorphed melt pockets (i.e., fine-grained, intergrown, 1065 

multiphase aggregates of quartz-feldspar, aiii, cv, diii, div); and quartz-feldspar-rich “veins” at 1066 

a high-angle to the foliation, defined by trains of quartz, feldspar and amphibole grains 1067 

forming a string-of-beads texture (black arrows, dii). (2) melt-mediated coupled dissolution-1068 

precipitation reaction textures (orange arrows) where pre-existing grains (e.g., Grt, garnet, 1069 

in biv and bv, and Cpx, clinopyroxene, in cii) are partially replaced at grain margins and along 1070 

dissolution channels and/or fractures. Note that fractures in bv are filled with Bt+Sil+Pl, 1071 

biotite + sillimanite + plagioclase, the same reaction replacement assemblage observed at 1072 



 

 

grain margins. Also note that pre-existing garnet is decorated with many fine-scale trails of 1073 

porosity (black in BSE) consistent with former melt-filled porosity, a key indicator of coupled 1074 

dissolution-precipitation. (3) rare porphyroclasts (cii, ciii). 1075 

(Table) Summary table of field and microstructural characteristics of rocks formed in high-1076 

strain melt migration pathways (i.e., zones of deformation-assisted migration of an 1077 

externally derived melt). 1078 

 1079 

Figure 5 Schematic diagram showing the geometry and key features of high-strain zones 1080 

with a focus on microstructural characteristics that distinguish high-strain rocks formed in (I) 1081 

mylonite zones from (II) those rocks formed in high-strain melt migration pathways (i.e., 1082 

zones of deformation-assisted migration of an externally derived melt), here called 1083 

‘melferite’. See text for discussion. Note many of the microstructural features of mylonitic 1084 

rocks deformed in the solid state are asymmetric and useful indicators of the sense-of-1085 

shear. This asymmetry is less common in melferitic rocks. Schematic diagrams modified 1086 

after Passchier and Trouw, 2005, Cesare et al., 2009; Holness & Vernon, 2015; Stuart et al., 1087 

2018a; and Meek et al., 2019. Note that some features such as (5I, a) marker and foliation 1088 

deflection, and (5I, j) lattice preferred orientation are also possible in melferite (5II). 1089 
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