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Abstract
Objectives Relapse occurs in ~20% of patients with classical Hodgkin lymphoma (cHL) despite treatment adaption based on 2-
deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography response. The objective was to evaluate
pre-treatment FDG PET/CT–derived machine learning (ML) models for predicting outcome in patients with cHL.
Methods All cHL patients undergoing pre-treatment PET/CT at our institution between 2008 and 2018 were retrospectively
identified. A 1.5 × mean liver standardised uptake value (SUV) and a fixed 4.0 SUV threshold were used to segment PET/CT
data. Feature extraction was performed using PyRadiomics with ComBat harmonisation. Training (80%) and test (20%) cohorts
stratified around 2-year event-free survival (EFS), age, sex, ethnicity and disease stage were defined. Seven ML models were
trained and hyperparameters tuned using stratified 5-fold cross-validation. Area under the curve (AUC) from receiver operator
characteristic analysis was used to assess performance.
Results A total of 289 patients (153 males), median age 36 (range 16–88 years), were included. There was no significant
difference between training (n = 231) and test cohorts (n = 58) (p value > 0.05). A ridge regression model using a 1.5 × mean
liver SUV segmentation had the highest performance, with mean training, validation and test AUCs of 0.82 ± 0.002, 0.79 ± 0.01
and 0.81 ± 0.12. However, there was no significant difference between a logistic model derived from metabolic tumour volume
and clinical features or the highest performing radiomic model.
Conclusions Outcome prediction using pre-treatment FDG PET/CT–derived ML models is feasible in cHL patients. Further
work is needed to determine optimum predictive thresholds for clinical use.
Key points
• A fixed threshold segmentation method led to more robust radiomic features.
• A radiomic-based model for predicting 2-year event-free survival in classical Hodgkin lymphoma patients is feasible.
• A predictive model based on ridge regression was the best performing model on our dataset.
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Abbreviations
ABVD Doxorubicin (Adriamycin), bleomycin,

vinblastine and dacarbazine
AUC Area under the curve
BEACOPP Bleomycin, etoposide, doxorubicin

(Adriamycin), cyclophosphamide, vincristine
(Oncovin), procarbazine, and prednisone

cHL Classical Hodgkin lymphoma
CMR Complete metabolic response
ComBat Combating batch effects when

combining batches
DICOM Digital imaging and

communications in medicine
EFS Event-free survival
FDG 2-deoxy-2-[18F]fluoro-D-glucose
GLCM Grey level co-occurrence matrix
GLDM Grey level dependence matrix
GLRLM Grey level run length matrix
GLSZM Grey level size zone matrix
HL Hodgkin lymphoma
HU Hounsfield units
Id Inverse difference
Idm Inverse difference moment
Idmn Inverse difference moment normalised
Idn Inverse difference normalised
Imc Informational measure of correlation
KNN k-nearest neighbour
lbfgs Limited memory Broyden-Fletcher-Goldfarb-

Shanno
lbp Local binary pattern
LGLE Low grey level emphasis selected
MCC Matthews correlation coefficient
MTV Metabolic tumour volume
NGTDM Neighbouring grey tone difference matrix
NIfTI Neuroimaging Informatics

Technology Initiative
NLPHL Nodular lymphocyte-predominant HL
NPV Negative predictive value
PET/CT Positron emission tomography/computed

tomography
PPV Positive predictive value
ROC Receiver operating characteristic
ROI Region of interest
RT Radiotherapy
SUV Standardised uptake value
SVM Support vector machine
TLG Total lesion glycolysis
TRIPOD Transparent reporting of a multivariable predic-

tion model for individual prognosis
or diagnosis

Introduction

Hodgkin’s lymphoma (HL) is a haematopoietic malignancy
characterised by the presence of Reed-Sternberg cells [1].
There are five different sub-classes of HL: nodular
lymphocyte-predominant HL (NLPHL), and four under the
umbrella category of classical HL (cHL): nodular sclerosing,
mixed cellularity, lymphocyte-rich and lymphocyte-depleted.
Ninety percent of HL cases are cHL [2]. NLPHL is often
treated differently to cHL and is associated with more indolent
progression [2]. Given the higher proportion of cHL cases,
difference in treatment regimens and higher relapse rate in
cHL compared to NLPHL, this paper will focus on cHL only
[3].

Chemotherapy is the mainstay of frontline treatment of
cHL; the most common regimes being doxorubicin
(Adriamycin), bleomycin, vinblastine and dacarbazine
(ABVD), or b leomycin, e topos ide , doxorubic in
(Adriamycin), cyclophosphamide, vincristine (Oncovin), pro-
carbazine, and prednisone (BEACOPP) [4]. The treatment
regime and number of cycles can vary depending on patient
risk factors, disease stage and initial treatment response.
Radiotherapy is used in patients with stage 1 or localised stage
2 disease or in residual bulky disease [4]. The gold standard
imaging modality for staging and response assessment in HL
is 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission
tomography/computed tomography (PET/CT) [5]. Patients
typically undergo PET/CT pre-treatment, following two cy-
cles of chemotherapy (interim) and post-treatment. Interim
PET/CT is used to guide treatment adaption, balancing the
risk of chemotherapy-associated toxicity with maximising
chances of event-free survival (EFS) [6]. Five-year survival
in HL is approximately 86% [7]. However, even following
complete metabolic response (CMR), approximately 20% of
cHL patients will relapse with 72% of relapses occurring with-
in the first 2 years of diagnosis [8]. The ability to identify
patients at greater risk of relapse pre-treatment would allow
upfront treatment stratification and could improve outcomes.

Previous studies assessing imaging parameters derived
from baseline PET/CT for outcome prediction have mainly
focused on metabolic tumour volume (MTV), total lesion gly-
colysis (TLG) and maximum or mean standardised uptake
value (SUVmax and SUVmean) [9]. SUV is defined as the
ratio of injected radioactivity within an image at a given
timepoint when compared to the whole-body [10]. MTV is
the volume of metabolically active segmented disease, with
different segmentation techniques described [11]. The TLG is
MTV multiplied by the SUVmean. Radiomics transforms im-
ages into mineable high-dimensional data permitting invisible
feature extraction, analysis and modelling [12]. A limited
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number of studies using small sample sizes have demonstrated
the potential of radiomic features in predicting progression-
free survival (PFS) or overall survival (OS) in HL patients
[13–16]. The aim of this work was to evaluate the perfor-
mance of models using radiomic features derived from pre-
treatment FDG PET/CT to predict 2-year EFS in cHL patients
using a larger tertiary centre cohort of patients.

Methods

This study adhered to the transparent reporting of a multivar-
iable prediction model for individual prognosis or diagnosis
(TRIPOD) guidelines (Supplemental Material 1).

Patient selection

Retrospective review of radiology and clinical databases was
performed to identify patients who had undergone FDG PET/
CT for baseline staging of cHL at our institution between
January 2008 and January 2018. This was chosen as the cut-
off to allow a minimum of 2-year follow-up without con-
founding factors introduced by the COVID-19 pandemic.
Patients were excluded if they were under 16 years of age,
did not have cHL, had treatment prior to their staging PET/CT
study, did not have measurable disease on PET/CT, had a
concurrent malignancy or if the images were degraded or in-
complete. Patients who had hepatic disease or had no measur-
able disease above 4.0 SUV were removed as this would in-
fluence the segmentation techniques used.

Patient age, ethnicity, disease stage, date of PET/CT,
scanner model and protocol used, type and length of
treatment, date of recurrence (confirmed by imaging or
clinical examination), last clinical contact and length of
follow-up or date of death were all recorded from elec-
tronic notes, from radiological records and from a re-
gional haematological malignancy database. An event
was defined as relapse, recurrence or death within the
2-year follow-up period. Due to missing clinical data, it
was not possible to evaluate scoring systems such as the
international prognostic score.

Informed written consent was obtained prospectively
from all patients at the time of imaging for use of
anonymised images in research and service development
projects. As this was a retrospective study, not involv-
ing patient contact or the alteration of treatment, follow-
ing discussion with the Research and Innovation
Department at LTHT, it was agreed that this represented
a service improvement project and was approved by the
University of Leeds School of Medicine Research Ethics
Committee (SoMREC).

PET/CT acquisition

PET/CT studies were performed as part of routine clinical care
using a standardised protocol. All patients fasted for 6h prior
to administration of intravenous FDG (4MBq/kg). If serum
blood glucose was > 10 mmol/L, the study was rescheduled
following a clinical review of the patient’s diabetic control.
Patients were scanned 1 h following FDG administration.
Scans were acquired using a 16-slice Discovery STE PET/
CT scanner (GE Healthcare) prior to June 2010; a 64-slice
Philips Gemini TF64 scanner (Philips Healthcare) between
June 2010 and October 2015; and 64-slice Discovery 690 or
710 scanners (GE Healthcare) after October 2015 (Table 1).
Attenuation correction was performed using a CT component
acquired with the following settings: 140 kV; 80mAs; pitch 6;
3.75-mm slice thickness.

Image segmentation, feature extraction and machine
learning analysis

A detailed methodology including detail of who performed
the segmentation and interpretation of images is available in
Supplemental Material 2. Two semi-automated segmentation
techniques were used to contour the total lymphomatous dis-
ease within each study: the first using a fixed threshold of 4.0
SUV, and the second using a threshold of 1.5 × liver
SUVmean. This method has been used in different cancer
types (RTx v1.8.2, Mirada Medical) [17, 18]. Ten percent of
cases were re-segmented using the same methodology follow-
ing a 3-month washout period using Slicer (v4.11). These re-
segmentations were used to investigate the robustness of the
extracted radiomic features using different bin widths/bin
numbers. Both the CT and PET images were resampled to a
uniform voxel of 2 mm3. Features were extracted using
PyRadiomics (v2.2.0) with 3935 features (PET/CT compo-
nent × (shape features + first and second order features ×
number of filters)) extracted per segmentation technique for
each patient (Supplemental Material 2: Table 1).
Harmonisation to account for the different scanners was ap-
plied using the ComBat method (https://github.com/Jfortin1/
ComBatHarmonization) [19].

The data was split into training and test cohorts stratified
around 2-year EFS (2-EFS), age, sex, ethnicity, disease stage,
having radiotherapy, having ABVD-based chemotherapy and
being treated as advanced disease using scikit-learn (v0.24.2).
The cohorts were split using an 80:20 ratio. Mann-WhitneyU
andχ2 tests (SciPy v1.6.3) were used to assess for significance
in continuous and categorical clinical characteristics between
the training and test cohorts respectively. A p value less than
0.05 was regarded as significant. Correlated features were
removed if the Pearson coefficient was over 0.8. Seven differ-
ent machine learning methods were used to create prediction
models (scikit-learn v0.24.2): random forest, logistic
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regression (elastic net, lasso and ridge penalties explored), k-
nearest neighbour (KNN), single-layer perceptron (SLP),
multi-layer perceptron (MLP), Gaussian process classifier
(GCP) and support vector machine (SVM). Amaximum num-
ber of five features were selected for each of these models.
The features selected in each method are based on the highest
mean receiver operating characteristic (ROC) area under the
curve (AUC) in five-fold stratified cross-validation with 20
repeats.

Each model was trained and tuned on the training cohort,
using a five-fold cross-validation stratified around 2-EFS,
again with 20 repeats. The model, hyperparameter and feature
selection combination with the highest mean validation score
from both the 4.0 SUV and 1.5 × mean liver segmentation
were tested once on the unseen test cohort data. Given the
growing literature surrounding the use of MTV as an outcome
predictor, a separate logistic regression model using total
MTV was trained in addition to a model using only clinical
features and a combined clinical andMTVmodel. AUCswere
compared using the DeLong method [20]. An appropriate
threshold from the ROC curve for each of the best performing
models was derived using the Youden index with the
Matthews correlation coefficient (MCC), sensitivity, specific-
ity, positive predictive value (PPV) and negative predictive
value (PPV) presented.

Results

Patient demographics

A total of 289 patients were included in the study, with the
patient demographics detailed in Table 2. There were no sig-
nificant differences in the clinical characteristics between
training and test cohorts.

Bin widths

For both the 4.0 SUV and 1.5 × mean liver SUV seg-
mentation techniques, bin widths for PET and CT data

were most robust when derived from the maximum
range of SUV or HU respectively divided by 128
(Supplementary Figures 1 and 2). Overall, the 4.0
SUV segmentation technique resulted in more radiomic
features being robust than the 1.5 × mean liver SUV
segmentation method.

Clinical- and MTV-derived models of 2-EFS

Patients who had a 2-EFS event had a significantly larger
MTV compared to those who did not have a 2-EFS event.
This was true for both segmentation techniques. With the
4.0 SUV method, the median MTVs were 167.4 cm3 ver-
sus 87.9 cm3 (p = 0.03); and for the 1.5 × mean liver SUV
method, 324.3 cm3 versus 148.6 cm3 (p = 0.009). The
median volumes were significantly greater in patients treat-
ed as advanced disease. For the 4.0 SUV method, the me-
dian MTVs were 250.6 cm3 (2-EFS event) versus 110.4
cm3 (no event) (p = 0.03); and for the 1.5 × mean liver
SUV method, 457.8 cm3 (2-EFS event) versus 227.9 cm3

(no event) (p = 0.02)
A logistic regression model using MTV derived from a 4.0

SUV method resulted in a mean training AUC of 0.61 ± 0.02
(mean ± 95% CI) and a mean validation AUC of 0.61 ± 0.10
with the odds ratio being 1.00038 (Table 3). The logistic re-
gression model derived fromMTV using the 1.5 × mean liver
SUV method had a mean training AUC of 0.63 ± 0.02 and a
mean validation AUC of 0.63 ± 0.10, with the odds ratio being
1.00038.

Cancer stage 1, cancer stage 4 and age were selected
as features for the clinical-based logistic regression
model. This had a mean training AUC of 0.74 ±
0.004 and a mean validation AUC of 0.74 ± 0.02.
When combing the features from this model with 1.5
× mean liver SUV MTV, the model had a mean training
AUC of 0.74 ± 0.004 and a mean validation AUC of
0.72 ± 0.01. This model was tested on the unseen test
set and achieved an AUC of 0.68 ± 0.11 (Fig. 1), MCC
of 0.27, sensitivity of 0.31, specificity of 0.91, NPV of
0.47 and PPV of 0.85 at a threshold of 0.45.

Table 1 Reconstruction parameters for the scanners used

Scanner Matrix Voxel size
(column, row, slice thickness) (mm)

Reconstruction Scatter
correction

Random correction

GE Healthcare STE 128 4.6875 × 4.6875 × 3.27 OSEM Convolution subtraction Singles

GE Healthcare Discovery 690 192 3.65 × 3.65 × 3.27 VPFX Model based Singles

GE Healthcare Discovery 710 192 3.65 × 3.65 × 3.27 VPFX Model based Singles

Philips Gemini TF64 144 or 169 4 × 4 × 4 BLOB-OS-TF SS-Simul DLYD

DLYD, delayed event subtraction; OSEM, ordered subsets expectation maximisation; SS-Simul, single-scatter simulation; VPFX, Vue Point FX (3D
Time of Flight); BLOB-OS-TF, a 3D ordered subset iterative TOF reconstruction algorithm (spherically symmetric basis function ordered subset)
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Clinical and radiomic model for the prediction of 2-
EFS

The predictive model with the highest AUC was a ridge re-
gression model derived from clinical and radiomic features
extracted from the 1.5 × mean SUV threshold segmentation
technique (Table 4). The model was constructed using

features selected using a forward wrapper with five features
chosen. The hyperparameters of the model were as follows: C
= 1, penalty = l2 and solver = sag, class weight = balanced.
The features chosen were age, PET flatness, PET major axis
length, PET logarithm GLSZM size zone non-uniformity nor-
malised, PET lbp-3D-m1GLCMcorrelation and PET lbp-3D-
m2 first order skewness. The mean training AUC was 0.82 ±

Table 2 Demographics of the
training and testing groups Training (n = 231) Test (n = 58) p value

Age (median) 36 41.5 0.10

Sex

Male 124 29 0.72

Female 107 29

Ethnicity 0.35

Caucasian 155 37

Non-Caucasian 26 4

Not disclosed 50 17

Stage 0.13

1 14 5

2 120 20

3 46 17

4 51 16

Chemotherapy 0.11

ABVD/AVD 199 55

Other 32 3

Radiotherapy 0.87

No 179 45

Yes 52 13

Treated as advanced disease 0.55

No 59 12

Yes 172 46

2-year EFS event 0.99

No 177 45

Yes 54 13

2-EFS, 2-year event-free survival. The p values were calculated using a t-test for age and a χ2 test for the
remaining demographic features

Table 3 Mean training and validation scores for the best performing clinical- and metabolic tumour volume (MTV)–based logistic regression models

Model Selected features Hyperparameters Mean train
score (95% CI)

Mean validation
score (95% CI)

Logistic regression – clinical Cancer stage 1, cancer
stage 4, age

C: 10, penalty: l2, Solver: newton-cg 0.74 ± 0.004 0.74 ± 0.02

Logistic regression – MTV
(1.5 × mean liver SUV

MTV C: 1e-07, penalty: l2, Solver: liblinear 0.63 ± 0.02 0.63 ± 0.10

Logistic regression – MTV (4.0 SUV) MTV C: 1e-07, penalty: l2, Solver: liblinear 0.62 ± 0.02 0.61 ± 0.10

Logistic regression – clinical and MTV
(1.5 × mean liver SUV)

Cancer stage 1, Cancer
stage 4, Age, MTV

C: 1, penalty: l2, Solver: saga 0.75 ± 0.004 0.74 ± 0.02

l2, Ridge regression penalty; liblinear, a library for large linear classification
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Fig. 1 Receiver operator
characteristic curve for the best
performing predictive model
derived from a logistic regression
usingMTV extracted from a 1.5 ×
mean liver SUV threshold
segmentation technique and
clinical features. The p value
represents the comparison of the
ROC to that of the 0.5 curve

Table 4 Mean training and validation scores for the best performing machine learning models using a fixed threshold of 4.0SUV and 1.5 × mean liver
SUV thresholding segmentation techniques

Model Selected features Hyperparameters Mean train
score (95% CI)

Mean validation
score (95% CI)

4.0 SUV
Support vector machine Age, PET GLCM Imc1, PET wavelet-LLH

GLCM Imc2, PET wavelet-HLL GLSZM
small area emphasis, PET
log-sigma-2-0-mm-3D GLSZM small area
emphasis

C: 15.78, Gamma: 0.000794,
Kernel: sigmoid

0.68 ± 0.004 0.66 ± 0.02

Logistic regression Age, PET least axis length, PET wavelet-HLL
GLCM correlation, PET wavelet-HLH
GLCM Idmn, CT wavelet-HLL GLSZM
large area low grey level emphasis

C: 1, penalty: l2, Solver: lbfgs 0.80 ± 0.002 0.78 ± 0.01

Random forest Age Bootstrap: true, Max depth: 1,
min samples per leaf: 11,
min samples per split: 32,
number of estimators: 213

0.67 ± 0.004 0.64 ± 0.02

Multi-layer perceptron Age, PET major axis length, PET
wavelet-HHL GLCM Imc1, PET lbp-3D-k
first order 10th percentile

Learning rate: invscaling,
Solver: sgd

0.68 ± 0.004 0.68 ± 0.02

1.5 × mean liver SUV
Support vector machine PET first order 90th percentile, PET

wavelet-LHH GLDM dependence
non-uniformity normalised

C: 3.398, Gamma: 0.1005,
Kernel: sigmoid

0.54 ± 0.008 0.55 ± 0.02

Logistic regression Age, PET flatness, PETmajor axis length, PET
logarithm GLSZM size zone
non-uniformity normalised, PET
lbp-3D-m1 GLCM correlation, PET
lbp-3D-m2 first order skewness

C: 1, penalty: l2, Solver: sag 0.82 ± 0.002 0.79 ± 0.01

Random forest Age Bootstrap: true, Max depth: 1,
min samples per leaf: 11,
min samples per split: 48,
number of estimators: 213

0.67 ± 0.004 0.64 ± 0.02

Multi-layer perceptron Age, PET flatness, PET major axis length Learning rate: invscaling,
Solver: adam

0.77 ± 0.004 0.75 ± 0.01

The K-nearest neighbours, single-layer perceptron and Gaussian process classifier models were over-fitted with the mean training and validation AUCs
with > 0.10 difference between the two. l2, Ridge regression penalty; liblinear, a library for large linear classification; GLSZM, grey level size zone
matrix; GLCM, grey level co-occurrence matrix; GLDM, grey level dependence matrix; rbf, radial basis function; L, low; H, high; Imc1, informational
measure of correlation 1; Imc2, informational measure of correlation 2; idmn, inverse difference moment normalised; lbp, local binary pattern
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0.002, the mean validation AUC was 0.79 ± 0.01 and the test
AUCwas 0.81 ± 0.12 (Fig. 2), with MCC = 0.43, sensitivity =
0.42, specificity = 0.94, NPV = 0.67 and PPV = 0.85. The
demographics of the mislabelled patients are presented in
Supplementary Material 2: Table 2.

The highest performing predictive model using the 4.0
SUV threshold was a regression model using a ridge regres-
sion penalty with a mean training AUC of 0.79 ± 0.002, the
mean validation AUC of 0.77 ± 0.01 and the test AUC of 0.74
± 0.13 (Fig. 3). TheMCC = 0.30, sensitivity = 032, specificity
= 0.95, NPV = 0.42 and PPV= 0.92 at a threshold of 0.27. The
model was constructed using features selected from a forward
wrapper method of feature selection with five features chosen.
The hyperparameters of the model were as follows: C = 100,
penalty = l2 and solver = saga, class weight = balanced.

There was no significant difference between the test set
AUCs of the best performing clinical- and radiomic-based
models with each other and with the best performing
clinical- and MTV-based model (Fig. 4; Table 5). The inter-
cept and coefficients for each model are presented in
Supplementary Material 2: Table 3.

Discussion

This study confirms that pre-treatment outcome prediction
using FDG PET/CT–derived radiomic features is feasible in
patients with cHL. The best performing model was created
using ridge regression combining age and four radiomic fea-
tures (PET flatness, PET major axis length, PET logarithm

Fig. 2 Receiver operator
characteristic curve for the best
performing predictive model
derived from ridge regression
using age and radiomic features
extracted from a 1.5 × mean liver
SUV threshold segmentation
technique. The p value represents
the comparison of the ROC to that
of the 0.5 curve

Fig. 3 Receiver operator
characteristic curve for the best
performing predictive model
derived from ridge regression
using age and radiomic features
extracted using a 4.0 SUV fixed
threshold segmentation
technique. The p value represents
the comparison of the ROC to that
of the 0.5 curve
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GLSZM size zone non-uniformity normalised, PET lbp-3D-
m1 GLCM correlation and PET lbp-3D-m2 first order skew-
ness) extracted from PET images using a 1.5 × mean liver
SUV method with a bin width of 0.24. It must be noted that
there was no significant difference between the test AUC of
this model and those of a combined clinical and MTV model
and a model created using 4.0 SUV fixed threshold segmen-
tation. This is likely due to small numbers involved given the
relatively large confidence intervals. Due to missing clinical
data, it was not possible to adjust for features used to stratify
patients into early and advanced disease. A surrogate, treat-
ment intent, was used instead which demonstrated that the
models created remained reasonable predictors of outcome
for patients treated as having advanced disease.

Further work should be performed to assess the rela-
tionship of ethnicity and socio-economic status on a
model’s predictive ability to avoid creation of a model
which discriminates against under-represented subsets of
patients due to lack of data to train and test the model on
[21, 22]. Unadjusted confounders are likely one of the
reasons for a minority of studies reporting the poor ability
of MTV as an outcome predictor in lymphoma [23–25].
Most notably Adams et al found that MTV was not an
independent predictor of overall survival or PFS in diffuse
large B cell lymphoma once adjusting for the National
Comprehensive Cancer Network International Prognostic
Index [26]. To allow for transparency, our study has pro-
vided the demographic information for the patients who

were mislabelled using the predictive model with the
highest test AUC.

Two different segmentation techniques were explored. The
first was a fixed threshold of 4.0 SUV which has been dem-
onstrated to be a reproducible, efficient method for contouring
disease [27]. The second was 1.5 × mean liver SUVwhich has
been explored in other malignancies and provides an adaptive
threshold which adjusts for background SUV uptake [17, 18].
Our study echoed previous work demonstrating a fixed thresh-
old led to more features being robust following re-segmenta-
tion. The fixed thresholding segmentation technique required
less steps, and less manual adaption [28]. However, a fixed
SUV thresholding technique does not scale with the physio-
logical uptake and therefore, the contours may vary on repeat
studies due to external effects on the SUV rather than tumour
pathophysiology [27]. The study also demonstrated the vari-
ability which can occur when repeating a segmentation meth-
odology on different software (Fig. 5), with radiomic features
not being deemed robust following repeated segmentation
even when using the same SUV thresholds. ComBat
harmonisation was employed to mitigate against the effects
of scanner variation. This is based on Bayes theorem and
attempts to predict scanner influence whilst maintaining bio-
logical variation [29]. For this to be effective, however, there
must be enough samples from different scanners to apply the
harmonisation method [30] and it cannot be applied prospec-
tively to scanner acquisitions outside those used for training of
the predictive model.

Table 5 Comparison of the
different test AUCs using the
DeLong method, p values
presented

Clinical and MTV 1.5 × mean liver SUV 4.0 SUV

Clinical and MTV n/a 0.11 0.53

1.5 × mean liver SUV 0.11 n/a 0.22

4.0 SUV 0.53 0.22 n/a

Fig. 4 Receiver operator curves,
with associated confidence
intervals, for the best performing
MTV and radiomic models
derived from 4.0 SUV fixed
threshold and 1.5 × mean liver
SUV threshold segmentation
techniques
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Previous studies have explored the use of radiomic features
in the prediction of outcomes in HL [13–15]. Lue et al found
SUV kurtosis, stage and intensity non-uniformity (INU) de-
rived from Grey Level Run Length Matrix (GLRLM) were
independent predictors of PFS in a small cohort of 42 patients.
Milogrom et al demonstrated that the combination of SUVmax,
MTV, InformationMeasureCorr1, InformationMeasureCorr2
and InverseVariance derived from GLCM 2.5 had an AUC of
0.95 when predicting relapse in 167 patients with stage I–II HL.
However, there were very few events, with the validation co-
hort only having two patients who relapsed. Sollini et al
assessed a radiomic fingerprint using principal component ana-
lysis to classify patients who would relapse within 4 years of
treatment in a cohort of 85 patients. They explored fingerprints
created from a single largest nodal or extra-nodal lesion versus
using all lesions and found that the intra-patient similarity was
low, and that the highest accuracy was achieved when using all
lesions within the model [15]. This highlights the inherent het-
erogeneity of radiomic features within different lesions and that
by restricting analysis to a single lesion, the predictive model
may also be limited. The current study of 289 patients is one of
the largest to assess potential utility of radiomic features derived
from pre-treatment FDG PET/CT for predicting outcome in
cHL patients. It demonstrates that radiomics could feasibly im-
prove prediction of 2-EFS. However, this requires validation on
an independent external dataset and although the AUC for the
test set was 0.81, no clear predictive threshold could be derived.
This must be a key target when creating any machine learning
or AI-based model. In terms of HL, it would be the ability to
balance side effects of escalated treatment, with the rates of EFS
and toxicity varying between treatment regimens [31]. The

advent of newer therapeutic strategies limits the use of predic-
tive models made on retrospective data; future efforts should
focus on validating imaging, genetic and clinical predictive
features in carefully designed prospective, multi-centre clinical
trials.

A TRIPOD checklist was used to ensure transparency
of the study’s methodology, a concern in previous
radiomic studies [32, 33]. However, no external validation
was performed, and although contouring was undertaken
without knowledge of clinical outcome, no measures to
blind assessors were specifically undertaken. Although
patients with other concurrent malignancies were exclud-
ed from analysis, other pathologies were not taken into
consideration when looking at mortality. Other study lim-
itations include its retrospective nature, the relatively
small event rate, reliance on clinical records to determine
date of relapse/recurrence, exclusion of patients with he-
patic disease/or without disease > 4.0 SUV and variation
in different patient’s treatment regimen.

Conclusion

There is potential for models derived from radiomic features
extracted from pre-treatment FDG PET/CT to predict 2-EFS
in cHL patients. Further work is needed to determine optimum
thresholds for clinical use.
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Fig. 5 Select axial slice through
PET (a) and CT (b) images of a
patient with Hodgkin lymphoma
demonstrating a pathological left
level II lymph node. The purple
segmentation represents the
original 4.0 SUV fixed threshold
segmentation performed using
Mirada Medical RTx (v1.8.2)
software and the green areas
represent the additional area
included when segmented with a
fixed 4.0 SUV threshold using 3D
Slicer (v4.11) software
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