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Abstract

In this article, we prove the Hodge conjecture for a desingularization of the moduli space 
of rank 2, semi-stable, torsion-free sheaves with fixed odd degree determinant over a very 
general irreducible nodal curve of genus at least 2. We also compute the algebraic Poincaré 
polynomial of the associated cohomology ring.
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1 Introduction

The Hodge conjecture is one of the outstanding problems of present day mathemat-
ics. Although it has been known for over 70 years, the evidence for it has been rather 
limited (see [19, 34] for a survey). Recall, any smooth, projective variety X over ℂ 
admits the Hodge decomposition H

r(X,ℂ) = ⊕
i
H

i,r−i(X,ℂ) . For r = 2p , elements of 
Hp,p(X,ℤ) ∶= H2p(X,ℤ) ∩ Hp,p(X,ℂ) are called Hodge classes. Denote by Zp(X) the free 
abelian group of algebraic cycles of X of codimension p. Recall, cycle class map

which sends an algebraic cycle to its cohomology class (see [33, §11.1]). Denote by 
H

2p

A
(X,ℤ) the image of c, called the algebraic cohomology group. It is well-known that the 

cohomology class of any algebraic cycle is Hodge, i.e. H
2p

A
(X,ℤ) ⊂ Hp,p(X,ℤ) (see [33, 

c ∶ Zp(X) → H2p(X,ℤ)
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Proposition 11.20]). The integral Hodge conjecture predicts that every integral Hodge class 
comes from an algebraic cycle i.e. H2p

A
(X,ℤ) = Hp,p(X,ℂ) ∩ H2p(X,ℤ) . Although the con-

jecture is true for uniruled and Calabi Yau threefolds as well as cubic fourfolds (see [34]), 
the integral Hodge conjecture is false in general (see [3]). Therefore, we instead consider 
the rational Hodge conjecture i.e. H2p

A
(X,ℚ) = H2p(X,ℚ) ∩ Hp,p(X,ℂ) , where

One interesting case where the conjecture holds true is that of the Jacobian, Jac(C) of a 
very general, smooth, projective curve C (see [8, §17.5]). Using this, Balaji-King-New-
stead in [5] proved the conjecture for the moduli space M

C
(2, L) of rank 2 semi-stable, 

locally free sheaves with determinant L over C, for an odd degree invertible sheaf L on C. 
It has also been shown for the moduli space of stable pairs over a smooth, projective curve 
in [21]. However, nothing is known in the case the underlying curve is irreducible, nodal. 
The goal of this article is to prove the Hodge conjecture for the moduli space of stable rank 
2 bundles with odd degree determinant in the case when the underlying curve is very gen-
eral, irreducible, nodal.

Let X
0
 be a very general, irreducible, nodal curve with exactly one node, say x

0
 and L

0
 

an invertible sheaf on X
0
 of odd degree. Here a very general nodal curve of genus g means 

that the normalization, together with the two inverse images of the node, is a very general 
2-pointed curve of genus g − 1 . Equivalently, a very general nodal curve lies outside countably 
many, proper closed subsets of the image of the clutching map from M

g−1,2 to M
g
 , where 

M
g−1,2 denotes the moduli space of genus g − 1 curves with 2 marked points and M

g
 is the 

moduli space of stable curves of genus g (see [2, Chapter XII, §10]). Given a torsion-free 
sheaf E on X

0
 , we say that E has determinant L

0
 if there is an O

X
0
-morphism ∧2(E) → L

0
 

which is an isomorphism outside the node x
0
 . If E is locally free then this means ∧2E ≅ L

0
 . 

Using [31, Theorem 2], one can check that there exists a moduli space, denoted U
X0
(2, L0) , 

parameterizing rank 2, semi-stable sheaves on X
0
 with determinant L

0
 . However, the moduli 

space U
X0
(2, L0) is singular. We show:

Theorem 1.1 For X
0
 a very general, irreducible nodal curve, there exists a desingulariza-

tion G
0
 of U

X0
(2, L0) (in the sense that G

0
 is non-singular and there is a proper birational 

morphism from G
0
 to U

X0
(2, L0) ) such that the Hodge conjecture holds for G

0
.

See Theorem 5.2 for a proof.
One obstacle to simply generalizing the techniques used in the smooth curve case is that 

an analogous description of the cohomology ring of U
X0
(2, L0) is not available. More pre-

cisely, Balaji-King-Newstead in [5] prove that there are Hodge classes � ∈ H
2(M

C
(2, L),ℤ) , 

� ∈ H
4(M

C
(2, L),ℤ) and a surjective morphism

inducing a surjective morphism 𝜈 ∶ H
∗
A
(Jac(C),ℚ)⊗ℚ[𝛼, 𝛽] → H

∗
A
(M

C
(2, L),ℚ). Since 

the Hodge conjecture holds for Jac(C) of a general smooth, projective curve C, they are 
able to conclude the Hodge conjecture for M

C
(2, L) . Unfortunately such a morphism does 

not exist if we replace M
C
(2, L) by U

X0
(2, L0) . Moreover, since the Jacobian of a nodal 

curve is not projective, the statement of the Hodge conjecture does not apply to the Jaco-
bian of X

0
 . As a result the classical tools fail in this setup.

H
2p

A
(X,ℚ) ∶= Im (c ∶ Zp(X)⊗ℚ → H2p(X,ℚ)).

H
∗(Jac(C),ℚ)⊗ℚ[𝛼, 𝛽] → H

∗(M
C
(2, L),ℚ)
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Our strategy is as follows. We first embed the very general nodal curve X
0
 as the 

central fiber of a regular, flat family of projective curves � ∶ X → Δ (here Δ denotes 
the unit disc), smooth over Δ∗ ∶= Δ�{0} (see [4, Theorem B.2]) for the existence of 
such a family. Note that, the invertible sheaf L

0
 on X

0
 lifts to a relative invertible sheaf 

LX  over X  . By [31] and [32], there exists a relative Gieseker moduli space with fixed 
determinant over the family X  given by a flat, projective morphism �2 ∶ G(2, L) → Δ 
such that for all s ∈ Δ∗ , G(2, L)

s
∶= �

−1

2
(s) = MX

s

(2, L
s
) . The total space G(2, L) is regu-

lar and the central fiber �−1

2
(0) , denoted G

X0
(2, L0) , is a reduced simple normal crossings 

divisor of G(2, L) with two smooth, irreducible components such that one of them is a 
desingularization of U

X0
(2, L0) . We denote this desingularization by G

0
 . Since for all 

s ≠ 0 , G(2, L)
s
= MX

s

(2, L
s
) and we already know that the Hodge conjecture holds true 

for MX
s

(2, L
s
) by [5], it is natural to compare the Hodge classes and the algebraic classes 

on G
X0
(2, L0) using variation of mixed Hodge structures. We prove that the Hodge con-

jecture holds for both of the smooth components of the central fibre and therefore for a 
desingularization of U

X0
(2, L0).

As a by-product we obtain the algebraic Poincaré polynomial of G
0
 . Recall by [5, 

(5.1)], we have for any s ∈ Δ∗ , the algebraic Poincaré polynomial of MX
s

(2, L
s
) , denoted

where X
s
∶= �

−1(s) and L
s
∶= LX|X

s

 . Analogously, we prove (Theorems 5.2 and 5.3):

Theorem 1.2 The algebraic Poincaré polynomial for G
0
 is given by

We note that this article is part of a series of articles in which we study related but 
different questions pertaining to the moduli space of stable, rank 2 sheaves on an irre-
ducible nodal curve (see [6, 7, 9, 10]). The answers to these questions are well-known 
in the case when the underlying curve is smooth. Therefore we have often employed the 
theory of limit mixed Hodge structures to study the question for the nodal curve case 
using analogous results known for the case when the curve is smooth. However, the 
results in these articles are independent and overlap only in the background material.

Notation: Given any morphism f ∶ Y → S and a point s ∈ S , we denote by 
Ys ∶= f −1(s) . The open unit disc is denoted by Δ and Δ∗ ∶= Δ�{0} denotes the punctured 
disc. Unless mentioned otherwise, all cohomology groups are taken with ℚ-coefficients.

2  Preliminaries: Limit mixed Hodge structures

We now briefly review the basics of limit-mixed Hodge structures. Since the theory of 
limit mixed Hodge structures are used just as a tool, we only state definitions and results 
(without proof) relevant to our setup. For a detailed treatment of the subject see [26].

Notation 2.1 Let � ∶ Y → Δ be a flat, projective family of projective varieties, smooth 
over Δ∗ , �� ∶ Y

Δ∗ → Δ
∗ the restriction of � to Δ∗.

H(g, t) ∶=
∑

i

Hi
A

(

MXs
(2, Ls)

)

ti =
(1 − tg)(1 − tg+1)(1 − tg+2)

(1 − t)(1 − t2)(1 − t3)
,

PA(G0) ∶=
∑

i

Hi
A
(G0)t

i = H(g − 1, t)(t2 + t4) + H(g, t).
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Definition 2.2 By Ehresmann’s lemma (see [33, Theorem  9.3]), for all i ≥ 0 , 
ℍ

i

Y
Δ∗

∶= R
i
�
�

∗
ℤ is a local system over Δ∗ with fiber Hi(Y

t
,ℤ) , for t ∈ Δ∗ . One can associate 

to these local systems, the holomorphic vector bundles Hi

Y
Δ∗

∶= ℍ
i

Y
Δ∗

⊗
ℤ

O
Δ∗ called the 

Hodge bundle. There exist holomorphic sub-bundles FpH
i

Y
Δ∗

⊂ H
i

Y
Δ∗

 defined by the condi-

tion: for any t ∈ Δ∗ , the fibers 
(

FpH
i

Y
Δ∗

)

t
⊂

(

H
i

Y
Δ∗

)

t
 can be identified respectively with 

FpHi(Yt,ℂ) ⊂ Hi(Yt,ℂ) . where Fp denotes the Hodge filtration (see [33, §10.2.1]).

In order to define a mixed Hodge structure on the family � ∶ Y → Δ , the Hodge bun-
dles and their holomorphic sub-bundles need to be extended to the entire disc. By [26, 
Definition 11.4] there exists a canonical extension H

i

Y
 of Hi

Y
Δ∗

 to Δ . Note that, H
i

Y
 is 

locally-free over Δ . Denote by j ∶ Δ
∗
→ Δ the inclusion morphism, then the Hodge fil-

tration Fp on Δ∗ is extended to Δ by setting FpH
i

Y
∶= j

∗

(

FpH
i

YΔ∗

)

∩ H
i

Y
 . Note that, 

FpH
i

Y
 is the locally-free sub-sheaf of H

i

Y
 which extends FpH

i

Y
Δ∗

.

Definition 2.3 Consider the universal cover � → Δ
∗ of the punctured unit disc. Denote by 

e ∶ � → Δ
∗

j

���→ Δ the composed morphism and define by

the base change of the family Y over Δ to � , by the morphism e.
By [26, XI-8], for a choice of the parameter t on Δ , the central fiber of the canonical 

extension H
i

Y
 can be identified with the cohomology group Hi(Y∞,ℂ):

As a consequence, there exist Hodge filtrations on Hi(Y∞,ℂ) defined by

To define a weight filtration on H
i(Y∞,ℤ) , we use the local monodromy 

transformations.

Definition 2.4 For any s ∈ Δ∗ and i ≥ 0 , denote by

the local monodromy transformations associated to the local system ℍi

Y
Δ∗

 , defined by paral-
lel transport along a counterclockwise loop about 0 ∈ Δ (see [26, §11.1.1]). By Ehres-
mann’s lemma, the cohomology group H

i(Y∞) is (canonically) isomorphic to H
i(Y

s
) , 

depending only on the choice of s� ∈ � with e(s�) = s , induced by the inclusion of Y
s
′ into 

Y
∞

 . Then using the translation s
�
↦ s

�
+ 1 , the automorphism T

ℚ

s,i
 induces a ℚ

-automorphism

See [17, §II.2.4] or [13, Theorem II.1.17] for more details.

We can now define a mixed Hodge structure on Hi(Y∞,ℤ).

Y
∞
∶= Y ×

Δ
�

(1)gi

t
∶ Hi(Y∞,ℂ)

∼

�������→

(

H
i

Y

)

0

.

FpHi(Y∞,ℂ) ∶= (gi

t
)−1

(

FpH
i

Y

)

0

.

T
s,i ∶ H

i(Y
s
,ℤ) → H

i(Y
s
,ℤ) and T

ℚ

s,i
∶ H

i(Y
s
) → H

i(Y
s
)

(2)T
i
∶ H

i(Y∞) → H
i(Y∞).
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Definition 2.5 Let N
i
 be the logarithm of the monodromy operator T

i
 . By [26, Lemma-

Definition 11.9], there exists an unique increasing monodromy weight filtration W
∙
 on 

H
i(Y∞) such that, 

(1) for j ≥ 2 , Ni(WjH
i(Y∞)) ⊂ Wj−2

Hi(Y∞) and
(2) the map N l

i
∶ Gr

W

i+l
Hi(Y∞) → Gr

W

i−l
Hi(Y∞) is an isomorphism for all l ≥ 0.

By [28, Theorem 6.16] the induced filtrations on Hi(Y∞,ℂ) define a mixed Hodge struc-
ture (Hi(Y∞,ℤ), W∙, F

∙) , called the limit mixed Hodge structure on Hi(Y∞,ℤ).
Definition 2.6 Recall, for any t ∈ Δ∗ , there exist natural specialization morphisms:

obtained by composing the natural inclusion of the special fiber Y
t
 into Y with the retrac-

tion map to the central fiber Y
0
 . Unfortunately, the resulting specialization maps are not 

morphism of mixed Hodge structures. However, if one identifies H
i(Y

t
) with H

i(Y∞) as 
mentioned above, then the resulting (modified) specialization morphisms are morphisms 
of mixed Hodge structures (see [26, Theorem 11.29]). Furthermore, by the local invariant 
cycle theorem [26, Theorem 11.43], we have the following exact sequence:

where sp
i
 denotes the (modified) specialization morphism which is a morphism of mixed 

Hodge structures as discussed above.

Suppose that Y
0
 is a simple, normal crossings divisor and a union of two smooth, irre-

ducible components, say Y1, Y2 . Since Y1 ∩ Y2, Y1, Y2 are non-singular (hence has pure 
Hodge structure), the Mayer-Vietoris sequence associated to Y

0
 , gives rise to the exact 

sequence:

where rj is the restriction morphism from Hi(Yj) to Hi(Y
1
∩ Y

2
) for j = 1, 2 . Note that the 

Gysin morphism from H
i−2(Y

1
∩ Y

2
)(−1) to H

i(Y
1
)⊕ H

i(Y
2
) composed with (r

1
− r

2
) is 

the zero map (see [26, Proposition B.30]). Hence, Hi(Y
1
∩ Y

2
) factors through GrW

i
H

i(Y
0
) . 

Denote by

the composed morphism. We recall the following useful result which we use repeatedly.

Corollary 2.7 Suppose that the central fiber Y
0
 is a simple, normal crossings divisor and an 

union of two smooth, irreducible components, say Y1, Y2 . Then, W
i+1

H
i(Y∞) = H

i(Y∞) and 

we have the following exact sequence of mixed Hodge structures:

where fi is the morphism (5) and gi is the natural quotient by W
i
H

i(Y∞).

Proof See [10, Corollary 2.4] for a proof.   ◻

sp
i
∶ H

i(Y
0
) → H

i(Y
t
)

(3)H
i(Y

0
)

sp
i

����������→ H
i(Y∞)

TY−Id

���������������������→ H
i(Y∞)

(4)0 → Gr
W

i
H

i(Y0) → H
i(Y1)⊕ H

i(Y2)
r1−r2

�������������������→ H
i(Y1 ∩ Y2),

(5)fi ∶ Hi−2(Y
1
∩ Y

2
)(−1) → Gr

W

i
Hi(Y

0
) ↪ Hi(Y

0
)

(6)Hi−2(Y1 ∩ Y2)(−1)
fi
������→ Hi(Y0)

spi

����������→ Hi(Y∞)
gi

�������→ GrW

i+1
Hi(Y∞) → 0,
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3  Limit mixed Hodge structures of the relative Gieseker moduli space

In this section, we recall the basic definitions and results on the relative Gieseker moduli 
space, the associated monodromy action and extend the exact sequence (6) in this setup.

3.1  Notation

Let X
0
 be an irreducible nodal curve of genus g ≥ 2 , with exactly one node, say at x

0
 . 

Denote by �
0
∶ X̃

0
→ X

0
 the normalization map. There exists a flat, projective family of 

curves �
1
∶ X → Δ smooth over Δ∗ and central fiber isomorphic to X

0
 (see [4, Theorem 

B.2]). Moreover, X  is a regular variety. Fix an invertible sheaf L on X  such that L|X
s

 is 
of odd degree, say d for all s ∈ Δ . Set L

0
∶= L|

X
0
 , the restriction of L to the central fiber. 

Denote by L̃
0
∶= �∗

0
(L

0
).

3.2  Relative Gieseker moduli space

Recall, that a curve X
k
 is semi-stably equivalent to X

0
 if it is the union of the normalization 

X̃
0
 and a chain of rational curves of length k. See [22, Definition-Notation 2] for the precise 

definition. We say that a family of curves f ∶ XS → S is semi-stably equivalent to the fam-

ily �
1
 above, if 

(1) there is a morphism from X
S
 to X  inducing a morphism h from S to Δ such that the 

resulting diagram is commutative,
(2) for any point s mapping to 0 ∈ Δ , the fiber f −1(s) is semi-stably equivalent to X

0
 . For 

other points s ∈ S , the fiber f −1(s) is isomorphic to the fiber of �
1
 over h−1(s).

There exists a relative moduli space, called the relative Gieseker moduli space, denoted 
G(2, L) which parametrizes certain rank 2, determinant L semi-stable sheaves defined 
over families of curves semi-stably equivalent to the family �

1
 . See [31, §3] or [32, §6] 

for the precise definitions. By [31, Theorem  2], there exists a flat, projective morphism 
�2 ∶ G(2, L) → Δ such that for all s ∈ Δ∗ , G(2, L)

s
∶= �

−1

2
(s) = MX

s

(2, L
s
) (see also [1, §5 

and 6]). Moreover, G(2, L) is regular and the central fiber �−1

2
(0) , denoted G

X0
(2, L0) , is a 

reduced simple normal crossings divisor of G(2, L) (see [32, §6]).
Denote by M

X̃0
(2, L̃0) the fine moduli space of semi-stable sheaves of rank 2 and with 

determinant L̃
0
 over X̃

0
 (see [14, Theorems 4.3.7 and 4.6.6]).

By [32, (6.2)], G
X0
(2, L0) can be written as the union of two irreducible components, 

say G
0
 and G

1
 , where G

1
 (resp. G

0
∩ G

1
 ) is isomorphic to a ℙ3 (resp. ℙ1

× ℙ
1)-bundle over 

M
X̃0
(2, L̃0) . Note that, there is a proper morphism � ∶ G

X0
(2, L0) → U

X0
(2, L0) with the 

irreducible component G
0
 mapping surjectively to U

X0
(2, L0) (use [31, Theorem 3.7] and 

[32, §6]). In fact, the restriction of � to G
0
 is a birational morphism. Since G

0
 is non-sin-

gular, it is a desingularization of U
X0
(2, L0) (see [31, 32]). Moreover, there exists an SL

2

-bundle over M
X̃0
(2, L̃0) , denoted P

0
 , and closed subschemes Z ⊂ P

0
 , Z

′
⊂ G

0
 such that 

P
0
�Z ≅ G

0
�Z

� and � = Z
� ∩ G

1
 (see [32, p. 27]), where SL

2
 is the wonderful compactifica-

tion of SL
2
 defined as

SL2 ∶= {[M, 𝜆] ∈ ℙ(End(ℂ2)⊕ ℂ)| det(M) = 𝜆
2}
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(see [27, Definition 3.3.1] for a general definition of wonderful compactification).

3.3  Monodromy action on the relative Gieseker moduli space

An important step in proving the Hodge conjecture for G
0
 is to study the monodromy action 

on H2i(G(2, L)
s
) for s ∈ Δ∗ . For this purpose, we need to consider the relative version of the 

construction of the Mumford-Newstead isomorphism [20]. Denote by

the natural morphism. We set W
t
∶= �

−1

3
(t) ≅ X

t
× MX

t

(2, L
t
) for all t ∈ Δ∗ . There exists 

a (relative) universal bundle U over W associated to the (relative) moduli space G(2, L)Δ∗ . 
Note that U is only well-defined up to pull-back by a line bundle on G(2, L)Δ∗ . For each 
t ∈ Δ∗ , U|W

t

 is a universal bundle over X
t
× MX

t

(2, L
t
) associated to fine moduli space 

MX
t

(2, L
t
) (use [25, Theorem 9.1.1]). Let ℍ4

W
∶= R

4
�

3
∗

ℤW be the local system associated 
to W . By Künneth decomposition, we have

Denote by c2(U)
1,3 ∈ Γ

(

ℍ
1

XΔ∗
⊗ ℍ

3

G(2,L)Δ∗

)

 the image of the second Chern class 

c
2
(U) ∈ Γ(ℍ4

W
) under the natural projection from ℍ4

W
 to ℍ1

XΔ∗
⊗ ℍ

3

G(2,L)Δ∗
 . Using Poincaré 

duality applied to the local system ℍ1

X
Δ∗

 , we have

Therefore, c2(U)
1,3 induces a homomorphism ΦΔ∗ ∶ ℍ

1

XΔ∗
→ ℍ

3

G(2,L)Δ∗
 . Note that, the 

restriction of the universal bundle U to the fiber over any point of the moduli space 
G(2, L)Δ∗ is uniquely determined by the point (and not by the choice of the universal bun-
dle). Hence, the value of the section c

2
(U) at each point of Δ∗ is independent of the choice 

of U . Since a (local) section of a local system is uniquely determined by its value at a point, 
the section c

2
(U) does not depend on the choice of the universal bundle. As a result, the 

homomorphism Φ
Δ∗ is independent of the choice of U . By [20, Lemma 1 and Proposition 

1], we conclude that the homomorphism Φ
Δ∗ is an isomorphism such that the induced iso-

morphism on the associated vector bundles:

Denote by

the restriction of Φ
Δ∗ to the point s ∈ Δ∗ . Since c2(U)

1,3 is a (single-valued) global section 
of ℍ1

XΔ∗
⊗ ℍ

3

G(2,L)Δ∗
 , we have

is monodromy invariant i.e., for all s ∈ Δ∗ , the following diagram is commutative:

W ∶= XΔ∗ ×Δ∗ G(2, L)Δ∗ and �3 ∶ W → Δ∗

(7)ℍ
4

W
=
⨁

i

(

ℍ
i

XΔ∗
⊗ ℍ

4−i

G(2,L)Δ∗

)

.

(8)ℍ
1

XΔ∗
⊗ ℍ

3

G(2,L)Δ∗

PD

≅

(

ℍ
1

XΔ∗

)∨

⊗ ℍ
3

G(2,L)Δ∗
≅ Hom

(

ℍ
1

XΔ∗
,ℍ

3

G(2,L)Δ∗

)

.

ΦΔ∗ ∶ H
1

XΔ∗

∼

�������→ H
3

G(2,L)Δ∗
satisfies ΦΔ∗ (F

pH
1

XΔ∗
) = Fp+1H

3

G(2,L)Δ∗
for all p ≥ 0.

(9)Φ̃
s
∶ H

1(X
s
,ℤ)

∼

�������→ H
3(G(2, L)

s
,ℤ)

�Φ
s
∈ Hom(H1(X

s
,ℤ), H

3(G(2, L)
s
,ℤ)) ≅ H

1(X
s
,ℤ)∨ ⊗ H

3(G(2, L)
s
,ℤ)

P.D.

≅ H
1(X

s
,ℤ)⊗ H

3(G(2, L)
s
,ℤ)
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where T
X

s

 and TG(2,L)
s

 are the monodromy transformations on H1(X
s
,ℤ) and H3(G(2, L)

s
,ℤ) , 

respectively.

3.4  Limit Mumford‑Newstead isomorphism

Let H
1

X
 and H

3

G(2,L)
 be the canonical extensions of H1

X
Δ∗

 and H3

G(2,L)Δ∗
 , respectively. Then, 

the morphism Φ
Δ∗ extends to the entire disc (by canonicity of the extensions):

Using the identification (1) and restricting Φ̃ to the central fiber, we have an isomorphism:

where X
∞

 (resp. G(2, L)∞ ) is the base change of X  (resp. G(2, L) ) to the upper half plane 
� as described in Definition 2.3. Recall, Φ̃

0
 is an isomorphism of mixed Hodge structures:

Theorem 3.1 For the extended morphism Φ̃ , we have Φ̃(FpH
1

X
) = Fp+1H

3

G(2,L)
 for p = 0, 1 

and Φ̃(ℍ
1

X
) = ℍ

3

G(2,L)
 . Moreover, Φ̃0(Wi

H
1(X∞)) = W

i+2H
3(G(2, L)∞) for all i ≥ 0.

Proof See [6, Proposition 4.1] for a proof of the statement.   ◻

3.5  Leray‑Hirsch cohomology decomposition

We now write the cohomology groups of G
1
 and G

0
∩ G

1
 in terms of that of M

X̃0
(2, L̃0) , 

using the cohomology computations of the fibers of G
1
 and G

0
∩ G

1
 over M

X̃0
(2, L̃0).

Notation 3.2 Let �
0
 be a generator of H2(ℙ1) , pr

i
 the natural projections from ℙ1

× ℙ
1 to 

ℙ
1 and �

i
∶= pr ∗

i
(�

0
) . Using the Künneth decomposition, we have H2i+1(ℙ1 × ℙ

1) = 0 for 
i ≥ 0,

In other words, the cohomology ring H∗(ℙ1 × ℙ1) = ℚ[�1, �2]∕(�
2

1
, �2

2
) . Recall, the coho-

mology ring H
∗(ℙ3) = ℚ[���]∕((���)4) , where ��� ∈ H

2(ℙ3,ℤ) is a generator. Moreover, 
ℙ

1
× ℙ

1 can be embedded (via Segre embedding) as a smooth quadric surface in ℙ3 and 
under the induced pull-back morphism of (graded) cohomology rings:

�′′ is mapped to �
1
+ �

2
 . Denote by

(10)

Φ̃ ∶ H
1

X

∼

�������→ H
3

G(2,L)
.

(11)Φ̃0 ∶ H
1(X∞)

∼

�������→ H
3(G(2, L)∞),

H
0(ℙ1 × ℙ

1) = ℚ, H
2(ℙ1 × ℙ

1) = ℚ𝜉1 ⊕ℚ𝜉2 and H
4(ℙ1 × ℙ

1) = ℚ𝜉1.𝜉2.

ℚ[���]∕((���)4) = H
∗(ℙ3 ) → H

∗(ℙ1 × ℙ
1) = ℚ[�1, �2]∕(�

2

1
, �2

2
),
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the natural inclusions. Let �1 ∶ G0 ∩ G1 ⟶ M
X̃0
(2, L̃0) and �2 ∶ G1 ⟶ M

X̃0
(2, L̃0) be the 

natural bundle morphisms. Note that the restriction morphism rj ∶ H2j(ℙ3 ) → H2j(ℙ1 × ℙ
1) 

is an isomorphism (Lefschetz hyperplane section theorem), for any j ≠ {1, 3}.

By the Deligne-Blanchard theorem [12] (the Leray spectral sequence degenerates at E
2
 

for smooth families), we have Hi(G0 ∩ G1) ≅ ⊕
j
Hi−j(Rj𝜌1,∗ℚ) and 

Hi(G1) ≅ ⊕
j
Hi−j(Rj𝜌2,∗ℚ) . Since M

X̃0
(2, L̃0) is smooth and simply connected (as it is 

rationally connected [15, Proposition 2.3.7 and Remark 2.3.8] which implies simply con-
nected [11, Corollary 4.29]), the local systems Rj

�1,∗ℚ and Rj
�2,∗ℚ are trivial. Therefore, 

for any y ∈ M
X̃0
(2, L̃0) , the natural morphisms

are surjective. By the Leray-Hirsch theorem (see [33, Theorem 7.33]), we then have:

Using this one can check that:

Proposition 3.3 The following holds true:

Proof See [10, Theorem 4.2] for proof of the statement.   ◻

Let G(2, L)∞ denote the base change of the family G(2, L) (defined in §3.2) over Δ to the 
universal cover � by the morphism e ∶ � → Δ

∗
j

���→ Δ . Using the definitions and results from 
§2, we can equip Hi(G(2, L)∞) with a limit mixed Hodge structure and obtain a specializa-
tion morphism:

which is a morphism of mixed Hodge structures for all i. Replacing Y
1
 (resp. Y

2
 ) in §2 by 

G
0
 (resp. G

1
 ) from §3.2, we have by Proposition 3.3 that the kernel of the morphism fi is 

isomorphic to Hi−4(M
X̃0
(2, L̃0))(−2) i.e., we have an exact sequence of mixed Hodge struc-

tures (see Corollary 6):

i
0
∶ G

0
∩ G

1
↪ G

0
and i

1
∶ G

0
∩ G

1
↪ G

1

Hi(G0 ∩ G1) ↠ H0(Ri
�1,∗ℚ) → Hi((G0 ∩ G1)y) and Hi(G1) ↠ H0(Ri

�2,∗ℚ) → Hi(G1,y)

(12)

Hi(G0 ∩ G1) ≅
⨁

j≥0

(Hj((G0 ∩ G1)y)⊗ Hi−j(M�X0
(2, �L0)))

≅ Hi(M�X0
(2, �L0))⊕ Hi−2(M�X0

(2, �L0))⊗ (ℚ𝜉1 ⊕ℚ𝜉2)⊕ Hi−4(M�X0
(2, �L0))𝜉1𝜉2,

(13)Hi(G1) ≅
⨁

j≥0

(Hj(G1,y)⊗ Hi−j(M�X0
(2, �L0))) ≅

3
⨁

j=0

Hi−2j(M�X0
(2, �L0))⊗ (𝜉��)j

ker((i0,∗, i1,∗) ∶ H
i−2(G0 ∩ G1) → H

i(G0)⊕ H
i(G1)) ≅ H

i−4(M�X0
(2, �L0))(𝜉1 ⊕ −𝜉2).

sp
i
∶ H

i(G
X0
(2, L0)) → H

i(G(2, L)∞)

(14)
0 → Hi−4(M

X̃0
(2, L̃0))(−2)

hi

�������→ Hi−2(G0 ∩ G1)(−1)
fi
������→ Hi(GX0

(2, L0))
spi

����������→

spi

����������→ Hi(G(2, L)∞)
gi

�������→ GrW

i+1
Hi(G(2, L)∞) → 0.
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4  Limit Hodge conjecture for relative Gieseker moduli space

Recall, that for a very general smooth, projective curve Y, H2p

Hdg
(Jac(Y)) ≅ ℚ for every p 

(see [8, Theorem 17.5.1]. It is natural to ask, given a degenerating family of smooth, pro-
jective curves, is the sub-space of p-th Hodge classes in the limit mixed Hodge structure 
associated with the corresponding family of Jacobians, one dimensional for each p? Apri-
ori, this is false as can be seen from the theory of Noether-Lefschetz loci i.e., very gener-
ally, the rank of the Hodge lattice jumps. However, in this section, we prove that under the 
genericity assumption of the nodal curve X

0
 , we have a positive answer (see Theorem 4.3). 

This result will later play an important role in the proof of Theorem 5.2.

4.1  Hodge conjecture in the smooth case

We now recall from [5] the proof of the Hodge conjecture for the moduli space of rank 2 
vector bundles with fixed determinants on a very general, smooth, projective curve. We 
give a brief sketch for the sake of completion.

Let C be a smooth, projective curve and L an invertible sheaf on C of odd degree. 
Denote by M

C
(2, L) the moduli of semi-stable, rank 2 sheaves on C with determinant L . By 

[20, Proposition 1], there exists an isomorphism of pure Hodge structures:

By [24, Theorem 1], there exists � ∈ H
2(M

C
(2, L),ℤ) and � ∈ H

4(M
C
(2, L),ℤ) such that 

the cohomology ring H∗(M
C
(2, L)) is generated by �, � and H3(M

C
(2, L)) . Now, there is a 

natural isomorphism of pure Hodge structures

where the first isomorphism comes from the cohomology of Jacobians (see [33, p. 169]) 
and the second isomorphism is the Poincaré duality. Combining with the isomorphism Φ 
above, we get an isomorphism of pure Hodge structures:

Since cup-product is a morphism of pure Hodge structures, this isomorphism induces a 
surjective (graded) ring homomorphism which is a morphism of pure Hodge structures on 
each graded piece ( � and � are given weights 2 and 4, respectively):

(see [5, (1.2)]). As � and � are linear combination of Chern classes of the universal bundle 
associated to M

C
(2, L) , they are algebraic cohomology classes (see [24, p. 338]). Then, by 

[5, Theorem 2] the isomorphism �
C
 induces a surjective ring homomorphism:

where H2i

A
(Y) denotes the vector sub-space of algebraic cohomology classes in H2i(Y) and 

H
∗
A
(Y) = ⊕

i
H

2i

A
(Y) . Recall by [8, Theorem 17.5.1], for a very general curve C, H∗

Hdg
(Jac(C)) 

is generated (as a ℚ-vector space) by the theta divisor. Hence, using �
C
 we have

Φ ∶ H
1(C,ℤ)(−1) → H

3(M
C
(2, L),ℤ).

(15)H
1(Jac(C),ℤ)

∼

�������→ H
1(C,ℤ)∨

∼

�������→ H
1(C,ℤ)

H
1(Jac(C),ℤ)(−1) → H

1(C,ℤ)(−1)
Φ

�������→ H
3(M

C
(2, L),ℤ).

(16)𝛿
C
∶ ℚ[𝛼, 𝛽]⊗ (⊕

i
H

i(Jac(C))(−i)) → H
∗(M

C
(2, L))

𝛿
C
∶ ℚ[𝛼, 𝛽]⊗ H

∗

A
(Jac(C)) → H

∗

A
(M

C
(2, L))
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4.2  Limit mixed Hodge structures for families of Jacobians

Keep notations §3.1. Recall, the degenerating family

of curves which is smooth over the punctured disc Δ∗ and the central fiber is the irreducible 
nodal curve X

0
 . There exists a family of Jacobians of curves associated to the family �

1
 , i.e.

is a smooth, projective morphism such that for every s ∈ Δ∗ , the fiber �−1

4
(s) is the Jaco-

bian Jac(X
s
) of the curve X

s
∶= �

−1

1
(s) . By (15), there is a natural isomorphism of pure 

Hodge structures

This induces an isomorphism of local systems

which induces an isomorphism of Hodge bundles from H1

�
Δ∗

 to H1

X
Δ∗

 i.e., preserves the 
Hodge filtration Fp (see §2 for notations). Composing the above isomorphism with Φ

Δ∗ 
from §3.3, we get an isomorphism of local systems

which induces an isomorphism of Hodge bundles from H1

�
Δ∗

 to H3

G(2,L)Δ∗
 . Since the mono-

dromy action on isomorphic local systems is the same, the weight filtrations associated to 
the two limit mixed Hodge structures are the same. In particular, we have

Theorem 4.1 The morphism �
Δ∗ induces an isomorphism of mixed Hodge structures:

where �
∞

 (resp. G(2, L)∞ ) is the base change of �
Δ∗ (resp. G(2, L)Δ∗ ) to the upper half 

plane � (see Definition 2.3 for notation) and the mixed Hodge structures on H1(�∞) and 

H
3(G(2, L)∞) are as defined in §2.

Proof The proof is identical to the proof of Theorem  3.1 (or [6, Proposition 4.1]) after 
replacing X  in the statement with � .   ◻

Remark 4.2 Since cup-product is a morphism of mixed Hodge structures (see [26, Corol-
lary 5.45]), we have the following morphism of mixed Hodge structures for each i ≥ 0:

(17)H
∗
Hdg

(Jac(C)) = H
∗
A
(Jac(C)) and H

∗
Hdg

(M
C
(2, L)) = H

∗
A
(M

C
(2, L)).

�
1
∶ X → Δ

�
4
∶ �

X
Δ∗

→ Δ
∗

�
s
∶ H

1(Jac(X
s
),ℤ) → H

1(X
s
,ℤ).

(18)ℍ
1

�
Δ∗

∼

�������→ ℍ
1

X
Δ∗

�Δ∗ ∶ ℍ
1

�Δ∗

(4.4)

����������������→

∼
ℍ

1

XΔ∗

ΦΔ∗

���������������→

∼
ℍ

3

G(2,L)Δ∗
.

�∞ ∶ H
1(�∞)(−1)

∼

�������→ H
3(G(2, L)∞)

Φ(i)

∞
∶ H

i(�∞)(−i) =

i
⋀

H
1(�∞)(−1)

�∞

����������→

i
⋀

H
3(G(2, L)∞)

∪

������→ H
3i(G(2, L)∞),
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where ∪ denotes the cup-product morphism. Choose a point s
�
∈ � such that e(s�) = s . 

Since � is contractible, by the Ehresmann’s lemma, there is a natural isomorphism (induced 
by the inclusion of the fiber over s′ into G(2, L)∞):

commuting with the cup-product (cup-product commutes with pull-back by continuous 
maps)

Denote by �∞ ∶= (�2

s
)−1(�

s
) and �∞ ∶= (�4

s
)−1(�

s
) , where �

s
∈ H

2(MX
s

(2, L
s
),ℤ) and 

�
s
∈ H

4(MX
s

(2, L
s
),ℤ) arise as linear combination of the Chern classes of a universal bun-

dle U
s
 for MX

s

(2, L
s
) (see [24, p. 337] for an explicit description). As U

s
 is the restriction 

to the fiber over s of the universal bundle U as in §3.3 for G(2, L)Δ∗ , the classes �
s
 and �

s
 

are monodromy invariant. Hence, �
∞

 and �
∞

 does not depend on the choice of s. Then the 
morphism Φ(i)

∞
 induces a (graded) ring homomorphism

which induces a morphism of mixed Hodge structures on each graded piece ( �
∞

 and �
∞

 are 
considered as Hodge classes of weight 2 and 4, respectively). Since H∗(MX

s

(2, L
s
)) is gen-

erated by �
s
, �

s
 and H3(MX

s

(2, L
s
)) ([24, Theorem 1]) and �i

s
 commutes with cup-product, 

the cohomology ring H
∗(G(2, L)∞) is generated by �

∞
, �

∞
 and H

3(G(2, L)∞) . Since the 
morphism �

∞
 is an isomorphism, this implies that the morphism Φ

∞
 above is surjective.

4.3  Compactified Jacobians of curves

Let X
0
 be an irreducible nodal curve. The compactified Jacobian J

X
0
 parametrizes rank 1, 

degree 0 torsion-free sheaves on X
0
 (see [18, Theorem 3.3]). The compactified Jacobian is 

a semi-normal, projective variety. In particular, the normalization map

is the desingularization of J
X

0
 i.e., J̃

X
0
 is non-singular and the pre-image under h of the 

singular locus of J
X

0
 consists of two disjoint non-singular divisors, say D

1
 and D

2
 in J̃

X
0
 

which are both isomorphic to the Jacobian Jac(X̃
0
) , of the normalization X̃

0
 of the curve X

0
 . 

Moreover, J̃
X

0
 is a ℙ1-bundle over Jac(X̃

0
) . See [23, p. 567] for a nice description.

One can also consider the compactified Jacobian J
X

0
 as a degeneration of Jacobians of 

smooth curves. In particular, given a family �
1
 of smooth curves degenerating to X

0
 as 

above, there exists a flat, projective family (see [18, Theorem 3.3])

such that for any s ∈ Δ∗ , �−1

5
(s) ≅ Jac(X

s
) and the central fiber �−1

5
(0) = J

X0
 . Blowing 

up the family � along the singular locus of the central fiber J
X

0
 followed by an etale base 

change, we get a flat projective family (this is the semi-stable reduction of �
5
 , see [30, 

Example (2.15)])

(19)�i

s
∶ H

i(G(2, L)∞,ℤ) → H
i(MX

s

(2, L
s
),ℤ)

i.e., �i
s
(�1) ∪ �j

s
(�2) = �i+j

s
(�1 ∪ �2) for �1 ∈ Hi(G(2, L)∞,ℤ) and �2 ∈ Hj(G(2, L)∞,ℤ).

Φ∞ ∶ ℚ[𝛼∞, 𝛽∞]⊗

(

⨁

i

H
i(�∞)(−i)

)

id×⊕Φ
(i)
∞

������������������������������→ H
∗(G(2, L)∞)

h ∶ J̃
X

0
→ J

X
0

�
5
∶ � → Δ
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such that the fibers over Δ∗ coincides with that of �
5
 above and the central fiber �̃−1

5
(0) is a 

reduced simple normal crossings divisor consisting of two irreducible components J̃
X

0
 and 

E, where E is a ℙ1-bundle over Jac(X̃
0
) and E ∩ J̃

X
0
= D

1
∪ D

2
.

4.4  Limit Hodge conjecture

Denote by H2p

Hdg
(�∞) ∶= Hp,pGrW

2p
H2p(�∞) . Using the description of compactified Jacobi-

ans in families given above we prove:

Theorem 4.3 For a very general nodal curve X
0
 as defined in the Introduction, we have 

H
2p

Hdg
(�∞) ≅ ℚ for each p.

Proof For the proof of this statement we use the exact sequence (6). Notations as in §4.3. 
Applying Corollary 2.7 to �̃

5
 above, we get the exact sequence of pure Hodge structures:

To compute the middle term in this exact sequence we use the Mayer-Vietoris sequence. In 
particular, we have an exact sequence of pure Hodge structures:

Recall, E and J̃
X

0
 are ℙ1-bundles over Jac(X̃

0
) . Denote by

the natural bundle morphisms. Let �
0
∈ H

2(ℙ1) be a generator. By the Leray-Hirsch theo-
rem (see [33, Theorem 7.33]), we have for any closed point y ∈ Jac(X̃

0
) and p ≥ 0:

Denote by qi ∶ Di ↪ J̃X
0
 and q

E,i
∶ Di ↪ E the closed immersions. As q◦qi and q

E
◦q

E,i
 are 

isomorphisms, q∗
i
 (resp. q∗

E,i
 ) maps q∗H2p

(

Jac(X̃
0
)

)

 (resp. q∗
E
H2p

(

Jac(X̃
0
)

)

 ) isomorphically 

to H2p(Di) . Using the decompositions (22) and (23), we then conclude that the last (restric-
tion) morphism of (21) is surjective. Since (by assumption) X

0
 is very general, we have 

H
2p

Hdg

(

Jac(X̃
0
)
)

≅ ℚ for every p ≥ 0 . Hence, using the decompositions (22) and (23) we 

have

�̃
5
∶ �

�

→ Δ

(20)H2p−2(D
1
∪ D

2
)(−1)

f
2p

���������→ GrW

2p
H2p(J̃X

0
∪ E)

sp
2p

��������������→ GrW

2p
H2p(�∞) → 0.

(21)0 → Gr
W

2p
H2p(�JX

0
∪ E) → H2p(�JX

0
)⊕ H2p(E) → H2p(D

1
∪ D

2
).

q
E
∶ E → Jac(X̃

0
) and q ∶ J̃X

0
→ Jac(X̃

0
)

(22)

H2p(E) ≅
⨁

j≥0

(

Hj(Ey)⊗ q∗

E
H2p−j

(

Jac(�X
0
)

))

≅ q∗
E
H2p

(

Jac(�X
0
)

)

⊕ q∗

E
H2p−2

(

Jac(�X
0
)

)

𝜉
0

(23)

H2p(�JX0
) ≅

⨁

j≥0

(

Hj(�JX0,y)⊗ q∗H2p−j
(

Jac(�X0)

))

≅ q∗H2p
(

Jac(�X0)

)

⊕ q∗H2p−2

(

Jac(�X0)

)

𝜉0

dim H
2p−2

Hdg
(D

1
∪ D

2
) = dim H

2p

Hdg
(D

1
∪ D

2
) = 2 = dim H

2p

Hdg
(J̃X

0
) = dim H

2p

Hdg
(E).
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Then the surjectivity on the right of (21) implies that dim Hp,pGr
W

2p
H2p(J̃X0

∪ E) = 2 . Using 
the exact sequence (20) it therefore suffices to check that the kernel of f

2p when restricted 
to H2p−2

Hdg
(D

1
∪ D

2
)(−1) is one dimensional. Using the projection formula (see [26, Lemma 

B.26]) and the identification described in the Leray-Hirsch theorem (identifying certain 
cohomology classes with their restriction to y) we have for any � ∈ H2p−2(Jac(X̃

0
)) , that

Taking � = �p−1 , where � ∈ H
2(Jac(X̃

0
)) is the class of the theta divisor, we then observe 

that the kernel of

is one dimensional, generated by (a scalar multiple of) the pull-back of �p−1 (recall from §2 
that f

2p is induced by the Gysin morphism). This proves the theorem.   ◻

Notation 4.4 Let �i

s
 as in (19). Denote by H2p

Hdg
(G(2, L)∞) ∶= Hp,pGrW

2p
H2p(G(2, L)∞) and

Corollary 4.5 Let X
0
 be as in Theorem 4.3. Let �

∞
 be a generator of H2

Hdg
(�∞) (see Theo-

rem 4.3). Then, the graded ring H∗
Hdg

(G(2, L)∞) ∶= ⊕pH
2p

Hdg
(G(2, L)∞) is generated (as a 

ring over ℚ ) by �
∞

, �
∞

 and (the image of) �
∞

 . In particular, H2p

A
(G(2, L)∞) = H

2p

Hdg
(G(2, L)∞)

.

The above corollary is what we call the “limit” Hodge conjecture in the family of 
Gieseker moduli spaces. Also note that H

∗
Hdg

(G(2, L)∞) is not a polynomial ring in 3 
variables i.e., there are relations between �

∞
, �

∞
 and �

∞
 (see [16, p. 408]).

Proof of Corollary 4.5 Recall from Remark 4.2 that Φ(i)
∞

 is a morphism of mixed Hodge 
structures and Φ

∞
 , which is the direct sum over all the graded pieces, is surjective. This 

implies that we have a surjective morphism induced by Φ
∞

:

By Theorem  4.3, H
∗
Hdg

(�∞) is generated by �
∞

 . Hence, H
∗
Hdg

(G(2, L)∞) is generated by 
�
∞

, �
∞

 and (the image of) �
∞

 . This proves the first part of the corollary.
Observe that for a very general s ∈ Δ∗ , H∗

A
(G(2, L)

s
) = H

∗
A
(MX

s
(2, L

s
)) is generated as a 

ring over ℚ , by �
s
, �

s
 and (the image of) a generator �

s
 of H2

A
(Jac(X

s
)) (see §4.1). Since 

�
∞

, �
∞

 and (the image of) �
∞

 maps to �
s
, �

s
 and (the image of) �

s
 , respectively (upto multi-

plication by a scalar) by the morphism �i

s
 as in (19) for i = 2, 4, 6 , we conclude that 

H
∗
A
(G(2, L)∞) is generated by �

∞
, �

∞
 and (the image of) �

∞
 . Using the first part, we con-

clude H∗
A
(G(2, L)∞) = H

∗
Hdg

(G(2, L)∞) as graded rings over ℚ . This proves the corollary.  
 ◻

qi,∗
◦q∗

i
◦q∗(�) = q∗(�)�0 and q

E,i ,∗
◦q∗

E,i
◦q∗

E
(�) = q∗

E
(�)�0.

f2p ∶ H
2p−2

Hdg
(D1 ∪ D2)(−1) → Hp,pGrW

2p
H2p(J̃X0

∪ E)

H
2p

A
(G(2, L)∞) =

⎧
⎪
⎨
⎪
⎩

� ∈ H2p(G(2, L)∞) such that for a very general s ∈ Δ∗ and the

natural isomorphism �
2p
s ∶ H2p(G(2, L)∞) → H2p(G(2, L)s),

�
2p
s (�) ∈ H

2p

A
(G(2, L)s).

⎫
⎪
⎬
⎪
⎭

Φ∞ ∶ ℚ[𝛼∞, 𝛽∞]⊗ℚ H∗
Hdg

(�∞) ↠ H∗
Hdg

(G(2, L)∞), where H∗
Hdg

(�∞) ∶=
⨁

p≥0

H
2p

Hdg
(�∞).
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5  Main results

Assume that X
0
 is a very general, irreducible nodal curve as defined in the Introduction. 

Note that, by the genericity of X
0
 , we can choose the family of curves �

1
 as in §3.1 such 

that for a very general s ∈ Δ∗ , we have H∗
Hdg

(Jac(X
s
)) is generated by the cohomology 

class of the theta divisor �
s
∈ H

2

Hdg
(MX

s

(2, L
s
)) . We fix such a family �

1
 , for this section. 

Let j0 ∶ G0 ↪ GX0
(2, L0) and j1 ∶ G1 ↪ GX0

(2, L0) be the natural inclusions. Define the 
algebraic cohomology groups on G

X0
(2, L0) as:

We first obtain an exact sequence analogous to (14) for algebraic classes.

Lemma 5.1 For any i ≥ 0 , the algebraic cohomology group H2i

A
(G

X0
(2, L0)) sits in the fol-

lowing exact sequence:

Proof The exact sequence (24) will be induced by the exact sequence (14). We first claim 
that the restriction of the specialization morphism sp

2i
 to the algebraic cohomology group 

H
2i

A
(G

X0
(2, L0)) factors through H2i

A
(G(2, L)∞) . Let � ∈ H

2i

A
(G

X0
(2, L0)) . By definition, for 

t = 0, 1 we have j∗
t
(�) ∈ H2i

A
(Gt) . In particular, j∗

t
(�) ∈ Hi,i(Gt) for t = 0, 1 . By the Mayer-

Vietoris sequence (4), this implies � ∈ H
i,iGr

W

2i
H

2i(G
X0
(2, L0),ℂ) . As sp

2i
 is a morphism of 

mixed Hodge structures, this implies sp2i
(�) ∈ H

2i

Hdg
(G(2, L)∞) (see Notation 4.4). By Cor-

ollary 4.5, H
2i

A
(G(2, L)∞) = H

2i

Hdg
(G(2, L)∞) . Hence, sp2i

(�) ∈ H
2i

A
(G(2, L)∞) . This proves 

our claim.
Next, we see that restriction of the specialization morphism to algebraic classes is 

surjective. Let �
s
∈ H

2(MX
s

(2, L
s
)) and �

s
∈ H

4(MX
s

(2, L
s
)) be as in Remark 4.2 and 

�
s
∈ H

6(MX
s

(2, L
s
)) be as in the proof of Corollary 4.5 (same as �6

s
(�∞) ). Note that, 

�
s
, �

s
 and �

s
 arise as restriction to the fiber over s, of linear combinations of the Chern 

classes of the universal bundle U on G(2, L)Δ∗ (see Remark 4.2). Hence, �
s
, �

s
 and �

s
 

are monodromy invariant (they are restrictions of global sections of local systems). 
By taking closure (over the unit disc) of the Chern classes of U , the classes �

s
, �

s
 and �

s
 

extend as algebraic classes to the central fiber G
X0
(2, L0) . This implies that there exists 

�0 ∈ H
2

A
(G

X0
(2, L0)), �0 ∈ H

4

A
(G

X0
(2, L0)) and �0 ∈ H

6

A
(G

X0
(2, L0)) such that the specializa-

tion morphism maps �
0
 (resp. �0, �0 ) to �

∞
 (resp. �

∞
, �

∞
 ) in H∗

A
(G(2, L)∞) . By Corollary 

4.5, H∗
A
(G(2, L)∞) is generated by �

∞
, �

∞
 and �

∞
 . Hence,

is surjective. By the exactness of (14), ker(sp2i
) ∩ H

2i

A
(G

X0
(2, L0)) consists of classes

there exists � ∈ H
2i−2(G

0
∩ G

1
) such that it,∗ (�) = j∗

t
(�) , where i

t
∶ G

0
∩ G

1
↪ G

t
 for t = 0, 1 

is the natural inclusion. Since i
t,
∗

 is a Gysin morphism (of pure Hodge structures) from 
H

2i−2(G
0
∩ G

1
)(−1) to H2i(G

t
) , � is a Hodge class (as j∗

t
� is a Hodge class). Moreover, by 

H2i
A
(GX0

(2, L0)) =
{

� ∈ Gr
W

2i
H2i(GX0

(2, L0)) such that j∗
t
(�) ∈ H2i

A
(Gt), t = 0, 1

}

(24)

0 → H2i−4

A

(

M
X̃0
(2, L̃0))

h2i

����������→ H2i−2

A
(G0 ∩ G1)

f2i

��������→ H2i
A
(GX0

(2, L0)

)

sp2i

�������������→ H2i
A
(G(2, L)∞) → 0.

sp2i
∶ H

2i

A
(G

X0
(2, L0)) → H

2i

A
(G(2, L)∞)

� ∈ H2i
Hdg

(GX0
(2, L0)) such that j∗

t
� ∈ H2i

A
(Gt) and
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assumption M
X̃0
(2, L̃0) satisfies the Hodge conjecture and so does G

0
∩ G

1
 as it is a ℙ1

× ℙ
1

-bundle over M
X̃0
(2, L̃0) . In particular, � is an algebraic class i.e., � ∈ H

2i−2

A
(G

0
∩ G

1
).

Similarly, as h
2i

 from H
2i−4(M

X̃0
(2, L̃0))(−2) to H

2i−2(G
0
∩ G

1
)(−1) is a morphism of 

pure Hodge structures, the exactness of (14) implies that ker(f
2i) ∩ H2i−2

A
(G

0
∩ G

1
) equals 

the image of the morphism:

The injectivity of h
2i

 follows from the exactness of (14). This proves the lemma.   ◻

Theorem  5.2 For the central fibre G
X0
(2, L0) of the relative Gieseker’s moduli space we 

have,

Moreover, the restriction morphism j∗
0
∶ Hi(GX0

(2, L0)) → Hi(G0) is surjective and the 

irreducible components G
0
 and G

1
 satisfy the Hodge conjecture.

In particular, the Hodge conjecture holds for a desingularization of U
X0
(2, L0).

Proof Since GrW

2i+1
H

2i(G(2, L)∞) is pure of weight 2i + 1 and the morphisms in (14) are 
morphisms of mixed Hodge structure, we have the following exact sequence:

We observed in the proof of Lemma 5.1 that using the Mayer-Vietoris sequence (4), there 
is a natural inclusion from H2i

A
(G

X0
(2, L0)) to H2i

Hdg
(G

X0
(2, L0)) . By Corollary 4.5, we have 

H
2i

A
(G(2, L)∞) = H

2i

Hdg
(G(2, L)∞) . Then combining (25) with (24) we have the following 

diagram of short exact sequences:

To show that the middle arrow in the above diagram is an isomorphism, it suffices to prove 
that the first vertical arrow is an isomorphism. This follows from comparing exact 
sequences (24) and (25) and using that Hodge classes are algebraic both for M

X̃0
(2, L̃0) by 

the discussion in §4.1 and for G
0
∩ G

1
 which is a ℙ1

× ℙ
1-bundle over M

X̃0
(2, L̃0) . Hence, 

H
∗
Hdg

(G
X0
(2, L0)) = H

∗
A
(G

X0
(2, L0)) . This completes the proof of the first part of the 

theorem.
We now show that the restriction morphism j∗

0
∶ Hi(GX0

(2, L0)) → Hi(G0) is surjective. 
Consider the following exact sequences of pure Hodge structures ( [26, Proposition 5.46]):

H
2i−4

A
(M

X̃0
(2, L̃0)) = H

2i−4

Hdg
(M

X̃0
(2, L̃0))(−2)

h2i

����������→ H
2i−2

Hdg
(G0 ∩ G1)(−1) = H

2i−2

A
(G0 ∩ G1).

H
∗
Hdg

(G
X0
(2, L0)) = H

∗
A
(G

X0
(2, L0)).

(25)

0 → H2i−4

Hdg
(M

X̃0
(2, L̃0)) → H2i−2

Hdg
(G0 ∩ G1)

f2i

��������→ H2i
Hdg

(GX0
(2, L0))

sp2i

�������������→ H2i
Hdg

(G(2, L)∞) → 0.

(26)
0 → Gr

W

i
H

i(G
X0
(2, L0), G0) → Gr

W

i
H

i(G
X0
(2, L0)) → H

i(G0)

→ Gr
W

i
H

i+1(G
X0
(2, L0), G0) → Gr

W

i
H

i+1(G
X0
(2, L0)) → 0,
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Note that r
1
 (resp. r

3
 ) is injective (resp. surjective) with cokernel (resp. kernel) isomorphic 

to ℚ(�
1
− �

2
) (resp. ℚ(���)3 ), where notations as in §3.5. Using (12) and (13), this implies 

that the restriction morphism

The exact sequence (27) then implies,

By [26, Example B.5(2)], the pair G
0
 and G

1
 form an excisive couple i.e., the induced exci-

sion map j∗
1
∶ Hi(GX0

(2, L0), G0) → Hi(G1, G0 ∩ G1) is an isomorphism of mixed Hodge 
structures. Then, the exact sequence (26) becomes

Let N ∶= dim G
X0
(2, L0) . Using [29, Example 3.5] and Poincaré duality, we have that

Note that, dim M
X̃0
(2, L̃0)) = N − 3 . By Propositions 3.3 combined with Poincaré duality, 

we then conclude that

Therefore, the exact sequence (28) becomes the following short exact sequence (since a 
surjective morphism of vector spaces of same dimension is isomorphic):

The above sequence shows the surjectivity of j∗
0
 . Using this and the equality 

H
∗
A
(G

X0
(2, L0)) = H

∗
Hdg

(G
X0
(2, L0)) , the Hodge conjecture for G

0
 follows. Since G

1
 is ℙ3

-bundle over M
X̃0

(2, L̃0) , it satisfies the Hodge conjecture. This proves the theorem.   ◻

As an easy consequence, we can compute the algebraic Poincaré polynomial of G
0
.

Theorem 5.3 The algebraic Poincaré polynomial P
A
(G

0
) , for G

0
 is given by

Proof Let i
1
 be as in Notation 3.2. Using the decompositions (12) and (13), we observe that

(27)
0 → Gr

W

i
H

i(G1, G0 ∩ G1) → H
i(G1)

i
∗
1

�������→ H
i(G0 ∩ G1) → Gr

W

i
H

i+1(G1, G0 ∩ G1) → 0.

ker(i∗
1
) ≅ H

i−6(M
X̃0
(2, L̃0))(�

��)3 and coker(i∗
1
) ≅ H

i−2(M
X̃0
(2, L̃0))(�1 − �2).

Gr
W

i
H

i(G1, G0 ∩ G1) ≅ H
i−6(M

X̃0
(2, L̃0))(�

��)3 and

Gr
W

i
H

i+1(G1, G0 ∩ G1) ≅ H
i−2(M

X̃0
(2, L̃0))(�1 − �2).

(28)
0 → H

i−6(M
X̃0
(2, L̃0))(�

��)3 → Gr
W

i
H

i(G
X0
(2, L0)) → H

i(G0)

→ H
i−2(M

X̃0
(2, L̃0))(�1 − �2) → Gr

W

i
H

i+1(G
X0
(2, L0)) → 0.

Gr
W

i
H

i+1(G
X0
(2, L0)) ≅ coker((i∗

0
− i

∗
1
) ∶ H

i(G0)⊕ H
i(G1) → H

i(G0 ∩ G1))

≅ ker((i0,∗
, i1,∗

) ∶ H
2N−i−2(G0 ∩ G1) → H

2N−i(G0)⊕ H
2N−i(G1))

∨
.

Gr
W

i
H

i+1(G
X0
(2, L0)) ≅ (H2N−i−4(M�X0

(2, �L0))(𝜉1 ⊕ −𝜉2))
∨ ≅ H

i−2(M�X0
(2, �L0)).

(29)0 → H
i−6(M

X̃0
(2, L̃0))(�

��)3 → Gr
W

i
H

i(G
X0
(2, L0)) → H

i(G0) → 0.

PA(G0
) ∶=

∑

Hi
A
(G

0
)ti =

(1 − tg)(1 − tg+1)(t2(1 − tg−1)(1 + t2) + (1 − tg+2))

(1 − t)(1 − t2)(1 − t3)
.
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By Theorem 5.2, the restriction morphism j∗
0
∶ Hi(GX0

(2, L0)) → Hi(G0) is surjective. As 
j∗
0
 is a morphism of mixed Hodge structures, it maps H

2i

A
(G

X0
(2, L0)) = H

2i

Hdg
(G

X0
(2, L0)) 

surjectively to H2i

Hdg
(G

0
) = H

2i

A
(G

0
) , where the equalities follow from Theorem 5.2. Moreo-

ver, using the exactness of (4) and H
2i

A
(G

X0
(2, L0)) = H

2i

Hdg
(G

X0
(2, L0)) , 

V ∶= ker(j∗
0
) ∩ H2i

A
(GX0

(2, L0)) consists of pairs (0, 𝛾) ∈ H
2i

Hdg
(G0)⊕ H

2i

Hdg
(G1) such that 

i
∗
1
(�) = 0 i.e., V = ker i

∗
1
∩ H

2i

A
(G

1
) (as H2i

A
(G

1
) = H

2i

Hdg
(G

1
) ). Using the decompositions (12) 

and (13), we observe that V is isomorphic to H2i−6

A
(M

X̃0
(2, L̃0))(�

��

)3 i.e., we have the fol-
lowing short exact sequence:

Let H(g, t) ∶= (1 − tg)(1 − tg+1)(1 − tg+2)∕((1 − t)(1 − t2)(1 − t3)) . By [5, (5.1)],

By definition, P
A
(G(2, L)∞) = P

A
(MX

s
(2, L

s
)) for very general s ∈ Δ∗ . Using the identifica-

tion (12), we have PA(G0 ∩ G1) = H(g − 1, t)(1 + 2t2 + t4) . The exact sequence (24) then 
implies

which equals H(g − 1, t)(t2 + t4 + t6) + H(g, t) . Finally, using the short exact sequence 
(30), we conclude that

Substituting for H(g, t) one immediately gets the corollary.   ◻
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(i∗
1
)−1(H2i

A
(G

0
∩ G

1
)) ≅ H

2i

A
(G

1
).

(30)0 → H2i−6

A
(M

X̃0
(2, L̃0))(�

��

)3 → H2i
A
(GX0

(2, L0))
j∗
0

�������→ H2i
A
(G0) → 0.

PA(MX̃0
(2, L̃0)) = H(g − 1, t) and PA(MXs

(2, Ls)) = H(g, t) for s ∈ Δ∗ very general .

(31)P
A
(G

X0
(2, L0)) = P

A
(G0 ∩ G1)t

2 + P
A
(G(2, L)∞) − P

A
(M

X̃0
(2, L̃0))t

4
.

PA(G0) = PA(GX0
(2, L0)) − PA(MX̃0

(2, L̃0))t
6 = H(g − 1, t)(t2 + t4) + H(g, t).
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