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 
Abstract—In this letter, we report the fabrication of an 

enhancement-mode V-groove metal oxide semiconductor 
field-effect transistor on semi-polar (11-22) GaN platform. A 
wet crystallographic hydroxide-based etching approach to 
achieve a vertical inversion trench sidewall is utilized. This 
novel fabrication method enables the formation of the 
vertical trench sidewall channel conduction without the 
need for a conventional chlorine-based dry etching. The 
fabricated VMOSFET exhibit a threshold voltage of 9.49 V, 
a current ON/OFF ratio of >107, an ON-state resistance of 8.0 
mΩ.cm2, and an output current of 516 A/cm2.  

 
Index Terms— Crystallographic etching, Semi-polar gallium 

nitride, GaN vertical transistors, V-groove MOSFET. 

 

I. Introduction 

AN and its related materials have great potential in the 

field of power electronics and light-emitting diodes 

(LEDs). Recent demonstrations of monolithic integration of  c-

plane GaN LEDs with vertical GaN transistors could provide a 

path for ultra-compact display applications such as virtual 

reality and augmented reality [1-9]. However, c-plane (0001) 

GaN materials has fundamental limitations: 1) for the LED, it 

is challenging to achieve a high quantum efficiency due to the 

quantum-confined stark effect and to incorporate a high indium 

content in the quantum wells for long wavelength emissions 

[10], [11]. 2) for the transistors, due to the wet chemical inert 

 
 

properties [12] of c-plane GaN, the demonstrated vertical 

transistors [13-18] have so far relied on complicated plasma dry 

etching techniques which can leave crystal defects and post-

etching treatment and/or channel regrowth to achieve vertical 

sidewall channel conduction. 

Semi-polar GaN and in particularly (11-22) GaN, on the 

other hand, has been shown to suppress the quantum-confined 

Stark effect as well as improve the indium incorporation 

efficiency compared to c-plane GaN [19]. Despite the 

promising results on semi-polar GaN LEDs, to date, the 

discussions of the transistor operations on the semi-polar (11-

22) GaN are limited. The advantage of transistor fabrications 

on the (11-22) GaN is twofold: firstly, it allows monolithic 

integration with semi-polar LEDs. Secondly, wet etching is 

possible on the (11-22) GaN because the Ga-dangling bonds 

could be more easily attacked by the wet etchants [20], [21] 

which allows the formation vertical sidewall channel without 

the need for dry plasma etching.   

 

 
 
Fig. 1. (a) Schematic of the trench opening alignment orientation for the 
semi-polar (11-22) GaN VMOSFET, (b) top-view SEM image of the KOH 
etched trench sidewall and (c) schematic of the c-plane & a-plane in the 
semi-polar GaN layer.  
 

In this work, we demonstrate the semi-polar (11-22) GaN V-

groove metal oxide semiconductor field-effect transistor 

(VMOSFET) with a novel crystallographic hydroxide-based 
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wet etching technique to form the vertical trench sidewalls for 

the channel conduction. The semi-polar (11-22) GaN transistor 

exhibits a threshold voltage (Vth) of 9.49 V, an ON-state 

resistance (Ron) of 8.0 mΩ.cm2, an ION/IOFF ratio > 107 and a 

breakdown voltage (VBD) of 150 V. 

II. EPITAXIAL STRUCTURE AND DEVICE FABRICATION 

The semi-polar (11-22) GaN epitaxial structure in this work 

was grown on an m-plane sapphire substrate using the metal-

organic chemical vapor deposition method. The epitaxial 

structure is as follow: 0.25 μm n+-GaN (Si: ~ 5×1018 cm-3), 0.5 

μm p+-GaN (Mg: ~ 1×1019 cm-3), 3.0 μm n--GaN (Si: ~ 5×1017 

cm-3), and 0.5 μm n+-GaN (Si: ~ 5×1018 cm-3). The MOSFET 

fabrication started by depositing 300 nm of SiNx using 

inductively coupled plasma chemical vapor deposition 

(ICPCVD) to serve as a hard mask. The via opening window 

aligned to [1-100] and [-1-123] orientations [21], [22], as shown 

in Fig. 1 (a), was defined using optical photolithography and the 

SiNx hard mask was etched using reactive ion etching.  

30 M potassium hydroxide (KOH) solution at 95 ℃ was used 

for etching the (11-22) GaN to form a trench. The etching rate 

of the semi-polar n-GaN and p-GaN was ~98 nm/min and ~13 

nm/min, respectively, along the - [11-22] direction established 

from the etching trials. The slower etch rate of the p-GaN is due 

to the repulsion of OH- by p-type doping [23]. The total wet etch 

time for the trench is 50 mins and the trench depth is ~1.5 μm.  

 

 
Fig. 2. Schematic diagram of the semi-polar (11-22) GaN VMOSFET.   

 

Once the trench opening was wet-etched to the n--GaN drift 

region as shown in Fig. 1 (b), hydrofluoric acid was used to 

remove the SiNx hard mask. Following this, a 60 nm SiO2 layer 

was deposited by plasma enhanced chemical vapor deposition 

at 300 ℃ to serve as the gate dielectric. Afterwards, the ICP dry 

etching was used for accessing the middle p-GaN and bottom n-

-GaN, following by thermal annealing at 500 ℃ in N2 for 10 

mins to remove the plasma induced damage on the dry-etched 

sidewalls and to attempt to activate the Mg in the p-GaN layer. 

The activation temperature of 500 ℃  is limited by the 

deposition temperature of the gate dielectric. Metal stacks of 

Ti/Al/Ni/Au (20 nm/ 120 nm/ 20 nm/ 40 nm) were deposited on 

the top and bottom n+-GaN and Pd/Ni/Au (20 nm/ 20 nm/ 200 

nm) stacks were deposited on the p+-GaN. The sample was 

thermally annealed at 400 ℃ in N2 for 10 mins to form ohmic 

contacts on the n+-GaN and p+-GaN. The sheet resistance and 

contact resistance of the p+-GaN, extracted from circular 

transfer length method,  was 1.7 ×106 Ω/□ and 1.6 ×104 Ω.mm, 

respectively. Ni/Au (20 nm/200 nm) were then deposited as 

gate metals. The sheet resistance and contact resistance of 

buried pGaN are Subsequently, a 300 nm bi-layer SiNx was 

deposited using the ICPCVD and PECVD as a passivation layer 

and followed by the via opening. The device fabrication was 

completed by the probe pad metal deposition. The schematic 

diagram of the MOSFET is shown in Fig.2. 

Fig. 3 shows a cross-sectional STEM image of the gated 

trench sidewall of the MOSFET. A sharp interface between the 

gate oxide and the wet-etched GaN sidewalls is achieved. A 

slope of ~320 on the left-hand side of trench was measured and 

it was identified as (11-20) a-plane as shown in Fig. 1 (c). On 

the right-hand side of the trench, a slope of ~580 was measured 

on the top n+-GaN region which corresponds to the c-plane. 

However, the sidewall slope changes as the etching proceeds to 

the p+-GaN and the n--GaN layers (with a slope angle of ~ 410). 

This is likely due to: (1) the slow p-GaN etch rate and the slow 

lateral etch rate of the c-planes on the sidewall and (2) the top 

n+-GaN layer has longer KOH exposure time compared with 

the n--GaN layer. As a result, the deviation of the sidewall angle 

is observed. A higher molar concentration of hydroxide-based 

solution and/or a longer etching time are required to fully reveal 

the c-plane sidewall on the trench. 

 

 
Fig. 3. Cross-sectional scanning transmission electron microscopy 
(STEM) image of the semi-polar (11-22) GaN VMOSFET.  

III. Device Characterization 

    Fig. 4 demonstrates the gate transfer characteristics of the 

fabricated VMOSFET with an ON/OFF ratio of 107, Vth of 9.49 

V (Vth defined using the linear interpolation method from the 

peak transconductance), and a peak transconductance of 30.9 

S/cm2. The field-effect mobility extracted is ~21.3 cm2/(V.s) at 

Vds = 1 V  and Vgs = 15 V using Equation (1): [24]  

 Ids = Vds1WL  CoxμCH(Vgs − IdsRGS − Vth) +  Rother 
(1) 

 

where W is the gate width of 100 µm and L is the effective gate 

length, taking into account the sidewall slope, of ½(0.5 µm/sin 

32° + 0.5 µm/sin 41°) = 0.852 µm, , Cox  is the gate oxide 

capacitance per unit are, RGS is the source resistance (0.2 
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mΩ.cm2), and Rother is the total source and drain resistances (2.6 

mΩ.cm2). The extracted mobility value is consistent with other 

reported mobility values of 20 – 30 cm2/(V.s) with a similar p-

GaN doping concentration (Mg: 1 - 2 ×1019 cm-3) [15], [25]. 

The trench channel mobility can be improved by reducing the 

p-type doping concentration to reduce impurity scattering or by 

re-growth of the AlGaN/GaN 2-dimensional electron gas 

channel on the trench sidewall [18], [22].

 
Fig. 4. Gate transfer characteristics of the semi-polar (11-22) GaN 
VMOSFET. 

 

 Fig. 5 shows the I-V characteristics of the VMOSFET with 

an output current density of 516 A/cm2 at Vds = 10 V and Vgs = 

15 V. The extracted specific Ron from the linear region of the I-

V characteristics was 8.0 mΩ.cm2. The current density and Ron 

are normalized to the active area of (2.5 μm trench length + 3 
μm drift region thickness) × (50 μm trench width + 3 μm drift 
region thickness) = 291.5 μm2, taking the drift region current 

spreading length of 3 μm into account [16], [26]. It is noted that 

the drain current does not show saturation at higher Vds in the I-

V characteristics. It may indicate a low hole concentration in 

the p-GaN layer which can be the result of a low Mg activation 

[3]. It can be improved by optimizing the Mg activation in the 

p-GaN such as a higher activation annealing temperature prior 

to the gate dielectric deposition, increasing p-GaN layer 

thickness (to increase the channel length) and reducing n-GaN 

drift region doping concentration. 

 
Fig. 5. I-V characteristics of the semi-polar (11-22) GaN VMOSFET. 

 

Fig. 6 shows the 3-terminal off-state characteristics (Vgs = 0 

V) of the VMOSFET with a gate breakdown of 150 V. The 

sharp corner at the bottom of the trench could lead to the electric 

crowding effect at the gate, introducing a thick bottom 

dielectric [16] or a trench filling regrowth method [27] to flatten 

the sharp corner could help to alleviate this issue. It is noted that 

the leakage between the source and drain terminals dominates 

the off-state leakage current. Fig. 7 shows the vertical leakage 

measurements of 2-terminal circular p+/n-/n+ (0.5 μm/ 3 μm/ 0.5 
μm) GaN structure (without the trench opening) with varying 

diameters. The leakage current is found to scale with device 

area, suggesting that the device leakage current is dominated by 

vertical leakage through the GaN bulk [28], [29]. Further 

improvement in the semi-polar GaN material quality as well as 

optimization on the p-GaN activations [30] are required to 

reduce the off-state leakage current. 

 
Fig. 6. 3-terminal breakdown characteristics of the semi-polar (11-22) 
GaN VMOSFET  

 
Fig. 7. 2-terminal I-V characteristics of the circular vertical structure. 

IV. CONCLUSION 

In summary, fabrication of the enhancement mode semi-

polar (11-22) GaN VMOSFET with novel wet etching trench 

opening method is reported. A threshold voltage of 9.49 V, ON-

state resistance of 8.0 mΩ.cm2 and output current density of 516 

A/cm2 have been achieved on the VMOSFET. The breakdown 

voltage of the VMOSFET is 150 V. The plasma-etch free trench 

channel is achieved in the vertical GaN electronic devices using 

the hydroxide-based wet etching technique. Our wet-etch 

trench opening technique highlight the potential of plasma etch-

free trench formations on the GaN-based electronic devices and 

is integrate-able with optoelectronics at a semi-polar GaN 

platform.  
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