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ABSTRACT

The lack of testability of digital twins poses several difficulties when

developing reliable systems. Intricate models complicate the defini-

tion of comprehensive testing criteria, and physical couplings make

obtaining test data an arduous task. To alleviate these challenges,

we explore the use of causal inference based testing and propose

a technique to allow for correct behaviour of digital twins to be

captured in causal diagrams, which are then tested with an efficient

data set through the use of counterfactuals. We explore a motivating

example of a robotic arm to show how this technique can confirm

known causal relationships in a system, and even uncover a fault

in the system which caused dangerous behaviour. Our technique

localised this erroneous behaviour to a single causal relationship

between two variables. Having shown this technique works with

a case study, we explore its limitations and the challenges when

approaching other industrial applications.
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1 INTRODUCTION

Digital twins are an emerging technology. They use data-driven

and physics-based simulation to model, communicate with and pro-

vide additional functionality to their coupled physical system [7].

Digital twins rely on models to accurately represent their physical

counterpart, accepting real-time data from the coupled physical

system and relaying feedback to provide more informed function-

ality [5, 8]. These systems have recently been adopted into safety
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critical and human collaborative environments [6, 10], making it

essential that they have correct system behaviour.

Digital twins present a complex challenge due to their lack of

testability. Coupling to physical systems as well as intricate models

poses a problem to test adequacy across both the physical and vir-

tual domains. These difficulties also provide challenges in executing

the required tests due to the extensive physical setup, expensive run

times, and complex internal structures [17]. These aspects define

digital twins as having a lack of testability [18].

Current testing solutions for digital twins exist [21], but test only

the physical system using the digital twin. Testing of the digital

twin itself is rarely considered, leading to these inherently complex

models being less reliable in safety critical environments [17].

We propose a method that uses causal inference based testing

to solve these challenges, building on previous methods [1, 15].

We address the limitations of these methods’ requirements to have

understandable and accessible source code by capturing domain ex-

pertise through causal graphs. As well as this, we use counterfactual

test cases, which reduce the amount of test data required, making

this technique better for use with physically coupled systems.

2 MOTIVATING EXAMPLE

There has been an increase in the adoption of digital twin based

systems in smart manufacturing and safety-critical environments

[6, 10]. It is, therefore, important that we have systematic methods

for validating such systems. Incorrect or untested digital twin be-

haviours can lead to expensive faults in modular robotics as well as

dangerous behaviour in collaborative human robot environments

[6]. Current testing techniques struggle due to the coupling of digi-

tal and physical spaces causing cumbersome testing requirements,

making obtaining test data for these systems difficult [17].

This section outlines the case study for this paper and highlights

the problems that arisewhen applying traditional testing techniques

to digital twins. We first outline the digital twin we will be focusing

on during this paper, and then explore its difficulties in testing.

2.1 Digital Twin - Robotic Arm

We analysed a robotic arm model as part of a digital twin frame-

work [5] as a case study. This digital twin framework was provided

by the Sheffield Advanced Manufacturing Research Centre and is

used to monitor and assure the safety of real human robot collabo-

rative environments. It allows for execution of digital twin models,
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coupling to physical systems and sharing data between different do-

mains and other digital twins. The robot arm chosen for this study

was the UR10 from Universal Robotics [16] as it is widely used in

industry and would require a complex model for the behaviour of

all 6 joints. This robotic arm allowed for tools, held by the robot’s

end effector, to be positioned anywhere in 3d space, at any angle,

requiring precise movements to achieve this.

The model of the UR10 provided in the digital twin framework

is complex, with different aspects of the model running on sepa-

rate services to accommodate its intricate behaviour. A position

in 3d space can be given to the digital twin, which moves the arm,

in virtual space, so that the tool of the end effector is positioned

precisely where requested. We aim to test the model of this digital

twin throughout the remainder of this paper.

2.2 Testing Difficulties

It is essential for safety that we ensure reliably correct behaviour

in a human robotic collaborative framework. We outline how the

unintelligible models and lack of controlled data causes testing

difficulties for the motivating example, with regards to the lack of

testability in digital twins outlined in Section 1.

Capturing the desired behaviour of digital twins requires amodel-

based representation. Current techniques rely on analysing the

source code of systems to find faults [1, 2, 15]. These approaches

are not suited to digital twins as they can contain complex models,

possibly running across multiples services and sometimes even in

the cloudwith completely inaccessible source code. This can be seen

in our motivating example as the source code for the arm’s path

planning algorithm is inaccessible. Analysing, or even obtaining, the

source code for such models becomes an impossible task, requiring

a different approach to represent digital twin behaviour.

Digital twins make the gathering and controlling of data required

for testing very challenging. Traditional testing approaches run the

model in a variety of configurations and observe the output. Digital

twins are not this simple as both the physical and virtual domains

must be accounted for when testing. Extensive set up and physical

execution can be required for specific test cases which take into

account physical stochasticity [17]. Our motivating example shares

these difficulties due to its physical coupling. Therefore, we cannot

rely on large data sets which contain the exact data required for

desired test cases.

3 CAUSAL INFERENCE AND TESTING

Digital twins bring a number of difficulties thatmake the application

of traditional testing techniques challenging. In this section, we

explore Causal Inference and how it can help alleviate some of the

issues addressed in Section 2.2. We then continue by outlining a

causal testing procedure for use in the next sections.

Causal Inference (CI) is a family of methodologies that measure

causal effects to make claims about causal relationships [11], such

as investigating whether changing a particular line of code causes

a fault [15]. CI techniques, such as Causal Directed Acyclic Graphs

(DAGs) and counterfactuals, allow us to address the difficulties of

testing digital twins by making strong claims on causality, without

access to large, specific data sets.

3.1 Modelling unintelligible behaviour

CI can be used to test strong claims about causal relationships, in a

way that conventional statistics cannot [13], because it is supplied

with domain knowledge in the form of a causal DAG. DAGs aremod-

els that provide an intuitive graphical method for expressing the

causal assumptions necessary to solve CI problems [12]. Informally,

a causal DAG𝐺 = (𝑉 , 𝐸) is a directed acyclic graph comprising a

set of random variables 𝑉 (the nodes) and directed edges 𝐸 that

capture causality, such that an edge𝑋 → 𝑌 denotes the assumption

that changing 𝑋 in isolation should cause 𝑌 to change.

In the context of digital twins, this presents an opportunity

for the developer to represent their expectations of what correct

relationships should be. This provides a simple, intuitive basis for

capturing the complex interactions between the variables and states

of a digital twin across multiple domains.

3.2 Handling small, uncontrolled data sets

A strength of CI is that DAGs can be reconciled with existing data

sets to reason about causal relationships between variables. CI uses

counterfactuals to reason about data which is not present in the

data set [14], presenting a way in which specific data need not be

obtained and allowing for smaller, less controlled data sets to be

used. Such a technique allows for causal outcomes to be inferred

without the need for specific executions or large data sets.

For testing digital twins, this means that test data for specific

scenarios need not be present within the data set. This technique

can be used to help alleviate the problem of running specific test

cases as the required scenarios can be reasoned about without

precise data being present, allowing existing datasets to be used.

3.3 Causal Testing

As shown above, CI makes it possible to answer causal questions

from passively collected data that contains various forms of bias,

such as confounding (informally, when the cause and effect share a

common cause), instead of running costly experiments. In a soft-

ware testing context, this has the potential to draw causal conclu-

sions from existing test data and, therefore, predict the outcome

of test cases that cannot be run [3]. Such an approach would help

improve the testability of software that has a vast input space and

is expensive to run, such as digital twins.

Figure 1: Using causal inference to test a digital twin. Stages

1-4 are outlined. People in the diagram represent the stages

in which domain expertise is used

We outline the steps for causal testing, shown in Figure 1:
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(1) Generating a causal DAG: domain expertise capture the in-

tended behaviour of the digital twin in a causal DAG. Rela-

tionships within this DAG allow for causal claims to be made

about the system. Complex behaviours can be outlined using

this without understanding the exact internal structure of

the system. DAGs are created manually by domain experts

as there is no way to do this automatically.

(2) Defining a data set: Existing data from a digital twin can

be used with regards to the variables present in the causal

DAG. Due to the limitations of data collection outlined in

Section 2.2, a smaller data set which does not contain the

exact scenarios to be tested is adequate.

(3) Causal Inference: The generated DAG is used, alongside the

obtained data set, to perform causal inference. Causal test

cases are defined that intervene on a variable to measure the

effect on another variable. The average treatment effect [9]

as well as the confidence intervals of this intervention can

be observed. Informally, given 𝑋 → 𝑌 , we use the causal

DAG and data set to infer how an intervention to the value

of 𝑋 would affect the value of 𝑌 .

(4) Causal claims: The data collected from causal inference can

be used to determine whether there is evidence that a causal

relationship holds in the digital twin (the digital twin is

behaving as expected) or if it does not hold (the digital twin

is behaving unexpectedly).

4 ROBOT ARM CASE STUDY

This section follows the outlined approach in Figure 1. We use

a causal DAG to represent the motivating example outlined in

Section 2.1. We then generate a data-set from the digital twin and

use this to test causal relationships in the model. We provide two

example scenarios: a scenario where we are able to confirm a known

causal relationship and one where a fault is localised to another

specific causal relationship. Although the digital twin has 6 joints,

we simplify this case study to only observe 2 consecutive joints.

4.1 Generating a Causal Diagram

A causal DAG was used to capture the assumptions of correct

behaviour of the robotic arm (Figure 1 step 1), allowing for a repre-

sentation of the arms motion. Figure 2 presents the initial state of

the joints (joint_1_start_rot, joint_2_start_rot), the target given to

the robot arm (effector_target), the desired final rotation of the joints

(joint_1_end_rot, joint_2_end_rot) and the rotation of each joint half

way through their motion (joint_1_mid_rot, joint_2_mid_rot). The

joint rotations half way through the arm’s motion were used to

simply represent the path of each joint. This simplification does

not capture the entire path and will be discussed in Section 5.

The causal relationships between variables in the causal DAG

represent the intended behaviour of variables with respect to one

another. This can be seen by the desired end rotation of the joints

being causally affected by the given target position. We also assume

that the path of a joint is dependent on its start and end positions

as they define the beginning and end of that path.

To test the digital twin, we establish that there is an interdepen-

dency between the two joints under test. The arm’s motion should

be informed by the rotation of all joints throughout the motion.

This ensures the behaviour is safe in a human robotic collaborative

environment. Therefore, the path of a joint should depend on the

initial and final states of other joints. This can be seen in Figure

2 by the start and desired end rotations of joint 1 affecting the

rotation mid way through movement of joint 2 and vice versa. If

each joint was not aware of each other joint, possibly dangerous

and unexpected behaviour could occur.

Figure 2: Generated causal DAG of the motivating exam-

ple. Two causal relationships are highlighted for Scenario A

(green) and Scenario B (red)

Interdependency, however, can cause issues in the creation of

a causal DAG as it could have produced cycles in the causal rela-

tionships, which are not permitted. Causal Directed Cyclic Graphs

(DCG) [22] as well as equation-based techniques [4] have been ex-

plored in the literature for representing more complex behaviours,

such as cycles, as an alternative to causal DAGs and are further

explored in Section 5.

4.2 Obtaining a Data-set

A major advantage of using CI is that it is possible to test from

existing data sets without running the digital twin for specific test

cases (Figure 1 step 2). The data required for the CI data set could

be found by examining the causal DAG presented in Figure 2. We

were able to run the digital twin model 105 times to produce a

data-set which contained the required variables at the required

time-steps for a variety of random start states and target positions.

Although this digital twin was not connected to a physical asset, the

model was only run a relatively small number of times to replicate

the difficulties of generating data-sets from digital twin systems

explored in Section 2.2. This small data-set meant that the exact data

required for each test case would likely not be present, therefore

requiring us to deal with counterfactuals. How these test cases are

constructed is explored in Section 4.3.

4.3 Generating Test Cases

Causal test cases present evidence of a causal relationship by in-

ferring the effect of a given intervention (Figure 1 step 3). This

process is further explained in part 3 of Section 3.3. Multiple test

cases can be executed with different intervention values, each pro-

viding evidence toward a causal relationship between the cause and

effect variables. This evidence can either support known causal re-

lationships, inferring that this relationship in the model is acting as

expected, or oppose expected causal relationships, localising errors

in how the system should be behaving to that specific relationship.

Each joint of the arm stored a rotation in radians between −𝜋

and 𝜋 . The range −2.8 to 2.8 was partitioned into intervals of 0.4
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Table 1: Results of causal testing showing the Average Treat-

ment Effect (ATE) and 95% Confidence Intervals (95% CIs) for

both Scenario A and Scenario B. Evidence of causal relation-

ships are highlighted in bold.

Int ATE A 95% CIs A ATE B 95% CIs B

-2.8 1.45 0.98, 1.92 0.14 -0.34, 0.62

-2.4 1.24 0.84, 1.65 0.12 -0.29, 0.53

-2.0 1.03 0.70, 1.37 0.10 -0.24, 0.44

-1.6 0.83 0.56, 1.10 0.08 -0.20, 0.35

-1.2 0.62 0.42, 0.82 0.06 -0.15, 0.26

-0.8 0.41 0.28, 0.55 0.04 -0.10, 0.18

-0.4 0.21 0.13, 0.27 0.02 -0.05, 0.09

0.4 -0.21 -0.27, -0.14 -0.02 -0.09, 0.05

0.8 -0.41 -0.55, -0.28 -0.04 -0.18, 0.10

1.2 -0.62 -0.82, -0.42 -0.06 -0.26, 0.15

1.6 -0.83 -1.10, -0.56 -0.08 -0.35, 0.20

2.0 -1.03 -1.37, -0.70 -0.10 -0.44, 0.24

2.4 -1.24 -1.65, -0.84 -0.12 -0.53, 0.29

2.8 -1.45 -1.92, -0.98 -0.14 -0.62, 0.34

and these values were taken as intervention values, as seen in Table

1. From this, we generated test cases which explored how deviating

from a rotation of 0.0 radians on a joint would affect its own and

other joints’ planned motion.

We outline two scenarios to apply CI-based testing. Each tests

a different causal relationship, highlighted in Figure 2. We then

use the data obtained from CI to determine whether these causal

relationships hold and if the digital twin is behaving correctly.

Scenario A - Confirming that joint_1_end_rot affects joint_1_mid_rot.

This scenario examines a single relationship within the causal DAG

generated for the motivating example. The specified target end

point, and therefore the calculated end position of a joint, should

always have a causal effect on the planned route for the same joint.

In this case, the middle rotation of a joint will be causally affected

by its end rotation. This relationship can be seen highlighted in

green in Figure 2.

Scenario B - Confirming that joint_1_start_rot affects joint_2_mid_rot.

This scenario explores a different relationship in the causal DAG

for the motivating example. Each joint should take into account the

movement of each other joint when planning the arm’s movement

to ensure a safe and informed movement. Therefore, a causal rela-

tionship between the start position of one joint and the planned

route of another should be present for correct behaviour. This rela-

tionship can be seen highlighted in red in Figure 2.

4.4 Scenario Results

Table 1 displays the results of both Scenario A and B for each of

the interventions (Int) described in Section 4.3. For each scenario,

an average treatment effect (ATE) [9] as well as the 95% confidence

intervals (95% CIs) were generated using causal inference based on

the generated causal diagram and the obtained digital twin data-set.

The ATE provides the average amount by which the effect variable

is changed due to the intervention on the cause variable. The 95%

confidence intervals represents the range in which the observed

variable will likely lie for the given intervention. To provide evi-

dence of a causal relationship, the 95% confidence intervals must

not overlap the value zero (Figure 1 step 4).

For Scenario A, the ATE value of the middle rotation of the joint

decreases as the intervention value of the end rotation of the joint

is increased. This is also mirrored by the 95% confidence intervals

which also decrease. These intervals do not overlap the value zero

for any intervention and therefore all provide evidence of a causal

relationship for the end rotation of a joint causing an effect on the

middle rotation of a joint.

The ATE and 95% confidence intervals in Scenario B follow a

similar trend, decreasing as the intervention to the initial rotation

is increased. However, the 95% confidence intervals all contain the

value zero and therefore do not provide evidence of a causal rela-

tionship. Informally, this means that joint 2’s path is not calculated

based on the initial position of joint 1. For a system in a safety

critical setting, this misrepresentation of the actual system could

lead to a situation where the digital twin deems certain movements

to be safe that would be hazardous in the corresponding physical

setting. Our technique was able to localise this fault to a single

causal relationship, providing a starting point for developers to fix

this behaviour in a complex, typically untestable model.

5 DISCUSSION

Having gathered results for our two scenarios, we use this section

to discuss the effectiveness of CI based testing techniques for digital

twins. We also discuss difficulties uncovered during the process of

testing the motivating example.

Our results showed that we were able to identify correct be-

haviour and even uncover erroneous behaviour in a safety critical

digital twin. These scenarios allowed for specific causal relation-

ships to be tested and, therefore, enabled us to isolate a fault down

to a single causal relationship. This technique allows developers

to accurately find where erroneous behaviour needs to be fixed,

reducing time searching through intricate digital twin models.

Our technique was able to overcome the challenges to testability

posed by digital twins, successfully building upon previous causal

inference based testing techniques [1, 2, 15], further explored in

Section 6. We used an efficient data set with no specific test cases

to perform testing. This allowed testing to not require expensive

run times due to physical couplings, but instead could use existing,

unspecific run time data. Our small data set was able to determine

both correct and incorrect behaviour within the digital twin.

Digital twins do, however, present difficulties when testing with

CI. Accurately representing complex digital twin behaviours, such

as data driven components [19] and adaptive behaviour [7], require

extensive domain knowledge. In our example, a simplification was

made to represent the path of a joint as a single variable. In practice,

this is not representative of the full path and could have lead to

causal relationships within its execution being overlooked. Our

motivating example also only tested direct causal relationships

between variables. Testing more complex behaviour could require

the use of causal mediation analysis [13], allowing for paths of

multiple causal relationships to be observed. Outlining future works

to accommodate these complex behaviours is outlined in Section 7.
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6 RELATED WORK

Baah et al. [1, 2] propose a graphical based approach to fault di-

agnosis. An approach of extracting a program dependency graph

and using its edges to statistically determine faults [2] was devel-

oped and then extended to use these graphs, in addition to causal

inference, to perform fault localisation on source code [1]. This tech-

nique requires a causal diagram to be developed from a program

dependence graph of the source code, allowing causal relationships

to be tested within it. However, access to the source code to gen-

erate causal graphs is not always possible with digital twins as

their models can be too complex for this technique and also extend

across both physical and digital spaces.

These methods have been expanded by Podgurski et al. [15],

allowing for faults to be identified using causal inference to inter-

vene on specific lines of code. This approach, however, still requires

access to the source code and would not be suitable for the complex,

multi-domain models found in digital twins. Our method addresses

the limitations and difficulties of these approaches through captur-

ing domain expertise in causal DAGs, allowing the testing of more

systems using causal inference without accessing their source code.

Wang et al. [21] designed a digital twin which provides fault diag-

nosis for its physical system. It models a rotor blade and determines

when the blade of the physical system has become unbalanced.

We build upon this work by providing a technique which can not

only determine faults in a physical system, but also allows for cross

domain testing with a greatly reduced observed data set.

At the time of writing, no studies could be found relating to

causal inference based testing of digital twins. There are a num-

ber of techniques for testing complex and unintelligible systems

[20] which explore multiple techniques to test these models, pri-

marily for model inference. We will comparing these approaches

to our technique to allow for limitations and enhancements to be

uncovered in future works.

7 CONCLUSION AND FUTUREWORKS

In this paper, we explore a method of using causal inference based

testing to alleviate the challenges of testing digital twins posed by

their lack of testability. We build upon existing methods [1, 2, 15]

by using causal DAGs to capture expected causal properties about

a digital twin’s intended behaviour. This attempts to solve the

limitations of existing methods in capturing the complex models

found in these systems. We also use counterfactuals to allow for

reduced data sets, which need not contain specific test cases, to be

used when testing physically coupled systems, reducing the time

and expense of acquiring an extensive controlled testing data set.

We explore an industrial digital twin framework to show the

validity and limitations of our technique. In doing so, we show

how, using causal DAGs, we are able to confirm the presence of a

causal relationship and, conversely, able to identify and localise a

new fault, which causes dangerous behaviour in a safety critical

environment, to a single causal relationship.

In future work, we aim to examine more digital twins to test

more intricate behaviour. In doing this, we aim to understand how

to ensure coverage of causal relationships within the complex and

inaccessible behaviours of a digital twin. Behaviours which include

time-based actions, neural networks and adapting to the environ-

ment present further challenges to testing digital twins. Ensuring

the creation of accurate causal DAGs will allow domain expertise

inform this process, improving the testability of digital twins.
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