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Abstract

Models for natural language understanding

(NLU) tasks often rely on the idiosyncratic

biases of the dataset, which make them brit-

tle against test cases outside the training dis-

tribution. Recently, several proposed debias-

ing methods are shown to be very effective

in improving out-of-distribution performance.

However, their improvements come at the ex-

pense of performance drop when models are

evaluated on the in-distribution data, which

contain examples with higher diversity. This

seemingly inevitable trade-off may not tell

us much about the changes in the reasoning

and understanding capabilities of the result-

ing models on broader types of examples be-

yond the small subset represented in the out-

of-distribution data. In this paper, we address

this trade-off by introducing a novel debias-

ing method, called confidence regularization,

which discourage models from exploiting bi-

ases while enabling them to receive enough

incentive to learn from all the training ex-

amples. We evaluate our method on three

NLU tasks and show that, in contrast to its

predecessors, it improves the performance on

out-of-distribution datasets (e.g., 7pp gain on

HANS dataset) while maintaining the original

in-distribution accuracy.1

1 Introduction

Despite the impressive performance on many nat-

ural language understanding (NLU) benchmarks

(Wang et al., 2018), recent pre-trained language

models (LM) such as BERT (Devlin et al., 2019)

are shown to rely heavily on idiosyncratic biases

of datasets (McCoy et al., 2019b; Schuster et al.,

2019; Zhang et al., 2019). These biases are com-

monly characterized as surface features of input

examples that are strongly associated with the tar-

get labels, e.g., occurrences of negation words in

1The code is available at https://github.com/

UKPLab/acl2020-confidence-regularization

natural language inference (NLI) datasets which

are biased towards the contradiction label (Guru-

rangan et al., 2018; Poliak et al., 2018). As a rami-

fication of relying on biases, models break on the

out-of-distribution data, in which such associative

patterns between the surface features and the tar-

get labels are not present. This brittleness has, in

turn, limited their practical applicability in some

extrinsic use cases (Falke et al., 2019).

This problem has sparked interest among re-

searchers in building models that are robust against

dataset biases. Proposed methods in this direc-

tion build on previous works, which have largely

explored the format of several prominent label-

revealing biases on certain datasets (Belinkov et al.,

2019). Two current prevailing methods, product-of-

expert (He et al., 2019; Mahabadi and Henderson,

2019) and learned-mixin (Clark et al., 2019a) in-

troduce several strategies to overcome the known

biases by correcting the conditional distribution

of the target labels given the presence of biased

features. They achieve this by reducing the impor-

tance of examples that can be predicted correctly

by using only biased features. As a result, models

are forced to learn from harder examples in which

utilizing solely superficial features is not sufficient

to make correct predictions.

While these two state-of-the-art debiasing meth-

ods provide a remarkable improvement on the tar-

geted out-of-distribution test sets, they do so at the

cost of degrading the model’s performance on the

in-distribution setting, i.e., evaluation on the origi-

nal test data which contains more diverse inference

phenomena. It raises a question on whether these

debiasing methods truly help in capturing a better

notion of language understanding or simply bias-

ing models to other directions. Ideally, if such an

improvement is achieved for the right reasons (i.e.,

better reasoning capabilities by learning a more

general feature representation), a debiased model
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product-of-

expert

learned-

mixin

conf-reg

(our)

in-distribution

out-of-distribution

calibration

requires biased model ✔ ✔ ✔

requires hyperparameter ✖ ✔ ✖

Table 1: Comparison of our method against the state-of-

the-art debiasing methods. Learned-mixin (Clark et al.,

2019a) is a parameterized variant of Product-of-expert

(He et al., 2019; Mahabadi and Henderson, 2019). Our

novel confidence regularization method improves the

out-of-distribution performance while optimally main-

tain the in-distribution accuracy.

should still be able to maintain its accuracy on pre-

viously unambiguous instances (i.e., instances that

are predicted correctly by the baseline model), even

when they contain biases.

In this work, we address this shortcoming by in-

troducing a novel debiasing method that improves

models’ performance on the out-of-distribution ex-

amples while preserves the in-distribution accu-

racy. The method, called confidence regulariza-

tion, draws a connection between the robustness

against dataset biases and the overconfidence pre-

diction problem in neural network models (Feng

et al., 2018; Papernot et al., 2016). We show that

by preventing models from being overconfident on

biased examples, they are less likely to exploit the

simple cues from these examples. The motivation

of our proposed training objective is to explicitly

encourage models to make predictions with lower

confidence (i.e., assigning a lower probability to the

predicted label) on examples that contain biased

features.

Table 1 shows the comparison of our method

with the existing state-of-the-art debiasing methods:

product-of-expert and learned-mixin. We show that

our method is highly effective in improving out-

of-distribution performance while preserving the

in-distribution accuracy. For example, our method

achieves 7 points gain on an out-of-distribution

NLI evaluation set, while slightly improves the

in-distribution accuracy. Besides, we show that

our method is able to improve models’ calibration

(Guo et al., 2017) so that the confidences of their

predictions are more aligned with their accuracies.

Overall, our contributions are the following:

• We present a novel confidence regularization

method to prevent models from utilizing bi-

ased features in the dataset. We evaluate the

advantage of our method over the state-of-the-

art debiasing methods on three tasks, includ-

ing natural language inference, fact verifica-

tion, and paraphrase identification. Experi-

mental results show that our method provides

competitive out-of-distribution improvement

while retaining the original in-distribution per-

formance.

• We provide insights on how the debiasing

methods behave across different datasets with

varying degrees of biases and show that our

method is more optimal when enough bias-

free examples are available in the dataset.

2 Related Work

Biases in Datasets Researchers have recently

studied more closely the success of large fine-tuned

LMs in many NLU tasks and found that models are

simply better in leveraging biased patterns instead

of capturing a better notion of language understand-

ing for the intended task (Bender and Koller, 2020).

Models’ performance often drops to a random base-

line when evaluated on out-of-distribution datasets

which are carefully designed to be void of the bi-

ases found in the training data. Using such targeted

evaluation, McCoy et al. (2019b) observe that mod-

els trained on MNLI dataset (Williams et al., 2018)

leverage syntactic patterns involving word overlap

to blindly predict entailment. Similarly, Schuster

et al. (2019) show that the predictions of fact verifi-

cation models trained for the FEVER task (Thorne

et al., 2018) are largely driven by the presence of

indicative words in the input claim sentences.

Following similar observations across other

tasks and domains, e.g., visual question-answering

(Agrawal et al., 2016), paraphrase identification

(Zhang et al., 2019), and argument reasoning com-

prehension (Niven and Kao, 2019), researchers

proposed improved data collection techniques to

reduce the artifacts that result in dataset biases.

While these approaches are promising, only apply-

ing them without additional efforts in the modeling

part may still deliver an unsatisfactory outcome.

For instance, collecting new examples by asking hu-

man annotators to conform to specific rules may be

costly and thus limit the scale and diversity of the

resulting data (Kaushik et al., 2020). Recently pro-

posed adversarial filtering methods (Zellers et al.,

2019; Sakaguchi et al., 2019) are more cost effec-

tive but are not guaranteed to be artifacts-free. It is,
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therefore, crucial to develop learning methods that

can overcome biases as a complement to the data

collection efforts.

Debiasing Models There exist several methods

that aim to improve models’ robustness and gen-

eralization by leveraging the insights from previ-

ous work about the datasets’ artifacts. In the NLI

task, Belinkov et al. (2019) make use of the finding

that partial input information from the hypothesis

sentence is sufficient to achieve reasonable accu-

racy. They then remove this hypothesis-only bias

from the input representation using an adversarial

training technique. More recently, three concurrent

works (Clark et al., 2019a; He et al., 2019; Ma-

habadi and Henderson, 2019) introduce a model-

agnostic debiasing method for NLU tasks called

product-of-expert. Clark et al. (2019a) also

propose an adaptive variant of this method called

learned-mixin. These two methods first iden-

tify examples that can be predicted correctly based

only on biased features. This step is done by using

a biased model2, which is a weak classifier that is

trained using only features that are known to be in-

sufficient to perform the task but work well due to

biases. The output of this pre-trained biased model

is then used to adjust the loss function such that it

down-weights the importance of examples that the

biased model can solve. While this approach pre-

vents models from learning the task mainly using

biased features, it also reduces model’s ability to

learn from examples that can be solved using these

features. As a result, models are unable to optimize

accuracy on the original training distribution, and

they possibly become biased in some other ways.

Similar to these methods, our method also uses

a biased model to identify examples that exhibit

biased features. However, instead of using it to

diminish the training signal from these examples,

we use it to scale the confidence of models’ pre-

dictions. This enables the model to receive enough

incentive to learn from all of the training examples.

Confidence Regularization Methods for regu-

larizing the output distribution of neural network

models have been used to improve generalization.

Pereyra et al. (2017) propose to penalize the en-

tropy of the output distribution for encouraging

models to be less confident in their predictions.

Previously, Szegedy et al. (2016) introduce a label

smoothing mechanism to reduce overfitting by pre-

2We follow the terminology used by He et al. (2019).

venting the model from assigning a full probability

to each training example. Our method regularizes

models’ confidence differently: we first perform

an adaptive label smoothing for the training us-

ing knowledge distillation (Hinton et al., 2015),

which, by itself, is known to improve the overall

performance. However, our method involves an ad-

ditional bias-weighted scaling mechanism within

the distillation pipelines. As we will show, our pro-

posed scaling mechanism is crucial in leveraging

the knowledge distillation technique for the pur-

pose of overcoming the targeted bias while main-

taining high accuracy in the training distribution.

Similar to our work, Feng et al. (2018) propose

a regularization method that encourages the model

to be uncertain on specific examples. However,

the objective and the methodology are different:

they apply an entropy penalty term on examples

that appear nonsensical to humans with the goal

of improving models’ interpretability. On the con-

trary, we apply our confidence regularization on

every training example with a varying strength

(i.e., higher uncertainty on more biased examples)

to improve models’ performance on the out-of-

distribution data.

3 Method

Overview We consider the common formulation

of NLU tasks as a multi-class classification prob-

lem. Given a dataset D that consists of n examples

(xi, yi)i∈[1,n], with xi ∈ X as a pair of sentences,

and yi ∈ {1, 2, ...,K} where K is the number of

classes. The goal is to learn a robust classifier Fm,

which computes the probability distribution over

target labels, i.e., Fm(xi) = pi.

The key idea of our method is to explicitly train

Fm to compute lower probability, i.e., less confi-

dence, on the predicted label when the input ex-

ample exhibits a bias. This form of confidence

regularization can be done by computing the loss

function with the “soft” target labels that are ob-

tained through our proposed smoothing mechanism.

The use of soft targets as the training objective is

motivated by the observation that the probability

distribution of labels for each sample provides valu-

able information about the underlying task (Hinton

et al., 2015; Pereyra et al., 2017). When the soft

targets of certain examples have higher entropy,

models can be explicitly taught that some labels

are more likely to be correct than the others. Based

on this intuition, we argue that adjusting the con-
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Dataset       

P: The air defense of America 
began with this call.

H: This call began the air 
defense of America.

Teacher
Model

Biased 
Model

Bias-weighted 
scaling 

Main
Modeldistill

y: entailment cont.
ent.

neut. cont.
ent.

neut.

1.0

0.0

0.0

0.6

Figure 1: An overview of our debiasing strategy when applied to the MNLI dataset. An input example that contains

lexical-overlap bias is predicted as entailment by the teacher model with a high confidence. When biased model

predicts this example well, the output distribution of the teacher will be re-scaled to indicate higher uncertainty

(lower confidence). The re-scaled output distributions are then used to distill the main model.

fidence on soft labels can better inform the model

about the true conditional distribution of the labels

given the presence of the biased features.

We first produce a meaningful softened target

distribution for each training example by perform-

ing knowledge distillation (Hinton et al., 2015).

In this learning framework, a “teacher” model Ft,

which we parameterize identically to the main

model Fm, is trained on the dataset D using a

standard classification loss. We then use Ft to

compute output probability distribution p̂i, where

Ft(xi) = p̂i. In the original knowledge distilla-

tion approach, the output of the teacher model p̂i is

then used to train Fm. We extend this approach by

adding a novel scaling procedure before we distill

the teacher model into Fm. We define a scaling

function S that takes the probability distribution

p̂i and scale it such that the probability assigned

to its predicted label is lowered when the example

can be predicted well by only relying on the biased

features.

Training the biased model For several NLU

tasks, biased features are known a-priori, e.g.,

the word overlapping features in NLI datasets are

highly correlated with the entailment label (McCoy

et al., 2019b). We leverage this a-priori knowledge

to design a measure of how well an example can be

predicted given only the biased features. We refer

to this measure as bias weight, denoted as βi for

every example xi.

Similar to previous debiasing methods (Clark

et al., 2019a), we compute bias weights using

a biased model. This biased model, denoted as

Fb, predicts the probability distribution bi, where

Fb(xi) = bi = 〈bi,1, bi,2, ..., bi,K〉. We define

the bias weight βi as the scalar value of the as-

signed probability by Fb to the ground truth label:

βi = bi,c (c-th label is the ground truth).

Bias-weighted scaling As illustrated in Figure 1,

our method involves scaling the teacher output p̂i
using βi. We do this by defining a scaling function

S : RK → R
K :

S(p̂i, βi)j =
ˆpi,j

(1−βi)

∑K
k=1 ˆpi,k

(1−βi)

for j = 1, ...,K. The value of βi controls the

strength of the scaling: as βi → 1, the scaled prob-

ability assigned to each label approaches 1
K

, which

presents a minimum confidence. Conversely, when

βi → 0, the teacher’s probability distribution re-

mains unchanged, i.e., S(p̂i, 0) = p̂i.

Training the main model The final step is to

train Fm by distilling from the scaled teacher

model’s outputs. Since the main model is parame-

terized identically to the teacher model, we refer to

this step as self-distillation (Furlanello et al., 2018).

Self-distillation is performed by training Fm on

pairs of input and the obtained soft target labels

(xi,S(p̂i, βi)). Specifically, Fm is learned by min-

imizing a standard cross-entropy loss between the

scaled teacher’s output S(p̂i, βi) and the current

prediction of the main model:

L(xi,S(p̂i, βi)) = −S(p̂i, βi) · logFm(xi)

In practice, each S(p̂i, βi) is computed only once

as a preprocessing step. Our method does not re-

quire hyperparameters, which can be an advantage

since most out-of-distribution datasets do not pro-

vide a development set for tuning the hyperparame-

ters.
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4 Experimental Setup

In this section, we describe the datasets, models,

and training details used in our experiments.

4.1 Natural Language Inference

We use the MNLI dataset (Williams et al., 2018) for

training. The dataset consists of pairs of premise

and hypothesis sentences along with their inference

labels (i.e., entailment, neutral, and contradiction).

MNLI has two in-distribution development and test

sets, one that matches domains of the training data

(MNLI-m), and one with mismatching domains

(MNLI-mm). We consider two out-of-distribution

datasets for NLI: HANS (Heuristic Analysis for

NLI Systems) (McCoy et al., 2019b) and MNLI-

hard test sets (Gururangan et al., 2018).

HANS The dataset is constructed based on the

finding that the word overlapping between premise

and hypothesis in NLI datasets is strongly corre-

lated with the entailment label. HANS consists of

examples in which such correlation does not ex-

ist, i.e., hypotheses are not entailed by their word-

overlapping premises. HANS is split into three

test cases: (a) Lexical overlap (e.g., “The doctor

was paid by the actor” ; “The doctor paid the

actor”), (b) Subsequence (e.g., “The doctor near

the actor danced” ; “The actor danced”), and (c)

Constituent (e.g., “If the artist slept, the actor ran”

; “The artist slept”). Each category contains both

entailment and non-entailment examples.

MNLI-hard Hypothesis sentences in NLI

datasets often contain words that are highly

indicative of target labels (Gururangan et al., 2018;

Poliak et al., 2018). It allows a simple model that

predicts based on the hypothesis-only input to

perform much better than the random baseline.

Gururangan et al. (2018) presents a “hard” split of

the MNLI test sets, in which examples cannot be

predicted correctly by the simple hypothesis-only

model.

4.2 Fact Verification

For this task, we use the training dataset provided

by the FEVER challenge (Thorne et al., 2018).

The task concerns about assessing the validity of a

claim sentence in the context of a given evidence

sentence, which can be labeled as either support,

refutes, and not enough information. We use the

Fever-Symmetric dataset (Schuster et al., 2019) for

the out-of-distribution evaluation.

Fever-Symmetric Schuster et al. (2019) intro-

duce this dataset to demonstrate that FEVER mod-

els mostly rely on the claim-only bias, i.e., the

occurrence of words and phrases in the claim that

are biased toward certain labels. The dataset is

manually constructed such that relying on cues of

the claim can lead to incorrect predictions. We

evaluate the models on the two versions (version 1

and 2) of their test sets.3

4.3 Paraphrase Identification

We use the Quora Question Pairs (QQP) dataset

for training. QQP consists of pairs of questions

which are labeled as duplicate if they are para-

phrased, and non-duplicate otherwise. We evaluate

the out-of-distribution performance of QQP models

on the QQP subset of PAWS (Paraphrase Adver-

saries from Word Scrambling) (Zhang et al., 2019).

PAWS The QQP subset of PAWS consists of

question pairs that are highly overlapping in words.

The majority of these question pairs are labeled as

non-duplicate. Models trained on QQP are shown

to perform worse than the random baseline on this

dataset. This partly indicates that models largely

rely on lexical-overlap features to perform well

on QQP. We report models’ performance on the

duplicate and non-duplicate examples separately.

4.4 Models

Baseline Model We apply all of the debiasing

methods across our experiments on the BERT base

model (Devlin et al., 2019), which has shown im-

pressive in-distribution performance on the three

tasks. In our method, BERT base is used for both

Ft and Fm. We follow the standard setup for sen-

tence pair classification tasks, in which the two

sentences are concatenated into a single input and

the special token [CLF] is used for classification.

Biased Model (Fb) We consider the biased fea-

tures of each of the examined out-of-distribution

datasets to train the biased models. For HANS

and PAWS, we use hand-crafted features that indi-

cate how words are shared between the two input

sentences. Following Clark et al. (2019a), these

features include the percentage of hypothesis words

that also occur in the premise and the average of

cosine distances between word embedding in the

premise and hypothesis.4 We then train a simple

3https://github.com/TalSchuster/

FeverSymmetric
4We include the detailed description in the appendix.
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Method
MNLI-m MNLI-mm HANS Hard subset
dev test dev test lex. subseq. const. avg. MNLI-m MNLI-mm

BERT-base 84.3 ± 0.3 84.6 84.7 ± 0.1 83.3 72.4 52.7 57.9 61.1 ± 1.1 76.8 75.9

Learned-mixin hans 84.0 ± 0.2 84.3 84.4 ± 0.3 83.3 77.5 54.1 63.2 64.9 ± 2.4 - -
Product-of-expert hans 82.8 ± 0.2 83.0 83.1 ± 0.3 82.1 72.9 65.3 69.6 69.2 ± 2.6 - -

Regularized-conf hans 84.3 ± 0.1 84.7 84.8 ± 0.2 83.4 73.3 66.5 67.2 69.1 ± 1.2 - -

Learned-mixin hypo 80.5 ± 0.4 79.5 81.2 ± 0.4 80.4 - - - - 79.2 78.2
Product-of-expert hypo 83.5 ± 0.4 82.8 83.8 ± 0.2 84.1 - - - - 79.8 78.7

Regularized-conf hypo 84.6 ± 0.2 84.1 85.0 ± 0.2 84.2 - - - - 78.3 77.3

Table 2: The in-distribution accuracy (in percentage point) of the NLI models along with their accuracy on out-

of-distribution test sets: HANS and MNLI hard subsets. Models are only evaluated against their targeted out-of-

distribution dataset.

nonlinear classifier using these features. We refer

to this biased model as the hans model.

For MNLI-hard and Fever-Symmetric, we train

a biased model on only hypothesis sentences and

claim sentences for MNLI and FEVER, respec-

tively. The biased model is a nonlinear classifier

trained on top of the vector representation of the in-

put sentence. We obtain this vector representation

by max-pooling word embeddings into a single vec-

tor for FEVER, and by learning an LSTM-based

sentence encoder for MNLI.

State-of-the-art Debiasing Models We com-

pare our method against existing state-of-the-art

debiasing methods: product-of-expert (He et al.,

2019; Mahabadi and Henderson, 2019) and its vari-

ant learned-mixin (Clark et al., 2019a). product-of-

expert ensembles the prediction of the main model

(pi) with the prediction of the biased model (bi)

using p′i = softmax(log pi + log bi), where p′i
is the ensembled output distribution. This ensem-

bling enables the main model to focus on learning

from examples that are not predicted well by the bi-

ased model. Learned-mixin improves this method

by parameterizing the ensembling operation to let

the model learn when to incorporate or ignore the

output of the biased model for the ensembled pre-

diction.

On FEVER, we also compare our method against

the example-reweighting method by Schuster et al.

(2019). They compute the importance weight of

each example based on the correlation of the n-

grams within the claim sentences with the target

labels. These weights are then used to compute the

loss of each training batch.

Training Details As observed by McCoy et al.

(2019a), models can show high variance in their

out-of-distribution performance. Therefore, we

run each experiment five times and report both

average and standard deviation of the scores.5 We

also use training configurations that are known to

work well for each task.6 For each experiment, we

train our confidence regularization method as well

as product-of-expert and learned-mixin using the

same biased-model. Since the challenge datasets

often do not provide a development set, we could

not tune the hyperparameter of learned-mixin. We,

therefore, use their default weight for the entropy

penalty term.7

5 Results

The results for the tasks of NLI, fact verification,

and paraphrase identification are reported in Ta-

ble 2, Table 3, and Table 4, respectively.

5.1 In-distribution Performance

The results on the original development and test

sets of each task represent the in-distribution per-

formance. Since we examine two types of bi-

ases in NLI, we have two debiased NLI mod-

els, i.e., Regularized-conf hans and Regularized-

conf hypo which are trained for debiasing HANS

and hypothesis-only biases, respectively.

We make the following observations from the

results: (1) Our method outperforms product-of-

expert and learned-mixin when evaluated on the

corresponding in-distribution data of all the three

tasks; (2) Product-of-expert and learned-mixin

drop the original BERT baseline accuracy on most

5Due to the limited number of possible submissions, we
report the MNLI test scores only from a model that holds the
median out-of-distribution performance.

6We set a learning rate of 5e−5 for MNLI and 2e
−5 for

FEVER and QQP.
7E.g., w = 0.03 for training on MNLI.
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Method FEVER dev Symm. v1 Symm. v2

BERT-base 85.8 ± 0.1 57.9 ± 1.1 64.4 ± 0.6

Learned-mixin claim 83.1 ± 0.7 60.4 ± 2.4 64.9 ± 1.6

Product-of-expert claim 83.3 ± 0.3 61.7 ± 1.5 65.5 ± 0.7

Reweighting bigrams 85.5 ± 0.3 61.7 ± 1.1 66.5 ± 1.3

Regularized-conf claim 86.4 ± 0.2 60.5 ± 0.4 66.2 ± 0.6

Table 3: Accuracy on the FEVER dataset and the cor-

responding challenge datasets.

of the in-distribution experiments; (3) Regardless

of the type of bias, our method preserves the in-

distribution performance. However, it is not the

case for the other two methods, e.g., learned-mixin

only results in a mild decrease in the accuracy

when it is debiased for HANS, but suffers from

substantial drop when it is used to address the

hypothesis-only bias; (4) Our method results in

a slight in-distribution improvement in some cases,

e.g., on FEVER, it gains 0.6pp over BERT baseline.

The models produced by Regularized-conf hans also

gain 0.1 points to both MNLI-m and MNLI-mm

test sets; (5) All methods, including ours decrease

the in-distribution performance on QQP, particu-

larly on its duplicate examples subset. We will

discuss this performance drop in Section 6.

5.2 Out-of-distribution Performance

The rightmost columns of each table report the eval-

uation results on the out-of-distribution datasets for

each task. Based on our out-of-distribution evalua-

tions, we observe that: (1) Our method minimizes

the trade-off between the in-distribution and out-

of-distribution performance compared to the other

methods. For example, on HANS, learned-mixin

maintains the in-distribution performance but only

improves the average HANS accuracy from 61.1%

to 64.9%. product-of-expert gains 7 points improve-

ment over the BERT baseline while reducing the

MNLI-m test accuracy by 1.6 points. On the other

hand, our method achieves the competitive 7 points

gain without dropping the in-distribution perfor-

mance; (2) The performance trade-off is stronger

on some datasets. On PAWS, the two compared

methods improve the accuracy on the non-duplicate

subset while reducing models’ ability to detect the

duplicate examples. Our method, on the other hand,

finds a balance point, in which the non-duplicate ac-

curacy can no longer be improved without reducing

the duplicate accuracy; (3) depending on the use of

hyperparameters, learned-mixin can make a lower

Method
QQP dev PAWS test

dupl ¬dupl dupl ¬dupl

BERT-base 88.4 ± 0.3 92.5 ± 0.3 96.9 ± 0.3 9.8 ± 0.4

LMixin hans 77.5 ± 0.7 91.9 ± 0.2 69.7 ± 4.3 51.7 ± 4.3

Prod-exp hans 80.8 ± 0.2 93.5 ± 0.1 71.0 ± 2.3 49.9 ± 2.3

Reg-conf hans 85.0 ± 0.7 91.5 ± 0.4 91.0 ± 1.8 19.8 ± 1.3

Table 4: Results of the evaluation on the QQP task.

out-of-distribution improvement compared to ours,

even after substantially degrading in-distribution

performance, e.g., on FEVER-symmetricv2, it only

gains 0.5 points while dropping 3 points on the

FEVER development set.

6 Discussions and Analysis

Ablation studies In this section, we show that

the resulting improvements from our method come

from the combination of both self-distillation and

our scaling mechanism. We perform ablation

studies to examine the impact of each of the

components including (1) self-distillation: we

train a model using the standard self-distillation

without bias-weighted scaling, and (2) example-

reweighting: we train a model with the standard

cross-entropy loss with an example reweighting

method to adjust the importance of individual ex-

amples to the loss. The weight of each example

is obtained from the (scaled) probability that is as-

signed by the teacher model to the ground truth

label.8 The aim of the second setting is to exclude

the effect of self-distillation while keeping the ef-

fect of our scaling mechanism.

Table 5 presents the results of these experiments

on MNLI and HANS. We observe that each com-

ponent individually still gains substantial improve-

ments on HANS over the baseline, albeit not as

strong as the full method. The results from the

self-distillation suggest that the improvement from

our method partly comes from the regularization

effect of the distillation objective (Clark et al.,

2019b; Furlanello et al., 2018). In the example-

reweighting experiment, we exclude the effect of all

the scaled teacher’s output except for the probabil-

ity assigned to the ground truth label. Compared to

self-distillation, the proposed example-reweighting

has a higher impact on improving the performance

in both in-distribution and out-of-distribution eval-

8Details of the ablation experiments are included in the
supplementary materials.
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Figure 2: Distribution of models’ confidence on their predicted labels. The blue areas indicate the fraction of each

bin that are correct. (a) Distribution on MNLI-m dev by models trained using hypothesis-only biased model. (b)

Distribution on non-entailment subsequence subset of HANS by models trained using hans biased-model.

Method MNLI HANS

BERT-base 84.3 61.1

Full method 84.3 69.1

self-distillation 84.6 64.4
example-reweighting 84.7 65.3

Table 5: Results of the ablation experiments. The

MNLI column refers to the MNLI-m dev set.

BERT-

baseline

product-of-

expert

learned-

mixin

conf-reg

(our)

MNLI-m 9.0 7.7 9.9 5.4

MNLI-mm 8.5 7.6 9.5 5.6

Table 6: The calibration scores of models measured by

ECE (lower is better).

uations. However, both components are necessary

for the overall improvements.

In-distribution performance drop of product-

of-expert The difference between our method

with product-of-expert and its variants is the use

of biased examples during training. Product-of-

expert in practice scales down the gradients on the

biased training examples to allow the model to fo-

cus on learning from the harder examples (He et al.,

2019). As a result, models often receive little to no

incentive to solve these examples throughout the

training, which can effectively reduce the training

data size. Our further examination on a product-of-

expert model (trained on MNLI for HANS) shows

that its degradation of in-distribution performance

largely comes from the aforementioned examples.

Ensembling back the biased-model to the main

model can indeed bring the in-distribution accu-

racy back to the BERT baseline. However, this also

leads to the original poor performance on HANS,

which is counterproductive to the goal of improving

the out-of-distribution generalization.

Impact on Models’ Calibration We expect the

training objective used in our method to discour-

age models from making overconfident predictions,

i.e., assigning high probability to the predicted la-

bels even when they are incorrect. We investigate

the changes in models’ behavior in terms of their

confidence using the measure of calibration, which

quantifies how aligned the confidence of the pre-

dicted labels with their actual accuracy are (Guo

et al., 2017). We compute the expected calibra-

tion error (ECE) (Naeini et al., 2015) as a scalar

summary statistic of calibration. Results in Table 6

show that our method improves model’s calibra-

tion on MNLI-m and MNLI-mm dev sets, with the

reduction of ECE ranging from 3.0 to 3.6. The his-

tograms in figure 2 show the distribution of mod-

els’ confidences in their predictions. Figure 2a

demonstrates that the prediction confidences of our

resulting model on MNLI-m are more smoothly

distributed. In figure 2b, we observe that our debi-

ased model predicts examples that contain lexical

overlap features with lower confidence, and when

the confidence is higher, the prediction is more

likely to be correct.

Impact of biased examples ratio To investigate

the slight in-distribution drop by our method in

QQP (Table 4), we examine the ratio of biased ex-

amples in the QQP training data by evaluating the
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Figure 3: Results on the PAWS-augmented QQP

dataset.

performance of the biased model on the dataset.

We find that almost 80% of the training examples

can be solved using the lexical overlap features

alone, which indicates a severe lexical overlap bias

in QQP.9 Moreover, in 53% of all examples, the

biased model makes correct predictions with a very

high confidence (βi > 0.8). For comparison, the

same biased model predicts only 12% of the MNLI

examples with confidence above 0.8 (more com-

parisons are shown in the supplementary material.

As a result, there are not enough unbiased exam-

ples in QQP and the resulting soft target labels

in this dataset are mostly close to a uniform dis-

tribution, which in turn may provide insufficient

training signal to maximize the accuracy on the

training distribution.

Impact of adding bias-free examples Finally,

we investigate how changing the ratio of biased

examples affects the behavior of debiasing meth-

ods. To this end, we split PAWS data into training

and test sets. The training set consists of 2500 ex-

amples, and we use the remaining 10K examples

as a test set. We train the model on QQP that is

gradually augmented with fractions of this PAWS

training split and evaluate on a constant PAWS

test set. Figure 3 shows the results of this experi-

ment. When more PAWS examples are added to

the training data, the accuracy of the BERT base-

line gradually improves on the non-duplicate subset

while its accuracy slowly drops on the duplicate

subset. We observe that product-of-expert exagger-

ates this effect: it reduces the duplicate accuracy up

9The random baseline is 50% for QQP.

to 40% to obtain the 93% non-duplicate accuracy.

We note that our method is the most effective when

the entire 2500 PAWS examples are included in the

training, obtaining the overall accuracy of 77.05%

compared to the 71.63% from the baseline BERT.

7 Conclusion

Existing debiasing methods improve the perfor-

mance of NLU models on out-of-distribution

datasets. However, this improvement comes at

the cost of strongly diminishing the training sig-

nal from a subset of the original dataset, which

in turn reduces the in-distribution accuracy. In

this paper, we address this issue by introducing a

novel method that regularizes models’ confidence

on biased examples. This method allows models

to still learn from all training examples without

exploiting the biases. Our experiments on four

out-of-distribution datasets across three NLU tasks

show that our method provides a competitive out-

of-distribution performance while preserves the

original accuracy.

Our debiasing framework is general and can be

extended to other task setups where the biases lever-

aged by models are correctly identified. Several

challenges in this direction of research may include

extending the debiasing methods to overcome mul-

tiple biases at once or to automatically identify the

format of those biases which simulate a setting

where the prior knowledge is unavailable.
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A Ablation Details

For the second setting of our ablation studies, we

perform an example reweighting using the scaled

probability of the teacher model Ft on the ground

truth label. Specifically, the cross entropy loss as-

signed to each batch of size m is computed by the

following:

−
b∑

s=1

ˆps,c∑b
u=1 ˆpu,c

· log(ps,c)

where we assume that cth label is the ground truth

label. The probability assigned to the correct label

by the teacher model is then denoted as ˆps,c. The

currect predicted probability of the main model is

denoted as ps,c.

B Bias Weights Distribution

Figure 4 shows the performance of biased models

on QQP, MNLI, and FEVER. For QQP and MNLI

we show the results of biased model trained using

lexical overlap features. For FEVER, the biased

model is trained with claim-only partial input. We

show that on PAWS (figure 4a), a large portion of

examples can be predicted with a very high confi-

dence by the biased model.

C HANS Biased Model

We use the hand-crafted HANS-based features pro-

posed by Clark et al. (2019a). These features in-

clude: (1) whether all words in the hypothesis exist

in the premise; (2) whether the hypothesis is a con-

tiguous subsequence of the premise; (3) the frac-

tion of hypothesis words that exist in the premise;

(4) the average and the max of cosine distances

between word vectors in the premise and the hy-

pothesis.
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Figure 4: The distribution of biased model confidence on three training datasets of QQP, MNLI, and FEVER.


