
This is a repository copy of In Vision It Is Groups, Rather Than Maps, That Determine How
We Perceive the World.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190568/

Version: Published Version

Article:

Quinlan, Philip Thomas orcid.org/0000-0002-8847-6390, Allen, Keith Malcolm 
orcid.org/0000-0002-3219-2102 and Cohen, Dale (2022) In Vision It Is Groups, Rather 
Than Maps, That Determine How We Perceive the World. Vision. 51. ISSN 2411-5150 

https://doi.org/10.3390/vision6030051

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Citation: Quinlan, P.T.; Allen, K.;

Cohen, D.J. In Vision It Is Groups,

Rather Than Maps, That Determine

How We Perceive the World. Vision

2022, 6, 51. https://doi.org/10.3390/

vision6030051

Received: 13 May 2022

Accepted: 16 August 2022

Published: 19 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

vision

Article

In Vision It Is Groups, Rather Than Maps, That Determine How
We Perceive the World

Philip T. Quinlan 1,* , Keith Allen 2 and Dale J. Cohen 3

1 Department of Psychology, The University of York, Heslington, York YO10 5DD, UK
2 Department of Philosophy, The University of York, Heslington, York YO10 5DD, UK
3 Department of Psychology, The University of North Carolina at Wilmington, Wilmington, NC 28403, USA

* Correspondence: philip.quinlan@york.ac.uk

Abstract: This paper presents the results of a study that used a speeded counting task to adjudicate

between two competing theories of how perceptual representations of visual objects are derived.

Boolean map (BM) theory assumes that there are strict limits on conscious awareness, such that

we only have serial access to features on the same dimension (e.g., red and green). This theory

contrasts with views that emphasize the early grouping of features, and which assume that feature

processing is interactive and underpins figure/ground segregation as a necessary precursor to object

perception. To test between these theories, we report performance in a speeded counting task in

which participants were asked to judge which of two shapes was more prevalent. Displays contained

squares and circles that appeared in either of two colors, with color and shape distinctions either

perfectly correlated (i.e., compatible) or not (i.e., incompatible). BM theory predicts no influence

of the relative coincidence of color and shape on the identification of the more prevalent shape. In

contrast, grouping theory predicts that performance will be better when the color/shape distinction is

compatible than when it is incompatible. Our data strongly support the grouping theory predictions.

We conclude that the primary constraints on how visual objects are accessed are the number and kind

of groupings that are recovered, not the number of feature maps consulted.

Keywords: Boolean map theory; perceptual grouping; human visual processing; object counting

1. Introduction

How are perceptual representations of visual objects derived? It is commonly assumed
that, at a very early stage of visual processing, perceptible features (e.g., color, shape, and
motion) are registered on separate, functionally independent, feature maps [1]. In setting
out Boolean map (BM) theory, Huang and colleagues [2–6] adopted these architectural
assumptions and used them to make claims about functional constraints that operate
when people see. One particularly striking claim is that the visual system undertakes a
“divide and conquer” approach, with the constituent features of the visual world being
registered on corresponding feature maps, and information from these maps then being
used to construct subsequent representations of the optic array in terms of what are known
as ‘Boolean maps’. The aim of this study is to assess the BM theory of how perceptual
representations of visual objects are derived, and compare it with a competing account that
instead emphasizes the early grouping of features.

In general terms, a given Boolean map codes the locations of items that share a
common featural value. For instance, all red items would be captured on a RED Boolean
map. There is not one ‘color map’ per se, but different maps for particular colors: for
example, one map for red items and a different map for green. Once such a map has been
constructed for a particular featural value, all the other properties of items coded on the
map can then be accessed. Thus, once a red color map has been constructed, squares that
are red can be identified. Critically though, only one such map can be processed at a time.
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As a consequence, red and green items cannot be processed in parallel, and neither can red
items and squares.

Given this strict serial constraint, very particular predictions have been derived. For
example, the theory predicts that the time to judge the symmetry of a matrix of colored
square patches will scale as a function of the number of types of colors that are present,
and, indeed, this is exactly what has been found [7,8].

Since its inception, the theory has developed and much evidence has been marshalled
in its support [2–4]. We provide detailed discussion of some key aspects of this work as the
material unfolds. We begin, however, with a recent development in which contrasts have
been drawn between predictions derived from BM theory and those derived from theories
that give a prominent role to grouping. Huang [4] reported findings from an experiment
on visual short-term memory in which the to-be-remembered display contained six color
discs. In some displays the disks were spatially separate, and in others, pairs of discs were
configured as dumbbells—discs connected by a single bar. According to one grouping
hypothesis, memory ought to be facilitated for the dumbbell configurations relative to
the spatially separate discs. This is based on the assumption that fewer object-based
representations are encoded and stored in short-term memory in the dumbbell case than
the disc case (i.e., three vs. six objects, respectively). However, in probing memory for the
color of one of the discs selected at random, Huang failed to show any additional memory
benefit when the discs were connected versus when they were not. This evidence was
taken as being more in line with featural-based processing, and hence BM theory, rather
than object-based processing based on grouping by connectedness.

As with any null effects, interpretation is difficult and partly because of this we were
motivated to compare and contrast BM theory with a theory of processing based on more
general Gestalt principles of grouping that go beyond connectedness. Fundamentally, the
ideas about Gestalt grouping are that plausible figures are separated from their background
by interactive activation and the competitive processing of the current perceptual features;
that is, figure/ground segregation is facilitated when information across different per-
ceptual dimensions suggests the same parcellation of the input, and inhibited when cues
on different dimensions suggest different groupings [9–11]. The central idea is that basic
perceptual processes operate from the bottom–up in such a way that plausible best guesses
are made about possible objects in the immediate environment. Further processing can
then be directed towards object-based representations.

This grouping account contrasts with BM theory in this respect, which simply assumes
that the only significant processing constraints operate once object-based representations
have been derived. The theory posits that figure/ground segregation is a necessary step
prior to accessing an object’s properties. Such property access is then constrained by the
construction and consultation of information specified on at least one Boolean map. There
is no notion of facilitation across different perceptual dimensions. There are only time costs
associated with the construction and recovery of featural information from independent
Boolean maps.

Given the contrasting nature of the two theories, we aimed to derive different sets of
predictions of performance in a novel speeded shape-counting task, pitting the featural
processing account of BM theory in which the number of feature maps is critical against a
grouping account in which it is the number of featural groups that is critical. In this task,
participants were presented with visual displays containing colored squares and circles
and were instructed to judge whether squares or circles were more prevalent and respond
accordingly. Figure 1 provides schematic representations of the kinds of displays used in
the experiment. The figure simply sets out the different types of colored shapes that were
present in a given display: it does not convey the actual spatial layout of any actual display.
The shapes were randomly positioned around a central fixation point in a non-overlapping
fashion and the shapes’ positions were randomly determined prior to each trial.
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Figure 1. Examples of the composition of the displays used. The figure does not reflect the spatial

layout of the shapes in the displays. The individual shapes were positioned randomly within a virtual

rectangle centered at fixation and the positions of the shapes were determined at random prior to

each trial. An important constraint was that none of the shapes could overlap.

The three critical conditions were as follows and were defined with respect to particular
kinds of displays (see Figure 1). In the Shape_Diff/Col_Same displays, there were two
different kinds of shapes present in the same color. In the Shape_Diff/Comp displays,
two different kinds of colored shapes were present; hence, type of shape and type of
color were perfectly correlated (these are the so-called ‘compatible’ cases). Finally, in the
Shape_Diff/Incomp displays, there were two different kinds of shapes and two different
kinds of colors, but shape distinction and the color distinction did not coincide (these were
‘incompatible’ cases).

Gestalt principles of grouping predict that performance will be most efficient when
the type of color and the type of shape correlate perfectly. This is because grouping
according to a common shape and grouping according to a common color coincide. It will
be least efficient when common shape and, separately, common color suggest different
groupings [11]. This is because it is assumed that the strength of a grouping is, in part,
determined by the strength of similarity between the items that are being grouped [12].
Thus, Gestalt principles of grouping predict that participants will respond quickest in
the Shape_Diff/Comp condition because the shape and color distinctions are coincident
and grouping will be facilitated. In contrast, participants should respond slowest in the
Shape_Diff/Incomp condition because the conflicting shape and color differences will
inhibit grouping. We can think of the Shape_Diff/Col_Same condition as something of a
control condition when the counting of different shapes within the same group takes place.

For completeness, we also included two control conditions. In the Shape_Same/Col_Same
displays, all the shapes were the same and they all shared a common color. The Shape_Same/
Col_Diff displays contained two differently colored tokens of the same type of shape. Any
contrast in performance across these two conditions allowed us to examine the degree to
which an irrelevant color difference across the shapes affected performance. Remember,
in order to complete the task efficiently, participants had to discount any color differences
that might have been present in the displays.

Deriving predictions of performance in our shape counting task from BM theory is
not straightforward. The key processing constraint in BM theory is the number of maps
that need to be constructed and consulted in order to complete the task. However, the
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picture is more nuanced than this. In keeping with feature integration theory [1], BM theory
accepts that, fundamentally, perceptual information is registered on independent maps.
Perception ultimately depends on the kinds of Boolean maps that are then created and
consulted. A crucial distinction, however, is drawn between ‘access’ and ‘selection’ [2–5],
such that, “Access defines the limit . . . of visual information that is able to reach the stage
of consciousness at any one moment. Selection . . . governs what gains access to the stage
of consciousness” [2] (p. 162). The basic idea is that items in a display can be easily selected
if they share a salient common property. However, such selection alone may not support
item identification. Merely selecting the green items from a display of red and green items
is not sufficient itself to indicate which of the green items is a letter ‘T’, for example. In BM
theory, the claim is that additional constraints apply once items have been selected on the
basis of a particular common feature.

In particular, a Boolean map is the linkage of one feature value per dimension with
a set of locations [2]: all the items coded on the RED map are red and from this map
representation the items’ other perceptual characteristics can be accessed. In the case where
the display contains only one red item, its shape is easy to access because the RED map also
codes a single shape. However, accessing shape information is compromised when different
types of red shapes are present. Different shapes are not explicitly represented on the same
color map. Hence, accessing shape information must proceed on an item-by-item basis.

Given this, consider a display containing a red circle on the right and a green square
on the left. Let us assume that (for whatever reason) a RED map is constructed: this map
captures a red region on the left such that this region is also registered as a circle. This is
because, “even if a Boolean map can simultaneously contain only one feature from each
dimension it can simultaneously contain multiple feature labels from multiple different
dimensions” [2] (p. 164), with the additional proviso that only one other type of feature
label per dimension can be so coded. As long as the display contains only red circles then
both ‘red’ and ‘circle’ are coded on the Boolean color map. Critically, though, if the green
square were to be replaced by a red square, then the representation of the two shapes (i.e.,
‘circle’ and ‘square’) is indeterminate on the RED map and hence shape information is
now inaccessible.

Given this understanding of BM theory, we may now derive predictions for the current
shape counting task. In BM theory it is claimed that the generation of Boolean maps is
under conscious control [5]; therefore, the optimal strategy is to construct and consult
Boolean maps for shape because the task demands judging the most prevalent shape. As a
consequence, BM theory predicts that performance would be equivalent in all of the critical
conditions. This is because, in all cases, two shape maps need to be consulted to determine
the most prevalent shape. Since this prediction contrasts with that of the grouping account,
the speeded counting task promises to provide a way of deciding between these competing
hypotheses. We consider in the general discussion whether more complex predictions can
be made from the BM theory by relaxing the strictures of the original theory.

Two experiments were carried out. The two experiments were identical except in one
regard: in Experiment 1, there was no response deadline and the stimulus display remained
on until a response was registered. In Experiment 2, participants had a response deadline
of 1.5 s, and so participants were pressed to respond quickly. On every trial, the stimulus
display comprised randomly positioned geometrical shapes (only squares, only circles,
or a mixture of both—see Figure 1). The task was to decide as quickly and accurately as
possible whether there were more squares or more circles.

2. Experiment 1

2.1. Participants

In Experiment 1, data from 30 participants were collected (mean age 21 years). All of the
participants were second-year undergraduates who received course credit as remuneration.



Vision 2022, 6, 51 5 of 13

2.2. Procedure and Design

The onset of each trial was signaled by the presentation of a central dot for 500 ms.
Immediately following the stimulus, the display was presented and participants were
instructed to decide whether there were more squares or more circles present. To respond
‘more squares’ they pressed the ‘K’ keyboard key and to respond ‘more circles’ they pressed
the ‘D’ key. They were instructed to respond as quickly and accurately as possible. Visual
feedback of either ‘Correct’ or ‘Error’ was presented for 300 ms, and following a blank of
another 300 ms, the next trial started.

Each shape’s location was chosen at random within an unmarked rectangular area
(width—280 pixels; height—360 pixels). Shapes were drawn as non-overlapping. The circle
had a radius of 10 pixels and the square was defined to be equivalent in area to the circle.
The background of the screen was black and the color of the shapes was determined on
a quasi-random fashion from the following PC colors: red, green, blue and yellow. The
assignment of the shapes and colors was determined according to the trial type.

There were five basic conditions replicated across three display set sizes (see Figure 1).
Displays either contained three, five or seven shapes. Two control conditions were des-
ignated (i) Shape_Same/Col_Same: displays in which all the shapes were the same and
they all shared a common color, or (ii) Shape_Same/Col_Diff: displays in which all the
shapes were the same but the larger and smaller subsets were presented in different col-
ors. In the critical conditions, the larger subset comprised one kind of shape (circles or
squares) and the smaller subset comprised the other kind. The conditions were designated
(i) Shape_Diff/Col_Same: all of the shapes shared a common color, (ii) Shape_Diff/Comp:
displays in which type of color and type of shape were perfectly correlated (for in-
stance, three green circles and two red squares—these were the compatible cases), or
(iii) Shape_Diff/Incomp: displays in which type of color did not map perfectly onto the
type of shape (for instance, two green circles, two red squares and one red circle—these
were the incompatible cases).

The experimental script was written in JavaScript in the context of the JSPsych li-
brary [13]. Once a participant had agreed by email to complete the experiment, they were
forwarded a link to the experimental script. As a consequence, each participant ran the
experiment on whatever computer they had access to, and they were at liberty to test
themselves wherever and whenever they wanted. They were asked to test themselves
in a quiet place away from distractions and interruptions. Accessing the link launched
the script that ran in their own web browser in full screen mode. There were 30 different
kinds of trial type in total (15 each for the square and circle response, respectively) and
initially participants ran through a random order of these in an initial block of practice trials.
Next, six blocks of experimental trials were presented. Each block comprised 120 trials
constituted by 4 random orders of the 30 trial types. At the end of each block a pause
message was presented, and the participant self-initiated the next block of trials with a key
response on the keyboard.

2.3. Results

2.3.1. Control Conditions

We began by focusing on performance in the two control conditions (see Figure 2 for
a graphical summary of the mean RTs). The mean RTs per condition of interest for each
participant were entered into a 3 × 2 repeated-measures ANOVA in which display set size
(three, five, and seven) and condition (Shape_Same/Col_Same vs. Shape_Same/Col_Diff)
acted as fixed factors and participants acted as a random factor. The analysis revealed
that only the main effect of condition reached statistical significance: F (1, 29) = 21.85,
p < 0.001, η2

p = 0.43; F (2, 58) = 1.04, p > 0.05, η2
p = 0.04, for the main effect of display set

size; and F (2, 58) = 2.01, p > 0. 05, η2
p = 0.07, for the condition x display set size interaction.

Corresponding error rates did not exceed 8% and when mean error rates were analyzed in
a similar fashion to RTs none of the tests reached statistical significance at the 0.05 level.
There was no evidence of any systematic speed/error trade-offs (see Table 1 for summaries
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of the measures of accuracy). In sum, for displays containing only a single shape type,
participants were slower in their shape prevalence judgments when two colors were present
than when all the shapes shared a common color.

Figure 2. Graphical illustration of the mean RTs for the control conditions in Experiment 1. Error bars

reflect 95% CIs as recommended by Bakeman and McArthur [14].

Table 1. Average error rates (expressed as proportions) for the conditions of interest in Experiment 1.

Display Type Display Set Size

3 5 7

Shape_Diff/Col_Same 0.12 0.13 0.18
Shape_Diff/Comp 0.10 0.11 0.14

Shape_Diff/Incomp 0.12 0.14 0.24
Shape_Same/Col_Same 0.07 0.05 0.06
Shape_Same/Col_Diff 0.08 0.06 0.06

2.3.2. Critical Conditions

Turning to the data from the critical conditions, the corresponding mean RTs were
entered into a 3 × 3 repeated-measures ANOVA in which display set size (as before) and
condition (Shape_Diff/Col_Same, Shape_Diff/Compatible and Shape_Diff/Incompatible)
were entered as fixed factors and participants acted as a random factor (see Figure 3 for
a graphical illustration of the corresponding RT data). The analysis revealed statistically
significant main effects of both display set size, F (2, 58) = 130.03, p < 0.001, η2

p = 0.82, and

condition, F (2, 58) = 67.69, p < 0.001, η2
p = 0.70, and a statistically significant display set

size x condition interaction, F (4, 116) = 8.85, p < 0.001, η2
p = 0.23. Results of the Bonferroni-

corrected simple main effects are shown in Figure 3. Most importantly, for all three display
set sizes, participants were slower to respond to incompatible cases than compatible cases
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(and this difference scaled directly with display set size). This critical finding favors an
account of processing based on grouping rather than one that posits constraints about the
sequential interrogation of functionally separate feature maps.

Figure 3. Graphical illustration of the mean RTs for the critical conditions in Experiment 1. Error bars

reflect 95% CIs as recommended by Bakeman and McArthur [14]. ns signifies not statistically reliable

at the 0.05 level; *** signifies p < 0.001; * signifies p < 0.05 (Bonferroni corrected).

A corresponding ANOVA on the error rates mirrored the pattern of significance
reported for the RTs. The analysis revealed statistically significant main effects of both
display set size, F (2, 58) = 29.56, p < 0.001, η2

p = 0.51, and condition, F (2, 58) = 33.83,

p < 0.001, η2
p = 0.54, together with a statistically significant display set size x condition

interaction, F (4, 116) = 9.18, p < 0.001, η2
p = 0.24. In all cases, participants were less accurate

with incompatible displays than the compatible displays (although for display set size 3,
this difference only approached statistical significance, p = 0.073, Bonferroni corrected). As
with the RT data, the compatibility effect scaled directly with display set size. There was no
evidence of any systematic speed/error trade-offs.

3. Experiment 2

3.1. Participants

In Experiment 2, 27 participants were recruited from the York Psychology Depart-
ment’s participant panel. The panel predominantly comprised student members of the
university. Remuneration was in terms of a £5 Amazon voucher or course credit. One
participant’s data were omitted from consideration due to a high prevalence of missed
responses (72% of trials were either missed trials or errors). The mean age of the remaining
26 participants was 22 years.

3.2. Procedure

The only difference between Experiment 1 and 2 was the presence of a 1.5 s response
deadline. In Experiment 2, if the computer failed to detect a keyboard response within 1.5 s
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it moved onto the next trial. Participants in Experiment 2 were also instructed at the start
of testing about the 1.5 s time limit on responding.

3.3. Results

3.3.1. Control Conditions

The analysis of the RT data revealed that both the main effect of condition,
F (1, 25) = 45.25, p < 0.001, η2

p = 0.64, and the condition x display set size interaction,

F (2, 50) = 11.94, p < 0.001, η2
p = 0.32, reached statistical significance, F (2, 50) = 1.30, p > 0.05,

η2
p = 0.05, for the main effect of display set size. The results in Experiment 2 largely mirror

the effects reported for Experiment 1—the only slight discrepancy is that whereas, in this
case, the condition x display set size interaction was statistically reliable, it failed to reach
statistical significance in the data for Experiment 1 (there p = 0.06). Nonetheless, the pattern
of responding was the same, with the effect of condition being less marked with display set
size 3 than with the larger displays. A graphical illustration of the RT data can be found in
Figure 4.

Figure 4. Graphical illustration of the mean RTs for the control conditions in Experiment 2. Error bars

reflect 95% Cis, as recommended by Bakeman and McArthur [14].

Accuracy levels were generally high with no error rate exceeding 6% in any condition
(see Table 2). Analysis revealed that both the main effect of condition, F (1, 25) = 4.88,
p < 0.05, η2

p = 0.16, and the condition x display set size interaction, F (2, 50) = 3.33, p < 0.05,

η2
p = 0.12, reached statistical significance, F < 1.0 for the main effect of display set size. These

effects were particularly small and appeared to be carried by the pattern of responding for
display set size 5. There is no apparent reason for this.
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Table 2. Average error and miss rates (expressed as proportions) for the conditions of interest in

Experiment 2.

Display Type Display Set Size

3 5 7

Err Miss Err Miss Err Miss

Shape_Diff/Col_Same 0.11 0.01 0.13 0.02 0.21 0.05
Shape_Diff/Comp 0.08 0.01 0.10 0.01 0.15 0.02

Shape_Diff/Incomp 0.13 0.01 0.17 0.03 0.27 0.07
Shape_Same/Col_Same 0.04 0.00 0.05 0.00 0.04 0.00
Shape_Same/Col_Diff 0.04 0.00 0.03 0.00 0.04 0.00

3.3.2. Critical Conditions

The analysis revealed statistically significant main effects of both display set size,
F (2, 50) = 182.50, p < 0.001, η2

p = 0.88, and condition, F (2, 50) = 119.74, p < 0.001, η2
p = 0.83,

and a statistically significant display set size x condition interaction, F (4, 110) = 4.34,
p < 0.01, η2

p = 0.15. The results of the Bonferroni-corrected simple main effects are shown in
Figure 5. Critically for all three display set sizes, participants were slower to respond to
incompatible cases than compatible cases, supporting the grouping theory over BM theory.
A corresponding ANOVA on the error rates mirrored the pattern of significance reported
for the RTs. There was no evidence of any systematic speed/error trade-offs. A graphical
illustration of the RT data can be found in Figure 5.

Figure 5. Graphical illustration of the mean RTs for the critical conditions in Experiment 2. Error bars

reflect 95% CIs as recommended by Bakeman and McArthur [14]. ns signifies not statistically reliable

at the 0.05 level; *** signifies p <0.001; * signifies p < 0.05 (Bonferroni corrected).
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4. Discussion

The results of both experiments were in general agreement, and are relatively clear
cut. Participants were faster in making shape prevalence judgments when the type of
shape and type of color were perfectly correlated (in the compatible displays) than when
one instance of one kind of shape shared its color with the tokens of the other shape
type (in the incompatible displays). This pattern of performance was predicted by the
theory of processing based on Gestalt principles of grouping in which the strength of
grouping is, in part, determined by the strength of similarity of the items that are being
grouped. Importantly, grouping is seen to be an interactive and competitive process in
which information derived from concurrently presented perceptual dimensions determines
the perceptual organization of the input [9–11]. The present findings sit less well with BM
theory which posits constraints that operate as a consequence of the derivation of featural
information from a sequence of Boolean shape maps.

More specifically, the data are readily explicable within the framework sketched out
by Quinlan and Wilton [11], who argue that early grouping processes operate to divide
the individual display elements into clusters that may define an object or object part.
The evidence they report is indicative of grouping primarily on the basis of proximity.
According to Quinlan and Wilton [11], once such clusters have been derived, additional
processes are then invoked to establish whether the elements within a cluster are of the same
type. Here, in the absence of any systematic manipulation of proximity, the evidence reveals
grouping on the basis of the alignment of features from across perceptual dimensions, in line
with the writings of Kubovy and colleagues [9,10]. A theory of processing based on Gestalt
principles of grouping thereby provides a parsimonious account of the current results.

In contrast, the data do not accord well with the basic tenets of BM theory. According to
the most straightforward interpretation of the theory, BM theory predicts that performance
would be equivalent in all of the critical conditions, because in all those cases, two shape
maps need to be consulted to determine the most prevalent shape. This, however, is not
what we found.

We are mindful that because BM theory is not well-specified, it is possible to conjure ad
hoc explanations for the data that appear to follow from the theory. We therefore consider
how such a version of the theory might work. First, contrary to the claims of Huang and
Pashler [5] that the generation of Boolean maps is under conscious control, it might be
asserted that in special cases performance may be driven by the automatic construction of
color Boolean maps. For example, in the compatible condition, the salient color difference in
the displays will drive the creation of two separate color maps. Within each of these maps,
a common shape is encoded and shape counting proceeds with respect to these two maps.
In the incompatible condition, the color difference again drives the creation of two-color
maps; in one of the maps, a common shape is coded but the other contains different shape
types, and hence accessing the items’ shapes is compromised. In the Shape_Diff/Col_Same
condition, where there is no salient color difference, counting takes place on two separate
shape maps.

This interpretation of BM theory provides a very clear set of predictions. Shape
counting for the Shape_Diff/Col_Same and the compatible cases proceeds via shape access
on two different feature maps—two-shape maps and two-color maps, respectively—hence
RT should be equivalent across these two conditions. However, because shape access is
compromised in the incompatible case, there will be a RT penalty relative to the other two
conditions. As this is not the pattern that we report, we conclude that simply accepting that
color differences will automatically produce color Boolean maps fails to predict the overall
speeding in the compatible condition and therefore fails to accommodate the pattern of
performance found in our experiments. Indeed, we believe such an assumption is counter
to BM theory because of the claim that the creation of Boolean maps is under conscious
control. The nature of the colors of the shapes is completely irrelevant to the successful
completion of the task. Participants should, therefore, consciously strive to construct shape
and not color maps.
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To account for our data within a BM framework, it must be assumed that the sys-
tem always produces Boolean maps based on color first—even in the absence of any
color difference. By this assumption, a color Boolean map is constructed even in the
Shape_Diff/Col_Same case. Performance in the compatible condition will be fast because
two color maps are created and a single type of shape is registered on each map. Shape
counting can then proceed relative to these two maps. Performance in Shape_Diff/Col_Same
case will be relatively slower because shape information is inaccessible from the single-
color map that is created, and so two additional shape maps will need to be constructed
and consulted. Finally, performance in the incompatible condition will be slowest overall,
because on one of the color maps that is created shape information is inaccessible. On these
grounds, alternative shape maps must be constructed and consulted.

In discussing such a BM account, we accept that the data can be accommodated if a
key ad hoc assumption about the generation of color maps is accepted. This assumption
rests on additional processing constraints that are not present in the original formulation of
the theory and do not appear to be justified on grounds other than that they are needed to
account for the data. As Popper [15] stated, “we can always immunize a theory against
refutation” (p. 357), but in doing so, the theory becomes unscientific because it is impossible
to know the conditions under which it could be falsified. In contrast, the alternative theory
of grouping naturally accounts for the data.

Further support for this conclusion comes from complementary evidence that supports
an account based on grouping principles, and contradicts the predictions of BM theory. In an
experiment very similar to Experiment 2 described by Huang [2], Müller and O’Grady [16]
presented participants with a brief masked display containing two overlapping rectangles:
a vertically aligned and a horizontally aligned case, respectively. Each rectangle was
associated with two dimensions, namely, shape and color, and within each dimension two
values were tested. In the shape dimension, the rectangle could be either large or small
(two different size values) and its boundary could either be dashed or solid (two different
texture values). With respect to the color dimension, the rectangle could be either be red
or yellow (two different hue values), and its saturation was either high or low. In the
within-dimension conditions, participants reported on the values from the color (hue and
saturation) or the shape dimension (size and texture); in the across-dimension condition
they reported on one of the possible shape values (either size or texture) and one of the color
values (either hue or saturation). In the single-object cases, participants were instructed
to report only attributes of one of the rectangles (either horizontal or vertical), and in the
dual-object cases they were instructed to report on attributes of both rectangles.

In their across-dimensions conditions, Müller and O’Grady [16] reported that per-
formance was significantly worse when participants were instructed to divide attention
across two objects than when they were instructed to focus attention on a single object, and
this is the exact pattern that was found by Huang [2]. We shall refer to this finding as a
‘dual-object cost’ and Huang’s findings simply replicate and extend this dual-object cost.
However, data reported by Müller and O’Grady [16] also reveal a ‘dual-dimension cost’.
That is, participants were more accurate in their responses when they were asked to report
values from the same dimensions (color: hue and saturation, or shape: size and texture)
than they were when they were asked to divide attention across dimensions. Moreover,
this dual-dimension cost occurred when participants were asked to report attributes from
a single object. Overall, the data revealed a dual-object cost and a dual-dimension cost
and these costs were additive with one another. In this regard, there are effects of both
dimensions and of objects and they are not interchangeable, contra Huang [2] (p. 175).

Critically, the dual-dimension costs are not readily predicted by BM theory. On the
understanding that such a Boolean map codes unique values on multiple dimensions, then
there is nothing in the theory to explain why different features of the same dimension are
more accurately reported than features of different dimensions. Of course, this constraint
might be added to the theoretical account in the same way that the theory can be extended
to explain our own data, but other alternatives are perhaps more attractive. For example,
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in closing their discussion, Müller and O’Grady set out an account of their data that sits
well with the ideas of perceptual organization discussed here. Put simply, “Domain-based
selection, considered to be a form of segmentation, is assumed to occur first followed by
object-based selection... e.g., segmentation driven by a weighted domain, d1, allows one
object, o1, to be passed on for further processing making the domain-specific attributes
of o1 available for report” [16] (p. 1349). The patterns of performance observed are then
readily explained in terms of the dimensions to be reported, given which objects are to
be considered.

5. Conclusions

In summary, here we have described two new experiments that illuminate how objects
and their properties are processed in vision. The overall aim was to pit traditional ideas
about principles of perceptual organization with more recent ideas encapsulated in BM
theory. We have argued that the present findings fit more comfortably with notions of
perceptual grouping than with BM theory. Our data provide further support for the claim
that the grouping of elements into plausible figures against a plausible background is
a key property of early vision. Such figure/ground segmentation is based on an early
analysis of the perceptual dimensions that present in the optic array. In line with Müller
and O’Grady [16], we assert that the most fruitful way to understand the operation of the
human visual system is to assume that dimensional processing is a critical precursor to the
derivation of visual objects. The manner in which attention can then be deployed is, in
turn, critically dependent on both perceptual objects and their properties.
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