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COMPOSING PROBS

DANIEL GRAVES

Abstract. A PROB is a “product and braid” category. Such categories can be used

to encode the structure borne by an object in a braided monoidal category. In this

paper we provide PROBs whose categories of algebras in a braided monoidal category

are equivalent to the categories of monoids and comonoids using the category associated

to the braid crossed simplicial group of Fiedorowicz and Loday. We show that PROBs

can be composed by generalizing the machinery introduced by Lack for PROPs. We use

this to define a PROB for bimonoids in a braided monoidal category as a composite of

the PROBs for monoids and comonoids.

Introduction

A PROB is a “product and braid” category. Such categories are used to encode the
structure borne by an object in a braided monoidal category. A PROB is the braided
monoidal analogue of a PROP in the symmetric monoidal setting and a Lawvere theory
in the cartesian monoidal setting.

In this paper we present PROBs whose categories of algebras in a braided monoidal
category are equivalent to the categories of monoids, comonoids and bimonoids. For
monoids and comonoids the PROBs are closely related to the category associated to the
braid crossed simplicial group of Fiedorowicz and Loday [FL91, 3.7]. We demonstrate that
Lack’s methods for composing PROPs [Lac04] generalize to give a notion of composing
PROBs. We use these methods to form a composite PROB from the PROBs for monoids
and comonoids and demonstrate that the category of algebras in a braided monoidal
category for this composite is equivalent to the category of bimonoids. The results of
this paper can be seen both as an extension of the theory introduced in [Lac04] to the
setting of braided monoidal categories and an extension of using the structure inherent
in a crossed simplicial group to categorify objects in a symmetric monoidal category as
studied in [Pir02], [Lac04] and [Gra20]. In particular our main theorem, Theorem 7.2,
can be seen as a braided monoidal analogue of [Pir02, Theorem 5.2] and [Lac04, 5.9].

The paper is organized as follows. In Section 1 we recall the definitions of PROs,
PROBs and PROPs. In Section 2 we give a version of the Eckmann-Hilton argument
for PROs, PROBs and PROPs. In Section 3 we give examples of PROs and PROBs.
We recall the notion of a distributive law of PROs and use it to construct a PRO, with
a canonical PROB structure, from the PRO of finite ordinals and the PROB of braid
groups. This PROB is denoted D⊗B. In Section 4 we recall the connection between the
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2 DANIEL GRAVES

PROB of braid groups and Yang-Baxter operators. In Section 5 we provide analogues to
Lack’s results on composing PROPs. We construct the notion of a distributive law for
PROBs and a composite of PROBs. We provide results describing the structure of an
algebra for a composite PROB in terms of algebras for the two factors of the composite.
In Section 6 we prove that the category of algebras for D ⊗ B in a braided monoidal
category is equivalent to the category of monoids and that the category of algebras for
its opposite PROB is equivalent to the category of comonoids. In Section 7 we define a
distributive law between the PROB D⊗B and its opposite to obtain a composite PROB.
We prove that the category of algebras in a braided monoidal category for the composite
PROB is equivalent to the category of bimonoids.

Acknowledgements. I am very grateful to Callum Reader, James Cranch and James
Brotherston for their helpful conversations and suggestions. I would like to thank Ross
Street for alerting me to a revision in the paper [Lac04]. I would like to thank the referee
for their helpful comments and interesting questions.

1. PROBs

1.1. Definition. For n > 1 we define n to be the set {1, . . . , n}. We define 0 = ∅.

1.2. Definition. A PRO is a strict monoidal category whose objects are the sets n for
n > 0 and whose tensor product is given by addition.

1.3. Definition. A PROB is a braided strict monoidal category whose objects are the
sets n for n > 0 with tensor product given by addition.

1.4. Definition. A PROP is a symmetric strict monoidal category whose objects are
the sets n for n > 0 with tensor product given by addition.

Let MonCat, BrMonCat and SymMonCat denote the 2-categories of monoidal
categories, braided monoidal categories and symmetric monoidal categories respectively.
The objects are monoidal categories, braided monoidal categories and symmetric monoidal
categories respectively. The morphisms are monoidal functors, braided monoidal functors
and symmetric monoidal functors respectively. The 2-morphisms in each case are mor-
phisms of monoidal functors, that is, natural transformations that are compatible with
the monoidal structure (see [JS93, Section 1] for instance).

1.5. Definition. We denote by PRO, PROB and PROP the 2-categories of PROs,
PROBs and PROPs respectively. The objects are PROs, PROBs and PROPs respec-
tively. The morphisms are identity-on-objects strict monoidal functors, identity-on-objects
braided strict monoidal functors and identity-on-objects symmetric strict monoidal func-
tors respectively. The 2-morphisms in each case are morphisms of monoidal functors.

We see that PRO, PROB and PROP are sub-2-categories of MonCat, BrMonCat

and SymMonCat respectively. We also observe that PROP is the full sub-2-category of
PROB for which the braidings square to the identity. We can consider the 2-categories
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PRO, PROB and PROP as categories by forgetting the 2-morphism structure in the
usual way.

2. The Eckmann-Hilton argument

One interpretation of the Eckmann-Hilton argument [EH62] states that a monoid in the
category of monoids is a commutative monoid. Joyal and Street [JS93, Section 5] general-
ize this by defining the notion of a multiplication on a monoidal category and proving an
equivalence of 2-categories between BrMonCat and the category of monoidal categories
with multiplication. We will now present a version of their result for PROs and PROBs.

Let M be a monoidal category with unit object I. Let 1M denote the identity functor
on M. Recall from [JS93, Section 5] that a monoidal category M has a multiplication if it
is equipped with a monoidal functor Φ: M×M → M together with natural isomorphisms
ρ : Φ ◦ (1M , I) → 1M and λ : Φ ◦ (I, 1M) → 1M .

2.1. Definition. Let Mult (PRO) denote the 2-category of PROs with multiplication.
Let Mult

(

Mult (PRO)
)

denote the 2-category of PROs in Mult (PRO) with multiplica-
tion. Let Mult (PROB) denote the 2-category of PROBs with multiplication.

2.2. Proposition. There are equivalences of 2-categories

PROB ≃ Mult (PRO)

and
PROP ≃ Mult (PROB) ≃ Mult

(

Mult (PRO)
)

.

Proof. The result follows from specific instances of Propositions 5.2, 5.3 and 5.4 in
[JS93].

3. Algebras, examples and distributive laws

3.1. Definition. Let T be a PRO. For a monoidal category M, an algebra of T in M

is a strict monoidal functor T → M.

3.2. Definition. Let P be a PROB. For a braided monoidal category B, a P-algebra
in B is a braided strict monoidal functor P → B. We denote the category of P-algebras
in B and natural transformations by Alg (P,B).

3.3. Example. We denote by D the PRO of finite ordinals and order-preserving maps
as in [Lac04, 2.2]. For a strict monoidal category M, an algebra of D in M is a monoid
in M, see [ML98, VII 5].

3.4. Example. Recall the PRO of braid groups, denoted B, from [JS93, Example 2.1].
The set HomB (n,m) is empty for n 6= m and HomB (n, n) = Bn, the braid group of n
strings. The strict monoidal structure is given by the addition of braids.
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3.5. Remark. Observe that a PROB determines a PRO T with a morphism of PROs
F : B → T. The braiding m + n → n + m in T is the image under the functor F of
the braid which interchanges the first m elements with the last n elements, braiding the
former over the latter.

Conversely, such a morphism of PROs arises from a PROB if and only if the resulting
maps m+ n→ n+m are natural. A morphism of PROBs is a morphism of PROs which
commutes with the maps out of B. We therefore see that the category PROB is a full
subcategory of the under-category B ↓ PRO.

In particular, we observe that B has a canonical PROB structure given by the identity
functor.

3.6. Remark. Given a PROB P we will sometimes want to refer to an algebra structure
for the underlying PRO. In this case we will refer to a P-PRO-algebra. This will used in
Proposition 6.2.

3.7. Remark. Let 1 denote the category with one object and one arrow. By [JS93,
Proposition 2.2(b)], the PROB B is the free braided strict monoidal category on the
category 1. It follows from [JS93, Corollary 2.4] that for any braided monoidal category
B there is an equivalence of categories Alg (B,B) ≃ B.

We define a further example that arise as a consequence of a distributive law. Let S and
T be PROs. Recall from [Lac04, Section 3] that a distributive law of PROs L : T⊗ S →
S ⊗ T is defined as follows. Given σ ∈ HomS (m,n) and τ ∈ HomT (n, r), one has an
object σLτ and morphisms σTτ ∈ HomT (m, σLτ) and σSτ ∈ HomS (σLτ, r), satisfying the
equations of [RW02, Section 2] and compatible with the monoidal structure.

3.8. Example. Given a pair (h, ψ) where ψ ∈ HomD (n,m) and h ∈ HomB (m,m) there
is a unique pair

(

h⋆ (ψ) , ψ
⋆(h)

)

where ψ⋆(h) ∈ HomB (n, n) and h⋆(ψ) ∈ HomD (n,m), as
constructed in [FL91, 3.7] (see also [DS03, Section 4]). The fact that these assignments
satisfy the relations of a distributive law [RW02, 2.4] follows from the fact that they
satisfy the relations of a crossed simplicial group given in [FL91, 1.6] and a routine check
shows that they respect the monoidal structures of D and B. By [Lac04, 3.8] we have a
PRO D⊗B whose morphisms are the pairs of the form (ϕ, g) where g ∈ HomB (n, n) and
ϕ ∈ HomD (n,m) with composition defined via the distributive law. It has a canonical
PROB structure induced from B.

4. Yang-Baxter operators

The PROB B is closely related to the study of Yang-Baxter operators. Yang-Baxter
operators appear in a variety of settings; notably in the the study of link invariants
[Tur88] and quantum groups [Dri87], [Man18].

Following [JS93, Definition 2.4], a Yang-Baxter operator on a functor T : C → M,
where M is a monoidal category, is a natural family of isomorphisms

yC1,C2
: T (C1)⊗ T (C2) → T (C2)⊗ T (C1)
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subject to a compatibility condition known as the Yang-Baxter equation. For example,
any functor whose target category is braided monoidal comes with a Yang-Baxter operator
given by the braiding.

Recall the category 1 from Remark 3.7. Let M be a strict monoidal category. A Yang-
Baxter operator on a functor T : 1 → M consists of an object X ∈ M together with an
isomorphism y : X⊗X → X⊗X satisfying the Yang-Baxter equation. Denote byYB (M)
the category of Yang-Baxter operators in M. The objects are pairs (X, y) where X is an
object of M and y is a Yang-Baxter operator on X. A morphism (X1, y1) → (X2, y2) in
YB (M) is a morphism X1 → X2 in M compatible with the Yang-Baxter structure.

Using the terminology of Remark 3.6, [JS93, Proposition 2.2(a)] tells us that the
category of B-PRO-algebras in M is equivalent to the category YB (M) of Yang-Baxter
operators in M.

5. Composing PROBs

We follow the methods of [Lac04, Section 4] to show that one can compose PROBs
analogously to the way in which one can compose PROPs. As in the case for PROPs
[Lac04, 4.1], given two PROBs S and T, together with a distributive law of their underlying
PROs, we obtain a composite PRO S ⊗ T. This composite PRO comes with two PROB
structures coming from the functors B → S → S ⊗ T and B → T → S ⊗ T. Following
[Lac04, 4.3], replacing the PROP of finite sets and permutations with the PROB of braid
groups, we take the coequalizer of these functors in PRO, the category of PROs and strict
monoidal functors. This allows us to define the notion of a distributive law for PROBs,
that is, the data required to give S⊗ T a canonical PROB structure.

We provide analogues of [Lac04, 4.6, 4.7], Theorem 5.9 and Proposition 5.10 respec-
tively. The former is a result providing conditions under which a PROB may be expressed
as a composite via a distributive law. The latter is a result describing the structure of an
algebra for a composite PROB in terms of the algebras of the factors.

5.1. Definition. Let N = Span (Mon) (N,N) denote the monoidal category of spans
of monoids from N to N, with tensor product given by the composition of spans.

5.2. Remark. As noted in [Lac04, 4.3] the category N has colimits, preserved by tensor-
ing on either side. Furthermore, as noted in [Lac04, 3.5] the category PRO is the category
Mon (N ) of monoids in N . In particular, the PRO of braid groups B is a monoid in N .

5.3. Definition. A B-bimodule, M , in PRO consists of the following data:

❼ since M is a PRO we have sets of morphisms HomM (m,n) for all m and n in N;

❼ we have left and right actions of the braid groups on these sets;

❼ there is a unital, associative operation

∐ : HomM

(

m1, n1

)

× HomM

(

m2, n2

)

→ HomM

(

m1 + n1,m2 + n2

)



6 DANIEL GRAVES

induced from the monoidal structure of M ;

❼ this operation is compatible with the actions of the braid groups in the sense that

(π1 ∐ π2) (f1 ∐ f2) (σ1 ∐ σ2) = π1f1σ1 ∐ π2f2σ2

for fi ∈ HomM

(

mi, ni
)

, πi ∈ Bni
and σi ∈ Bmi

.

Let B′ denote the category of B-bimodules.

5.4. Definition. Let M and N be B-bimodules. Let λ denote the left action of B on N
and let ρ denote the right action of B on M . The tensor product of B-bimodules, M⊗BN ,
is defined by the coequalizer

M ⊗ B⊗N M ⊗N M ⊗B N
ρ⊗N

M⊗λ

in PRO.

5.5. Remark. As in the case for PROPs, the tensor product −⊗B− endows the category
B′ with the structure of a monoidal category.

Analogously to [Lac04, 4.3], the category Mon (B′) of monoids in B′ is equivalent to
the under-category B ↓ Mon (N ), that is, it is equivalent to the under-category B ↓ PRO.

5.6. Definition. Consider the braids m1 + m2 → m2 + m1 and n1 + n2 → n2 + n1

which interchange the first m1 (respectively n1) elements with the last m2 (respectively n2)
elements, braiding the former over the latter.

Let B denote the full subcategory of B′ which consists of those B-bimodules M for
which acting on f1 ∐ f2 ∈ HomM

(

m1 +m2, n1 + n2

)

by these braids gives f2 ∐ f1.

We observe that the monoids in the category B are precisely the PROBs.

5.7. Definition. We define a distributive law of PROBs to be a distributive law of
monoids in B: that is, a morphism T ⊗B S → S ⊗B T of B-bimodules satisfying the
equations of [RW02, Section 2].

5.8. Remark. Similarly to the case for PROPs [Lac04, 4.4] we can express this construc-
tion as a monad on an object in a 2-category in the sense of [Str72, Section 1]. LetMon be
the category of monoids in sets and monoid homomorphisms. Let Prof (Mon) denote the
2-category whose objects are categories internal to Mon, whose morphisms are internal
profunctors and whose 2-morphisms are natural transformations. The monoidal category
B is an object of Prof (Mon) and a B-bimodule is a morphism in Prof (Mon) from B to
B. That is, the category B′ can be identified with Prof (Mon) (B,B). Therefore a PROB
is precisely a monad in Prof (Mon) on the object B whose underlying bimodule lies not
only in B′ but also in B.

It is also worth remarking that similar constructions apply in the theory of distributive
laws for Lawvere theories by work of Cheng [Che20, Section 5].
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5.9. Theorem. Let R be a PROB. Let S and T be subcategories of R containing all the
objects, all the braidings and closed under tensoring. Suppose that every morphism ρ in R

can be written as a composite ρ = σ ◦ τ where τ is a morphism in T and σ is a morphism
in S. Furthermore suppose that if ρ = σ′ ◦ τ ′ is another such representation then there is
a braid π such that τ = τ ′ ◦ π and π ◦ σ = σ′. Then R is the composite of S and T via a
distributive law L : T⊗B S → S⊗B T.

Proof. This is analogous to [Lac04, 4.6].

5.10. Proposition. If S ⊗B T is a composite PROB induced by a distributive law then
an S⊗B T-algebra structure on an object A in a braided monoidal category B consists of
an S-algebra structure and a T-algebra structure subject to the condition that

A⊗m A⊗n

A⊗q A⊗r

σ

σTτ τ

σSτ

where σ ∈ HomS (m,n), τ ∈ HomT (n, r) and q = σLτ .
Furthermore, if objects A and B in B have S⊗BT-algebra structures then a morphism

f ∈ HomB (A,B) is a morphism of S ⊗B T-algebras if and only if it is a morphism of
S-algebras and a morphism of T-algebras.

Proof. This is analogous to [Lac04, 3.9–3.12]. See also [Lac04, 4.7, 4.8].

As noted in Section 1, PROP is the full sub-2-category of PROB for which the braid-
ings square to the identity. Therefore, every PROP can be thought of as a PROB with
the additional condition that the braiding squares to the identity. The following propo-
sition shows that our notion of composing PROBs is compatible with the composition of
PROPs.

5.11. Proposition. Let P1 and P2 be PROPs. There is an equality of PROPs P1⊗PP2 =
P1 ⊗B P2.

Proof. P1 and P2 are PROBs such that the braiding squares to the identity. In other
words the braidings factor through the symmetric groups via the functor B → P which
sends a braid to its underlying permutation. This means that the identifications in the
coequalizer

P1 ⊗ B⊗ P2 P1 ⊗ P2 P1 ⊗B P2

ρ⊗P2

P1⊗λ

of Definition 5.4 coincide with the identifications in the coequalizer

P1 ⊗ P⊗ P2 P1 ⊗ P2 P1 ⊗P P2

ρ⊗P2

P1⊗λ

of [Lac04, 4.3], from which the result follows.
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6. PROBs for monoids and comonoids

We show that the category of algebras in a braided monoidal category B for the PROB
D ⊗ B of Example 3.8 is equivalent to the category of monoids in B. As a corollary we
show that the category of algebras in B for the PROB (D⊗ B)op is equivalent to the
category of comonoids in B.

6.1. Definition. We denote the category of monoids in a braided monoidal category B

by Mon (B). We denote the category of comonoids in B by Comon (B) = Mon (Bop)op.
Let Bimon (B) = Mon

(

Comon (B)
)

= Comon
(

Mon (B)
)

denote the category of
bimonoids in B.

6.2. Proposition. Let B be a braided monoidal category. There is an equivalence of
categories Alg (D⊗ B,B) ≃ Mon (B).

Proof. Recall the terminology of Remark 3.6. By [Lac04, 3.10], a (D⊗ B)-PRO-algebra
structure on an objectM of B consists of a D-algebra structure and a B-algebra structure
subject to a compatibility condition. A D-algebra structure is a monoid structure. A
B-algebra is an object M together with an isomorphism M⊗n →M⊗n for each element of
the braid group Bn. Arguing analogously to [Lac04, 5.5] a (D⊗ B)-PRO-algebra structure
is a (D⊗ B)-algebra structure if and only if the only isomorphismsM⊗n →M⊗n are those
induced from the braidings. The compatibility condition follows from the naturality of
the braidings. Finally, a morphism in B is a map of monoids if and only if it respects the
D-algebra structure and the B-algebra structure. By Proposition 5.10, this is true if and
only if it respects the (D⊗ B)-algebra structure.

6.3. Corollary. Let B be a braided monoidal category. There is an equivalence of
categories Alg

(

(D⊗ B)op ,B
)

≃ Comon (B).

Proof. Using Proposition 6.2 we observe that

Comon (B) = Mon (Bop)op ≃ Alg
(

(D⊗ B) ,Bop
)op

= Alg
(

(D⊗ B)op ,B
)

as required.

7. The PROB for bimonoids

In this section we will define a distributive law of PROBs between D⊗ B, the PROB for
monoids, and (D⊗ B)op, the PROB for comonoids and prove that the algebras for the
composite are bimonoids.

The distributive law required takes the form of a map of B-bimodules

(D⊗ B)op ⊗B (D⊗ B) → (D⊗ B)⊗B (D⊗ B)op

from the PROB of equivalences classes of cospans in D⊗B to the category of equivalence
classes of spans in D⊗ B, subject to the conditions of [RW02, Section 2].
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The procedure for doing this is analogous to the methods employed by Pirashvili in
the construction of the double category F(as) [Pir02, Section 4] and Lack [Lac04, 5.9] in
the symmetric monoidal case. Given an equivalence class of cospans

p n q
(ϕ,g) (ψ,h)

in D ⊗ B, we will take the pullback in the category of finite sets and use the data of
the distributive law for D ⊗ B to give a unique lift of the pullback to the category of
equivalence classes of spans in D⊗ B.

Recall that a morphism in D⊗B is a unique pair (ϕ, g) where g is an element of a braid
group and ϕ is an order-preserving map, with composition defined by the distributive law
of [FL91, 3.7]. Recall that the elements of the braid groups are the isomorphisms in
D⊗ B. Furthermore, using composition and the disjoint union, all morphisms in D have
an expression in terms of the unique morphisms m ∈ HomD (2, 1) and u ∈ HomD (0, 1)
with finitely many terms.

In the following definition, Points 1 and 2 give the necessary data when at least one of
the morphisms in the cospan is an isomorphism. Point 3 gives the necessary data when
both morphisms in the cospan are order-preserving maps. By combining the properties of
pullback diagrams, namely compatibility with the disjoint union and composition of set
maps, and the fact that every morphism in D has a finite expression in terms of m and
u, it suffices to give the assignment on the given cospans.

We observe that the data of the following definition satisfies the conditions of a dis-
tributive law by construction. It is straightforward to see that identities are preserved in
the sense of [RW02]. Furthermore, the assignments are compatible with composition in
D⊗ B and the monoidal structure since any morphism in D⊗ B can be written in terms
of the braid groups and the morphisms m and u using coproducts and the distributive
law D⊗ B found in [FL91, 3.7].

7.1. Definition. We define a distributive law of PROBs

(D⊗ B)op ⊗B (D⊗ B) → (D⊗ B)⊗B (D⊗ B)op

to be determined as follows

1. For g, h ∈ Bn

n n n 7→ n n n

g h g−1
h−1

2. For ϕ ∈ HomD (n,m) and g ∈ Bm

n m m 7→ n n m

m m n 7→ m n n

ϕ g g⋆(ϕ) ϕ⋆(g)

g ϕ ϕ⋆(g) g⋆(ϕ)
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where g⋆(ϕ) and ϕ
⋆(g) are the maps determined by the distributive law for D⊗ B.

3. For m ∈ HomD (2, 1) and u ∈ HomD (0, 1)

2 1 2 7→ 2 4 2

0 1 0 7→ 0 0 0

2 1 0 7→ 2 0 0

0 1 2 7→ 0 0 2

m m (m+m)◦σ2,3 m+m

u u id0 id0

m u u+u id0

u m id0 u+u

where σ2,3 is notation for the braid id1∐σ∐ id1 ∈ B4 and σ ∈ B2 is the braid which
swaps the two elements, braiding the first over the second.

We will now prove the main theorem, which tells us that the algebras for the composite
PROB are bimonoids. Firstly we can tidy up our notation. Since a group is isomorphic
to its opposite we have isomorphisms of PROBs

(D⊗ B)⊗B (D⊗ B)op ∼= (D⊗ B)⊗B (B⊗ D
op) ∼= D⊗ B⊗ D

op.

7.2. Theorem. Let B be a braided monoidal category and let Q = D ⊗ B ⊗ D
op. There

is an equivalence of categories Alg (Q,B) ≃ Bimon (B).

Proof. By Proposition 5.10, an algebra for Q in B consists of an object M with a
(D⊗ B)-algebra structure and a (D⊗ B)op-algebra structure subject to the compatibility
condition arising from the distributive law. A (D⊗ B)-algebra structure is a monoid
structure and a (D⊗ B)op-algebra structure is a comonoid structure. The compatibility
conditions arising from the distributive law of Definition 7.1 are precisely those requiring
M to be a bimonoid.

Finally we observe that a morphism in B is a morphism of bimonoids if and only
if it preserves the (D⊗ B)-algebra structure and the (D⊗ B)op-algebra structure. By
Proposition 5.10 this is true if and only if it preserves the Q-algebra structure.
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