
This is a repository copy of STRONGHOLD: Fast and Affordable Billion-Scale Deep
Learning Model Training.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190419/

Version: Accepted Version

Proceedings Paper:
Sun, X, Wang, W, Qiu, S et al. (4 more authors) (2022) STRONGHOLD: Fast and
Affordable Billion-Scale Deep Learning Model Training. In: SC '22: The International
Conference for High Performance Computing, Networking, Storage and Analysis.
International Conference for High Performance Computing, Networking, Storage, and
Analysis (SC22), 13-18 Nov 2022 Association for Computing Machinery . ISBN 978-1-
6654-5444-5

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

STRONGHOLD: Fast and Affordable Billion-Scale
Deep Learning Model Training

Xiaoyang Sun1,2, Wei Wang2, Shenghao Qiu1, Renyu Yang1, Songfang Huang2§, Jie Xu1, Zheng Wang1§

1University of Leeds, UK 2Alibaba Group, China

{scxs, sc19sq, r.yang1, j.xu, z.wang5}@leeds.ac.uk; {robot.sxy, hebian.ww, songfang.hsf}@alibaba-inc.com

Abstract—Deep neural networks (DNNs) with billion-scale
parameters have demonstrated impressive performance in solving
many tasks. Unfortunately, training a billion-scale DNN is out
of the reach of many data scientists because it requires high-
performance GPU servers that are too expensive to purchase
and maintain. We present STRONGHOLD, a novel approach for
enabling large DNN model training with no change to the user
code. STRONGHOLD scales up the largest trainable model size
by dynamically offloading data to the CPU RAM and enabling
the use of secondary storage. It automatically determines the
minimum amount of data to be kept in the GPU memory
to minimize GPU memory usage. Compared to state-of-the-art
offloading-based solutions, STRONGHOLD improves the trainable
model size by 1.9x∼6.5x on a 32GB V100 GPU, with 1.2x∼3.7x
improvement on the training throughput. It has been deployed
into production to successfully support large-scale DNN training.

Index Terms—Deep learning, Distributed training, DNNs train-
ing acceleration

I. INTRODUCTION

We are seeing exponential growth of deep neural network

(DNN) sizes. For example, in a short span of 3 years, model

size has grown by over 1000 folds from around 100 million

model weights in 2018 for ELMo [1] or BERT [2] to 175

billion for GPT-3 [3] in 2020 and 530B for MT-NLG [4] in

2021. At the same time, the GPU memory capacity is increased

by less than 3 folds per GPU generation. For instance, the

latest high-end NVIDIA A100 GPU has 80 GB of memory,

which is a 2.5x improvement on the GPU memory capacity

over the 32 GB V100 predecessor. As a larger model tends to

provide a better learning ability over the smaller counterparts,

many future DNNs will continue to integrate many more

parameters and consume more GPU memory. This will further

increase the gap between the memory demand of DNN training

and the available GPU memory, making entry into large model

training out of reach for many data scientists and academics.

Large DNN training can be achieved by utilizing aggregated

computing resources of multiple GPUs through parallel and

distributed computation. Examples of such strategies include

data [5], model [6] and pipeline [7], [8] parallelisms and by

placing the model parameters, gradients and optimizer states

across computing devices [9]. However, all these distributed

training schemes require sufficient computing resources, which

can incur significant infrastructure and operational costs [10].

For example, to efficiently train a 10B parameter model

§Corresponding authors. This work was conducted primarily during the first
author’s internship at Alibaba Group.

currently requires a computing system with 16 NVIDIA V100

GPUs, costing over $100K to purchase [11]. While such cost

may not concern big tech firms, it can place a big financial

burden on small businesses and academic organizations.

Efforts have been made to reduce the GPU memory pressure

and computing resource requirement for large DNN training.

This is done by either trading precision for lower storage

space [12] or leveraging CPU memory [13], [14], [15], [16].

The former uses low or mixed precision representations for

model states (e.g., model parameters, gradients and optimizer

states) to reduce GPU memory consumption, but it can slow

down the model convergence speed. The latter approaches

reduce the GPU memory requirement by either implement-

ing a software-managed cache or using a dedicated memory

allocation scheme. However, most of the techniques for using

CPU memory are designed for convolutional neural networks

(CNNs), where the memory consumption during training is

dominated by the dynamically generated activations rather

than the optimizer (e.g., SGD) states. Unfortunately, these

techniques are ill-suited for the latest attention-based language

models (e.g., Transformer-based DNNs) that have become the

de facto approach for building state-of-the-art DNNs [17],

[2], [3], where the model and optimizer (e.g., Adam) states

rather than activation memory is the memory bottleneck.

ZeRO-Offload [11] and L2L [18] were among the first

attempts to leverage CPU memory to train large Transformer-

based DNNs. ZeRO-Offload moves optimizer states from the

GPU to the CPU memory while keeping the entire model

parameters in the GPU memory. It is able to train a model

with 13B parameters on a 32GB V100 GPU. As ZeRO-Offload

requires storing the entire model parameters in the GPU, the

trainable model size is limited by the smallest part of the

available GPU and CPU memory capacity. L2L is specifi-

cally designed for Transformer-based models, only keeping

one Transformer block in the GPU memory by dynamically

offloading the model parameters. ZeRO-Infinity [19] adopts

a dynamic strategy to leverage the secondary storage (e.g.,

NVMe) and partitions the model parameters and optimizer

states across heterogeneous memory hierarchy. While these

approaches can increase the trainable model size, as we will

show later in the paper, they come with significant overhead,

leading up to 1.76x slowdown (up to 29.2x when NVMe

is used). Such magnitude of overhead greatly reduces the

practicability of these techniques in training and fine-tuning

large DNNs where the training time is a major concern [9].

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

We present STRONGHOLD, a new approach for leveraging

heterogeneous memory resources to scale up the trainable

model size on GPUs without significantly compromising the

training efficiency. The key insight of STRONGHOLD is to

keep just a sufficient number of layers and their model param-

eters in the GPU to avoid GPU stalls during data offloading.

Doing so can increase the trainable model size because only

a small part of the model states are presented at the GPU

memory at any time. By keeping the GPU computation going

with overlapped data transfer, this strategy can also minimize

and even hide the CPU-GPU communication overhead. To this

end, STRONGHOLD implements a software pipeline between

the GPU and CPU to dynamically offload the required model

states between two memory spaces, without user code refac-

toring. Unlike ZeRO-Offload, STRONGHOLD does not store

all model parameters in the GPU. Instead, it implements a

dynamic working window to only store a few model layers

in the GPU. It then dynamically moves the required layers

and their parameters and the generated gradients between the

CPU and the GPU. The STRONGHOLD runtime automatically

determines a suitable working window size to ensure that

asynchronous CPU-GPU data transfer can be overlapped with

GPU computation to hide the data transfer latency.

A key challenge of STRONGHOLD is to decide how many

layers are kept in the GPU. Having an unnecessarily large

working window would waste the precious GPU memory with

little performance gain while using an insufficient working

window makes it difficult to overlap the CPU-GPU data

transfer with GPU computation to minimize the overhead. We

address this challenge by modeling the GPU computation with

data transfer and using an analytical model to derive the right

working window size based on profiling information collected

from a few initial iterations during the warm-up phase.

STRONGHOLD runs multiple concurrent optimizers on the

multi-core CPU to parallelize the model parameter update

process. Since parameter update, data transfer, and GPU com-

putation are asynchronous processes, they run in parallel to

utilize the hardware parallelism. To reduce the GPU memory

management overhead, STRONGHOLD employs a user-level

GPU memory management scheme for the working window to

avoid frequent invocations of the expensive GPU memory op-

erations. We show that by reducing the GPU memory footprint,

STRONGHOLD also opens up new opportunities to implement

data parallelism within a single GPU. This is achieved by

running multiple training workers across concurrently running

streaming multiprocessors (SM) of a GPU while keeping

one copy of model parallelism. This optimization leads to

comparable or even better training performance over expert-

tuned implementation when training a billion-scale model.

We implemented STRONGHOLD in PyTorch [20] and eval-

uated it in single and distributed GPU environments. We

compare STRONGHOLD to three state-of-the-art offloading

solutions [18], [11], [19]. Experimental results show that

STRONGHOLD can support larger DNNs with a higher

training throughput than competing schemes. Specifically,

STRONGHOLD supports the training of a model with 39.5B

and 82.1B parameters on a single 32GB V100 GPU and eight

distributed 24GB A10 GPUs respectively without significantly

compromising the training efficiency.

We envision STRONGHOLD to be attractive in two sce-

narios. It is useful in fine-tuning a large pre-trained DNN

or using a pre-trained DNN to guide the training of a small

model (a.k.a. knowledge distillation [21]) using limited GPU

resources. This feature makes large DNN fine-tuning more

accessible and affordable to small organizations and data

scientists. It is also useful for accelerating model training by

reducing cross-node communications or utilizing fine-grained

GPU parallelization. For this use case, STRONGHOLD has

been deployed to the production environment of Alibaba to

support the training of DNNs with hundreds of billions and

trillions of parameters.

This paper makes the following contributions:

• A new CPU-GPU offloading framework to scale up the

trainable model size (Section III);

• An analytic model to determine the right working window

for dynamic DNN training offloading (Section III-C);

• A new fine-grained GPU parallelism to speed up DNN

training (Section IV-A).

II. BACKGROUND AND MOTIVATION

A. Deep Learning Model Training

DNN training typically consists of millions of iterations per-

formed across multiple training epochs. Each iteration mainly

involves three stages: forward propagation (FP), backward

propagation (BP) and parameter update. In the FP stage, a

batch of the training samples are passed through the DNN

model to compute a loss based on an objective function. In

the BP stage, the loss value is propagated reversely through

model layers to compute the gradients. In the last stage, an

optimizer uses the aggregated gradients to update parameter

weights of individual model layers.

The memory consumption during DNN training largely

stems from model states and residual states. Model states

include model parameters, gradients and optimizer states (i.e.,

Adam optimizer [22] stores momentums and variances for

parameter updating). Residual states include activations (i.e.,

the intermediate tensors saved for BP stage to produce gradi-

ents) and other temporary buffers. When training large DNNs,

model states dominate the memory consumption, which can

account for 87.5% of the GPU memory footprint when low-

precision (i.e., 16-bit precision) is used [9].

Large DNN models are trained with parallelization tech-

niques. For a model that can fit into the device memory

for training, data parallelism is commonly used to distribute

the training samples across multiple devices to improve the

training throughput. When the model cannot fit into the

device memory, model parallelism [23], [24] and pipeline

parallelism [25], [7] can be leveraged to split the model layers

or parameters to make the best use of the memory across

multiple devices. While these three parallelism strategies can

20

40

5

10

(a) Trainable model size

0.7

0.8

0.0

0.1

(b) Throughput

Figure 1: Performance of Megatron-LM and ZeRO-based solutions measured
on a 32GB V100 GPU by the trainable model size (a) and throughput on a
1.7B model (b).

produce a synergy, model and pipeline parallelism often re-

quire additional code refactoring to split a DNN into model

and pipeline components.

B. CUDA Streams

Modern GPUs consist of a large number of processing units,

which are organized as streaming multiprocessors (SMs). For

example, the NVIDIA V100 GPU supports 80 SMs, where

each SM has a fixed number of cores. In the CUDA pro-

gramming model, instructions placed within a single CUDA

stream are executed sequentially. However, operations placed

in different CUDA streams can be executed concurrently in

different hardware SMs. STRONGHOLD uses multiple CUDA

streams to accelerate DNN training when possible.

C. Motivation

As a motivation example, consider Figure 1 that shows

the performance given by ZeRO-Offload [11] and ZeRO-

Infinity [19] - the state-of-the-art offloading solutions for large

DNNs. This experiment was conducted on a GPU server with

a 32GB NVIDIA V100 GPU and 755GB of DDR4 RAM

(see Section V-A). As a reference, we use Megatron-LM,

NVIDIA’s heavily-optimized library for Transformer-based

model training.
Figure 1a shows the largest trainable model size for each

approach, while Figure 1b shows the throughput (i.e., the

number of samples processed per second) on a common

1.7B Transformer-based model (the largest model supported

by Megatron-LM on our platform). Although techniques like

ZeRO-Offload and ZeRO-Infinity can scale up the trainable

model size, this comes at the cost of significantly lower

throughput and poor efficiency. For example, ZeRO-Offload

enables training of a model that is 3x larger than Megatron-

LM, but the training throughput on the 1.7B model is 6.7x

less than Megatron-LM. By offloading some of the model

parameters and states to the secondary NVMe SSD, ZeRO-

Infinity (w/ NVMe) scales up the trainable model size by

29x over Megatron-LM, but its throughput drops by over

800x compared to Megatron-LM on a 1.7B model. This poor

training efficiency of existing offloading solutions makes them

impractical to train large models due to the long training time.

STRONGHOLD aims to avoid this pitfall.

III. OUR APPROACH

STRONGHOLD is our open-source framework designed to

enable efficient training of large DNNs on single or distributed

E
m

b
ed

d
in

g

E
n

co
d
er 0

E
n

co
d
er 1

E
n

co
d
er 2

G
P

U

...

C
P

U
 R

A
M

E
n

co
d
er 4

E
n

co
d
er 1

E
n

co
d
er 2

G
P

U

...

C
P

U
 R

A
M

E
n

co
d
er 3

Secondary storage (NVMe SSD) Secondary storage (NVMe SSD)

Time

1
23 4

1 3
2

4

Figure 2: Dynamic model state offloading of STRONGHOLD. STRONGHOLD

stores some DNN layers in the GPU memory and swapping out the finished
layer states to the CPU RAM. Actions ➊ and ➌ indicate offloading layers
that have been used during FP and BP from GPU memory to CPU RAM.
These actions also trigger ➋ and ➍ to prefetch the future-used layers from
CPU RAM to GPU memory.

GPUs. This is achieved by implementing dynamic software

prefetching and offloading techniques to only store part of

the model states - the main GPU memory consumer for large

DNN training - in the GPU memory. STRONGHOLD utilizes

the CPU memory and secondary storage to reduce the GPU

memory pressure for training large DNNs. By doing so, the

trainable model size is no longer bounded by the GPU device

memory but the system’s storage capacity. STRONGHOLD is

designed to be used without any user code refactoring similar

to standard data-parallel training in PyTorch.

STRONGHOLD advances ZeRO-Offload [11], the state-of-

the-art static CPU-GPU DNN training offloading framework,

by offloading optimizer states onto the CPU side. Like ZeRO-

Infinity [19], STRONGHOLD can also leverage secondary

storage, but it delivers a higher throughput than ZeRO-Infinity.

A. Overview of STRONGHOLD

Figure 2 gives a high-level overview of the STRONGHOLD

dynamic offloading scheme. The idea is to store model states

(parameters, gradients and optimizer states) for selected DNN

layers in the GPU memory. This is achieved by managing a

working window in the GPU, where layer states are dynam-

ically moved between the GPU and CPU memory. Precisely,

the STRONGHOLD runtime swaps the already computed layer

states (blue shaded boxes in Figure 2) from GPU memory

to the CPU RAM (and potentially between the CPU RAM

and secondary storage). It then adaptively prefetches the

parameters of the subsequent layers in the FP or BP processing

pipeline into the working window. STRONGHOLD leverages

asynchronous data transfer to hide the CPU-GPU communi-

cation overhead by overlapping data transmission with GPU

computation. By doing so, STRONGHOLD greatly reduces the

CPU-GPU communication overhead, and in many cases, it

can completely hide the data transfer overhead. Therefore,

STRONGHOLD only causes modest slowdown in the training

speed. Crucially, the asynchronous operations do not introduce

stale model updates nor not affect the training precision.

STRONGHOLD is a low-level runtime library. It automati-

cally identifies offloading sequence and determines the work-

ing window size. It then dynamically partitions the tensor

graph and manages BP, FP and parameter updates without

user code refactoring.

B. Preprocessing

During the model loading stage, STRONGHOLD extracts

DNN layers and their execution order from the tensor graph.

Most Transformer-based models follow a sequential layer

execution order by stacking multiple Transformer blocks (Fig-

ure 3a), resulting in a static relationship. Extracting the layer

execution order of such model architectures is straightforward.

However, there are also other model structures with residual

components [26] or gating mechanisms [27], [28] like mixture

of experts (MoE) models [29], where the execution path

can change dynamically at inference time. For these non-

linear structures, STRONGHOLD either offloads all units/layers

directly connected to a branch to the GPU working window (if

possible), or delays the layer movement until it knows which

layer will be computed to avoid GPU out-of-memory (OOM)

errors. This can be further improved by leveraging techniques

that pre-compute the activated layers [15] to proactively deter-

mine which layers to be moved to the GPU working window

ahead of time. When loading a model, for each DNN layer,

STRONGHOLD also computes the required storage size for the

parameter tensors and the associated gradients and optimizer

states. This storage size is then used to determine the GPU

working window size during FP and BP1.

During the first few iterations (5 by default) of model

training (i.e., the warm-up phase), the STRONGHOLD runtime

profiles the GPU computation time and the data transfer time

of model states of each layer. It then uses this information

to derive the working window size for later training iterations.

At the warm-up phase, STRONGHOLD ensures that the chosen

GPU working window size does not cause out-of-memory

(OOM) errors by using the storage size information of the DNN

layers to compute the right working window size. Despite the

initial working window size may not lead to the optimal GPU

memory use, the overhead is negligible since the profiling

is only performed on the first few iterations. The dynamic

working window size derived for later training iterations (see

Section III-C) is designed to overlap the CPU-GPU data

transfer with the GPU computation while minimizing the

GPU memory consumption. We note that the computation

performed in the warm-up phase also contribute to the final

training outcome, so no computation cycle is wasted.

C. Dynamic GPU Offloading

As a working example, we use a simplified Transformer-

based model shown in Figure 3a to illustrate the dynamic

GPU working window mechanism of STRONGHOLD. In this

subsection, we assume STRONGHOLD does not use secondary

storage (which will be discussed later in Section III-G).

The STRONGHOLD runtime maintains a GPU working

window with the layer-specific inputs, model parameters, and

gradients (for BP). Within STRONGHOLD, the basic offloading

1The current implementation of STRONGHOLD stores most of the optimizer
states in the CPU RAM.

unit under data and pipeline parallelism is an entire DNN layer.

However, under tensor parallelism, this can be a sliced layer

on the GPU defined by the user code. The working window

essentially contains GPU buffers for the tensor operator im-

plementations (kernels) and the data that the kernel operates

on. CPU-GPU data movement is automatically handled by the

STRONGHOLD runtime, which registers callback functions for

each layer through the hooking mechanism provided by main-

stream deep learning frameworks. STRONGHOLD supports

activation checkpointing as long as the working window size

is larger than the number of layers between two consecutive

checkpoints. Conceptually, this mechanism resembles applying

a sliding window to the DNN model along the FP or BP

direction, described as follows.

FP stage. As shown in Figure 3b, before executing each layer

in the working window, the pre forward hook function is

called to issue an asynchronous load operation to fetch the

next layer right outside the current working window from

the CPU RAM to the GPU memory (step 1). Next, the

GPU performs FP computation as normal on the first layer

in the current working window (step 2). At the end of the

layer computation, the post forward hook function invokes

another asynchronous operation to move model parameters of

the already computed layer back to the CPU RAM (step 3).

The computation result will then be passed to the next layer

in the working window. At the end of the GPU-CPU transfer,

the GPU buffer used by a computed layer will be recycled by

a newly fetched layer. After these steps, the working window

moves toward the successive layer of the DNN, following the

direction of FP. The asynchronous CPU-GPU data transfer

takes place concurrently with the GPU computation and will

not block the STRONGHOLD runtime.

BP stage. As depicted in Figure 3c, this step moves the work-

ing window along the BP direction. Before computing a layer

in the working window, the pre backward hook function

invokes an asynchronous operation to fetch the parameters of

the layer that is just outside the current working window in the

BP direction (step 1). The pre backward function also issues

an asynchronous operation to move the model parameters (and

gradients) of the last computed layer in the working window

to the CPU (step 2), followed by a call to the optimizer to

update the majority of the model parameters on the CPU (step

3). Finally, the GPU computes gradients for the second-last

layer of the working window (step 4). Once again, the CPU-

GPU data communications run concurrently with the GPU

computation and the windows moves towards the BP direction.

D. Modeling Offloading Parameters

STRONGHOLD uses an analytical model to automatically

find a suitable GPU working window size during FP and

BP. The key here is to find the right window size where

the asynchronous CPU-GPU data transfer can overlap with

GPU computation to hide the data transfer latency, without

oversubscribing the GPU memory.

...

Transformer blocks Normalization layer

Embedding

layer

Pooling layer

Forward Backward

(a) Transformer-based DNN

...

...

1
CPU to GPU

transfer3
GPU to CPU

transfer

Computation2GPU

CPU

(b) Working window during FP

...

...

Computation4GPU

CPU
21

CPU to

GPU

GPU to CPU

3 Parameter update

(c) Working window during BP

Figure 3: Dynamic offloading of STRONGHOLD during the FP and BP stages using a simplified Transformer-based architecture as an example. STRONGHOLD

keeps the first and the last layers of the DNN (the embedding and pooling layers) in the GPU memory to reduce the initialization overhead.

Notations. We use the following notations to model CPU-

GPU offloading. We use sifp and sibp to denote the memory

consumption of layer i during FP and BP respectively, and

tifp and tibp
2 to denote the GPU computation time on layer

i during FP and BP respectively, tic2g and tig2c to denote the

CPU to GPU and GPU to CPU data transfer respectively for

layer i, and tasync and toptgpu to denote the overhead on an

asynchronous function call and one layer’s parameter update

respectively. We let N =
∑m

k=0
Sk be the GPU working

window size, where Sk is the model state (parameters and

gradients) of layer k within the m-layer window.

FP offloading. We use the following formulation, P1, to

ensure layer fetching does not become a bottleneck of FP.

P1 : min m (1a)

s.t.

m∑

i=0

t
i
fp ≥ t

j
c2g, (1b)

m∑

i=0

s
i
fp + s

j

fp ≤ Savail, (1c)

m∑

i=0

t
i
fp ≥

m∑

i=0

t
i
c2g +

m∑

i=0

t
i
g2c, (1d)

where m is the number of layers in the GPU working window,

layer j is the layer outside the current working window along

the FP direction, sm+1

fp is the buffer size required for fetching

the layer outside the current working window (step 1 in

Figure 3b), and Savail is the available GPU memory (by

excluding the runtime memory consumption). Here, terms (1b)

and (1c) are hard constraints to ensure that the data transfer

time is less than the layer computation time, and no GPU

OOM will happen. The FP computation time for one layer is

tifp+2 tasync. Term (1d) is a soft constraint to ensure that we

can recycle the buffer of the computed layer (steps 2 and 3

in Figure 3b) to further reduce the GPU memory consumption.

BP offloading. Like FP, we use the following formula, P2, to
ensure gradient and parameter offloading does not become the

2Note that ti
bp

also includes the FP re-computation time with activation
checkpointing.

bottleneck during BP:

P2 : min m (2a)

s.t.

m−1∑

i=0

t
i
bp ≥ t

j
g2c, (2b)

m∑

i=0

s
i
bp ≤ Savail, (2c)

m−1∑

i=0

t
i
bp ≥

m−1∑

i=0

t
i
g2c +

m−1∑

i=0

t
i
c2g, (2d)

where layer j is the layer outside the current working window

along the BP direction. The time for BP computation of one

layer is tifp + 3 tasync. The soft constraint in (2d) is used to

further reduce the GPU memory consumption when possible.

Parameter update. With conventional DNN training, the GPU

performs the parameter update layers by layers. This gives a

total parameter update time of
∑n

i=0
tioptgpu , where n is the

total number of layers of the DNN model. STRONGHOLD

utilizes the CPU cores to perform most parameter update,

which runs concurrently with the GPU gradient computation.

As a result, the parameter update time in STRONGHOLD is∑m
i=0

tioptgpu +
∑n

i=m tioptcpu . To hide the CPU computation

overhead, the CPU-directed parameter update time should

satisfy:

tkoptcpu ≤

k∑

i=0

(tifp + tibp) +

m∑

i=0

toptigpu , k ∈ [m,n]. (3)

To avoid introducing additional overhead during a training

iteration, we need to ensure the computation time incurring

by STRONGHOLD during FP and BP is not greater than the

time for conventional training, i.e.,

n∑

i=0

tifp + n ∗ 2 tasync +
n∑

i=0

tibp + n ∗ 3 tasync +
m∑

i=0

tioptgpu ≤

n∑

i=0

tifp +

n∑

i=0

tibp +

n∑

i=0

tioptgpu

which gives us:

5 n tasync ≤
n∑

i=m

tioptgpu (4)

When applying into a DNN where most of the layers

are homogeneous with the same number of parameters, e.g.,

Figure 4: Real GPU computation and offloading profiling trace when applying
STRONGHOLD to train a 4B model on a 32GB V100 GPU. The profiling
measurement supports our analytical modeling of computation-communication
overlapping optimization. Here, GPU computation and communication are
overlapped when P1 and P2 are satisfied.

Transformer-based models, GPU computation time can be

approximated as
∑n

i=m tioptgpu ≈ (n−m) toptgpu and hence:

5 n tasync ≤ (n−m) toptgpu (5)

Since the overhead of asynchronous function calls is largely

constant regardless of the DNN model size, we can easily

satisfy (5) with a deep (i.e., a large n) or a wide network (i.e.,

a large toptgpu due to more parameters that a layer has).

Determining the working window size. For an n-layer DNN,

STRONGHOLD automatically finds a suitable working window

size m that meets all P1 and P2 across all layers during a

training iteration. It is possible that there is not enough GPU

memory to find an optimal m to meet all the constraints. In

this scenario, STRONGHOLD still uses the largest possible m
layers permitted by the avaiable GPU memory to train a large

DNN (that would not be possible using conventional training

methods) but the training efficiency may be sub-optimal. By

default, STRONGHOLD finds an available GPU buffer for

m layers. This strategy improves the GPU cache locality

for Transformer-based models that have a large number of

identical layer structures (and computation kernels). However,

STRONGHOLD also supports having a fixed-size GPU buffer

where the number of DNN layers stored can dynamically

change, which can be turned on by users to improve GPU

memory utilization for DNN models with a heterogeneous

layer structure.

As a working example, Figure 4 shows the profiling data of

one training iteration when applying STRONGHOLD to train

a 4B model on a 32GB V100 GPU. The profiling results

show that the CPU-directed offloading is largely overlapped

by the GPU computation when criteria P1 and P2 set in our

analytical models are met. In this case, the communication

overhead can be hidden by the GPU computation, suggesting

the effectiveness of our analytical model.

E. Offloading Optimization

STRONGHOLD utilizes the gRPC module of Ray [30] and

concurrent library for communications among parallel CPU

workers. As a result, STRONGHOLD can support concurrent

and asynchronous parameter updates and data transfer. To this

end, STRONGHOLD maintains a thread pool. All workers are

initialized with the model code, and a worker remains idle until

a task has been assigned to it through a callback function. By

default, STRONGHOLD uses all available CPU cores, but the

user can change this.

1) Concurrent parameter update: Unlike conventional

training schemes (including ZeRO-Offload) that employ a

single optimizer for parameter update, STRONGHOLD creates

multiple optimizers during the model initialization stage. It

then dispatches several optimizers to run as asynchronous

actors to perform parameter updates on multiple layers simul-

taneously (step 3 in Figure 3c). This optimization leverages

multiple CPU cores to process the parameter updates of mul-

tiple layers simultaneously, reducing the chance for the CPU

becoming a bottleneck. As parameter updates are performed

by the CPU, this process runs concurrently with the GPU

computation during BP. By default, STRONGHOLD keeps the

first few layers of the model (i.e., layers of the first working

window) in the GPU memory. Since the last m layers in BP

(i.e., the first m layers of the model) remain in the GPU

working window before the start of FP, there is no GPU stall

when computing BP of the last layers in Figure 3c 2 .

2) Heterogeneous collective communications: For dis-

tributed training involved multiple computing devices, gradi-

ents communications are realized through collective commu-

nication operations like all-scatter and all-gather. With a native

deep learning framework (e.g., PyTorch and Tensorflow),

only one type of tensors (CPU or CUDA) can participate

in collective communications at a time. STRONGHOLD lifts

this restriction to support concurrent heterogeneous collective

communications on CPU and CUDA tensors. This feature is

essential for STRONGHOLD to support concurrent CPU and

GPU processing. This is achieved by extending the low-level

collective communication libraries, NVIDIA NCCL [31] and

Gloo [32] for GPU and CPU communications, respectively.

3) Runtime memory management: During DNN training,

many temporary tensors will be allocated and deallocated.

Frequent device memory operations using the native CUDA

memory (de)allocation API can result in expensive runtime

due to explicit and implicit synchronizations. Frameworks

like PyTorch and Tensorflow avoid this issue by reusing

the previously allocated buffers through a software caching

mechanism. For an n-layer DNN, where each layer has k
tensors, such a caching mechanism incurs up to n × k GPU

memory allocation operations. After the first training iteration,

these n∗k GPU buffers are then reserved by the runtime, which

can then be reused for future training iterations. This strategy

is ill-suited for our scenarios when the model is too large to

be fit into the GPU memory (i.e., the n∗k buffers are beyond

the GPU memory capacity). STRONGHOLD addresses this

issue by employing a user-level software memory management

scheme on the CPU and GPU. For an m-layer GPU working

window, STRONGHOLD only needs to incur a one-off m ∗ k
CUDA memory operation at the warm-up stage. Since the

working window size, m, is smaller than the number of layers

(i.e., m < n) of the DNN, STRONGHOLD reduces the GPU

memory footprint while incuring fewer memory allocation

operations than existing caching mechanisms.

Specifically, when loading the DNN, STRONGHOLD allo-

cates pinned memory on the CPU for each DNN layer. The

pinned (or page-locked) memory permits STRONGHOLD to

asynchronously transfer the CPU data to the GPU using an

idle CUDA stream so that the GPU will not be blocked during

data transfer. At the same time, STRONGHOLD also reserves

GPU buffers for layers of the first working window. The

reserved buffers will be managed by STRONGHOLD in future

training iterations. The reserved GPU buffer may grow (but

not shrink) if larger buffers are needed once STRONGHOLD

has determined the working window size after the warm-up

stage. When prefetching a layer from the CPU memory to the

GPU (e.g., step 1 in Figure 3b), STRONGHOLD first allocates

a free GPU buffer from the reserved GPU memory in a round-

robin manner. It then copies the corresponding data content

to the corresponding GPU tensor (e.g., through the PyTorch

tensor.copy_() API). Similarly, when offloading a layer

from the GPU to the CPU memory, STRONGHOLD copies the

data property back to the corresponding CPU buffer. It then

returns the GPU buffer to the STRONGHOLD managed GPU

buffer queue. Whenever STRONGHOLD requests or releases

device memory, the STRONGHOLD runtime always reuses the

reserved GPU memory by overwriting the in-place memory

management methods of the layer implementation.

F. Cross-server Communication Optimization

Another benefit of STRONGHOLD is that it can eliminate

the cross-server communications introduced by traditional

model parallelism in certain cases. For example, if a model

cannot fit into the GPU memory under a traditional training

method, model parallelism is typically adopted to break the

model layers (and their parameters) across multiple GPUs. In

contrast, if the same model can fit into the same GPU under

STRONGHOLD, we can then use the additional GPUs to run

data parallelism training without incurring the synchronization

and communication overhead of model parallelism. The reduc-

tion of cross-server communications when converting model

parallelism to data parallelism for Transformer-based models

can be estimated as follows. The communication volume

for an n-layer Transformer model is Vdp = (w − 1)w ×
(12 × n × hd2 + hd × vs) for w-way data parallelism, and

Vmp = (w − 1)w × n × bs × seq × hd for w-way model

parallelism. Here, hd, bs, seq, and vs are the the hidden size,

batch size, sequence length and vocabulary size, respectively.

Furthermore, we obtain the constant number 12 summing

4 × hd2 for attention and 2 × 4 × hd2 in the feed-forward

network in one Transformer block. By converting w-way

model parallelism to w-way data parallelism, STRONGHOLD

reduces the communication volume by
Vmp

Vdp
.

Using a typical training setup where the training sentence

sequence length is set to 1024 (seq = 1024) and vocabulary

size is set to 30k (vs = 30K), we can simplify
Vmp

Vdp
as

Vmp

Vdp
= bs

3×hd/256+30/n . Let k = 1

3×hd/256+30/n , we now

have Vmp/Vdp = k × bs. Here, the saving in cross-node

communication depends on n, hd, w, and bs. By increasing

the trainable model size, STRONGHOLD allows one to use a

w-way data parallelism to replace the traditional w-way model

parallelism. For a 20B model with a typical bs = 16, n = 50,

hd = 4K, STRONGHOLD halfs the communication traffics by

comparing to model parallelism (see also Section VI-D2).

G. Utilizing Secondary Storage

Like ZeRO-Infinity, STRONGHOLD provides an option to

use NVMe SSDs to further increase the trainable model size.

This is achieved by memory-mapping a swap file on the

secondary storage to the CPU memory space and using the

read/write library to optimize asynchronous bulk read/write

requests between the CPU and the device. The support for

asynchrony allows STRONGHOLD to overlap the I/O requests

with CPU-GPU communication or computation. Since the I/O

bandwidth between the CPU and an NVMe SSD (up to 7GB/s

for PCIe 4.0) is an order of magnitude slower than the CPU-

GPU bandwidth, we do not expect the user to train a large

DNN from scratch with this option. It is also not advised to

train a large model with this strategy because frequent random

reads and writes can increase the chance of NVMe disk failure

[33]. However, this option can be useful in fine-tuning a pre-

trained model with fewer training iterations.

IV. STRONGHOLD-ENABLED OPTIMIZATIONS

By reducing the GPU memory footprint, STRONGHOLD

not only permits training larger DNNs but also opens up

new optimization opportunities. For example, STRONGHOLD

allows training a large DNN that previously was would

otherwise only possible using model parallelism to split the

DNN layers across GPU servers. With STRONGHOLD, the dis-

tributed GPU servers can be used to run data-parallel training

workers, where each computing node holds the entire model

parameters. This can massively reduce the communication and

synchronization overhead imposed by model parallelism (see

also Section VI-D2). Another use case is to support teacher-

student based knowledge distillation [21] by supporting large

DNN inference on a single GPU (Section VI-D3). The third

interesting optimization is to support data parallel training

within a single GPU by utilizing multiple CUDA streams (see

also Section II-B) to use the GPU parallelism to improve the

training throughput, which was not attempted in accelerating

DNN training before. This is described in the next subsection.

A. Multi-streamed GPU Execution

As depicted in Figure 5, STRONGHOLD enables the use

of multiple CUDA streams to accelerate training if there is

enough GPU memory to store the gradients and model inputs

for at least two training workers.

Conceptually, this is achieved through applying data paral-

lelism within a single GPU by partitioning the training batch

into mini-batches. To this end, STRONGHOLD introduces ‘ex-

ecutors’ within its runtime to manage the GPU kernel execu-

tion context across training workers. An executor is a process

of the STRONGHOLD runtime that manages the working win-

dow for a training worker. The executor dispatches kernels to

run on a CUDA stream. Note that only one copy of the model

FP BP Para. update

FP BP

Ops.

Ops. All-reduce

FP BP

Ops.

CPU

GPU

CPU Process 1

GPU Stream 1

CPU Process i

GPU Stream i

Conventional GPU Training

StrongHold

Performance
Improvement

...

All-reduce

Para. update

Figure 5: Utilizing GPU SMs to speedup training, where each SM processes
a microbatch of the training data.

parameters and kernel code is stored in the GPU memory,

despite that there may be more than one training worker and

working window on the GPU. Furthermore, STRONGHOLD’s

strategy of dividing a larger batch into micro-batches to be

processed by concurrently running does not affect the model

consistency since parameter update takes after the entire batch

has been processed, i.e., data-parallel training.

During runtime, we bind each executor to an available

CUDA stream and allocate dedicated buffers on the CPU to

allow the executor to manage the host-device communications

for the corresponding GPU working window. Each executor

runs as a multi-staged pipeline to process a mini-batch, and

each pipeline stage of an executor can execute a kernel

for FP, BP, computation, communication or another user-

defined kernel. As depicted in Figure 5, by mapping different

concurrent executors onto multiple CUDA streams, we can

allow different processing pipelines to run in parallel on a

single GPU to improve the throughput. STRONGHOLD uses

an all-reduce operation to synchronize the gradients among

parallel training workers before performing parameter updates,

similar to data parallel training across multiple GPUs (but

STRONGHOLD has the advantage of only keeping one copy of

model parameters). The number of concurrent streams used is

determined during the warm-up phase, where STRONGHOLD

computes the GPU memory consumption of the GPU working

window size to determine how many CUDA streams to use so

that multi-streamed execution does not cause GPU OOM.

STRONGHOLD essentially creates a lightweight parallel

execution environment for individual executors within a single

user program. This is different from existing GPU virtual-

ization schemes such as NVIDIA MIG (Multi-Instance GPU)

[34], which aim to provide an isolated execution environment

for different user programs running on the same GPU. MIG

is ill-suited for our purpose because CUDA streams or pro-

cesses in different virtualized environments cannot directly

communicate with each other. To implement our idea within

MIG would also require each GPU process holds a copy

of model parameters, resulting in multiple model parameters

being stored on a single GPU, increasing the GPU memory

pressure. Our lightweight approach can avoid such pitfalls by

only storing one copy of the model parameters on the GPU

and enabling CUDA streams to directly communicate with

each other through the GPU hardware communication scheme.

Table I: Transformer-based model configurations.

Model Size (B) #Layers Hidden Size #Heads Model

Par-

al-

lelism

1.7, 4.0, 5.9, 6.0, 6.6,
20.5, 23.7, 39.4

20, 50, 74, 75, 83,
260, 300, 500

2,560 16 1

4.0 19 4,096 16 1
6.2, 10.0 19, 31 5,120 16 1
3.4, 4.7, 7.8, 23.2,
63.2, 75.7, 82.0, 103.2,
367.6, 524.5

10, 12, 24, 72,
200, 240, 260,
328, 1174, 1676

5,120 16 8

19.8, 25.4 24, 31 8,192 16 8
28.7, 32.1, 66.7 31 8,704, 9,216,

13,312
16 8

Since our goal is to accelerate a single user program, we do

not need a heavy and strongly isolated execution environment.

V. EVALUATION SETUP

A. Evaluation Platforms

We evaluate STRONGHOLD on two hardware platforms.

Our main evaluation platform is a V100 GPU server with

one 32GB NVIDIA Tesla V100 GPU, 2x 24-core Intel Xeon

Platinum 8163 CPU at 2.50GHz and 755GB of DDR4 RAM.

We also evaluate STRONGHOLD on an 8-node A10 GPU

cluster where servers are connected through a 800 Gbps

network. Each computing node of the cluster has 2x 64-core

Intel Xeon Platinum 8369B CPUs at 2.90 GHz with 1TB of

DDR4 RAM, and a 24GB GPUDirect-RDMA-enabled A10

GPU based on the latest Ampere architecture. The platforms

run Ubuntu 20.04 operating system with Linux kernel 4.19.91.

We use CUDA 11.2 and PyTorch 1.10.2.

B. Workloads

We evaluate STRONGHOLD on GPT-like Transformer-based

models [35], [3] – the current de facto approach to building

large-scale models [2], [3]. Following the evaluation setup

of ZeRO-Offload [11], we vary the hidden dimension of a

layer to increase the model width and the number of layers to

scale the model depth. Table I lists the model parameters. For

each model, we consider a batch size of 2, 4, 8, and 16 per

GPU. Note that scaling the depth alone is often not sufficient

because it would make training harder to converge [36]. Unless

stated, we use training hyperparameters like weight decay and

learning rate from [23], [11].

C. Competing Baselines

We compare STRONGHOLD against the following billion-

scale model training solutions:

Megatron-LM [37] is NVIDIA’s optimizing library for

Transformer-based models. We use Megatron-LM v2.6 as a

reference model for the training throughput and trainable

model size.

L2L [18] keeps one Transformer layer in the GPU at a time,

by sequentially offloading parameters between the GPU and

CPU memory. Since L2L still stores the optimizer states on

the GPU, it is largely limited by the GPU memory.

0

20

40

60

80

(a) Single V100 GPU

0

20

40

60

80

(b) A10 cluster (8 A10 GPUs)

Figure 6: The largest trainable model size on a 32GB V100 GPU (a) and the
A10 cluster with 8 degrees of model parallelism (b).

ZeRO-Offload [11] statically stores the model states in GPU

memory and optimizer states in the CPU RAM. It also utilizes

the CPU computation cycle to update the model parameters

through a CPU-tuned optimizer.

ZeRO-Infinity [19] utilizes GPU, CPU and NVMe memory.

By default, we compare STRONGHOLD against ZeRO-Infinity

with CPU RAM instead of using NVMe due to the expensive

I/O overhead. In Section VI-C, we compare STRONGHOLD

with ZeRO-Infinity when using a 2TB PCIe4.0 NVMe SSD.

ZeRO-2 and ZeRO-3 [9] partition the model states across dis-

tributed machines but with a data parallel strategy. We compare

STRONGHOLD to the ZeRO-2 and -3 solutions (which are the

core of the DeepSpeed [38] framework) for distributed training

in Section VI-D2.

D. Performance Report

We consider trainable model size and throughput in the

evaluation. We report the trainable model size by counting

the number of model parameters (using FP32 representation)

that can be trained without incurring GPU OOM, and report

throughput by measuring the number of training samples

processed per second. We run each test case 10 times on

unloaded servers to measure the metrics, and then report the

geometric mean across different runs. In our evaluation, we use

layer-wised activation checkpointing [39] that is widely used

in large-scale training. We note that the profiling overhead

of STRONGHOLD at the warm-up phase accounts for less

than 0.5% of the total training time on our evaluation setup.

This overhead will be much smaller (and negligible) in a

real-life training scenario with a higher number of training

iterations. We have included this overhead when computing

the throughout of STRONGHOLD. Finally, the throughput and

efficiency variance across runs is small, less than 3%.

VI. EXPERIMENTAL RESULTS

In this section, we first show that STRONGHOLD outper-

forms all the offloading baselines by enabling the training of

a 39.5B model on a V100 GPU and an 82.1B model across

8 distributed A10 GPUs using model parallelism (Section

VI-A) and giving a higher training throughput (Section VI-B).

We then perform further analysis on STRONGHOLD (Section

VI-C) - including the use of NVMe - before showcasing the

new optimizations enabled by STRONGHOLD (Section VI-D).

A. Trainable Model Size

Figure 6 compares the trainable model size when using CPU

RAM only. The min-max bar on the diagram gives the range of

measurements for different DNN configurations when varying

the hidden dimension and model depth.

1) Single V100 GPU: Figure 6a gives the largest trainable

model on a single 32GB V100 GPU. Megatron-LM allows

one to train a model with up to 1.7B parameters on a V100

GPU before incurring GPU OOM. L2L and Zero-Offload

can expand the trainable size by 3.5x over Megatron-LM,

to support a model with around 6B of parameters through

CPU-GPU offloading. Moreover, the fine-grained parameter

partitions in ZeRO-Infinity (with CPU RAM only) can support

a 20.6B model3. STRONGHOLD outperforms all baselines,

supporting model training with 39.5B parameters and giving

comparable training efficiency compared to other offloading

scheme. STRONGHOLD is limited by the CPU and GPU

memory and the offloading unit size. Therefore, it can support

a larger model with larger CPU RAM and GPU memory

(or reducing the size of the offloading unit through tensor

parallelism). The trainable model size of STRONGHOLD trans-

lates to a 6.5x improvement over L2L and Zero-Offload,

and an 1.9x improvement over Zero-Infinity. ZeRO-Infinity

requires moving the parameters, gradients, and optimizer states

to the GPU for runtime model refactoring. This operation

requires making a copy of the refactored model parameters,

incurring extra GPU memory overhead. STRONGHOLD does

not have this overhead, leading to a larger trainable model

size. Furthermore, while Zero-Infinity could assure large DNN

training, as we will show in Section VI-B, it comes at the cost

of poor training efficiency.

2) Distributed GPUs: Figure 6b shows the largest trainable

model size across 8 distributed A10 GPU servers using model

parallelism. All offloading approaches benefit from additional

GPU resources. However, L2L and Zero-Offload give limited

improvement on the trainable model size as they are largely

constrained by a single GPU memory. By partitioning the

model states across heterogeneous devices, ZeRO-Infinity and

STRONGHOLD demonstrate stronger scalability by scaling the

trainable model size to 56.9B and 82.1B parameters respec-

tively, with STRONGHOLD supports the largest model. In all

test cases, STRONGHOLD gives a nearly 100% GPU utiliza-

tion, with 80% utilization of the theoretical peak bandwidth

of the CPU-GPU PICe or communication network.

B. Training Throughput

Figure 7 compares the training throughput on the

largest trainable model size supported by each baseline.

STRONGHOLD runs the same model of its counterpart.

STRONGHOLD outperforms all baselines (including Megatron-

LM thanks to STRONGHOLD’s multi-streamed optimization),

achieving 42 ∼ 57% hardware performance by delivering

3In [19], Zero-Infinity was reported to support a 1T model using either a
DGX-2 node with NVMe or 32 DGX-2 nodes (512 V100 GPUs), and FP16
for model parameters, for which the computation resources and parameter
settings differ from our evaluation setup.

0.6

0.8

Baselines

StrongHold

0.0

0.1

Megatron-LM: 1.7B

L2L: 6.0B

ZeRO-Offload: 5.9B

ZeRO-Infinity: 20.5B

(a) Single V100 GPU

0

1

2

3

Megatron-LM: 4.7B

L2L: 7.8B

ZeRO-Offload: 3.4B

ZeRO-Infinity: 75.7B

Baselines

StrongHold

(b) A10 cluster (8 A10 GPUs)

Figure 7: Throughput (#samples/second) on a single 32GB V100 GPU (a) and
the A10 cluster (b) when training the largest trainable model of each baseline.

0.00

0.25

0.50

0.75

(a) Throughput

Model size (B)

0

100

200

Perfect linear scaling

StrongHold

(b) Scaling w/ model size

Figure 8: The throughput given by different strategies on a common 1.7B
model (a). STRONGHOLD delivers nearly linear scaling performance (lower-
is-better) as we increase the model size on a V100 GPU (b).

6∼9 TFlops on a V100 GPU. The TFLOPS given by

STRONGHOLD far exceeds the one delivered by L2L (1.88),

ZeRO-Offload (0.59) and ZeRO-Infinity (0.53). It improves

the training throughput by at least 1.1x (up to 3.7x) by better

overlapping the CPU-GPU communication. Figure 8a shows

the throughput obtained when a common 1.7B model (the

largest trainable model supported by Megatron-LM) on a V100

GPU. For this case, L2L delivers only 22.2% of the Megatron-

LM throughput because it simply serializes computation with

data transfer for each DNN layer. ZeRO-Offload and ZeRO-

Infinity achieve less than 57% of the Megatron-LM training

efficiency because a large portion of the CPU-GPU data trans-

fer and computation cannot overlap due to their CPU optimizer

implementation. STRONGHOLD is the only offloading solution

that gives an improvement over Megatron-LM. The results

show that STRONGHOLD can scale up the trainable model

size and accelerate DNN training.

C. Further Analysis

1) Training efficiency: Figure 8b shows that STRONGHOLD

delivers nearly linear training efficiency on a single V100

GPU, using a 1.7B model as the starting point. The training ef-

ficiency is a lower-is-better metric, measured by the averaged

time in performing one training iteration. STRONGHOLD’s

performance is on par with a perfect linear scaling projection,

albeit there are some fluctuations in the scaling trend due to the

impact of the GPU working window size on the GPU cache

performance. Using the same resources, STRONGHOLD can

train 25x, 4x, and 20x bigger models in a single-GPU-single-

node, multiple-GPU-single-node and multiple-GPU-multiple-

node environment, respectively; and it achieves these without

significantly compromising the training efficiency. Therefore,

STRONGHOLD can reduce the number of GPUs required by

at least 4x compared to the traditional training method. The

resource-saving can also be used to increase data parallelism

2 4 6 8 10 12

GPU working window size

0.5

1.0

1.5

2.0

2.5

Figure 9: Impact of the GPU working window size on performance.

10

90
x 9.62

9.2 x

9.3 x

ZeRO-Infinity (w/ NVMe) StrongHold

23.2 63.2 103.2 367.6 524.5
Model size (B)

0

1 9.2 x
9.4 x

Figure 10: STRONGHOLD improves ZeRO-Infinity when using secondary
storage (NVMe).

by 4x to speed up the training time. Based on this scalability

projection, we estimate that STRONGHOLD can complete the

training of 175B GPT-3 using a quarter of the GPUs with a

similar training time, or it can speed up the training process

by 4x when using the same number of GPUs compared to the

conventional distributed training method. This capability can

reduce the cost by using either smaller-scale GPU resources

or fewer GPU hours, making the training of large DNN more

accessible and affordable.

2) Impact of working window size: Figure 9 shows how

the GPU working window size affects the throughput by

running a 1.7B and a 39.5B model on a V100 GPU. In

our cases, initially, a larger window can better overlap GPU

computation with data transfer, which leads to a higher training

throughput. However, the improvement reaches a plateau with

a window size of 8. Using a window size greater than 8 does

not justify the gain in throughput but will increase the GPU

memory pressure. Using the analytical method described in

Section III-D, STRONGHOLD automatically determines to use

a window size of 8 for this model.

3) Using NVMe: Figure 10 shows the throughput improve-

ment over ZeRO-Infinity when NVMe is used to scale up the

model size on the V100 GPU server. When using NVMe,

STRONGHOLD and Zero-Infinity can support the training of

a model with half trillions of parameters on our V100 GPU

server. Compared to Zero-Infinity, STRONGHOLD can also

better overlap the disk I/O requests with GPU computation,

improving the throughput by over 8x.

D. STRONGHOLD-enabled Optimizations

1) Multi-streamed optimization: Figure 11 shows perfor-

mance improvement given by STRONGHOLD over Megatron-

LM when varying the batch size. By only keeping part of

the DNN layers and gradients in the GPU, STRONGHOLD

16 32 64 128
Batch size

1

2

= StrongHold (#samples/sec) / Baseline

1.3/0.8

1.7/0.8 1.5 /0.7 1.4/0.7

Figure 11: Speedup over Megatron-LM under different training batch sizes
when the STRONGHOLD multi-stream optimization is enabled.

1 2 4 8
Batch size

0

2

ZeRO2 ZeRO3 StrongHold

Figure 12: Performance on the 8-node A10 cluster (using the largest train-
able model supported by ZeRO-2). STRONGHOLD outperforms ZeRO-based
distributed training solutions.

reduces the GPU memory footprint by 60%. The reduced

memory footprint permits STRONGHOLD to use multiple

CUDA streams speedup the training process, leading to at least

1.7x (up to 2.1x) speedup over Megatron-LM.

2) Accelerating distributed training: Figure 12 compares

STRONGHOLD against ZeRO-2 and ZeRO-3 in a distributed

training setup on the A10 GPU cluster. ZeRO-2 partitions

the optimizer states and gradients across parallel processes

running on multiple servers while ZeRO-3 partitions the model

parameters on top of ZeRO-2 across GPU servers [9]. We

apply all approaches to the largest model (3B parameters) that

can be supported by ZeRO-2 with a batch size of 1. ZeRO-2

and ZeRO-3 have to partition the model/optimizer states across

GPUs due to the GPU memory restrictions, but they introduce

extra communication overhead across GPUs and serve nodes.

By reducing the GPU consumption, STRONGHOLD does not

need to partition the model across GPU servers. Instead, it can

run the entire model on a single server to exploit data paral-

lelism across GPU servers. As a result, STRONGHOLD reduces

the cross-server communications, leading to over 2.6x through-

put improvement over ZeRO. For example, STRONGHOLD

reduces the cross-server communication by around 50% on a

20B model (see also Section III-F). This experiment demon-

strates another advantage of STRONGHOLD in speeding up

distributed deep learning training.

3) Knowledge distillation: STRONGHOLD can also support

knowledge distillation [21]. This strategy is widely used to

accelerate DNN inference by using a trained large model to

guide the training of a smaller but faster DNN. Under this

setting, the large DNN only needs to perform FP on training

samples to provide layer-wised activations to guide the student

model training. Inferencing frameworks like TensorRT [40] are

not suitable for this scenario because they do not produce acti-

vations of intermediate layers. As can be seen from Figure 13,

1.7 5.5 9.4 13.2 17.1 20.9 24.7 28.6 32.4

Model size (B)

0

100

PyTorch StrongHold

Figure 13: Using STRONGHOLD to support DNN inference for knowledge
distillation on a single 32GB V100 GPU.

Concurrent
parameter update

Runtime memory
 management

Multi-streamed
GPU execution

0.0

0.5

1.0

1.5

1.5 x

2.2 x
2.0 x

Disabled All Enabled

Figure 14: Improvement given by individual optimizations when applying
STRONGHOLD to train a 4B model with NVMe enabled (see also Figure 10).

STRONGHOLD can effectively support large DNN inference

for knowledge distillation. Note that as STRONGHOLD only

needs to support FP in this scenario, it can support a larger

model than when it is used for training that is involved with

both FP and BP. It gives similar performance for small DNN

inference compared to Pytorch but delivers linear scalability

for large DNNs where PyTorch give an OOM error.

4) Optimization breakdown: Figure 14 reports the perfor-

mance improvement on the V100 GPU platform when turning

on a single optimization to a baseline offloading scheme with-

out optimization. By utilizing the multi-core CPU, concurrent

parameter update with heterogeneous collective communica-

tion (Sections III-E1 and III-E2) give 1.5x throughput im-

provment. By minimizing the GPU tensor allocation overhead,

our memory management optimization (Section III-E3) alone

gives a 2.2x throughput improvement. Similarly, by launching

multiple kernels concurrently, our multi-streamed optimization

(see Section IV-A) offers up to 2x improvement.

VII. RELATED WORK

Data and model parallelisms are two dominant paralleliza-

tion techniques for large DNN training [41], [38], [42]. The

former partitions the training data across multiple GPUs [5],

[43], and the latter splits the model layers vertically and

then distributes different layers onto GPUs to reduce the

memory pressure of the model states on a single GPU [6].

ZeRO [9] partitions the training batch across multiple GPUs,

similar to data parallelism, but it further splits the model

states across GPUs and uses collective operations to gather

the required model parameters. Parallelization can also be

achieved by horizontally partitioning a tensor operator across

multiple GPUs [23], [44]. STRONGHOLD complements the

existing data-parallel approaches by using multiple GPU SMs

to achieve fine-grained data parallelism while just keeping one

copy of the model parameters across parallel training workers.

A recent line of work adds pipelines into model parallelism

by partitioning model layers into parallel stages [7], [8],

[45], [46], [47], [48], [49]. In this way, each training batch

is divided into micro-batches to be processed by pipeline

stages across computing devices. Although STRONGHOLD

also follows pipelining, tasks on a STRONGHOLD pipeline are

finer-grained, where the model layers stored in a GPU memory

can change dynamically during execution.

All the aforementioned strategies utilize the aggregated

GPU memory of multiple GPUs to meet the memory re-

quirement of large DNNs. STRONGHOLD is among the recent

attempts in scaling up the trainable model size on a single

GPU. This line of research includes activation check-pointing

methods, which trade computation for GPU memory saving

[39]. This strategy drops the activations after FP and recom-

puting them from checkpoints during BP. Unfortunately, this

comes as the cost of huge overhead for large DNNs because

a large number of activations to be recomputed. Compression

techniques, such as using low or mixed precision represen-

tations for model states, can reduce the memory footprint

[12]. However, compression techniques can reduce the training

accuracy and slowdown model convergence.

Our work falls under a third approach to utilize external

memory like the CPU RAM and NVMe to expand the

memory capacity during training [50], [13], [51], [15], [52],

[16]. ZeRO-Offload [11] and ZeRO-Infinity [19] are the most

closely related work. ZeRO-Offload uses the CPU memory to

store gradients and optimizer states. Unlike STRONGHOLD,

ZeRO-Offload stores the entire model parameters in the GPU

memory. As such, ZeRO-Offload is limited by the GPU

memory, rather than the external memory like STRONGHOLD.

ZeRO-Infinity extends ZeRO-Offload through fine-grained

model state partitioning and utilizing the secondary storage.

When using NVMe, ZeRO-Infinity can greatly increase the

trainable model size, but this comes at the cost of prohibitively

long training time. By carefully overlapping computation

and communication, STRONGHOLD significantly improves

the training efficiency over ZeRO-Infinity. L2L [18] is a

Transformer-specific offloading scheme. It keeps an encoder

layer in the GPU memory, by synchronously moving the model

parameters the CPU memory to mimic layer-by-layer compu-

tation. Unlike STRONGHOLD, L2L requires model refactoring

and offers poor efficiency due to extensive communication

overhead and frequent GPU stalls. The M6 model [53] keeps

a fixed number of layers on GPUs, which is specific to the

current model, and requires code refactoring.

The work presented in [54] combines rematerialization to

trade memory for computation time and offloading to trade

memory for data movement. It employs a dynamic program-

ming heuristic to determine the optimal offloading sequence.

AxoNN [55] exploits asynchronous and message-driven ex-

ecution for scheduling parallel training workers to improve

GPU utilization and system throughput. Varuna [56] leverages

low-priority virtual machines and pipelining to enable low-cost

model training over commodity networking. These techniques

are complementary to STRONGHOLD.

Dorylus exploits the workload characteristics of graph neu-

ral networks (GNNs) to use parallel serverless CPU threads

for model training [57]. Dorylus and other memory [58]

or computation [59] optimization techniques can be used

in combination with STRONGHOLD to utilize low-cost CPU

threads to train GNNs. Furthermore, STRONGHOLD can also

be used together with asynchronous training [60] to further

reduce the waiting time across training epochs, but care must

be taken to avoid slowing down model convergence [61].

VIII. CONCLUSION

We have presented STRONGHOLD, a new offloading frame-

work to lower the GPU memory consumption for training

billion-scale DNNs. STRONGHOLD utilizes heterogeneous re-

sources to scale the trainable model size. Compared to existing

offloading solutions, STRONGHOLD reduces the GPU memory

footprint with lower computation overhead. It achieves this

by maintaining a compact GPU working window and using

data prefetching techniques to overlap data transfer and GPU

computation. By reducing the GPU memory consumption, we

demonstrate that STRONGHOLD enables new optimization to

utilize the GPU hardware parallelism to improve performance.

We show that STRONGHOLD allows the training of a larger

DNN model with better training efficiency than the state-

of-the-art offloading techniques. Specifically, it enables the

training of a DNN with 39.5 billion parameters on a single

V100 GPU without changing user code and supports faster

model training in a distributed GPU environment.

ACKNOWLEDGEMENT

This project was supported in part by the Alibaba Re-

search Intern Program and an Alibaba Innovative Research

Program between Alibaba and the University of Leeds. Zheng

Wang was also supported in part by a Meta research award.

For any correspondence, please contact Songfang Huang (E-

mail: songfang.hsf@alibaba-inc.com) and Zheng Wang (E-

mail: z.wang5@leeds.ac.uk).

REFERENCES

[1] M. E. Peters, W. Ammar, C. Bhagavatula, and et al, “Semi-supervised
sequence tagging with bidirectional language models,” arXiv, 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and et al, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” arXiv, 2018.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing

systems, vol. 33, pp. 1877–1901, 2020.
[4] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper,

Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti et al., “Using
deepspeed and megatron to train megatron-turing nlg 530b, a large-scale
generative language model,” arXiv preprint arXiv:2201.11990, 2022.

[5] S. Li, Y. Zhao et al., “Pytorch distributed: Experiences on accelerating
data parallel training,” arXiv preprint arXiv:2006.15704, 2020.

[6] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao et al.,
“Large scale distributed deep networks,” NeurIPS, vol. 25, 2012.

[7] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neu-
ral networks using pipeline parallelism,” Advances in neural information

processing systems, vol. 32, 2019.
[8] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,

G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in SOSP, 2019, pp. 1–15.

[9] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in SC20:

International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 2020, pp. 1–16.
[10] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On

the dangers of stochastic parrots: Can language models be too big?” in
Proceedings of the 2021 ACM Conference on Fairness, Accountability,

and Transparency, 2021, pp. 610–623.
[11] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,

D. Li, and Y. He, “Zero-offload: Democratizing billion-scale model
training,” in 2021 USENIX Annual Technical Conference, USENIX ATC

2021, July 14-16, 2021, I. Calciu and G. Kuenning, Eds. USENIX
Association, 2021, pp. 551–564.

[12] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” in International Conference on Learning Represen-

tations, 2018.
[13] H. Jin, B. Liu, W. Jiang, Y. Ma, X. Shi, B. He, and S. Zhao, “Layer-

centric memory reuse and data migration for extreme-scale deep learning
on many-core architectures,” ACM Trans. Archit. Code Optim., vol. 15,
no. 3, pp. 37:1–37:26, 2018.

[14] M. Hildebrand et al., “Autotm: Automatic tensor movement in heteroge-
neous memory systems using integer linear programming,” in ASPLOS,
2020.

[15] C.-C. Huang, G. Jin, and J. Li, “Swapadvisor: Pushing deep
learning beyond the gpu memory limit via smart swapping,”
in Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1341–1355. [Online]. Available:
https://doi.org/10.1145/3373376.3378530

[16] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel: Efficient
tensor migration and allocation on heterogeneous memory systems for
deep learning,” in IEEE International Symposium on High-Performance

Computer Architecture, HPCA 2021, Seoul, South Korea, February 27

- March 3, 2021. IEEE, 2021, pp. 598–611.
[17] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and

B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2021, pp. 10 012–10 022.
[18] B. Pudipeddi et al., “Training large neural networks with constant

memory using a new execution algorithm,” arXiv, 2020.
[19] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “Zero-

infinity: Breaking the gpu memory wall for extreme scale deep learning,”
in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, 2021, pp. 1–14.
[20] PyTorch. https://pytorch.org.
[21] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A

survey,” IJCV, vol. 129, no. 6, pp. 1789–1819, 2021.
[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in ICLR, 2015.
[23] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-

zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv, 2019.

[24] M. Wang, C.-c. Huang, and J. Li, “Supporting very large models using
automatic dataflow graph partitioning,” in EuroSys, 2019.

[25] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur,
G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient pipeline
parallel dnn training,” arXiv, 2018.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.
[27] W. Fedus, B. Zoph et al., “Switch transformers: Scaling to trillion

parameter models with simple and efficient sparsity,” arXiv, 2021.
[28] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang et al., “Gshard:

Scaling giant models with conditional computation and automatic shard-
ing,” arXiv preprint arXiv:2006.16668, 2020.

[29] C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton,
A. Susano Pinto, D. Keysers, and N. Houlsby, “Scaling vision with
sparse mixture of experts,” Advances in Neural Information Processing

Systems, vol. 34, 2021.
[30] Ray. https://github.com/ray-project/ray.
[31] NCCL. https://developer.nvidia.com/nccl.
[32] Gloo. https://github.com/facebookincubator/gloo.

[33] 4 causes of ssd failure and how to deal with them. https://www.
techtarget.com/searchstorage/tip/4-causes-of-SSD-failure-and-how-to-
deal-with-them.

[34] NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-sg/technologi
es/multi-instance-gpu/.

[35] A. Radford, J. Wu, R. Child, D. Luan et al., “Language models are
unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[36] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child
et al., “Scaling laws for neural language models,” arXiv, 2020.

[37] Megatron-LM. https://github.com/NVIDIA/Megatron-LM.

[38] DeepSpeed. https://www.deepspeed.ai.

[39] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv, 2016.

[40] NVIDIA TensorRT. https://docs.nvidia.com/deeplearning/tensorrt/.

[41] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” CSUR, vol. 52, no. 4, pp.
1–43, 2019.

[42] L. Lin, S. Qiu, Z. Yu, L. You, X. Long, X. Sun, J. Xu, and Z. Wang,
“Aiacc-training: Optimizing distributed deep learning training through
multi-streamed and concurrent gradient communications,” in Proceed-

ings of the 42nd IEEE International Conference on Distributed Com-

puting Systems (ICDCS). IEEE, 2022.

[43] Q. Xu, S. Li, C. Gong, and Y. You, “An efficient 2d method for training
super-large deep learning models,” arXiv preprint arXiv:2104.05343,
2021.

[44] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language model
training on gpu clusters using megatron-lm,” in SC, 2021.

[45] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia et al., “Dapple: A pipelined data parallel approach
for training large models,” in Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 2021,
pp. 431–445.

[46] A. Kosson, V. Chiley, A. Venigalla, J. Hestness, and U. Koster,
“Pipelined backpropagation at scale: training large models without
batches,” Proceedings of Machine Learning and Systems, vol. 3, pp.
479–501, 2021.

[47] C. He, S. Li, M. Soltanolkotabi, and S. Avestimehr, “Pipetransformer:
Automated elastic pipelining for distributed training of transformers,”
arXiv preprint arXiv:2102.03161, 2021.

[48] Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and I. Sto-
ica, “Terapipe: Token-level pipeline parallelism for training large-scale
language models,” in ICML. PMLR, 2021, pp. 6543–6552.

[49] D. Narayanan, A. Phanishayee et al., “Memory-efficient pipeline-parallel
dnn training,” in ICML. PMLR, 2021, pp. 7937–7947.

[50] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in MICRO. IEEE, 2016, pp. 1–13.

[51] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,
“Superneurons: Dynamic gpu memory management for training deep
neural networks,” in PPoPP, 2018, pp. 41–53.

[52] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and X. Qian,
“Capuchin: Tensor-based gpu memory management for deep learning,”
in ASPLOS, 2020, pp. 891–905.

[53] J. Lin, A. Yang, J. Bai et al., “M6-10t: A sharing-delinking paradigm
for efficient multi-trillion parameter pretraining,” arXiv, 2021.

[54] O. Beaumont, L. Eyraud-Dubois, and A. Shilova, “Efficient combination
of rematerialization and offloading for training dnns,” Advances in

Neural Information Processing Systems, vol. 34, pp. 23 844–23 857,
2021.

[55] S. Singh and A. Bhatele, “Axonn: An asynchronous, message-driven
parallel framework for extreme-scale deep learning,” arXiv preprint

arXiv:2110.13005, 2021.

[56] S. Athlur, N. Saran, M. Sivathanu, R. Ramjee, and N. Kwatra, “Varuna:
scalable, low-cost training of massive deep learning models,” in Pro-

ceedings of the Seventeenth European Conference on Computer Systems,
2022, pp. 472–487.

[57] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei
et al., “Dorylus: Affordable, scalable, and accurate gnn training with
distributed cpu servers and serverless threads,” in OSDI, 2021.

[58] N. Namashivayam, B. Cernohous, K. Kandalla, D. Pou, J. Robichaux,
J. Dinan, and M. Pagel, “Symmetric memory partitions in openshmem:

A case study with intel knl,” in Workshop on OpenSHMEM and Related

Technologies. Springer, 2017, pp. 3–18.
[59] S. Qiu, L. You, and Z. Wang, “Optimizing sparse matrix multiplications

for graph neural networks,” in International Workshop on Languages

and Compilers for Parallel Computing. Springer, 2022, pp. 101–117.

[60] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

[61] K. Vora, S. C. Koduru, and R. Gupta, “Aspire: exploiting asynchronous
parallelism in iterative algorithms using a relaxed consistency based
dsm,” in OOPSLA, 2014.

