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Abstract—The non-coherent source localization problem based
on distributed sensor arrays can be formulated into a group
sparsity based phase retrieval problem where only the magnitude
(absolute value) of the received signals is available. Under such a
framework, a two-dimensional localization method is proposed.
Unlike traditional source localization methods, random phase
errors at sensors of the distributed array will not affect estimation
results by the proposed method. Simulation results indicate that
the proposed non-coherent source localization method outper-
forms the traditional one in the presence of large phase errors,
while still maintains an acceptable accuracy in the absence of
phase errors.
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magnitude-only measurements, group sparsity, non-coherent de-
tection.

I. INTRODUCTION

Source localization is a very important problem in sensor

array signal processing and many methods have been proposed

such as those based on received signal strength (RSS) [1], time

of arrival (TOA) [2], time difference of arrival (TDOA) [3],

[4], direct position determination (DPD) [5], [6] and angle of

arriving (AOA) [7], [8].

For AOA based methods, a distributed sensor array structure

is employed with multiple sensor arrays distributed in a two-

dimensional (2-D) space, where synchronization among all

distributed sensor arrays is not required. There are normally

two steps: the first is applying existing direction of arrival

methods such as those proposed in [9]–[11] to estimate AOAs

at all distributed sensor arrays, while the second is to find

intersections of those estimated AOAs in order to localize

the sources, which can be realised by a maximum likelihood

estimator based on the least squares formulation [7], [8]. Since

information at different observers is processed separately to

obtain the individual AOAs, these AOA based methods are

sensitive to estimation accuracy at each array. Recently, in

[12], [13], with the distributed array network, information

across all sensor arrays is jointly exploited and the source

localization problem was re-formulated into a sparsity maxi-

mization problem, where the area of interest in a 2-D Cartesian

system is divided into grids along the x-axis and y-axis;

under such a framework, a common spatial sparsity support
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corresponding to all distributed sensor arrays is enforced,

leading to a better estimation performance, which also avoids

the possible pairing and ambiguity problems associated with

a two-step AOA based solution [12].

All the above AOA based methods and the sparsity based

one have assumed that there are no phase errors in the

sensor array model. In real applications, however, the phase

information may not be reliable due to various reasons, and

in the extreme case, the phase information may be lost com-

pletely, which unavoidably leads to an inaccurate estimation

result. On the other hand, non-coherent (i.e. magnitude-only

measurements) direction of arrival (DOA) estimation has been

studied recently, where only magnitude information is captured

at all sensors [14]–[18].

In [14], the problem was formulated into a sparse phase

retrieval problem, where the inherent ambiguity issue of non-

coherent measurements was resolved using a reference signal

when only one unknown source impinges upon the array. With

more unknown signals, more reference signals are required.

To reduce the number of required reference signals to one for

multiple incident signals, a method was proposed to firstly

estimate the frequency component of non-coherent measure-

ments, and then a high gain reference signal is employed

to identify the DOA of unknown signals [15], [16], but its

estimation accuracy relies on its frequency resolution, which

requires a large number of measurements. Besides, this method

fails to utilize the information of multiple snapshots jointly to

improve its performance. To jointly exploit multiple snapshots,

the non-coherent measurements can also be formulated into a

compressive sensing based form, but a high gain reference

signal still has to be applied [17]. Alternatively, with a normal

gain reference signal, a dual-array structure was proposed to

reduce the number of required reference signals to one in

[16]. A new group sparsity based algorithm called ToyBar

was proposed in [18], which can also be applied to the dual-

array structure to remove the required reference signal. Most

recently, it has been shown that with a uniform circular array

(UCA), reference signal is not required either if there are more

than two sources [19].

In this paper, the source localization problem with

magnitude-only measurements based on a distributed sensor

array structure is studied, where UCA is employed at each

sensor array in order to be reference-signal free. Similar to



[12], by dividing the area into 2-D grids, the non-coherent

source localization problem is formulated into a sparsity based

framework, and magnitude-only measurements at all observers

can be exploited jointly, since the pre-defined grids provide a

common spatial sparsity associated with true source positions

for all the sensor arrays. As a result, this problem can be

regarded as a group sparsity based phase retrieval problem,

which can be solved by existing algorithms and obtain source

locations directly. In addition, unlike existing AOA based

methods, the performance of the proposed method will not

be affected by phase errors at array sensors.

The remaining part is structured as follows. The signal

model with distributed sensor arrays is described in Sec. II.

The proposed non-coherent localisation method is presented

in Sec. III. Simulation results are provided in Sec. IV and

conclusions are drawn in Sec. V.

II. SIGNAL MODEL WITH DISTRIBUTED SENSOR ARRAYS

Assume that there are K narrowband sources sk(p) located

at Cartesian coordinates Lk(xk, yk), k = 1, 2, ...,K, imping-

ing on D deployed sensor arrays with coordinates Cd(xd, yd),
as shown in Fig. 1.

Fig. 1. Source localization geometry.

The number of sensors of the d-th sensor array is Md,

and the corresponding non-coherent measurements at the d-

th sensor array is expressed as

zd[p] = |Adsd[p]|+ nd, (1)

with sd[p] = [sd,1[p], ..., sd,K [p]]T , where sd,k represents the

p-th snapshot of the k-th signal, nd is the Md × 1 random

Gaussian noise vector at the d-th sensor array, | · |, and [·]T are

the element-wise absolute value operator and matrix transpose

operator, separately, and

Ad = [ad(θ1), ..., ad(θK)]T (2)

is the steering matrix with its columns a(θk), k = 1, ...,K,

being the corresponding steering vectors. When employing a

uniform circular array [19], ad,k is given by

ad(θk) = [e−j 2πr
λ

cos(θd,k−γ1), ..., e−j 2πr
λ

cos(θd,k−γMd
)],

γm = 2πm/Md,
(3)

where λ is wavelength of the signals, r is radius of the circular

array, and θd,k denotes the arriving angle between the k-th

source and d-th sensor array, expressed as

θd,k = arctan2(∆yd,k,∆xd,k),

∆yd,k = ylk − yd,

∆xd,k = xlk − xd,

(4)

with arctan2(·) being the inverse four-quadrant tangent oper-

ator.

Collecting P snapshots to form Zd =
[

zd[1], ..., zd[P ]
]

, one

has

Zd = |AdSd|+ Nd,

Sd =
[

sd[1], ..., sd[P ]
]T

,

Nd =
[

nd[1], ..., nd[P ]
]

.

(5)

Note that, magnitude-only measurements suffer from some

ambiguities, and two of them have effect on the AOA es-

timation results: one is mirroring and the other is spatial

shift [14]–[16], [18]. For mirroring ambiguity, it refers to the

phenomenon that signals arriving from −θd,k will generate

the measurements with the same magnitude, while for spatial

shift ambiguity, it refers to that all estimated arriving angles

at the array are phased shifted by a specific amount. However,

as shown in [19], while applying a UCA structure, those

ambiguities would not appear if the valid DOA range is limited

within θk ∈ [θ − π/2, θ + π/2], i.e. when θ = 0◦, the valid

DOA range is within [−90◦, 90◦], and for −π/2 ≤ θk ≤ π/2,

θk ± π will exceed the limit. Therefore, by applying UCA,

estimation results would not be affected by these ambiguity

issues.

In the scenario of uncalibrated sensor array, each sensor

may suffer from independent phase errors and (5) would be

changed to

Zd = |EdAdSd|+ Nd, (6)

where Ed is an Md ×Md diagonal matrix with random phase

terms, representing the phase errors at the d-th array. Since

the measurement is magnitude only and Ed is diagonal, we

have

|EdAdSd| = |AdSd|, (7)

which indicates that, unlike those traditional methods, phase

error at sensors of an array have no effect on magnitude-only

measurements [14], and hence, in the remaining part of this

paper, phase error matrix Ed is dropped for convenience.



III. PROPOSED METHOD

A. Sparsity based non-coherent DOA estimation

If the admissible DOA range is divided into G grid points

with G ≫ Md, an overcomplete steering matrix at the d-th

sensor array

Ãd = [ad(θ1), ..., ad(θG)] (8)

can be formed with each column representing a potential

incident angle. Accordingly, the source vector sd[p] is extended

to a G× 1 sparse vector

s̃d[p] = [sd,1[p], ..., sd,G[p]]
T , (9)

where only K entries at the corresponding incident angles are

supposed to be non-zero.

For the multiple-snapshot case, where measurements are

expressed as Zd = [zd[1], · · · , zd[P ]], and source matrices

are defined as S̃d = [̃sd[1], · · · , s̃d[P ]], the DOA at the d-th

array can be estimated by solving the following minimization

problem

min
S̃d

∥Zd − |ÃdS̃d|∥
2
F + ρ∥S̃d∥2,1, (10)

where ∥ · ∥2,1 and ∥ · ∥F represent l2,1 norm and Frobenius

norm, respectively. The l2,1 norm ∥ · ∥2,1 is defined as

∥S̃d∥2,1 :=

G
∑

g=1

∥sd,g∥2, (11)

with sd,g is the g-th row vector of S̃d.

B. Sparsity based non-coherent source localization

By dividing the admissible area of interest into Gx and Gy

grids along the x-axis and y-axis in the Cartesian coordinate

system, separately, the overcomplete steering matrix of the d-

th sensor array can be expressed as

Ãd =[ad(θ11), ..., ad(θ1Gy
,

ad(θgx1), ..., ad(θgxGy
),

......

ad(θGx1), ..., ad(θGxGy
)],

(12)

where θgxgy is the angle between location (gx, gy) and the

d− th sensor array, obtained by

θd,k = arctan2(∆yd,g,∆xd,g),

∆yd,g = ylg − yd,

∆xd,g = xlg − xd.

(13)

It is noted that, incident sources from an arbitrary grid point

would share the same spatial support of Ãd, d = 1, ..., D,

although the arriving angles with respect to different arrays

are different. Thus, a (
∑D

d=1 Md) × GxGy steering matrix

covering all D sensor arrays can be constructed as

Ã = blkdiag{Ã1, ..., Ãd}, (14)

where blkdiag{·} generates a block diagonal matrix from

its entries. Therefore, the source localization problem can

be formulated as a joint group sparsity based optimization

problem, given by

min
S̃

∥Z − |ÃS̃|∥2F + ρ∥S̃∥2,1,

Z = [ZT
1 , ...,ZT

D]T ,

S̃ = [S̃
T

1 , ..., S̃
T

D]T .

(15)

In addition to the support shared in the temporal domain

given in (10), groups of S̃ also share the same support in

spatial domain. As a result, S̃ contains G = GxGy groups

and the g-th group, g ∈ {1, ..., G}, of S̃ is a 1 ×DP vector,

consisting of g-th row vectors of all S̃d, d ∈ {1, .., D} in S̃.

The problems in both (10) and (15) can be considered as

a group sparsity based phase retrieval problem, which can be

solved by existing algorithms such as the modified Gespar [14]

and ToyBar [18].

C. Grid refinement

Similar to other sparsity based methods, the estimation

results are dependent on the grid size. A denser grid usually

leads to a more accurate location estimation result, but with a

much higher computational complexity [11].

Therefore, instead of creating a dense grid initially, a coarse

grid is firstly made; based on the localization results, a denser

steering matrix is then built around the estimated locations of

incident sources, and the algorithm is employed again to find

a more accurate result.

IV. SIMULATIONS

In this section, simulation results are provided to show the

performance of the proposed non-coherent source localization

method in comparison with the existing sparsity based coher-

ent method in [12]. A recently proposed sparse phase retrieval

algorithm called ToyBar in [18] is applied in the non-coherent

scenario, and the number of iterations before stop is set to

500, with 20 random initialisations used in order to find the

global minimum of the phase retrieval problem.

The area of interest is set as [−20, 20]m (metres) along

both x-axis and y-axis. In the initial step, 2m is used as the

stepsize for constructing the overcomplete steering matrix Ã.

In the refinement step, a new grid with stepsize 0.2m is formed

around a distance of 2m to either side of the estimated location

from the initial step. There are D = 4 distributed sensor arrays

placed at C1 = (10, 40)m, C2 = (30, 10)m, C3 = (−80, 90)m
and C4 = (−20, 40)m, while the locations for K = 2 sources

are L1 = (−10,−10)m and L2 = (0, 10)m. The number of

sensors at each distributed sensor array Md is set as 20, while

the radius r of the UCAs is set as r =
Md

λ
2

2π , and P = 50
snapshots are collected in all simulations.

For the first set of simulations, the signal to noise ratio

(SNR) is 15 dB, with phase error matrix E being an identity

matrix (i.e. no phase error). The spatial spectrum of estimation

results is shown in Fig. 2, where Fig. 2a provides the result

of non-coherent measurements, while Fig. 2b is for coherent

measurements. It can be seen that the two sources have been



identified successfully by both methods. However, the reso-

lution using coherent measurements (i.e. without the absolute

value operation in (1)) is higher than that of the magnitude-

only measurements as it provides sharper peaks.
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(a) Results by non-coherent method.
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(b) Results by coherent method.

Fig. 2. Spectrum of both non-coherent and coherent methods.

Then, the performances of the two methods are evaluated

with different SNR values ranging from 0 dB to 20 dB in

terms of the root mean square error (RMSE) in the absence

of phase error. The results are shown in Fig. 3, with each

point obtained by averaging over 100 trials and the peaks

of spectrum are regarded as the true source locations. It

can be observed that, although both methods achieve more

accurate results with increasing SNR, the method with full

measurements consistently outperforms that with magnitude-

only measurements, especially when the noise level is high.

However, it is not surprising since only magnitude information

is used in the non-coherent scenario with magnitude-only

measurements.

Finally, we examine the performance of both non-coherent

and coherent methods in the presence of sensor phase errors.

RMSE results are obtained with an average of 100 trials.

The SNR is fixed at 15 dB, while the entries of the phase

error matrix Ed follow the Gaussian distribution with standard

deviation σ. As shown, the proposed non-coherent method

is not affected by phase errors, with a steady performance,

while the performance of the coherent method declines as the

intensity of phase errors increases.
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Fig. 3. RMSEs versus SNRs.
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Fig. 4. RMSEs versus sensor phase error.

V. CONCLUSIONS

A source localization method with magnitude-only measure-

ments based on distributed sensor arrays has been proposed.

The non-coherent source localization problem was formulated

in a joint sparse phase retrieval form, and the l2,1 norm is

employed to enforce spatial sparsity. Unlike those existing

AOA based methods, phase error at sensor arrays has no effect

on the proposed non-coherent one, which means that phase

calibration is no longer required. Simulation results show that

the proposed method outperforms the traditional method in

terms of RMSE when the phase error occurs at the sensors,

but at a cost of worse performance in the absence of phase

errors.
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