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Abstract—Today’s supercomputers offer massive computation
resources to execute a large number of user jobs. Effectively
managing such large-scale hardware parallelism and workloads
is essential for supercomputers. However, existing HPC resource
management (RM) systems fail to capitalize on the hardware
parallelism by following a centralized design used decades ago.
They give poor scalability and inefficient performance on today’s
supercomputers, which will worsen in exascale computing. We
present ESLURM, a better RM for supercomputers. As a depar-
ture from existing HPC RMs, ESLURM implements a distributed
communication structure. It employs a new communication tree
strategy and uses job runtime estimation to improve communi-
cations and job scheduling efficiency. ESlurm is deployed into
production in a real supercomputer. We evaluate ESLURM on
up to 20K nodes. Compared to state-of-the-art RM solutions,
ESLURM exhibits better scalability, significantly reducing the
resource usage of master nodes and improving data transfer and
job scheduling efficiency by a large margin.

Index Terms—Resource management, Exascale computing,
Scheduling

I. INTRODUCTION

Modern high-performance computing (HPC) systems are

integrated with an ever-growing number of tightly coupled

computing nodes. It is typical for a supercomputer today to

have millions of parallel processes running on hundreds of

thousands of nodes at any time [1]–[3]. Under such settings,

efficiently managing the massive computing resources and jobs

is vital for the success of any HPC system.

Hardware resource management is a heavily studied field

in HPC [4], [5]. However, as being highlighted in Table I,

many of today’s top-ranked supercomputers still rely on a

centralized resource manager (RM) like Slurm [6] and IBM

LSF [7], where the RM runs on a master node to manage

hardware resource allocation and batched job scheduling for

the entire HPC system. Since an RM is responsible for key

optimization metrics like server utilization, system throughput,

job turnaround time, and fairness, it is important to make

sure the RM system can efficiently scale to a large number

of computing nodes and jobs.

While being widely deployed, a centralized RM is ill-suited

for next-generation supercomputers and can quickly become

a bottleneck on a large-scale HPC system. For example,

1Corresponding author

deploying Slurm - a widely used open-source supercomputing

RM system - to manage a small-size computing cluster with

only 500 nodes running 100K jobs daily would require the

master node of RM to be equipped with at least 32 to 48

GB of RAM with a multi-core CPU running at a high clock

frequency [8]. Similarly, after running the production Tianhe-

2A [9] supercomputing system for several years, we also

observed countless scenarios where the poor performance of

the centralized Slurm leads to slow job response or even

system-wide crashes.

We present ESLURM2, a distributed RM designed for large-

scale HPC systems. ESLURM improves existing supercomput-

ing RM solutions by employing a distributed RM management

structure that integrates master and satellite nodes to manage

resource allocation and job scheduling. This hierarchical struc-

ture minimizes the resource requirement of the master node

compared to a centralized RM solution, preventing the master

node from becoming a bottleneck. Such a distributed design

also improves the scalability of the RM system and reduces

the chance of system-wide crashes due to the failure of the RM

node. To improve the robustness of distributed communication,

ESLURM employs a failure prediction-based tree (FP-Tree)

structure. Unlike existing tree-based communication schemes,

ESLURM predicts which nodes are likely to fail in advance

and uses this information to proactively adjust their positions

in the communication tree to improve data transfer efficiency.

On top of the distributed design, ESLURM enhances existing

HPC RMs by adopting a machine-learning-based job sched-

uler. Specifically, ESLURM combines unsupervised clustering

and supervised learning techniques to estimate the runtime of

a given job based on historic information of similar jobs. ES-

LURM then uses the runtime estimation to schedule user jobs.

This strategy avoids the pitfall of inaccurate job completion

time supplied by the user, improving the system utilization

while reducing the job failure rate.

The design of ESLURM draws aspiration from distributed

solutions of resource and task management developed for

data centers [10]–[12]. However, these data center oriented

solutions target containerized workloads and microservices

with a focus on co-locating tasks to improve server utiliza-

2Code available at: https://github.com/YiqinDai/eslurm.
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TABLE I
RESOURCE MANAGERS OF TOP-10 SUPERCOMPUTERS AS OF NOV. 2021

Rank System RM Rank System RM

1 Fugaku Fujitsu 6 Selene Slurm
2 Summit LSF 7 Tianhe-2A Slurm
3 Sierra LSF 8 JUWELS Slurm
4 Sunway Taihulight LSF 9 HPC5 unknown

5 Perlmutter Slurm 10 Frontera Slurm

tion [13]–[15]. They are not designed for distributed, batch-

oriented HPC workloads where jobs typically run in isolation

on individual nodes (but use e.g. the message-passing interface

(MPI) for communication and synchronization) and are sensi-

tive to timeliness and affinity. Due to the distinct characteristics

and requirements of workloads, existing data center RMs are

infeasible for supercomputing.

We have implemented ESLURM and deployed it to the

production environment of the Next Generation Tianhe Su-

percomputer. We compare ESLURM against five mainstream

HPC RMs: Slurm [6], LSF [7], SGE [16], Torque [17], and

OpenPBS [18] using 16,384 nodes on the top-ranked Tianhe-

2A supercomputer and 20K+ nodes on the Next Genera-

tion Tianhe Supercomputer (NG-Tianhe). Experimental results

show that ESLURM incurs lower CPU load, memory footprint,

and network bandwidth compared to alternative schemes.

Compared to the widely used Slurm RM, ESLURM signif-

icantly improves system utilization and reduces the average

job waiting time, exhibiting better scalability as the number

of computing nodes to be managed increases.

This paper makes the following contributions:

• It presents a distributed RM implementation for super-

computers and HPC systems (Section III);

• It shows, for the first time, how node failure prediction

can be employed to improve distributed communications

(Section IV);

• It proposes a novel machine-learning-based runtime job

scheduler for HPC job scheduling (Section V);

• It shares the experience of developing a decentralized RM

in the production of the NG-Tianhe Supercomputer.

II. BACKGROUND AND MOTIVATION

A. HPC Resource Managers

The majority of supercomputer RMs follow a centralized

master-slave structure. For example, Slurm runs a control

(slurmctld) daemon on a master node to manage and

schedule hardware resources among parallel jobs, and a

lightweight service daemon (slurmd) on each computing

node for tasks like launching and terminating processes and

redirecting I/O requests. A similar master-slave architecture

is also be used by RMs within the PBS family [17], [18],

LSF [7], SGE [16] and Condor [19].

The centralized RM design is widely used by today’s

supercomputers for resource management and job scheduling.

Table I lists the RMs used by the top 10 supercomputers in the

TOP500 list (published in November 2021) [20]. All but HPC5

(whose RM was not disclosed) of the top-10 supercomputers

use a master-slave architecture built upon Slurm or LSF. While

HPC systems are designed to provide hardware parallelism,

ironically, the current mainstream HPC RMs do not capitalize

on hardware parallelism.

B. Observations in a Production Environment

Our trial deployment of Slurm (v20.11.7) on the Next

Generation Tianhe Supercomputer with 20K+ nodes shows

that Slurm can not effectively manage a cluster of this size.

For example, the RAM usage of the main scheduling daemon

(i.e., slurmctld) on the master node quickly increased to 70

GB in a week, which continued to grow with a longer running

time. We also observed that the CPU of the master node was

fully loaded most of the time, and the number of concurrent

TCP connections could reach hundreds of thousands. Due

to the excessive resource usage and communication links on

the control node, the RM cannot timely respond to user job

requests, giving an average response time of more than 27

seconds for a user request, with around 38% of user requests

failing to connect to the master node at a given time. We also

observed the Slurm crashed numerous times in scenarios with

bursts of communication, when many jobs were submitted

and terminated at the same time, or when a large number of

computing nodes failed. The average time between two Slurm

RM crashes on our system is around 42 hours, but an RM

reboot takes more than 90 minutes. Worse still, the system-

wide resource utilization of our system is under 30%.

As can be seen from the observations, a single control

node does not fit for managing a large HPC cluster. With

the explosive growth of HPC system resources, a centralized

RM is likely to become a major performance bottleneck. It

is, therefore, a massive missed opportunity to not utilize the

hardware parallelism provided by supercomputers. ESLURM

is designed to avoid the pitfall of a centralized RM.

C. Design Choices

There are two main approaches to address the scalability

issue. The first is to develop a fully decentralized system. In

the context of HPC RMs, this can be achieved by replicating

multiple master nodes with similar functionalities, where each

master node manages a subset of jobs and computing nodes.

This strategy is shown to be useful in decentralized or dis-

tributed networks [21]–[23] and certain HPC job scheduling

scenarios [24]. The second approach is to introduce interme-

diate control layers to build a hierarchical system to avoid a

single node becoming the bottleneck [25], [26]. ESLURM falls

into this category.

In a fully distributed architecture, the functionalities of

the traditional master node are partitioned across distributed

nodes. Doing so requires a redesign of resource allocation

and job scheduling policies across multiple control nodes.

In addition, the synchronization overhead of multiple fully

decentralized control nodes can incur significant overhead

in a fully distributed architecture. In contrast, ESLURM’s

hierarchical design retains a master node and only offloads

large-scale communication from the master node to a layer
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Fig. 1. Overview of the ESLURM’s distributed RM architecture.

of auxiliary (or satellite) nodes. This approach preserves the

master node’s global view of resources and jobs as well as

the original efficient resource allocation and job scheduling

logic, ensuring the global optimality of system scheduling. We

choose a hierarchical design to implement ESLURM, because it

provides an easy way to upgrade existing supercomputer RMs,

supporting practices that are widely adopted in supercomputer

job management today.

III. DISTRIBUTED RM ARCHITECTURE OF ESLURM

A. Overview of ESLURM

Fig. 1 gives a high-level overview of ESLURM that extends

the classical master-slave architecture by introducing the in-

termediate satellite nodes. The master node coordinates the

system-wide resource and job scheduling by only interacting

with the satellite nodes. The key is to distribute the extensive

communications of computing nodes (i.e., slave nodes) to

the satellite nodes to reduce the communication traffic of

the master node. The satellite nodes do not participate in

computing tasks and do not retain any system state. They act as

bidirectional communication buffers with initial data aggrega-

tion and processing capabilities between the master node and

the computing nodes. This design principle is based on the

observation that communication and synchronization between

the control node and the computing nodes are responsible for

poor scalability (see Section VII) in large-scale HPC systems.

In a centralized RM, the master node uses broadcast mes-

sages to communicate directly with all computing nodes for

tasks like launching or terminating jobs and sending heartbeat

signals to slave nodes for fault detection. After the broadcast,

the responses from slave nodes will typically need to be

collected and aggregated for the master node. ESLURM takes

a different approach. Within ESLURM, the master node only

needs to communicate with a smaller number of satellite

nodes through broadcasting. The satellite nodes then relay the

messages to slave nodes. This is achieved by partitioning and

organizing the slave nodes as an FP-tree to be managed by

the satellite node. Similarly, the satellite node can aggregate
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Fig. 2. The state transition of a ESLURM satellite node.

TABLE II
ESLURM SATELLITE NODE STATUS

State/Event Description

UNKNOWN Satellite node state remains unknown
RUNNING Satellite node is operating as expected
BUSY Satellite node is processing broadcast tasks
FAULT Satellite node has failed.
DOWN Satellite node is shut down.
BT-success Satellite node successfully processed a broadcast task.
BT-failure Satellite node failed to process a broadcast task.
HB-success Satellite node is health.
HB-failure Satellite node is abnormal.
SHUTDOWN A shutdown command is sent to the satellite node
TIMEOUT Satellite node is in the FAULT state for a long time (e.g., ≥20

min)

messages from slave nodes within its FP-tree and send the

aggregated message to the master node. We note that the FP-

tree is dynamically constructed based on the communications

and the prediction of failed computing nodes. This is discussed

in more details in Section IV.

By distributing the communications across multiple satellite

nodes, ESLURM reduces the chance for the master node to

become a communication bottleneck when managing a large

number of computing nodes. This design, in turn, also reduces

the computation resource requirements of the master node,

increasing the scalability of the RM. A key challenge of

ESLURM is ensuring load balancing and fault tolerance of

satellite nodes. We achieve this by employing the dynamic

task allocation and failure detection mechanisms described in

the next two subsections.

B. Dynamic Satellite Node Allocation

When the master node issues a broadcast message to s
participating (or slave) nodes, ESLURM dynamically splits the

participation list into N sub-lists handled by N satellite nodes

(with the same message content). By doing so, the master node

only needs to interact with N satellite nodes (where N ≪ s),

reducing the master node communication traffic.

ESLURM uses the following analytical model to determine

the number of (N ) satellite nodes used to relay a broadcasting

message to s slave nodes:

N =











1, s <= w

s/w, w < s < m ∗ w

m, s >= m ∗ w

(1)



where w is the width of the FP communication tree, and

m is the number of all satellite nodes configured in the

cluster (see Section VII-C for our default setting). Essentially,

this formula tries to avoid using all satellite nodes unless a

large number of slave nodes is involved. After obtaining N ,

ESLURM equally divides the list of participating nodes across

N satellite nodes to create N sub communication tasks. We

use round-robin [27] to map nodes from the satellite node

pool to the slave node partition. The master node performs

this mapping to assign satellite nodes to slave nodes.

C. Failure Detection of Satellite Nodes

In a large computing cluster, some of the nodes may fail

from time to time. Such failure can happen to satellite nodes

too. Fig. 2 and Table II describe how ESLURM detects and

recovers the failures of satellite nodes. ESLURM checks and

updates the status of each satellite node of the satellite node

pool. Failures can be detected by either checking a satellite

node has processed a broadcast task successfully (e.g., BT-

success and BT-failure in Table II) or sending heartbeat signals

at regular intervals (HB-success and HB-failure in Table II).

Only satellite nodes at the RUNNING state will be chosen to

participate in message broadcasting, and satellite nodes with

the DOWN state will require administrator intervention.

Although only satellite nodes in the RUNNING state are

allowed to participate in message broadcasting, it is still pos-

sible for satellite nodes to fail during data broadcasting. At this

time, ESLURM reallocates the broadcast to the next satellite

nodes in the round-robin and sets the failed satellite node to the

FAULT state. However, if the number of reallocation trails for

the same task exceeds a threshold (default to 2 in ESLURM),

the master node will take over the broadcast task, ensuring

that the task is processed correctly and promptly.

IV. FAILURE PREDICTION BASED TREE STRUCTURE

Like other HPC RMs [28]–[30], ESLURM uses a logical

tree to disseminate messages across computing nodes. Prior

works in the area focus on tuning the width and depth of

the tree but largely ignore the impact of node failures on the

communication latency.

A node failure can be caused by a power outage, network

disconnection, network congestion, and memory shortages, all

of which lead to communication failures between nodes. Failed

computing nodes of the communication tree incur communica-

tion latency. This is partly because the parent node must wait

for a timeout threshold before taking action, and in particular,

failures on non-leaf nodes cause communication latency in

all their descendant nodes. In addition, once a non-leaf node

fails, the parent node also needs to redesign its communication

according to a fault tolerance mechanism to ensure that the

descendant nodes of the failed node are reachable, a process

that is also time-consuming. Therefore, the more descendant

nodes of a failed node have, the higher the delay will be caused

by a single point of failure. In the production environment

of Tianhe-2A, we track the communication processes (e.g.,

broadcasting and heartbeats) that use trees. We found that for
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every 1% increase in the number of failed nodes, the latency

of a tree-based communication structure will increase by 3-28

seconds. These problems will manifest more frequently when

future HPC systems integrate more computing nodes where

the frequency of node failures [31] and the probability of

having a failure node in the communication tree will increase

[32], [33]. To reduce the impact of a failed node, we would

like to move a node that is like to fail further down to

the communication tree. The ESLURM communication tree

is designed for this purpose.

A. The ESLURM Communication Tree

Fig. 1 shows the failure prediction based tree structure (FP-

Tree) of ESLURM. Upon receiving a communication task, the

satellite node first constructs an FP-Tree (via the FP-Tree

Constructor shown in Fig. 3) containing the satellite node and

all its slave nodes specified within the broadcast task. The key

of the FP-Tree is to estimate which nodes are most likely to fail

so that these nodes can be placed as leaf nodes to reduce the

impact of failures on the communication latency, improving

the response time and system throughput.

B. Communication Tree Construction

To construct a communication tree, each satellite node

breaks the list of participating slave nodes into small groups.

Note that the number of groups determines the width of the

tree. Each satellite node uses the first node in the partitioned

list as the first-layer node. Then, the satellite node sends each

remaining list with the broadcast message to its corresponding

first-layer node. Each first-layer node groups the remaining

node list into several small node lists before selecting the

second-layer nodes and so on. If all nodes use the same

grouping method in the above process, the node’s location in



the initial node list received by the satellite node corresponds

to its location in the tree. Therefore, rearranging the node

list before constructing a tree can change the location of

nodes in the tree. An effective rearranging strategy has the

opportunity to deliver significant optimization results for the

tree-like communication mode. Fig. 4 depicts the workflow

of FP-Tree construction. Given that tree construction occurs

frequently and that the size of the node list is usually large

in large-scale systems, we expect the additional time cost of

constructing an FP-Tree to be O(n), where n is the number

of nodes in the node list.

C. Failure Node Prediction

ESLURM leverages monitoring infrastructures commonly

available in most HPC systems to identify nodes with ab-

normal behaviors as possible failures. On the Tianhe HPC

systems, we adopt the principle of over-prediction. This is

because the prediction result only changes the node’s position

in the communication tree and does not affect the state

and performance of the node. The corresponding node is

predicted as a failed node once an alert is received from

the monitoring and diagnostic subsystem. The monitoring

and diagnostic subsystem of Tianhe HPC systems consist

of three layers of management units, the Board manage-

ment Unit (BMU), including the Chassis Management Unit

(CMU), and the System Management Unit (SMU), which are

connected in a unified way through a dedicated monitoring

and diagnostic network [34]. The subsystem has more than

200 hardware monitoring indicators, covering voltage, cur-

rent, temperature, humidity, liquid cooling system, air cooling

system, self-developed high-speed network card, and many

other aspects.As the failure node prediction mechanism is

implemented as a plugin, more advanced techniques can be

easily integrated with ESLURM [31], [35], [36].

D. Leaf-nodes Location

ESLURM first simulates the entire construction process of

the communication tree and then locates the corresponding

locations of the leaf nodes in the nodelist (Fig. 4 (b)). The

most important and complex step in the process is to simulate

the grouping process of each node recursively from top to

bottom by the divide and conquer method. For each node,

if the number of nodes received in the node list is greater

than the treewidth, it is first divided into w groups, and then

the recursion continues for each group. If the number of

nodes received is less than the treewidth, it is directly divided

into n groups, and the complexity of the process is O(1).
The following equation can describe the complexity of the

recursive process:

T (n) =

{

O(1), n < w

w ∗ T (n/w) + w, n ≥ w
(2)

where w is the width of the tree. Using the master theo-

rem [37], we can quickly get the time complexity of the

recursive formula as T (n) = Θ(n).

TABLE III
WORKLOAD TRACES

Traces #Jobs Time Period

Tianhe-2A 154,081 June/2021-Sep/2021
NG-Tianhe 52,162 Oct/2021-Mar/2022

E. Nodelist Rearranging

The ESLURM nodelist rearranger uses the results of the

other two components to rearrange the original input nodelist.

This tool traverses each location on the original nodelist and

selects a proper node for filling the location. If a location

corresponds to a leaf node, the tool prioritizes the selection

of a node from the set of predicted failed nodes; otherwise,

it preferentially selects a node from the complement of the

failed nodes set. The time complexity of this step is O(n) for

n computing nodes. The rearranged nodelist will be used to

construct an FP-Tree. Fig. 4 (c) visually presents this process,

and Fig. 4 (d) shows the corresponding FP-Tree, in which the

predicted failed nodes are placed on the leaf nodes.

When there are few failed nodes, the FP-Tree makes few

changes to the communication structure. In practical deploy-

ments, we found that in most cases, failed nodes account for

less than 2% of the total number of nodes (see Section VII-A).

Therefore, for systems that use topological information to

optimize communication, the communication tree can be con-

structed first using topology-aware techniques and then fine-

tuned using the FP-Tree constructor. This approach can reduce

the impact of failed nodes while preserving the topology-aware

properties of the tree.

V. JOB RUNTIME ESTIMATE FRAMEWORK

Having a good estimation of the job runtime is critical for

effective job scheduling. Existing HPC RM schedulers rely

on runtime estimation given by the users. However, studies

have shown that users tend to overestimate their job running

time [38]–[40]. Our analysis on the workload trace of over

200K jobs (Table III) from two production HPC systems

suggests that runtime overestimation is a common issue. For

example, Fig. 5 (a) gives the cumulative distribution of the

runtime estimated accuracy (P) computed from these real-life

work traces, where P > 1.0 suggests an overestimation. As

can be seen from the diagram, around 80-90% of the job

runtime were overestimated by users. ESLURM is designed to

improve the efficiency of job scheduling planning by utilizing

more accurate job runtime estimation.

Fig. 6 depicts the job runtime estimation framework of

ESLURM, which consists of three components: an estimation

model generator, a real-time estimation module, and a record

module, described in the following subsections.

A. Estimation Model Generator

Our estimation model generator periodically selects his-

torical jobs within a configurable interest window from the

historical job queue. Next, it applies unsupervised clustering

to the selected jobs to reduce the required training dataset size
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Fig. 6. Workflow of the ESLURM job runtime estimate framework.

while improving the accuracy of the estimation model. It then

creates a job estimation model for each cluster. Specifically,

we use K-means++ [41], for clustering and a support vector

machine (SVM) model for regression (SVR) for runtime

estimation.

Observations and design choices. We use the workload

traces presented in Table III to study the locality of job

runtime by considering two metrics: job correlation and the

job correlation ratio. Here, two jobs (referred to as a job

pair) are considered to be correlated when they have similar

job names, required resources, and job runtime. The job

correlation ratio is the proportion of correlated job pairs among

all job pairs that satisfy certain conditions. Fig. 5 (b) shows

how job correlation varies with the job submission interval on

two production HPC systems: NG-Tianhe and Tianhe-2A. As

the interval increases, job correlation decreases significantly.

When the interval reaches 30 hours, the job correlation ratio of

NG-Tianhe gradually stabilizes at 0, while that of Tianhe-2A

stabilizes at 0.3. This difference is because the Tianhe-2A has

been in production for many years with more stable users and

applications than the Next Generation Tianhe Supercomputer.

Hence, the update frequency of the estimation model should

not be longer than every 30 hours. Fig. 5 (c) shows job

TABLE IV
JOB FEATURES USED IN JOB RUNTIME ESTIMATION.

Features Type

1 Job name String
2 User name String
3 Required nodes Integer
4 Required cores Integer
5 Submission time (hours only) Integer

correlation changes as the job ID gap increases. As can be

seen from the figure, the job correlation gradually decreases

as the ID gap increases and stabilizes at about 0.08 after the ID

gap is greater than 700. Based on this profiling information,

we set the estimation model generation module to run every 15

hours by default, and the size of the interest window defaults

to 700 jobs. We also provide a configuration interface for two

parameters, allowing a system administrator to reconfigure the

parameters.

Job features. For each incoming job, we use the set of

quantifiable features given in Table IV to capture the job

characteristics. These features are directly available from most

RMs. Among the chosen features, the job name, required

nodes, and cores are directly related to the job runtime. We

also consider the user name and job submission time to capture

the job characteristics based on our observations from real-life

traces. According to the workload traces in Table III, 71.4% of

jobs requiring a runtime longer than six hours were submitted

between 6 pm and 12 am, and HPC users often submit the

same job repeatedly. Statistically, there is an average 89.2%

probability for a user to submit the same job that the user has

submitted in the past 24 hours. Therefore, the user name and

job submission time can also be essential for clustering the

training data and for runtime estimation.

Predictive modeling. To generate training data clusters, we

apply K-means++ to group the data samples into clusters in

the feature space. To determine how many clusters to use (i.e.,

K), we use the classical elbow method [42], [43] to calculate

the optimal value of K (K = 15 in our case), which can

also be configured by a system administrator. We then train

an SVR model for each job sample cluster, using the data

samples within the cluster. The trained SVR model can then

be applied to an incoming job by taking the feature values of



the job (Table IV), which are available after a user submitted

a job, as input to predict the job runtime.

B. Real-time Estimation Module

The ESLURM real-time estimation module is driven by

events. It extracts the features of each newly submitted job

and matches the closest cluster. It then uses the estimation

model created for the cluster to estimate the job runtime of

the incoming job. We note that the estimation model is trained

by the estimation model generator, running asynchronously

with the real-time estimation module. We multiply the runtime

estimation with a weight to penalize underestimation for

avoiding job failure and rescheduling:

tpi = tpi ∗ α. (3)

where α is the slack variable and tpi is the runtime estimation

given by the estimation model. By default, α is set to 1.05 (see

also Section VII-E). When the user does not submit a runtime

estimate, we directly adopt the runtime estimation given by the

estimation model. When the user gives a runtime estimation,

we use the runtime estimate given by the estimation model

only when the average estimation accuracy (AEA) of the

estimation model is greater than 90%. Therefore, while trying

to improve the estimation accuracy, encouraging users to give

accurate runtime estimation is also an effective means to

improve resource scheduling efficiency.

C. Record Module

The record module is also event-driven. The module adds

the job to the historical job queue when the job is completed.

Then, the module calculates the accuracy of the runtime

estimation provided by the estimation model and updates

the average estimation accuracy of the cluster to which the

job belongs. We give the metric formula for the estimation

accuracy of a single job and a formula calculating the average

estimation accuracy within a job cluster:

EAi =

{

tpi/tri, tpi < tri

tri/tpi, tri ≤ tpi
(4)

AEA = 1/n ∗

n
∑

i=1

EAi (5)

where tpi is the runtime estimation of the i-th job, tri is the

actual runtime of the job, and EAi is the estimation accuracy

of the job, which takes values in the range of 0 and 1, with

values closer to 1 indicating higher estimation accuracy. AEAi

is the average estimate accuracy.

VI. EVALUATION SETUP

A. Hardware Platforms

We evaluate our approach on two HPC systems. The first

platform is the Tianhe-2A supercomputer consisting of 16K

computing nodes, which ranked in 7th place in the TOP500

list as of November 2021. The second platform is the Next

Generation Tianhe Supercomputer (NG-Tianhe) consisting of

20K+ computing nodes. Each node on Tianhe-2A has 64GB

of RAM with a 12-core 2.2 GHz Intel Xeon processor and a

Matrix-2000 accelerator. Each computing node on the NG-

Tianhe has a heterogeneous many-core MT processor. The

master node has 196GB of RAM with a 10-core 2.4GHz Intel

Xeon Sliver 4210R processor. Both the two HPC systems are

equipped with a proprietary designed interconnection network

with a network interface chip designed to provide high-speed

network interconnection. On both HPC systems, a single

network port uses a four-lane high-speed serial transmission

link, with a communication rate up to 25 Gbps. The external

one-way bandwidth of a single computing node is 400 Gbps

in total.

B. Application Workloads

For job workloads, we use real-life historical workload

traces collected from the production environment of Tianhe-

2A and NG-Tianhe. These workloads are mainly MPI parallel

applications for representative HPC applications like simu-

lations for computational fluid dynamics, large-scale equip-

ment electromagnetic, engine combustions, nonlinear flows,

and analytic workloads like bio-informatics and mechanical

strengthen analyses.

C. Experimental Roadmap

To evaluate ESLURM, we conduct five rounds of exper-

iments. The first round of experiments compares ESLURM

against five mainstream HPC RMs on the 4K nodes of the

Tianhe-2A (Section VII-A). The second round of experiments

compares ESLURM with Slurm on full-scale Tianhe-2A (Sec-

tion VII-B). The third round of experiments is to deploy ES-

LURM on the full-scale NG-Tianhe to evaluate the scalability

of ESLURM (Section VII-C). The fourth round of experiments

is to build multiple independent clusters of different scales

on Tianhe-2A and NG-Tianhe to evaluate the performance

of ESLURM from multiple perspectives (Section VII-D). The

last round of experiments evaluates the job runtime estima-

tion model of the ESLURM (Section VII-E). Throughout the

evaluation, the configuration of both Slurm and ESLURM

follows the Large Cluster Administration Guide [44]. For

Slurm and ESLURM, the optional database daemon (slurmdbd)

and the master daemon (slurmctld) are placed on the master

node. Throughout our evaluation, we compute the master node

resource usage by measuring the resource usage of the master

daemon.

VII. EXPERIMENTAL RESULTS

A. Evaluation on 4K Nodes of Tianhe-2A

Using 4K nodes of Tianhe-2A, we compare ESLURM

against six mainstream RMs: SGE (version 8.1.9) [45], Torque

(version 6.13) [17], OpenPBS (version 20.0.1) [46], LSF

(version 10.0.1) [7], and Slurm (version 20.11.7) [47]. During

the experiment, we ensure there was no background workload

runs on the master node.

Master node resource demands. Subgraphs (a) to (e) in

Fig. 7 show the hardware resource usage of the master node

for a 24 hours period after launching the RM, where a

good RM would have low resource usage. The CPU load is
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Fig. 7. Experimental results on the 4K nodes of Tianhe-2A. Figures a-e show the resource usage of the master node within 24 hours since RMs are started,
with a sampling frequency of once per second. Figures a and b show the CPU usage, Figures c and d show the virtual memory and real memory usage, and
Figure e uses the number of real-time sockets to measure the network resource usage. Figure f shows the job occupation time at different job size.

measured by the CPU utilization and the CPU time. The data

is collected through probing /proc/stat in Linux. Slurm and

ESLURM exhibits significantly lower CPU load than other

approaches, where ESLURM incurs the lowest CPU load.

However, Slurm incurs the highest memory footprint, requiring

10 GB of virtual memory. ESLURM significantly reduces the

memory footprint by using less than 2GB of virtual memory.

If we now look at Fig. 7 (d), ESLURM has the lowest real

memory usage of around 60MB at any given time. Fig. 7 (e)

quantifies the network load of the master node by measuring

the number of concurrent TCP socket connections. OpenPBS

and SGE require frequent network communications and have

to maintain a large number of concurrent TCP connections.

This can put high pressure on the network switcher of the

master node. Furthermore, LSF and Slurm can have burst

network traffic with frequent high network traffic and a high

number of concurrent TCP socket connections (>= 1000).

By contrast, the master node of ESLURM incurs the lowest

network traffic, using less than 100 concurrent TCP connec-

tions at any time. By distributing the network traffic to satellite

nodes, ESLURM prevents the master node from becoming the

bottleneck. Overall, ESLURM incurs the lowest demand on the

CPU load, real memory footprint, and network, allowing the

RM to manage a larger number of computing nodes within the

same computation resources compared to alternative schemes.

Satellite node resource demands. In this experiment, we use

two satellite nodes. After running for 24 hours, the average

CPU time of each satellite node is about 6 minutes, the average

virtual memory usage is 1.2GB, and the average real memory

usage is 42.6MB.

Resource management and job scheduling. To evaluate

RM’s resource management and job scheduling capabilities,

we use different RMs to load parallel jobs of different sizes but

with a fixed runtime of 10s. We consider the job occupation

time, that is, the time from job submission to the complete re-

lease of system resources occupied by the job when resources

are sufficient. Job occupation time includes the time it takes for

an RM to allocate computing resources to a job, to spawn job

processes on multiple nodes, for the job to run, and for the job

to reclaim its occupied resources when the job completes. Fig.

7 (f) shows the results. With the increase of job size, the job

occupation time of SGE, Torque, and OpenPBS has increased

to a level that is typically unacceptable in practice. Such an

rapid increase in time greatly reduces the system’s resource

utilization, suggesting that the three RMs would struggle to

scale to a 1K nodes cluster and beyond. In contrast, LSF,

Slurm, and ESLURM have small increases in time as the job

size grows. Specifically, with ESLURM, the job occupation

time is always less than 15 seconds in our evaluation across

jobs with different running times.

Message broadcasting. ESLURM reduces job occupation time

by improving the message broadcast efficiency of the job

loading and termination message. The design of satellite nodes

and FP-Tree in ESLURM both contribute to improving the

efficiency of message broadcasting. Broadcasting messages

from multiple satellite nodes improves the parallelism of

message broadcasting, while FP-Tree reduces the impact of

failed nodes during message broadcasting. Fig. 8 (a) shows

the message broadcast time of ESLURM and Slurm. When

managing a large-scale job running with 4K nodes, ESLURM

can reduce the average broadcast time by 63.7% and 73.6%

for two types of messages, in which FP-Tree reduces the

average broadcast time by 36.3% and 54.9% respectively.

Extrapolating from the average data in Fig. 8 (a), ESLURM

can save 25K core hours per day on a cluster with 4K nodes,

64K cores, and running about 1K jobs per day.
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Fig. 8. Figure a depicts the average message broadcast time. Message 1 and
2 is job loading message and job termination message, respectively. Figure
b shows the message broadcast time of job loading message under different
failure ratio.

FP-tree node placement. In this experiment, we deployed

ESLURM on 4K nodes to manage jobs for ten days. On

average, each satellite node constructs 3828 FP-Trees daily,

and each FP-Tree consists of 1511 nodes. During the evalua-

tion period, a total of 28 small-scale failure events occurred,

involving 103 single-node failures on 62 nodes. In addition,

there was a large-scale node failure involving more than 600

nodes caused by hardware replacement and upgrade on the

sixth day. A total of 1423 failed nodes are encountered when

constructing FP-Tree, of which 81.7% of the failed nodes are

placed on leaf nodes by FP-Tree, suggesting that our FP-Tree

is highly effective in proactive identifying the failed nodes (see

also Section IV).

FP-tree performance. In the same 4K-node evaluation setup,

we also compare our FP-Tree with four widely used com-

munication structures (ring, star, shared memory-based, and

tree structures) at different failure ratios. Messages in the ring

structure are transmitted in succession in the order of nodes.

The star structure broadcasts messages directly from one

location to multiple nodes. The shared memory-based structure

caches the message to shared memory, and computing nodes

retrieve the message from the cache. We separate the commu-

nication structure from RM and reproduce various structures

using the same techniques. For example, all communication

is based on socket connections, and the number of retries for

connection failure is set to three. Without loss of generality,

we simulate the failure of a node by powering it down. As

shown in Fig. 8 (b), the communication time of the ring,

star, and tree structures increases significantly with increasing

failure ratio, while the shared memory-based structure does

not change much. The communication time of the FP-Tree is

rarely affected by failures and always maintains a minimum

communication time. In some severe environments, such as

when the failure ratio reaches 30%, our FP-Tree still manages

to keep the communication time below 10 seconds, while other

structures result in a delay of minutes.

B. Evaluation on Full-scale Tianhe-2A

Master node resource demands. Fig. 9 (a)-(c) shows the

resource usage of the master nodes when applying Slurm and

ESLURM to manage 16K computing nodes on Tianhe-2A.

TABLE V
RESOURCE USAGE OF THE MASTER NODE

SE1 SE2 SE3 SE4 SE5

CPU Time (min) 332.9 336.3 342.3 339.4 355.2
Virtual memory usage (GB) 10.7 10.8 10.8 10.8 10.9
Real memory usage (MB) 361.8 373.3 392.5 421.6 458.6
Average concurrent sockets 8.5 14.2 28.4 24.4 30.2

TABLE VI
AVERAGE OPERATIONAL DATA FOR SATELLITE NODES

SE1 SE2 SE3 SE4 SE5

Numbers of received tasks 6380 6398 6348 6234 6206
Average nodes in each task 6076.1 3271.2 2442.4 1411.0 1267.6
Virtual memory usage (GB) 10.8 10.6 10.5 10.3 10.3
Real Memory usage (MB) 270.5 196.2 187.6 175.9 169.0
Average concurrent sockets 118.1 94.5 90.4 89.3 70.2

While only using two satellite nodes, ESLURM significantly

reduces the CPU time used by Slurm, using less than 40% of

the CPU time required by Slurm. ESLURM also significantly

reduces the virtual and real memory footprint, saving over 80%

of the memory consumption compared to Slurm. The advan-

tage of ESLURM can also be observed from the low number

of concurrent TCP socket connections because ESLURM only

needs to communicate with satellite nodes.

Satellite node resource demands. To observe how satellite

nodes share the load of the master node, we monitor the

resource usage of the two satellite nodes in ESLURM. As

shown in Fig. 9 (d)-(f), the two satellite nodes’ usage of

the three types of resources is similar, reflecting a good

load balance among them. The total CPU time taken by

the two satellite nodes reaches about 100 minutes and the

real memory usage stabilizes to about 80MB at 6000s. The

number of concurrent sockets shows fluctuations, indicating

that the distributed structure makes the communication load

fluctuations originally appearing on the master node to be

transferred to the satellite nodes. The maximum number of

concurrent sockets does not exceed 80, representing an over

10x reduction compared to Slurm which can use over 1000

concurrent sockets.

C. Evaluation on Full-scale NG-Tianhe

Using 20K+ nodes of NG-Tianhe, we deploy ESLURM

with different numbers of satellite nodes and run each set of

experiments for ten days.

Table V compares the resource usage of the master node five

ESLURM setups, SE1 to SE5, where the number of satellite

nodes varies from 10 to 50 with a step size of 10. As the

number of satellite nodes increases, the master node needs

to communicate directly with more satellite nodes, and the

resource usage of the master node will increase accordingly.

Table VI compares the average data from satellite nodes in

each ESLURM. As the number of satellite nodes increases,

the number of broadcast tasks received by satellite nodes does

not change much, but the number of target slave nodes in each

broadcast task gradually decreases, making the satellite nodes

less resource-intensive for memory and network.
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Fig. 9. Experimental results on the 16K nodes of Tianhe-2A. Figures a, b, and c show the CPU, memory, and network resource usage of the master node
within 24 hours after startup when Slurm and ESLURM are deployed on 16K nodes, respectively. ESLURM uses two satellite nodes. Figures d, e, and f
compare the CPU, memory, and network resource usage of two satellite nodes in ESLURM. In each figure, the data is sampled once a second.

TABLE VII
BASIC INFORMATION FOR FOUR CLUSTERS.

#Nodes Deployed Resource Managers Load sources

1 1,024 SGE, Torque, OpenPBS, LSF, Slurm, ESLURM Tianhe-2A
2 4,096 OpenPBS, LSF, Slurm, ESLURM Tianhe-2A
3 16,384 Slurm, ESLURM Tianhe-2A
4 20K+ Slurm, ESLURM NG-Tianhe

As discussed in Section III, the number of satellite nodes

not only affects the resource usage of the master node and

satellite nodes but also directly affects the efficiency of data

transfer. We track the broadcast times of the heartbeat message

of each computing node to find the optimal configuration for

the number of satellite nodes. As shown in Fig. 11 (a), using 20

satellite nodes for the full-scale NG-Tianhe gives the highest

data transfer efficiency. Based on the results of our long-

term experiments and deployments, we believe that using one

satellite node for every 5K slave nodes is appropriate.

The production deployment experience on the NG-Tianhe

since March 2021 shows that ESLURM can fully adapt to

large-scale HPC clusters with 20K+ nodes. The average

response time for user requests is less than 1s, and there

are almost no crashes of the ESLURM except for hardware

failures. Over 1.2 million jobs for hundreds of users have been

served so far. Performance data on resource utilization and job

scheduling is available in Section VII-D.

D. Evaluation on Clusters of Different Scales

In this evaluation, we set up four clusters of different

scales to evaluate the resource utilization and job scheduling

efficiency of different RMs. The specific configurations and

workloads of the clusters are given in Table VII. In the

experiment, we deployed six RMs on 1024 nodes. Since

SGE and Torque cannot scale to 4,096 nodes, only four

RM are deployed on the 4,096-node cluster. Finally, only

Slurm and ESLURM, are deployed on the full-scale Tianhe-2A

(16,384 nodes) and full-scale NG-Tianhe (20K+ nodes). The

workload trace is obtained from the historical load on the real

cluster during a week. In this evaluation, we use the backfill

scheduling algorithm [28], [48], [49] for all RMs. We consider

three metrics: (1) system utilization - the node-hours used for

running jobs to the total elapsed node-hours of a system; (2)

average waiting time - the gap between a job submitted and it

gets executed; and (3) average bounded slowdown - the ratio

of job response time to its actual runtime [50]:

slowdown = max((tw + tr)/max(tr, τ), 1) (6)

where tw and tr are the job waiting time and runtime. τ is

a constant for preventing the impact of extremely short jobs,

and we set it to 10.
As shown in Fig. 10, the system utilization decreases as

the cluster size grows. There are two main reasons for this

trend. The first is that the cost of RM to manage a larger

cluster increases. Second, there are not enough small jobs in

large-scale systems to backfill the resource gap created by

many large-scale, long-running jobs. Nonetheless, ESLURM

outperforms alternative schemes in all three metrics across

all clusters. On the full-scale NG-Tianhe, ESLURM’s perfor-

mance advantage is more pronounced. Specifically, ESLURM

improves the system utilization by 47.2% compared to Slurm.

Among the multifaceted optimizations of ESLURM, the job

runtime estimation framework contributes 8.7% in resource

utilization while the FP-Tree contributes 6.2%. In addition,

ESLURM reduces the average job waiting time by 60.5% and

the average slowdown by 75.8%.

E. Performance of Job Runtime Estimation

In this experiment, we evaluate the performance of the

ESLURM’s job runtime estimation framework using historical
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Fig. 10. Job scheduling efficiency of different RMs on Tianhe-2A. ESLURM gives the best overall performance on system utilization (higher is better) (a)
and scheduling efficiency for two lower-is-better metrics (b) and (c).
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Fig. 11. Figure a depicts the message broadcast time under different satellite-
node configurations. Figure b shows the performance of different runtime
estimate prediction model.

TABLE VIII
IMPACT OF THE SLACK VARIABLE PRESENTED IN SECTION V-B

α 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

AEA 0.87 0.87 0.86 0.85 0.85 0.84 0.82 0.82 0.80
UR 0.54 0.31 0.26 0.18 0.14 0.12 0.12 0.12 0.11

workloads on the NG-Tianhe over the past year. Table VIII

shows the impact of slack variables on the performance of the

ESLURM job runtime estimation model. With the increase of

the slack variable, the average estimation accuracy (AEA) and

the underestimated rate (UR) gradually decreases. When the

slack variable is greater than 1.05, the reduction rate of AEA

becomes slower while the reduction rate of UR increases, so

we set the slack variable to 1.05 by default on this cluster.

We compare ESLURM with a variety of runtime prediction

models. Among them, Last-2 [40], IRPA [51], TRIP [52] and

PREP [53] are the latest related work. As shown in Fig. 11

(b), the user-provided runtime predictions are less accurate

and always overestimated. SVM, RandomForest, and Last-2 all

have an average accuracy below 70% and an underestimation

rate above 25%. In contrast, IRPA, TRIP, and PREP have

higher average accuracies and lower underestimates. ESLURM

performs the best with an average accuracy of 84% while

keeping the underestimation around 10%.

VIII. RELATED WORK

Efforts have been devoted to design and implement RMs

for supercomputers. BPROC [30] provides a single system

image and process migration facilities for processes running

in HPC systems. ALPS [29] is the RM of Cray systems with a

single-server architecture. A similar centralized structure can

be seen in LIBI/LaunchMON [54], Cplant [55], STORM [56],

and ORCM [57]. These jobs are still centralized and have flaws

in scalability. [24] proposes a method named Slum++, which

employs multiple master nodes so that each one manages

a partition of computing nodes and participates in resource

allocation through resource balancing techniques.

Some attempts at distributed HPC RMs are worth noting.

Flux [58] provides a fully hierarchical software framework ar-

chitecture that allows scalable and customizable resource man-

agement and scheduling service modules to be dynamically

loaded into Flux instances. Flux instances can spawn one or

more sub-instances that can manage subsets of parent instance

resources and jobs to increase parallelism, and such nesting

can be further recursive. Flux completely abandons the design

on the master node, implementing resource management and

job scheduling as hierarchical functions. In contrast, ESLURM

retains the simplified master node, offloading the large-scale

communication process to the satellite nodes. However, Flux

is still beta software and primarily used in single-user mode,

and it has a long way to go before it can achieve the

same functionality as system-level RMs such as Slurm [59].

Argo [60], [61] builds a software stack for providing increased

functionality to exascale applications and runtime systems.

However, the Argo project did not optimize RM and still used

a centralized Slurm.

Large-scale systems usually use a dedicated resource man-

agement solution with multiple software collaborations. Fu-

gaku’s solution consists of three customized software [62],

including a system management software, a job manage-

ment software, and a user management software. The system

management software manages the hardware and software

units, the job management software provides job scheduling

and management services, and the user management software

provides resource management about users. BlueGene/Q [63],

with 98,304 nodes, uses Slurm with custom plug-ins and

dedicated BlueGene Software to complete system-wide re-

source management [64]. The Slurm daemon runs on only

a few front-end nodes and is responsible for prioritizing work

queues and deciding when and where to start or terminate



jobs. The BlueGene Software allocates and releases resources

for jobs based on SLURM input, launches tasks, and monitors

node health. In contrast to these solutions, ESLURM is fully

open source and has been proven to provide efficient resource

management services for large-scale clusters. Since ESLURM

does not require specialized software or plug-in support, it can

be easily ported across different HPC systems.

Resource managers for data centers have a similar evolution.

Early data centers used centralized master-slave resource man-

agers, such as Borg [65] and Hadoop [66]. As the scale of the

data center increases, the bottleneck of a single master node

gradually emerges, and the centralized master-slave structure

gradually develops into a multi-master (e.g., kubernetes [10])

or two-layer structure (e.g.,YARN [11], Mesos [12]).

In the relevant field of job runtime estimation, the Last-

2 [40] method uses the average of the actual runtimes of the

last two job submissions by the same user as the predicted time

for new job submissions. Wu et al. [51] proposes an integrated

learning model IRPA with random forest regression, support

vector regression, and Bayesian ridge regression for job time

estimation. [52] proposes an online adjustment framework,

TRIP, which utilizes the data truncation capability of Tobit

regression to obtain accurate runtime estimates. PREP [53] is

a runtime prediction framework which groups jobs into several

clusters according to their running paths and trains a runtime

prediction model for each job cluster.

IX. CONCLUSION

We have presented ESLURM, a new resource management

(RM) system for HPC systems. ESLURM is designed to

overcome the limitations of the current HPC RM systems,

which follow a centralized architecture that no longer fits next-

generation HPC and supercomputer systems. ESLURM follows

a distributed communication structure and uses node failure

prediction and job runtime estimation to improve the efficiency

of job and resource scheduling. We evaluate ESLURM in

two production HPC systems using over 16K and 20K+

physical computing nodes. Experimental results show that

ESLURM delivers better scalability and stronger performance

for data communications and job scheduling than existing RM

solutions. ESLURM has been deployed in production on the

Next Generation Tianhe Supercomputer since March 2021.

We hope the experience shared in this paper and the open-

source release of ESLURM can provide valuable insights for

designing RM for next-generation HPC systems and exascale

supercomputers.
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