
This is a repository copy of Methods for constrained optimization of expensive mixed-
integer multi-objective problems, with application to an internal combustion engine design
problem.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190397/

Version: Published Version

Article:

Duro, J.A. orcid.org/0000-0002-7684-4707, Ozturk, U.E., Oara, D.C. et al. (4 more
authors) (2023) Methods for constrained optimization of expensive mixed-integer multi-
objective problems, with application to an internal combustion engine design problem.
European Journal of Operational Research, 307 (1). pp. 421-446. ISSN 0377-2217

https://doi.org/10.1016/j.ejor.2022.08.032

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

European Journal of Operational Research xxx (xxxx) xxx

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Innovative Applications of O.R.

Methods for constrained optimization of expensive mixed-integer
multi-objective problems, with application to an internal combustion

engine design problem

João A. Duro
a , ∗, Umud Esat Ozturk

b , Daniel C. Oara a , Shaul Salomon
a , c , Robert J. Lygoe

d ,
Richard Burke

b , Robin C. Purshouse
a

a Department of Automatic Control and Systems Engineering, The University of Sheffield, UK
b The Institute for Advanced Automotive Propulsion Systems, University of Bath, Bath, BA2 7AY, UK
c ORT Braude College of Engineering, Israel
d Product Development Europe, Dunton Technical Centre UK, Ford Motor Co. Ltd, UK

a r t i c l e i n f o

Article history:

Received 10 December 2020

Accepted 24 August 2022

Available online xxx

Keywords:

Multiple objective programming

Bayesian optimization

Mixed continuous and discrete variables

Constraint handling

Gasoline engine

a b s t r a c t

Engineering design optimization problems increasingly require computationally expensive high-fidelity

simulation models to evaluate candidate designs. The evaluation budget may be small, limiting the effec-

tiveness of conventional multi-objective evolutionary algorithms. Bayesian optimization algorithms (BOAs)

are an alternative approach for expensive problems but are underdeveloped in terms of support for con-

straints and non-continuous design variables—both of which are prevalent features of real-world design

problems. This study investigates two constraint handling strategies for BOAs and introduces the first

BOA for mixed-integer problems, intended for use on a real-world engine design problem. The new BOAs

are empirically compared to their closest competitor for this problem—the multi-objective evolutionary

algorithm NSGA-II, itself equipped with constraint handling and mixed-integer components. Performance

is also analysed on two benchmark problems which have similar features to the engine design prob-

lem, but are computationally cheaper to evaluate. The BOAs offer statistically significant convergence im-

provements of between 5.9% and 31.9% over NSGA-II across the problems on a budget of 500 design

evaluations. Of the two constraint handling methods, constrained expected improvement offers better

convergence than the penalty function approach. For the engine problem, the BOAs identify improved

feasible designs offering 36.4% reductions in nitrogen oxide emissions and 2.0% reductions in fuel con-

sumption when compared to a notional baseline design. The use of constrained mixed-integer BOAs is

recommended for expensive engineering design optimization problems.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Complex manufacturing industries, such as automakers and

their supply chains, are increasingly adopting digital technolo-

gies to transform their processes and products (IDE, 2021). Virtual

engineering—the use of modelling and simulation to evaluate the

performance of product designs—is used extensively within these

industries, with increasing reliance on high-fidelity physics simu-

lations, sometimes integrated together in complex multiphysics co-

simulations (Keyes et al., 2013), that are computationally costly to

∗ Corresponding author.

E-mail addresses: j.a.duro@sheffield.ac.uk (J.A. Duro), ueo24@bath.ac.uk

(U.E. Ozturk), dcoara1@sheffield.ac.uk (D.C. Oara), shaulsal@braude.ac.il (S.

Salomon), blygoe@ford.com (R.J. Lygoe), r.d.burke@bath.ac.uk (R. Burke),

r.purshouse@sheffield.ac.uk (R.C. Purshouse) .

execute (Forrester & Keane, 2009). In this context, the number of

alternative candidate designs that can be evaluated within a de-

sign optimization process may be substantially constrained by the

available resources. Within the academic literature, the maximum

budget for such expensive problems is typically assumed to be in

the region of 500 evaluations or fewer (Chugh, Sindhya, Hakanen,

& Miettinen, 2019; Keane, 2006; Knowles & Hughes, 2005).

Within the automotive industry, the increased use of compu-

tationally expensive simulations has been at least partially driven

by commitments from governments around the world to achieve

reductions in greenhouse gases and improvements in air quality.

These commitments have led to tighter vehicle fuel consumption

and emissions standards, with testing procedures more represen-

tative of real-life driving conditions (Ramos, noz, Andrés, & Armas,

2018). The most recent vehicle test procedures such as the world-

wide harmonised light vehicles test procedure (WLTP) and real driving

https://doi.org/10.1016/j.ejor.2022.08.032

0377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Please cite this article as: J.A. Duro, U.E. Ozturk, D.C. Oara et al., Methods for constrained optimization of expensive mixed-integer

multi-objective problems, with application to an internal combustion engine design problem, European Journal of Operational Research,

https://doi.org/10.1016/j.ejor.2022.08.032

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

emissions (RDE) test procedure require evaluation of fuel consump-

tion and exhaust emissions during 30-minute and 90–120-minute

long tests. These tests need to be repeated at multiple tempera-

tures, multiple altitudes and for multiple driving styles. Accurate

evaluation of these test cycles requires multiple high-fidelity simu-

lations that represent the transient response of the engine over the

full test duration. Evaluation of a single engine design may take

several hours to execute on a high performance computing plat-

form, with resources available to conduct at most a few hundred

such evaluations. Engine design engineers aim to find a Pareto op-

timal set of designs that capture the inherent trade-off between

fuel efficiency (carbon dioxide–CO2–emissions) and nitric oxide–

NOx–emissions. With a design space consisting of a dozen or more

architectural variables and control parameters, together with a de-

manding set of constraints to satisfy, identifying a feasible Pareto

optimal set can be challenging on a small evaluation budget. As

a result, many existing approaches have limited their ambition

to identifying just a single point on the Pareto front, by solving

single-objective problems (Alonso et al., 2007; Karra & Kong, 2010;

Millo, Arya, & Mallamo, 2018; Tadros, Ventura, & Soares, 2019; To-

gun & Baysec, 2010).

Over the past two decades, multi-objective evolutionary algo-

rithms (MOEAs) have become very popular methods for identify-

ing the Pareto optimal set of designs for a problem—recent exam-

ples include (Alcaraz, Landete, Monge, & Sainz-Pardo, 2020; Avilés,

Mayo-Maldonado, & Micheloud, 2020; Bird, Wanner, Ekárt, & Faria,

2020; Chen, Zhou, & Das, 2021; Drake, Starkey, Owusu, & Burke,

2020; Kuk et al., 2021). There have also been attempts to use

MOEAs to identify Pareto optimal sets of engine designs (Corre

et al., 2019; D’Errico, Cerri, & Pertusi, 2011; Lotfan, Ghiasi, Fallah,

& Sadeghi, 2016). However, a recent survey of MOEA applications

for expensive-to-evaluate problems identified criticism of the unre-

alistically large number of evaluations that the algorithms required

in order to achieve convergence (Chugh et al., 2019). The response

to this criticism has been to incorporate low-fidelity models into

the optimization process, that aim to approximate the outputs of

a high-fidelity simulation. These data-driven models are variously

known as metamodels , surrogates or emulators , and are often esti-

mated using data generated during the optimization process itself.

Architectures for surrogate-assisted MOEAs vary in terms of the

role of evolutionary computation in the search process. Here, we

focus on a popular class of architectures, known as Bayesian Op-

timization Algorithms (BOAs), that typically use evolutionary algo-

rithms to search over a so-called acquisition function or infill crite-

rion that is generated from progressively updated beliefs about the

implicit functional form of the black-box simulation model. This

implicit functional form is often encoded as a Gaussian process (or

Kriging model) (Krige, 1951; Rasmussen & Williams, 2006), and this

approach has become popular for use in engineering applications

(De Ath, Everson, Rahat, & Fieldsend, 2021; Forrester, Sóbester, &

Keane, 2008; Wang & Shan, 2007).

Despite the apparent promise of BOAs, uncertainty remains over

their ability to handle common features of real-world engineer-

ing applications such as engine design problems. Such problems

typically feature a mix of continuous and discrete design vari-

ables; however BOAs tend to assume continuous variables and,

to our knowledge, no BOAs have yet been developed for mixed-

integer variables. In addition to objectives, engineering problems

tend also to feature a large number of constraints. However, as

will be shown in the next section, constraints handling is a re-

cent innovation in BOAs, with demonstrations of effectiveness only

for very simple benchmark problems and no clear conclusion as to

the most effective method to use. Since, for Kriging-based BOAs,

the number of data points (i.e., evaluated designs) that can be

used to build the surrogate model is limited by the computa-

tional complexity of the estimation process, the choice of candi-

date designs to inform the surrogate is also an open question. In

this paper, motivated by our real-world engineering problem, we

aim to advance BOA research by developing and testing the first

mixed-integer BOA and examining alternative constraint handling

and surrogate-building strategies, with a view to making firmer

recommendations for other analysts considering using a BOA on

their problem. Our algorithmic development builds on the seminal

efficient global optimization (EGO) and Pareto efficient global opti-

mization (ParEGO) methods by Jones, Schonlau, & Welch (1998) and

Knowles (2005) respectively and is available to the community as

open-source software (Duro et al., 2020).

The remainder of this paper is organised as follows. A literature

review that covers the application of BOAs to constrained multi-

objective problems is conducted in Section 2 . Some preliminaries

and background on Bayesian optimization are in Section 3 . The

proposed methodology in Section 4 covers the strategy to handle

mixed continuous and discrete variables (Section 4.1); a proposed

algorithm to select a subset of training points for constructing a

surrogate model (Section 4.2); and the constraint handling strate-

gies for ParEGO (Section 4.3). The empirical analysis setup used

in this paper is in Section 5 . The demonstration of the proposed

methodology on benchmark problems is in Section 6 . The demon-

stration on the real engineering problem is in Section 7 , and the

paper concludes with Section 8 .

2. Bayesian optimization algorithms for constrained

multi-objective optimization

In this review we consider Kriging based BOAs that have been

applied to multi-objective problems with constraints, and the fo-

cus is on their constraint handling strategy, the type of optimiza-

tion problems that they have been applied to, and which strategy

(if any) is used to manage the number of training points for con-

structing the surrogate model. In the text below, unless stated, the

decision variables are all continuous.

2.1. Probability of feasibility based approaches

This section discusses approaches that have used the probabil-

ity of feasibility (PoF) which is often combined with an infill cri-

terion such as the probability of improvement (PoI) or the expected

improvement (EI) for handling constraints.

Emmerich and colleagues (Emmerich, 2005; Emmerich, Deutz,

& Klinkenberg, 2008; Emmerich, Giannakoglou, & Naujoks, 2006)

have shown how to integrate several infill strategies into a multi-

objective evolutionary algorithm. Amongst them is the PoI, EI, and

lower confidence bound. To determine the EI in the multi-objective

context, their approach relies on the hypervolume indicator, and

this is referred to as the hypervolume-based EI. In addition, the

PoI and EI (including the hypervolume-based EI) have both been

extended for handling constraints; this is achieved by multiplying

their corresponding expressions by the PoF. To estimate the hyper-

volume the authors proposed the use of a Monte Carlo approach,

which requires decomposing the non-dominated region into a uni-

form grid of cells, and performing a hypervolume calculation sep-

arately for each cell.

Couckuyt, Deschrijver, & Dhaene (2014) have shown that the

hypervolume indicator could be also used to determine the PoI,

leading to the hypervolume-based PoI. The same authors have also

proposed an improvement to the hypervolume estimation which

scales better with the number of objectives and number of solu-

tions when compared with the approach used by Emmerich et al.

(2006) . The work by Couckuyt et al. (2014) was only demonstrated

on unconstrained multi-objective problems, and this led Singh,

Couckuyt, Ferranti, & Dhaene (2014) to integrate the PoF into the

2

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

hypervolume-based PoI. Feliot, Bect, & Vazquez (2017) have pro-

posed an improvement to the hypervolume estimation which com-

pares solutions based on their objective value and constraint val-

ues, and have demonstrated this on the hypervolume-based EI

with the PoF. Other authors such as Martínez-Frutos & Herrero-

Pérez (2016) and Do, Ohsaki, & Yamakawa (2021) , have combined

the PoF with the hypervolume-based EI and the hypervolume-

based PoI, respectively.

On a separate research direction Forrester and colleagues

(Forrester & Keane, 2009; Forrester et al., 2008) have proposed

a multi-objective version of the EI that relies on determining the

probability that a new design improves (or dominates) over exist-

ing non-dominated solutions. Although the proposed formulation

is limited to two objectives, they have combined with the PoF for

dealing with constraints.

In terms of how to manage the number of training points for

the surrogate model, Emmerich et al. (2006) used local surrogate

models as opposed to global models. The latter is used if the num-

ber of points is not higher than 2 d, where d is the number of deci-

sion variables, but once the number of points exceeds this thresh-

old a local surrogate model is constructed around each point by

using the closest (in terms of Euclidean distance) 2 d points in the

decision space. In Forrester & Keane (2009) , strategies for select-

ing a subset of training points are not discussed, but they recom-

mend using other surrogate techniques that are cheaper-to-build

(e.g. polynomial models) in case the number of points is higher

than 500 or if there are more than 20 decision variables. More-

over, the number of training points is not fixed in Singh et al.

(2014) , Martínez-Frutos & Herrero-Pérez (2016) , Feliot et al. (2017) ,

Do et al. (2021) .

In terms of the optimization problems, Emmerich et al.

(2006) have demonstrated their approach on many unconstrained

single- and multi-objective problems, and also on a multipoint air-

foil optimization problem with three objectives and 10 constraints.

Forrester & Keane (2009) have demonstrated their approach on a

variant of the classic Nowacki beam problem (Nowacki, 1980) with

two objectives and five constraints. Singh et al. (2014) used the

same Nowacki problem, and also a microwave filter design prob-

lem with two objectives and seven constraints. Martínez-Frutos &

Herrero-Pérez (2016) used three test problems with two objectives

and two constraints. Feliot et al. (2017) used several test problems,

including two-objective problems with 2–6 constraints, and a five-

objective problem with 7 constraints. Do et al. (2021) have used a

steel frame design problem with uncertain parameters, three ob-

jectives and a scalable number of constraints depending on several

structural parameters, up to a maximum of 13 probabilistic con-

straints and 10 deterministic constraints (although it seems that

only the probabilistic constraints are being surrogated). Their ap-

proach was also demonstrated on a real-world two-bar truss prob-

lem with two objectives and two constraints. The authors have

noted that different runs of the optimization algorithm could lead

to different Pareto-optimal solutions when the feasible region of

the optimization problem is large.

2.2. Penalty function based approaches

The approaches described in this section rely on the use of

penalty functions to handle constraints. This often means that the

performance of the solutions is penalised depending on their con-

straint violation.

Chugh, Sindhya, Miettinen, Hakanen, & Jin (2016) have proposed

an extension to a surrogate-assisted evolutionary multi-objective

optimization algorithm, known as K-RVEA, for dealing with con-

straints by making use of a penalty function based approach taken

from Miettinen, Mäkelä, & Toivanen (2003) . K-RVEA uses reference

direction vectors to decompose the original problem into a number

of subproblems, and the subproblems are solved simultaneously to

generate a set of solutions that approximate the entire Pareto front.

The computationally expensive objective functions are replaced by

surrogate models, but the constraints are not surrogated and there-

fore are assumed to be inexpensive to evaluate. The training set

used to construct the surrogates has a maximum fixed size. The

major contribution of this work is to show the effect of infeasible

solutions in the training set. For this, two approaches have been

considered: in one case only feasible solutions are chosen; while

in the other case both feasible and infeasible solutions are used.

The simulation results show that having a mix of feasible and in-

feasible solutions in the training set produces better results than

just relying on feasible solutions. This approach has been demon-

strated on three benchmarked problems with the number of ob-

jectives ranging from 3 to 10 and the number of constraints from

1 to 10.

Hussein & Deb (2016) have also used a decomposition-based

evolutionary algorithm with a penalty-based approach for han-

dling constraints. The search is conducted over the EI, and a single

Pareto optimal solution is found at a time. The fitness of each in-

feasible solution is replaced by the worst objective function value

of all feasible solutions plus the product of all normalised con-

straint breaches. A subset of training points is chosen from an

archive by selecting those with the shortest orthogonal distance

to the reference direction vector. This algorithm has been demon-

strated on several unconstrained test problems, and four two-

objective test problems with 2–6 constraints.

Koziel & Pietrenko-Dabrowska (2022) have used an infill crite-

rion that relies on an inverse surrogate—predicts the decision vari-

able values for a given objective vector. A point is chosen in ob-

jective space by the use of a triangulation approach, where the

point in the middle of the largest simplex is chosen to be eval-

uated next. It is expected for points generated in this way to

cover the Pareto front in a uniform manner. To handle the con-

straints a penalty function approach is combined with a local

search method. There is no strategy to manage the size of the

training set, which increases at the end of each iteration. The al-

gorithm has been demonstrated on two two-objective microwave

circuit problems, a Branch-line coupler problem with three con-

straints, and a impedance matching transformer problem with one

constraint.

2.3. Others

Jeong & Obayashi (2005) utilise the EI of objective functions

directly in the optimization process. This means that a surrogate

model is constructed for each objective function (the constraints

are not surrogated), and a genetic algorithm finds a solution that

maximises the EI, individually for each objective function. The au-

thors claim that their selection mechanism helps to identify non-

dominated solutions. The constraints are handled by selecting only

feasible solutions to construct the surrogate model. Initially the

training points are generated by Latin Hypercube Sampling (LHS),

and during the optimization more points are added to the training

set by selecting those with the largest EI with respect to each ob-

jective. The number of training points is not fixed. This algorithm

has been demonstrated on a transonic airfoil design problems with

two objectives and one constraint.

Li, Li, & Azarm (2008) , Li et al. (2009) builds a surrogate model

of each objective, and the optimization is conducted by a multi-

objective evolutionary algorithm inspired by NSGA-II. The Kriging

variance is used as a measure of correctness for the predicted re-

sponses. At each generation the surrogate is used to evaluate all

individuals in the population, and expensive evaluations take place

if the Kriging variance is below than some threshold. To handle

the constraints, a surrogate model of each constraint is constructed

3

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

and a criterion that relies on the Kriging variance is used to indi-

cate whether or not a solution is said to be feasible. The number of

training points is not fixed. The algorithm has been demonstrated

on five two-objecti ve test problems: two problems with 2 and 6

constraints; and three unconstrained problems where one of the

problems has discrete decision variables, while all the others only

have continuous ones. It is not clear how the discrete nature of the

optimization problem is handled in this approach.

Mlakar, Petelin, Tušar, & Filipi ̌c (2015) have proposed a multi-

objective optimization algorithm based on the concept of differ-

ential evolution known as GP-DEMO. This algorithm relies on a

sparse–approximation method which is more computationally ef-

ficient than having to compute the inverse of the entire covariance

matrix during the process of learning the surrogate model. The ap-

proach is to retain most information contained in the full training

set by reducing the size of the covariance matrix, as opposed to

selecting a subset of training points. This algorithm has been ap-

plied to several optimization problems with two objectives, where

12 are benchmark problems (three of them with constraints), and

two real-world problems. It is unclear how constraints are handled.

Garrido-Merchán & Hernández-Lobato (2019) rely on the con-

cept of entropy as an alternative to the EI and proposed an al-

gorithm called Predicted Entropy Search for Multi-objective Op-

timization with Constraints (PESMOC). The constraints are inte-

grated into the predicted distribution of the Gaussian process mod-

els in a similar way as done for the EI with PoF (see Emmerich

et al., 2006). This algorithm has been demonstrated on several

two-objective problems, including four test problems and three

real-world problems, with the number of constraints ranging from

2 to 6.

2.4. Research gaps

Following the above review, the research gaps identified are as

follows:

1. The BOAs reviewed above have been applied to several bench-

mark and real-world problems, where the number of objectives

ranges from 2 to 10, and the number of constraints from 1 to

23. Most are continuous problems, and only in Li et al. (2009 ,

2008) there is a problem with solely discrete variables. There-

fore, to the best of the authors’ knowledge, existing BOAs have

not yet been applied to expensive constrained multi-objective

problems with a mix of continuous and discrete decision vari-

ables.

2. The most popular constraint handling approach identified

above is to use a combination of the EI with the PoF, known

as constrained EI. An alternative approach found in three pub-

lications (Chugh et al., 2016; Hussein & Deb, 2016 ; Koziel &

Pietrenko-Dabrowska, 2022) is to use penalty functions, which

have been extensively used in the past to solve constrained op-

timization problems (Farmani & Wright, 2003; Miettinen et al.,

2003). However, it is not known which approach provides the

best transformation to the cost landscape that would allow a

BOA to offer the fastest convergence towards the Pareto-optimal

front.

3. Most BOAs reviewed above do not impose a fixed limit on the

number of training points to construct the surrogate model. The

approach adopted in Emmerich et al. (2006) is to construct a

separate surrogate model for each point in the population, im-

plying that the computational cost is expected to increase after

each iteration as more points are added to the population. The

approach in Chugh et al. (2016) relies only on a single surrogate

model where the training set has a maximum fixed size, but

their approach assumes that constraint functions are computa-

tionally inexpensive. Hence, a criterion to manage the training

set that could be applied to problems with computationally ex-

pensive constraints is still an open challenge.

3. Preliminaries and background

This section introduces some definitions in Section 3.1 , and a

short introduction to Bayesian optimization in Section A.2 .

3.1. Definitions

We focus on the following form of constrained multi-objective

problem with continuous and discrete variables:

Minimise f m (x) , m = 1 , . . . , M;

subject to g j (x) ≤ c j , j = 1 , . . . , J;
x r i ∈ [x min

r i
, x max

r i
] , i = 1 , . . . , n r ;

x o i ∈ O (i) , i = 1 , . . . , n o .

(1)

The above terms are defined as follows:

1. A total of n r continuous decision variables are denoted as

x r 1 , . . . , x r n r , and x
min
r i

and x max
r i

denote the lower and upper

bound, respectively, of the i th decision variable. Discrete vari-

ables can be either of type ordered or unordered. The values

that ordered decision variables are allowed to take have or-

dered relations (e.g. cold/mild/hot), while no such relations ex-

ist for unordered ones (e.g. colours). In this paper we only con-

sider ordered discrete variables since the target application (see

description in Section 7.1) does not have unordered ones. Let a

total of n o ordered decision variables be denoted as x o 1 , . . . , x o n o ,

each of which is taken from a finite domain, respectively de-

noted by O (1) , . . . , O (n o) , where O (i) ≡ { x min
o i

, . . . , x max
o i

} for all

i = 1 , . . . , n o , and x min
o i

and x max
o i

denotes the lower and up-

per bound, respectively. The domain defined by all decision

variables constitutes a decision variable space D, also known

as the search space. A solution to the problem in Eq. (1) is

represented by an n -dimensional vector that contains all de-

cision variables, where n = n r + n o , and is denoted as x =

(x r 1 , . . . , x r n r , x o 1 , . . . , x o n o)
T ⊂ D.

2. A total of M objective functions to be minimised are defined

as f m : D → R , m = 1 , . . . , M, and the multi-dimensional space

that the objective functions constitute R M is called the objective

space.

3. A total of J constraint functions to be satisfied are defined as

g j : D → R , j = 1 , . . . , J.

The corresponding objective and constraint vectors of a so-

lution x are denoted by f (x) = (f 1 (x) , . . . , f M (x))
T and g (x) =

(g 1 (x) , . . . , g J (x))
T , respectively. A point in objective space is de-

noted by f (x) = z = (z 1 , . . . , z M)
T , and a point in constraint space

is denoted by g (x) = z c = (z c 1 , . . . , z c J)
T . In this paper the term so-

lution and point will be used interchangeably and they both refer

to a decision vector x . A solution x is said to be feasible if x ∈ D

and g j (x) ≤ c j for all j = 1 , . . . , J, where c j is the constraint limit

for the jth constraint function. The feasible set of all solutions is

defined as:

F = { x ∈ D : g j (x) ≤ c j , j = 1 , . . . , J} . (2)

When multiple conflicting objectives are involved, besides each

objective having its own optimal solution, there is also a set of

trade-off solutions where a gain in one objective leads to a sacrifice

in the other. The best trade-offs among objectives can be identified

in terms of Pareto optimality. Consider the following two feasible

solutions x 1 , x 2 ∈ F , and let x 1 � x 2 denote that solution x 1 dom-

inates x 2 . This implies that solution x 1 is no worse than x 2 in all

objectives (f i (x 1) ≯ f i (x 2) ∀ i = 1 , . . . , M), and x 1 is better than x 2
in at least one objective (∃ j ∈ { 1 , . . . , M} such that f j (x 1) < f j (x 2)) .

When comparing solutions in a set (say F ′ ⊂ F), those solutions

4

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

that are not dominated by any other solution in F ′ are said to be

non-dominated. The non-dominated solutions of the entire feasible

set F form the Pareto-optimal set. In other words, a feasible solu-

tion x ∗ ∈ F is said to be Pareto-optimal if there is no other solution

in F that dominates it (i.e. iff ∄ x ∈ F such that x � x ∗). The set of

all Pareto-optimal solutions is the Pareto-optimal set. z ∗ = f (x ∗) is

a Pareto-optimal objective vector, and the set that contains them

all is the Pareto-optimal front (PF). Moreover, we assume that f and

g are both expensive to evaluate and are black box functions—that

is, given x they return z and z c .

3.2. Bayesian optimization

For dealing with expensive-to-evaluate problems some opti-

mization algorithms adopt the surrogate model approach. The sur-

rogate (or also known as metamodel or emulator) is a cheap-

to-evaluate model that emulates the input-output relationship of

the expensive high fidelity simulation. A search procedure that re-

places the original function with the surrogate is expected to run

faster, but depending on how accurate the surrogate is, there is

still some necessity to conduct expensive evaluations. These eval-

uations could be used to improve the accuracy of the model in

regions of the search space where there is lack of information, but

we need to balance this with the task of finding the optimal solu-

tion.

Kriging is a type of surrogate model based on Gaussian Pro-

cess theory (Krige, 1951; Rasmussen & Williams, 2006) that has

become very popular and is widely used for engineering appli-

cations (see e.g. Forrester et al., 2008; Wang & Shan, 2007). In

particular, the efficient global optimization (EGO) algorithm (Jones

et al., 1998), an optimizer for single-objective unconstrained prob-

lems, uses the design and analysis of computer experiments (DACE)

model (Sacks, Welch, Mitchell, & Wynn, 1989). This is a Krig-

ing based model parameterised by maximum-likelihood estimation

(MLE) which, besides being capable of predicting responses at un-

tried inputs, also quantifies the uncertainty (or variance) at those

predictions through the mean squared error (MSE). More details

about the Kriging model used in this study are found in the

Appendix A.1 .

EGO uses the EI infill criterion, which takes into account the

uncertainty of the model to provide an estimate of where an im-

provement is more likely to be. Due to its success in dealing

with expensive problems, EGO has been extended for handling

constraints (Schonlau, Welch, & Jones, 1998), and later to handle

multiple objectives in an algorithm known as ParEGO (Knowles,

2005). More details about EGO and how to extend it to the multi-

objective domain are provided in Appendix A.2 .

As reviewed in Section 2 there are many BOAs in the litera-

ture which, in general, have in common an infill criterion such

as the EI combined with the PoF. Although this paper focusses on

how to extend ParEGO for handling constraints and mixed-integer

variables, the proposed methodology can also be applied to other

BOAs.

4. Proposed methodology

4.1. Strategy to handle mixed continuous and discrete variables

Conventional ParEGO can only handle problems with a contin-

uous search space. Problems with discrete, or a mix of continuous

and discrete variables are not directly supported. Our strategy to

handle such problems relies on a:

1. a direct conversion approach (Pelamatti, Brevault, Balesdent,

Talbi, & Guerin, 2020) used for Gaussian process-based surro-

gate models, where the Kriging correlation function is extended

to handle both continuous and discrete variables (Section 4.1.1);

2. a simultaneous approach (Li et al., 2013) 1 where discrete and

continuous variables are optimised together when searching the

surrogate model with an evolutionary algorithm (Section 4.1.2).

For all operations within the optimization algorithm, the set of

values that ordinal variables can take are mapped into an integer

set by using an integer coding . Before a candidate design is evalu-

ated, the discrete variables are mapped back to their original val-

ues. For instance, the set { 10 , 10 . 5 , 11 , 11 . 5 , 12 } that contains all al-
lowed values for a given discrete variable, is converted to the set

{ 1 , 2 , 3 , 4 , 5 } .

4.1.1. Direct conversion approach for the Kriging correlation function

The changes to the procedure used to construct a surro-

gate model involve the use of a direction conversion approach

(Pelamatti et al., 2020) that treats discrete variables as continuous.

For this, the Kriging correlation function (Eq. (A.1)) is modified as

follows:

K(|| x a − x b ||) = exp

(

−

n r
∑

i =1

θi | x
(a)
r i − x (b) r i | 2 −

n o
∑

i =1

θn r + i | x
(a)
ˆ o i

− x (b)
ˆ o i

| 2

)

,

(3)

where x (a) r i
is the i th continuous variable of the point x a , and x

(a)
ˆ o i

represents the continuous variable resulting from the integer cod-

ing of the ordinal variable x (a) o i
.

4.1.2. Mixed-integer solver for searching the surrogate model

In a BOA, an evolutionary algorithm (EA) is used to search the

surrogate model to find the solution that, e.g., maximises both the

EI and the PoF. The simultaneous approach will be used by an opti-

mization algorithm to search the surrogate model when both con-

tinuous and discrete variables are involved. For this task we have

chosen ACROMUSE (McGinley, Maher, O’Riordan, & Morgan, 2011),

a genetic algorithm for continuous single-objective problems, but

note that any other evolutionary algorithm that relies on crossover

and mutation operators (e.g. differential evolution), could be used

instead.

The simultaneous approach described by Li et al. (2013) con-

sists of using multiple specialised crossover and mutation opera-

tors in the same evolutionary algorithm. By specialised we mean

that some crossover operators have been designed to operate only

on continuous variables (e.g. simulated binary crossover) and may

produce undesirable behaviour when applied to discrete variables.

The same applies to mutation operators. The main idea is to use

multiple crossover or mutation operators; each one will operate

either on the continuous and discrete part of the decision vector.

Li et al. (2013) have proposed an evolutionary algorithm known as

MIES in the process of describing the simultaneous approach, but

we do not use MIES in our study, rather we only borrow the sim-

ple concept of using multiple crossover and mutation operators to

extend ACROMUSE. Nevertheless, we use the same crossover and

mutation operators for discrete variables in ACROMUSE that have

been integrated into MIES, but we rely on different operators for

handling continuous variables. Some details about the crossover

and mutation operators used by ACROMUSE in this paper are as

follows:

1. Continuous variables: single-point crossover and polynomial

mutation (Deb & Goyal, 1996). Single-point crossover generates

1 In Li et al. (2013) the authors mention two general approaches, one is an hierar-

chical approach where discrete and continuous variables are optimized in separate

“hierarchical” problems, and the other pursued in this paper is the simultaneous

approach.

5

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

two offspring from every two parents, and for every pair of par-

ent values a and b the offspring values are βa + (1 − β) b and

(1 − β) a + βb, where β ∼ U(0 , 1) .

2. Discrete variables: we use the uniform crossover (Syswerda,

1989) with a chance of 0.5 at each position, which is also called

discrete crossover (Yu & Gen, 2010). The discrete mutation is

borrowed from Rudolph (2005) . Some details about these two

discrete operators are as follows.

In the discrete crossover, for every two parent solutions se-

lected for crossover, each variable in the offspring solution is cho-

sen randomly from either the first or second parent solution with

equal probability. The discrete mutation relies on the difference be-

tween two geometrical distributed variables, and the resulting dis-

tribution has some attractive characteristics, such as:

1. symmetry: no additional bias is introduced by the operator;

2. accessibility: it is possible to reach any point within the search

space by applying the operator a finite number of times to an

individual solution.

The operator has a step size parameter that controls the

strength of the mutation, and more details (including a step-by-

step procedure) can be found in Li et al. (2013) (Algorithm 3 page

38).

Another important aspect is the procedure used for generating

the initial set of solution involving both continuous and discrete

variables, which is now described. To generate the initial set of so-

lutions we use the space-filling method LHS and propose an exten-

sion for dealing with discrete variables. First of all, each dimension

of the search space is divided into N equal intervals, where N is

the number of points to generate. Only one point is allowed inside

each box defined by the intervals. The procedure generates a N × n

matrix where n is the number of decision variables, and each col-

umn contains the elements 0 , 1 , . . . , N − 1 . After all elements per

column are randomly permuted, this matrix becomes a Latin hy-

percube and it is denoted by L . Then, let a total of N solutions

be denoted by x 1 , . . . , x N , and the decision variables of solution x k ,

where k ∈ { 1 , . . . , N} , are initialised as follows:

x r i = x min
r i

+
x max
r i

− x min
r i

N
(U(0 , 1) + L ki) , i = 1 , . . . , n r ,

x o i = x min
o i

+ L ki mod (x max
o i

− x min
o i

+ 1) , i = 1 , . . . , n o , (4)

where the top equation is for continuous variables, and the bot-

tom one is for discrete. L ki is the element from L for the k th

solution and i th decision variable, U(0 , 1) draws a number from

the continuous uniform distribution bounded between 0 and 1,

and mod denotes the modulo operation. Note that in Eq. (4) both

x r i and x o i can only take values from within their limits, that is,

x r i ∈ [x min
r i

, x max
r i

] and x o i ∈ { x min
o i

, . . . , x max
o i

} .
ACROMUSE is used by ParEGO for training and searching the

surrogate model; however the discrete crossover and integer mu-

tation mentioned above only operate for the second task. Train-

ing the surrogate corresponds to the task of solving the single-

objective optimization problem in (A.3) where all variables are

continuous. Searching the surrogate model corresponds to the task

of finding the solution that maximises the EI function (Eq. (A.7)),

and there could be a mix between continuous and discrete vari-

ables.

4.2. Choosing a subset of solutions to construct a surrogate model

The most computational demanding task of constructing the

Kriging model (A.1) is to estimate θ in the Kriging correlation func-

tion (Eq. (A.1)) that best fits the data. The approach used requires

solving the single-objective optimization problem in (A.3) by using

a numerical optimization algorithm, where the inverse of R needs

to be determined for each function evaluation. Given that R is a

N × N dimensional matrix where N is the number of solutions, it is

expected for the computational cost to increase as more solutions

are added to X – the set that contains all solutions that have been

evaluated so far. To ensure that the construction of the surrogate

model does not become prohibitively expensive, in this section we

discuss a computationally cheap strategy with a criterion that ex-

ploits the presence of both feasible and infeasible solutions. This

builds on the findings from Chugh et al. (2016) where the simula-

tion results indicate it is preferable to have a mix of feasible and

infeasible solutions in the training set, rather than relying just on

feasible solutions.

The criterion used not only preserves the best performing solu-

tions but also those that could inform us about the location of in-

feasible regions across the search space. Let N max denote the max-

imum number of solutions that can be used to construct the sur-

rogate model, and let half of the required solutions be denoted by

H = ⌈ N max / 2 ⌉ , then consider the following cases with respect to

the solutions in X :

1. All solutions are feasible: select H solutions with the best fit-

ness value; and select the remaining solutions with the short-

est distance to the operating reference direction vector. For the

latter, the performance vector z of each solution x is projected

into the M − 1 simplex, and then its distance to the reference

direction vector is measured by the Euclidean norm (this pro-

cedure is shown mathematically in Algorithm 1 lines 26–30). In

this situation there are no infeasible solutions in X , therefore

the constraints can be ignored and the best performing solu-

tions are chosen.

2. All solutions are infeasible: select H solutions with the lowest

infeasibility score; and select the remaining solutions by using

the criterion from point 1.

3. There is a mix of feasible and infeasible solutions. The objec-

tive here is to have a good balance of feasible and infeasible

solutions in the subset. Consider the following three cases:

(a) The number of infeasible and the number of feasible solu-

tions are each not smaller than H: select a total of H so-

lutions by applying the criterion from point 1 to all feasi-

ble solutions; and select the remaining (N max − H) solutions

from amongst all infeasible ones by choosing those with

the lowest infeasibility score. Given that there is a sufficient

number of solutions from both categories (feasible and in-

feasible) to ensure an equal distribution, the first priority is

to focus on the best performing feasible solutions, following

which the remaining solutions are chosen from the infeasi-

bility ones based on their infeasibility score (less infeasible

first).

(b) The number of infeasible solutions is less than H, and the

number of feasible solutions is not smaller than H: Select all

infeasible solutions; and select the remaining solutions from

amongst all feasible ones by applying criterion from point 1.

(c) The number of infeasible solutions is not smaller than H,

and the number of feasible solutions is less than H: Se-

lect all feasible solutions; and select the remaining solutions

from amongst all infeasible ones by choosing those with the

lowest infeasibility score.

The steps of the above procedure are shown in Algorithm 1 . For

this, the solutions in X are divided into two sets: X f contains the

feasible solutions, and X i contains the infeasible ones. The output

from the algorithm is a subset X ′ such that X ′ ⊆ X . A resume of

the steps is as follows. The subset X ′ contains all solutions if the

number of solutions in X is not higher than N max (lines 2–3). Point

1 above corresponds to lines 4–5, where the procedure to select

the best performing solutions is shown in lines 21–30. The remain-

ing cases are as follows: point 2 above corresponds to lines 6–8;

6

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Algorithm 1 Choose a subset of solutions to construct a surrogate

model.

Require: a feasible set of solutions X f , an infeasible set of solu-

tions X i , subset size N max , current reference direction vector d

Ensure: a subset X ′ of size N max

1: H = ⌈ N max / 2 ⌉ ⊲ Half of the required solutions

2: if |X i | + |X f | ≤ N max then ⊲ All solutions are selected

3: X ′ ← X i ∪ X f

4: else if |X i | = 0 then ⊲ All solutions are feasible

5: X ′ ← ChooseBestPerformingSolutions (X f , N max , d)

6: else if |X f | = 0 then ⊲ All solutions are infeasible

7: X ′ ← H solutions from X i with the smallest infeasibility

score (Equation A.13)

8: X ′ ← X ′ ∪ ChooseBestPerformingSolutions (X i \ X ′ , N max −

|X ′ | , d)
9: else if |X i | ≥ H and |X f | ≥ H then ⊲ Both X f and X i have at

least H solutions

10: X ′ ← ChooseBestPerformingSolutions (X f , H, d)

11: X ′′ ← N max − |X ′ | solutions from X i with the smallest

infeasibility score (Equation A.13)

12: X ′ ← X ′ ∪ X ′′

13: else if |X i | < H and |X f | ≥ H then ⊲ X i has less than H

solutions

14: X ′ ← X i

15: X ′ ← X ′ ∪ ChooseBestPerformingSolutions (X f , N max −

|X ′ | , d)
16: else if |X i | ≥ H and |X f | < H then ⊲ X f has less than H

solutions

17: X ′ ← X f

18: X ′′ ← N max − |X ′ | solutions from X i with the smallest

infeasibility score (Equation A.13)

19: X ′ ← X ′ ∪ X ′′

20: else

21: X ′ ← X i ∪ X f ⊲ This point should never be reached but is

kept for completion

22: end if

23: procedure ChooseBestPerformingSolutions (X , N, d)

24: X ′ ← ⌈ N/ 2 ⌉ solutions from X with the best fitness value

(Equation A.11)

25: X ′′ ← X \ X ′

26: for all x ∈ X ′′ do

27: ˆ z (x) ← project z (x) to the M − 1 simplex, implying that

ˆ z (x) = z (x) || z (x) || −1
1

28: �(x , d) ← || ̂ z (x) − d || 2
29: end for

30: X ′′′ ← N − ⌈ N/ 2 ⌉ solutions from X ′′ with the smallest �

distance

31: X ′ ← X ′ ∪ X ′′′

32: return X ′

33: end procedure

point 3a to lines 9-12; point 3b to lines 13-15; and point 3c to

lines 16-19.

4.3. Constraint handling strategies

4.3.1. ParEGO with penalty function based constraint handling

(ParEGO-C1)

The main idea is to transform a constrained problem into an

unconstrained one by adding a penalty to infeasible solutions

based on the degree of constraint violation. The information pro-

vided by infeasible solutions can be used to steer the search to-

wards feasible and optimal regions. For instance, a solution that vi-

olates the constraints only by a small margin might be more valu-

able than a feasible solution with very poor performance. The ap-

proach described here is derived from Farmani & Wright (2003) .

The scalarised fitness of infeasible solutions is penalised accord-

ing to the degree of infeasibility and the fitness of the solutions in

X . The penalty is applied in two stages. At first, the fitness of all

infeasible solutions that are better than the “best” solution is set

equal to the fitness of the “best” solution. The best solution is the

feasible solution with the best fitness. If no feasible solutions exists

in X , the best solution is the one with least constraint violation. In

the second stage, all infeasible solutions are further penalised ac-

cording to their original fitness and the degree of constraint viola-

tion. More formally this approach is as follows.

We use an infeasibility score given by:

˙ ξ (x) =
1

J

J
∑

j=1

v j (x) / v
max
j , (5)

where v max
j

is the highest constraint violation for the jth constraint

found with respect to all infeasible solutions in X . Following this,

the procedure identifies the best solution, as follows:

x ∗ =

{

arg min x ∈X f s (x) , if |X f | > 0 ,

arg min x ∈X ˙ ξ (x) , otherwise ,
(6)

where the first case selects the feasible solution with the best fit-

ness, and in case there are no feasible solutions then the second

case selects the least infeasible solution with respect to the mod-

ified infeasibility score (Eq. (5)). The fitness of all infeasible solu-

tions are now penalised as follows. The first penalisation ensures

that their fitness is not better than the best solution, that is:

˙ s (x) =

{

s (x ∗) if s (x) < s (x ∗)
s (x) , otherwise

(7)

where ˙ s (x) is the penalised fitness score of x . To determine the

second penalisation the original fitness and modified infeasibility

score are normalised so that the values lie in the range between 0

and 1, as follows:

s̄ (x) = (s (x) − s min) / (s max − s min) ,

ξ̄ (x) = (˙ ξ (x) − ˙ ξmin) / (˙ ξmax − ˙ ξmin) ,
(8)

where s min and s max are the lowest and highest original fitness of

all solutions, and ˙ ξmin and ˙ ξmax are the lowest and highest modi-

fied infeasibility score of all infeasible solutions. Finally, all infeasi-

ble solutions are further penalised according to their original cost

function and the degree of constraint violation as follows:

s̈ (x) = ˙ s (x) +
e 2(̄s (x)+ ̄ξ (x)) −1

e 2 − 1
, (9)

and their current fitness is replaced by s̈ (x) . The exponential func-

tion in Eq. (9) ensures that solutions of low infeasibility get a slight

reduction in the rate of penalty, and this helps to maintain the fit-

ness of solutions that slightly violated the constraints.

ParEGO with penalty-based constraint handling is now re-

ferred to as ParEGO-C1 for short, and a pseudo-code is shown in

Algorithm 2 . The general steps are as follows. An initial set of so-

lutions is generated by using some space filling design strategy

(line 1), and once all solutions are evaluated the objective and con-

straints values are stored respectively in Z and G (lines 2–3). Fol-

lowing the construction of a set of reference direction vectors D

(line 4), an iterative procedure starts where the reference direc-

tions are processed one at the time (line 7). Each time all reference

directions are visited, the set D is shuffled (line 6). This is to avoid

any bias due to using the same sequence of reference directions re-

peatedly during the optimization process. A scalarised fitness value

is determined for each solution and stored in S (line 9). The fitness

7

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Algorithm 2 ParEGO with penalty function based constraint han-

dling (ParEGO-C1).

Parameters: initial set size N init , surrogate model maximum set

size N max

1: X ← generate initial set of solutions with size N init

2: Z ← f (X) ⊲ evaluate the objectives of the solutions in the

initial set

3: G ← g (X) ⊲ evaluate the constraints of the solutions in the

initial set

4: D ← set of all reference direction vectors (Equation A.10)

5: while termination criteria not satisfied do

6: Shuffle the set D

7: for all d ∈ D do

8: update objective lower and upper bounds (Equation A.8)

9: S ← for each solution calculate a scalar fitness value

(Equation A.11)

10: S ′ ← penalise infeasible solutions according to their

degree of constraint violation (Equation A.9)

11: X ′ ← select a subset of solutions from X with maximum

size N max (Section 4.2)

12: ˆ s ← fit a surrogate model to X ′ and corresponding

fitness values in S ′

13: x new ← find a solution that maximises the EI

(Equation A.7)

14: X ← X ∪ x new , Z ← Z ∪ f (x new) and G ← G ∪ g (x new)

⊲ evaluate and store new solution

15: end for

16: end while

values are updated by penalising infeasible solutions according to

their degree of constraint violation (line 10). Following the selec-

tion of a subset of solutions (line 11), these are used as training

data to construct a surrogate model (line 12). The surrogate model

is used by the EI function and a solution is found by maximizing it

(line 13). Following its evaluation, the new solution is added to X ,

its objective and constraint values are store respectively in Z and

G, and this completes one iteration (line 14).

4.3.2. ParEGO with constrained expected improvement based

constraint handling (ParEGO-C2)

The EI formulation in Eq. (A.7) is extended to handle con-

straints. A surrogate model of the constraint function can be used

to influence the expectation of improvement, that is: in case the

surrogate indicates a constraint violation with a low error, the EI

should have a low value; and if the surrogate error is high, then

we cannot be sure if the constraint is violated, and therefore the

EI should be higher. Based on this premise, the approach described

in Forrester & Keane (2009) calculates the probability that the pre-

diction of the constraint model is smaller than the constraint limit,

that is, the probability that the constraint is met. More formally,

let the mean and variance of the model at x be given by ˆ g (x)

and ˆ ε 2 (x) , respectively. The probability that the constraint is met

is given by:

P [g(x) < c] = �

(

c − ˆ g (x)

ˆ ε (x)

)

, (10)

where g(x) is the constraint function, and c is the constraint limit.

The constraint EI is obtained by multiplying E[I(x)] by P [g(x) < c] ,

and this can be easily extended for dealing with multiple (J) con-

straints as follows:

E[I(x)]�J
j=1

P [g j (x) < c j] . (11)

In problems with a constrained optima (different from the un-

constrained optima), most improvement reported by the EI func-

tion (Eq. (A.7)) corresponds to infeasible regions. This implies that

the improvement in the feasible region is likely to be close to zero,

which makes it more difficult to search for the constrained optima

when using the constraint EI function (Eq. (11)). To address this we

have adopted a recommendation by Bagheri et al. (2017) , which

consists of replacing the current best “known” function value in

Eq. (A.7) by the feasible solution with the best fitness, or the least

infeasible solution in case all solutions are infeasible. For the lat-

ter, the chosen solution has the lowest infeasibility score, as deter-

mined by Eq. (A.13) .

ParEGO with probabilistic-based constraint handling is now re-

ferred to as ParEGO-C2 for short, and a pseudo-code is shown in

Algorithm 3 . Algorithm 2 and 3 share many steps in common,

Algorithm 3 ParEGO with constrained EI based constraint han-

dling (ParEGO-C2).

Parameters: initial set size N init , surrogate model maximum set

size N max

1: X ← generate initial set of solutions with size N init

2: Z ← f (X) ⊲ evaluate the objectives of the solutions in the

initial set

3: G ← g (X) ⊲ evaluate the constraints of the solutions in the

initial set

4: D ← set of all reference direction vectors (Equation A.10)

5: while termination criteria not satisfied do

6: Shuffle the set D

7: for all d ∈ D do

8: update objective lower and upper bounds (Equation A.8)

9: S ← for each solution calculate a scalar fitness value

(Equation A.11)

10: X ′ ← select a subset of solutions from X with maximum

size N max (Section 4.2)

11: ˆ s ← fit a surrogate model to X ′ and corresponding

fitness values in S

12: { ̂ g j }
J
j=1

← fit a separate surrogate model to each

constraint function w.r.t. X ′ and G

13: x new ← find a solution that maximises the constraint EI

(Equation 11)

14: X ← X ∪ x new , Z ← Z ∪ f (x new) and G ← G ∪ g (x new)

⊲ evaluate and store new solution

15: end for

16: end while

hence, we focus only on the differences between the two algo-

rithms. In Algorithm 3 the fitness values are no longer penalised

as in line 10 of Algorithm 2 . Instead, a surrogate model is con-

structed for each constraint function (line 12) based on the sub-

set of solutions chosen in line 10. All learnt surrogate models are

combined into the constraint EI function, and following its max-

imization, a new solution is found (line 13). Two points that are

noteworthy:

1. A total of J surrogate models are constructed in line 12

Algorithm 3 , and this task is expected to be computationally

more expensive than the approach used that penalises the fit-

ness values in line 10 Algorithm 2 .

2. The surrogate modelling task in line 12 Algorithm 3 relies on

the subset X ′ . This prevents the construction of the surrogates

from becoming prohibitively expensive since the number of so-

lutions in X can be too high. However, note that the approach

in line 10 Algorithm 2 relies on the entire solution set X which

could be advantageous in case the subset X ′ lacks important

information about where infeasible solutions are meant to exist

in the search space.

8

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

5. Empirical analysis setup

This section provides details about the parameter setup for

ParEGO and NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002),

and also about the quality indicators used to evaluate the solutions

sets obtained by the optimization algorithms. Note that NSGA-II

is chosen in this study to be compared with ParEGO due to its

current popularity for the study of multi-objective internal com-

bustion engine design problems, as in D’Errico et al. (2011) , Lotfan

et al. (2016) , Corre et al. (2019) . Some details about NSGA-II includ-

ing its implementation and how it handles constraints are provided

in Appendix A.3 .

5.1. Optimisation algorithms setup

The budget for both optimization algorithms is set to N = 500

function evaluations, which includes the evaluation of the initial

set of solutions. Note that relying on 500 or fewer function eval-

uations is considered the general agreement on what constitutes

a constrained budget (Chugh et al., 2019; Keane, 2006; Knowles

& Hughes, 2005). All solutions evaluated during the optimization

run are saved in an archive, and each run is repeated 21 times

with a different random seed. The initial set for each optimiza-

tion algorithm is generated by LHS, and the set size is fixed to

N init = 100 . The justification for this lies in the need to validate

the optimization model used by the internal combustion engine

design problem, which is the primary focus of this study. It was

agreed that 100 designs provide sufficient coverage on a 7 deci-

sion variable problem for validation purposes. For consistency, the

initial set used by the benchmark problems was also generated by

LHS with a set size of 100.

In NSGA-II, the size of both the parent and offspring popula-

tions are set to N P = N init / 2 , and the number of generations is

given by (N − N P) /N P . The crossover and mutation operators for

continuous variables are simulated binary crossover (Deb & Kumar,

1995) and polynomial mutation (Deb & Goyal, 1996). The distri-

bution index for simulated binary crossover and polynomial muta-

tion is set to 15 and 20, respectively. For the discrete variables we

use the same discrete crossover and discrete mutation operators

mentioned in Section 4.1.2 for ACROMUSE. The step size parame-

ter in the discrete mutation operators is set to be equal to 10% of

the length defined by the upper and lower bound of each decision

variable. The probability of crossover and mutation are respectively

set to 90% and 10%. The same probability of crossover is used by

Knowles (2005) when comparing NSGA-II with ParEGO. The prob-

ability of mutation is suggested by Li et al. (2013) for dealing with

mixed integer problems.

Specifically for ParEGO, the number of reference direction vec-

tors is set to 10 (this ensures that all direction vectors are pro-

cessed exactly 50 times for the given budget, and is a very close

number to the 11 chosen by Knowles, 2005). To construct the

surrogate model we used a maximum of N max = 100 solutions.

ACROMUSE is used for training and searching the surrogate model.

Training the surrogate corresponds to the task of solving the

single-objective optimization problem in (A.3) . Searching the sur-

rogate corresponds to the task of finding the solution that max-

imises the EI function. This either corresponds to Eq. (A.7) in case

ParEGO-C1 is used (Algorithm 2), or Eq. (11) in case ParEGO-C2

is used (Algorithm 3). The following setup is used by ACROMUSE.

The crossover and mutation operators for continuous variables are

single-point crossover and polynomial mutation, and for discrete

variables we use the same operators mentioned above for NSGA-II.

The probability of crossover and mutation is the same as defined

for NSGA-II. More details about the crossover and mutation opera-

tors in ACROMUSE are found in Section 4.1.2 . Based on several ex-

periments we found that setting an initial population size to 20 n ,

where n is the number of decision variables, provides the best con-

vergence. The termination criterion for ACROMUSE is as follows:

1. Determine the difference between the current best fitness in

the population and the best fitness of the previous generation,

and store the result in an archive;

2. Determine the mean of the last 20 elements in the archive, and

terminate the optimization run if the result is below a very

small number (i.e. 10 −6);

3. To ensure that the optimization terminates in case the above

condition cannot be satisfied, a maximum number of genera-

tions is set to 100 n .

5.2. Quality indicators

There are several quality indicators in the literature for com-

paring the performance of optimization algorithms (Audet, Bigeon,

Cartier, Le Digabel, & Salomon, 2021), and we have used the fol-

lowing ones in this study:

1. The hypervolume indicator is used to measure the convergence

and diversity across the Pareto front, and its exact value is de-

termined by a dimension-sweep algorithm (Fonseca, Paquete,

& López-Ibáñez, 2006). The hypervolume is calculated with re-

spect to a non-dominated set that is identified from the archive

that contains all evaluated solutions found during an optimiza-

tion run. In order to show the hypervolume progress during an

optimization run, a non-dominated set is determined after each

evaluation, which serves as an input to the dimension-sweep

algorithm. In some optimization runs the non-dominated solu-

tions may not include any feasible solutions, and this is more

likely to happen during the first few evaluations. In case there

are no feasible solutions in a solution set then the hypervolume

is calculated with respect to all infeasible non-dominated solu-

tions, in order to provide some insight into the dynamics of the

optimization algorithms. To test the statistical significance of

the results we employ the Wilcoxon’s rank-sum test (Conover,

1999) with a significance level of 5%. This provides an indica-

tion of whether the hypervolume performance of an algorithm

is significantly different from another. In addition, when two

algorithms are compared, we will state the relative percentage

difference (RPD) 2 , or simply percentage improvement, with re-

spect to their median hypervolume values across the 21 repli-

cations. The reference point used by the hypervolume compu-

tation is {−0 . 1 , 2630 . 0 } , { 7100 , 1700 } and { 0 . 9035 , 0 . 67 } , corre-
sponding to the OSY, speed reducer, and engine design prob-

lems, respectively. The hypervolume values are then normalised

in the range between 0 and 1, and for this we divide it by

7 . 15 × 10 5 , 4 . 5 × 10 6 and 120, corresponding to the OSY, speed

reducer and engine design problems, respectively. These refer-

ence points have been obtained by taking the worst case ob-

served across the union of all runs.

2. We will show the differences between the empirical attainment

functions (EAFs) (López-Ibáñez, Paquete, & Stützle, 2010) when

comparing two algorithms. This provides visual information of

where an algorithm has done better than the other across the

Pareto front by considering multiple optimization runs. It also

shows the best, median and worst attainment surfaces, corre-

sponding to the lines at the bottom, centre and top, respectively

(assuming minimisation).

3. The performance of the constraint handling approaches is eval-

uated during the optimization run by showing the infeasibility

score (Eq. (5)), and the number of feasible solutions that have

2 The relative percentage difference between two numbers v 1 and v 2 is deter-

mined by taking their absolute difference divided by their arithmetic mean, i.e.,

| v 1 − v 2 | / [(v 1 + v 2) / 2] × 100 .

9

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

been found. We have observed that the infeasibility score can

be very noisy between evaluations, and as a smoother, we em-

ploy a moving mean with a sliding window of length 10. The

mean of each point is calculated over the neighbouring points,

and the sliding window is centred in the current and previous

elements. Following the smoothing of each optimization run,

the mean and standard deviation is then taken. A similar ap-

proach was used for the number of feasible solutions, where

each point along the optimization run gives the number of fea-

sible solutions found in the previous 10 evaluations, including

the current point.

4. We use a heatmap to show which constraints are more likely

to be violated during the optimization run. Each row in the

heatmap represents a constraint and the columns correspond

to the evaluations across the optimization run. To compute the

heatmap each constraint is processed separately as follows. At

any given evaluation during the optimization run a constraint

may have been violated (1) or not (0). We take the average

across all runs to calculate a probability that the constraint is

likely to be violated, for instance, consider a total of 5 runs

then the vector (0,1,0,1,1) indicates that the constraint has been

violated in the second, fourth and fifth run, but it is not vio-

lated in the first and third runs. The average of the vector gives

0.6, which indicates that the probability of violating the con-

straint at this particular evaluation is 60%. For smoothing pur-

poses, these probabilities are then averaged across 10 consecu-

tive evaluations, implying that there are a total 50 cells in the

heatmap shown across the x-axis corresponding to a total of

500 function evaluations.

6. Optimization of benchmark problems

6.1. Test suite

The constrained ParEGO proposed in this paper is intended to

be used in solving expensive constrained mixed-integer problems,

such as the target internal combustion engine (ICE) problem (inves-

tigated in Section 7.1), which has 4 ordinal plus 3 continuous deci-

sion variables, 2 objectives and 5 constraints. However an obstacle

to comprehensive analysis of such genuinely expensive problems

is that the computational budget required for extensive empiri-

cal experimentation is infeasible. To conduct this type of analysis,

we require benchmark problems with comparatively low evalua-

tion times. Unfortunately there are very few benchmark problems

in existence with similar characteristics to the ICE problem. To the

authors’ knowledge, there is only one constrained mixed-integer

benchmark problem in existence and one further constrained (but

continuous variable) problem which has a similar number of con-

straints to the ICE problem.

The first is a quasi-real-world problem known as the speed re-

ducer (Gunawan, Azarm, Wu, & Boyars, 2003). There are several

formulations available for this problem in the literature, including,

Coello & Pulido (2005) and Gong, Cai, & Zhu (2009) . The problem

has two objectives, seven decision variables and eleven constraints.

The decision variables are all continuous apart from the third de-

cision variable which is discrete (i.e. x 3 in Eq. (B.2)). The problem

formulation is available in Eq. (B.2) in Appendix B . Based on our

own numerical experiments, we discovered that the fourth, fifth,

sixth and eleventh constraints are not active, which means that

there are only seven active constraints in this problem. The sec-

ond problem is known as OSY (Osyczka & Kundu, 1995) and it is a

bi-objective optimization problem with six decision variables and

six constraints. The decision variables are all continuous, and four

of the constraints are linear. The problem formulation is available

in Eq. (B.1) in Appendix B .

6.2. Comparative analysis between subset selection strategies

In this section we study the impact that different strategies

for selecting a subset of solutions for constructing the surrogate

model have on the performance of ParEGO-C1 and ParEGO-C2

when applied to the OSY and speed reducer problems. The cri-

terion adopted by the subset selection strategies considered is as

follows:

1. Proposed strategy in Algorithm 1 (PA);

2. Best performing solutions (BP). In this case the solutions are

chosen based on the procedure ChooseBestPerformingSolutions

in Algorithm 1 . This criterion only takes into account the fit-

ness of the solutions (as determined by Eq. (A.11)), and their

constraint values are not taken into account. First, half of the

allowed number of solutions with the best fitness value are

selected, and second, select the remaining solutions with the

shortest distance to the reference direction vector;

3. Random (RD). The order of all solutions is shuffled and the first

N max solutions are selected.

Table 1 shows the hypervolume obtained by ParEGO-C1 and

ParEGO-C2 with different subset selection strategies. Based on the

Wilcoxon’s rank-sum test results, we use the following notation in

Table 1 , where [-], [+] and [≈] corresponds respectively to signifi-

cantly worse than, better than, and equal to PA. Consider the fol-

lowing observations:

1. OSY: PA reports the best median hypervolume performance for

both ParEGO-C1 and ParEGO-C2. For ParEGO-C1, the percentage

improvement of PA over BP is 4.57%, and PA over RD is 13.09%.

For ParEGO-C2, the percentage improvement of PA over BP is

3.46%, and PA over RD is 1.16%. The results for ParEGO-C2 are

statistically significant, but the results for ParEGO-C1 are not.

2. Speed reducer: BP reports the best median hypervolume perfor-

mance for both ParEGO-C1 and ParEGO-C2. The percentage im-

provement of BP over PA is only 0.001% and 0.13% for ParEGO-

C1 and ParEGO-C2, respectively. PA performs marginally better

than RD with a percentage improvement of just 0.1% and 0.07%,

for ParEGO-C1 and ParEGO-C2, respectively. These results are

not statistically significant.

So far we have compared the algorithms by using the hyper-

volume indicator, and these are now compared by visualising the

differences between their EAFs. This is only shown for the statis-

tical significant results, that is, it considers only the comparison

between PA and BP with ParEGO-C2 for the OSY problem. Figure 1

shows the EAFs differences and their magnitude is encoded by the

colour level. The obtained results in Fig. 1 a show that PA has bet-

ter attainment on the upper left region of the PF when compared

with BP, but BP has better attainment across the lower left region

of the PF. A similar trend is captured in Fig. 1 b between PA and

RD, but the region attained by RD is much smaller than the region

attained by BP.

Based on the above results, PA has better hypervolume when

compared with BP and PA for the OSY problem, although the re-

sults are not statistically significant for ParEGO-C1, but they are

for ParEGO-C2. The EAFs indicates that this overall improvement

comes at the cost of some regions across the PF over others. For

the speed reducer problem the results are not statistical signifi-

cant, meaning that for this problem the subset selection strategies

have a low influence on the performance of the algorithms. These

results suggest that ensuring a good balance between feasible and

infeasible solutions can be better than simply relying on their per-

formance. In the following section, the constrained ParEGO algo-

rithms with PA will be compared to NSGA-II.

10

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Table 1

Comparison of subset selection strategies on the performance of ParEGO-C1 and ParEGO-C2 when applied to the OSY and speed reducer

problems. The performance is measured by the hypervolume indicator (the higher the better). The statistics have been determined based

on 21 runs. The term Std is an abbreviation for standard deviation, Max for maximum, and Min for minimum. Results are shown to 4

significant figures, and the best ones have been underlined.

Hypervolume OSY Speed reducer

Optimizer Median Mean (Std) Max Min Median Mean (Std) Max Min

ParEGO-C1(PA) 0.7257 0.6709 (0.1693) 0.8982 0.3090 0.9359 0.9342 (0.0058) 0.9413 0.9192

ParEGO-C1(BP) 0.6933 [≈] 0.6656 (0.1331) 0.8496 0.3504 0.9359 [≈] 0.9357 (0.0034) 0.9410 0.9295

ParEGO-C1(RD) 0.6366 [≈] 0.6504 (0.1187) 0.8736 0.3983 0.9349 [≈] 0.9348 (0.0035) 0.9397 0.9240

ParEGO-C2(PA) 0.9434 0.9450 (0.0119) 0.9657 0.9282 0.9397 0.9399 (0.0029) 0.9460 0.9353

ParEGO-C2(BP) 0.9113 [-] 0.9158 (0.0146) 0.9461 0.8920 0.9409 [≈] 0.9408 (0.0019) 0.9444 0.9369

ParEGO-C2(RD) 0.9325 [-] 0.9324 (0.0125) 0.9554 0.9118 0.9390 [≈] 0.9391 (0.0033) 0.9483 0.9343

Fig. 1. Comparison of subset selection strategies for ParEGO-C2 by showing the differences between the empirical attainment functions (EAFs) of the feasible non-dominated

solutions for a total of 21 runs on the OSY problem. For each subfigure, the plot in the left highlights the differences in favour of algorithm 1, and the plot in the right

highlights the differences in favour of Algorithm 2. The colour level encodes the magnitude of the observed differences. The lines in the left, centre and right correspond to

the best, median and worst attainment surfaces, respectively.

Table 2

Comparison between ParEGO-C1, ParEGO-C2 and NSGA-II when applied to the OSY and speed reducer problems. The performance is

measured by the hypervolume indicator (the higher the better). The first three rows show the performance obtained after 500 function

evaluations. The second last row shows the performance obtained by NSGA-II after 10,0 0 0 function evaluations. The last row shows

the number of function evaluations required by each successful run from NSGA-II to achieve the median performance obtained by

ParEGO-C2, and in the same row, the numbers between {∗} indicate the number of successful runs out of 21 that have obtained a

better hypervolume value than ParEGO-C2. The statistics have been determined based on 21 runs. The term Std is an abbreviation for

standard deviation, Max for maximum, and Min for minimum. Results are shown to 4 significant figures, and the best ones have been

underlined.

Hypervolume OSY Speed reducer

Optimizer Median Mean (Std) Max Min Median Mean (Std) Max Min

ParEGO-C1 0.7257 0.6709 (0.1693) 0.8982 0.3090 0.9359 0.9342 (0.0058) 0.9413 0.9192

ParEGO-C2 0.9434 0.9450 (0.0119) 0.9657 0.9282 0.9397 0.9399 (0.0029) 0.9460 0.9353

NSGA-II (500) 0.6840 0.6593 (0.1576) 0.8850 0.3549 0.8799 0.8593 (0.0663) 0.9269 0.6764

NSGA-II (10000) 0.9001 0.9037 (0.0962) 0.9994 0.5373 0.9515 0.9465 (0.0138) 0.9537 0.9055

2265 { 6 } 2315 (765) 3190 1413 1798 { 18 } 2268 (1745) 7944 781

6.3. Comparative analysis between proposed constrained ParEGO and

NSGA-II

This section presents results for the constraint ParEGO algo-

rithms (ParEGO-C1 and ParEGO-C2), and NSGA-II when applied to

the OSY and speed reducer problems. Both ParEGO algorithms use

the subset selection strategy PA.

Table 2 shows a comparison between the algorithms in term

of hypervolume. In the third row, the results obtained for NSGA-

II correspond to 500 function evaluations, and the results in the

second last row correspond to a very generous 10,0 0 0 function

evaluations. For now we will only focus on the 500 function eval-

uations case. ParEGO-C2 outperforms ParEGO-C1, with a percent-

age improvement of 26.1% for the OSY problem, and 0.42% for the

speed reducer problem. The percentage improvement of ParEGO-

C2 and ParEGO-C1 over NSGA-II is respectively 31.9% and 5.9% for

the OSY problem, and respectively 6.57% and 6.17% for the speed

reducer problem. Results are statistically significant (see Table 3),

with the only exception of ParEGO-C1 versus NSGA-II for the OSY

problem.

Figures 2 and 3 show the evolution of three indicators along the

optimization run, and also the EAFs differences between the algo-

rithms for the OSY and speed reducer problems, respectively. The

indicators are the hypervolume, infeasibility score (Eq. (5)), and

number of feasible solutions found during the optimization run. In

addition, the three bottom subfigures in Figs. 2 and 3 , show all so-

lutions evaluated during a single optimization run, and the chosen

run has the closest hypervolume value to the median from a total

of 21 runs. Consider the following observations:

1. ParEGO-C2 shows faster convergence in terms of hypervolume

when compared with ParEGO-C1 and NSGA-II (Fig. 2 a and 3 a).

In addition, ParEGO-C2 has the lowest standard deviation when

compared with ParEGO-C1 and NSGA-II for both problems,

11

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Table 3

p-values obtained by the Wilcoxon’s rank-sum test. A p-value lower than 0.05 (corre-

sponding to a significance level of 5%) indicates rejection of the null hypothesis that the

two samples being compared have equal medians. The values above and below the main

diagonal corresponds to the OSY and speed reducer problems, respectively. The numbers

500 and 10,000 after NSGA-II indicate the number of function evaluations after which the

results have been obtained.

Optimizer ParEGO-C1 ParEGO-C2 NSGA-II (500) NSGA-II (10 0 0 0)

ParEGO-C1 — 3 . 13 × 10 −8 0.7247 9 . 32 × 10 −7

ParEGO-C2 6 . 23 × 10 −4 — 3 . 13 × 10 −8 0.01931

NSGA-II (500) 8 . 41 × 10 −8 3 . 13 × 10 −8 — 7 . 21 × 10 −7

NSGA-II (10000) 2 . 66 × 10 −5 7 . 05 × 10 −5 1 . 67 × 10 −7 —

while NSGA-II shows the highest. The relatively high standard

deviation by NSGA-II during first ≈25 evaluations is caused by

the fact that some optimization runs have not found feasible

solutions up-to this point, and in case there are no feasible so-

lutions then the hypervolume is calculated with respect to the

infeasible solutions, which may cause the hypervolume to show

unrealistic high performance.

2. The optimizers show different trends when in comes to the in-

feasibility score and number of feasible solutions found during

the optimization run as follows:

(a) For the OSY problem in Fig. 2 c, ParEGO-C2 has the low-

est infeasibility score during the first ≈30 evaluations, and

subsequently reports the highest infeasibility score includ-

ing the highest standard deviation. Whereas the infeasibility

score of ParEGO-C1 and NSGA-II decreases along the opti-

mization run.

(b) For the speed reducer problem, the infeasibility score of

ParEGO-C2 remains comparatively low across the entire op-

timization run when compared with the other optimizers as

shown in Fig. 3 c, but the infeasibility score of ParEGO-C1 re-

mains very high when compared with NSGA-II and ParEGO-

C2 during the entire optimization run.

3. All evaluated solutions in a single optimization run are shown

in the bottom plots of Figs. 2 and 3 , corresponding to the OSY

and speed reducer problems, respectively. Although it is true

that variance can be very high across different optimization

runs, especially for NSGA-II, we have observed that these solu-

tions capture the general trend across most runs. Consider the

following observations:

(a) Most solutions found by ParEGO-C2 for the speed reducer

problem are feasible (Fig. 3 h). In the OSY problem, there is

an area in the objective space (top-left region in Fig. 2 h)

with many infeasible solutions. These solutions are respon-

sible for the high infeasibility score shown by ParEGO-C2

and have mostly been found after evaluation ≈40.

(b) ParEGO-C1 found many feasible solution when compared

with the other algorithms as shown in Fig. 2 g for the OSY

problem, but many are found in a sub-optimal region when

compared with those found by ParEGO-C2. In the speed re-

ducer problem, ParEGO-C1 found considerably less feasible

solutions than ParEGO-C2 (Fig. 3 g), and there are many in-

feasible solutions found that are in sub-optimal regions in

the objective space far from the edges of the PF.

The probability of violating an individual constraint along the op-

timization run is shown in Figs. 4 and 5 , corresponding to the OSY

and speed reducer problems, respectively. The first 100 evaluations

shows the evaluation of the initial set of solutions which is com-

mon for all optimization algorithms. For the OSY problem, g 2 and

g 5 have the highest probability of being violated. This is evident

during the evaluation of the initial set of solutions but also in sub-

sequent evaluations, and in particular for ParEGO-C2 as shown in

Fig. 4 b. For the speed reducer problem, g 7 is the most active con-

straint, while g 9 and g 10 are the second most active constraints.

This is more evident for ParEGO-C1 as shown in Fig. 5 a than it is

for ParEGO-C2 and NSGA-II. Constraints such as g 4 , g 5 , g 6 and g 11
are never active, and others such as g 1 , g 2 and g 3 , and g 8 , show

very low level of activity in comparison. This indicates that out of

11 constraints there are only 3 (i.e. g 7 , g 9 and g 10) that seem to be

posing difficulties to the optimization algorithms. In contrast, for

the OSY problem there are at least 4 out of 6 constraints (i.e. g 2 , g 3 ,

g 5 and g 6) that seem to be posing difficulties to the optimization

algorithms (in particular to ParEGO-C2). The above results suggest

that the constraints in the speed reducer problem were less ac-

tive when compared with the constraints from the OSY problem.

In such a scenario it is expected for a subset selection strategy that

takes into account the constraint violation of the solutions to show

less impact. This is corroborated by the lack of statistical signifi-

cance shown by the results when comparing the subset selection

strategies in Table 1 for the speed reducer problem.

So far we have only discussed results obtained by the optimiz-

ers up to a maximum of 500 function evaluations. For this tight

budget it is clear that the two ParEGO algorithms, in particular

ParEGO-C2, have better performance than NSGA-II. We therefore

ask the questions how many more function evaluations would be

required for NSGA-II to show a similar performance to that ob-

tained by ParEGO-C2, and how good are the results obtained by

ParEGO-C2? To answer these two questions, the second last row in

Table 2 shows the hypervolume obtained by NSGA-II after 10,0 0 0

function evaluations (a prohibitively expensive budget for many

real-world applications, in particular ICE design problems), and the

last row in Table 2 shows the number of function evaluations re-

quired by each optimization run of NSGA-II to obtain a better hy-

pervolume value than the median performance of ParEGO-C2. In

that:

1. Considering first the hypervolume values obtained by the op-

timizers. ParEGO-C2 has better hypervolume median perfor-

mance than NSGA-II for the OSY problem with a percentage im-

provement of 4.70%, and NSGA-II shows better performance in

the speed reducer problem with a percentage improvement of

1.25%. These results give some indication that the solution sets

obtained by ParEGO-C2 offers a good approximation to the true

PF for both problems.

2. Consider now the number of function evaluations required by

each run from NSGA-II to achieve the same median perfor-

mance as that obtained by ParEGO-C2. NSGA-II requires a me-

dian of 2265 function evaluations for the OSY problem, where

only 6 out of 21 runs successfully achieve a better performance

than ParEGO-C2 within the limit of 10k evaluations. This sug-

gests that some NSGA-II runs may require more than 10,0 0 0

function evaluations in order to achieve the same median per-

formance that was obtained by ParEGO-C2. For the speed re-

ducer problem, 18 runs out of 21 from NSGA-II successfully

achieve a better performance than ParEGO-C2, requiring a me-

dian of 1798 function evaluations.

12

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Fig. 2. Performance of ParEGO-C1, ParEGO-C2 and NSGA-II on the OSY problem. Subfigures in the left show the hypervolume indicator, infeasibility score, and the number of

feasible solutions found. For each performance indicator the mean and variance are represented by the middle line and surrounding shaded region, respectively. Subfigures

in the right show the differences between the empirical attainment functions (EAFs) of the non-dominated solutions. The plots in the left highlights the differences in favour

of algorithm 1, and the plots in the right highlights the differences in favour of Algorithm 2. The colour level encodes the magnitude of the observed differences. The lines

in the left, centre and right correspond to the best, median and worst attainment surfaces, respectively. The statistics and EAFs have been determined based on 21 runs. The

three subfigures on the bottom show all solutions generated by each optimizer in a single run, represented in the objective space. The solutions are taken from the median

run with respect to hypervolume out of 21 runs.

Overall, the above results provide some evidence that ParEGO

endowed with a constraint handling approach can be effective at

dealing with constrained multi-objective problems with a mix of

continuous and discrete variables on a tight budget scenario, and

in such circumstances ParEGO has shown to be more effective

than NSGA-II. In the following section we will show results for

the application of these optimization algorithms to an expensive-

to-evaluate ICE design problem.

7. Optimization of an internal combustion engine design

problem

7.1. Internal combustion engine design problem

The approach is applied to a real engineering problem consist-

ing of the optimisation of an internal combustion engine design

and controller algorithm. The aim of this application is to demon-

13

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Fig. 3. Performance of ParEGO-C1, ParEGO-C2 and NSGA-II on the speed reducer problem. Subfigures in the left show the hypervolume indicator, infeasibility score, and the

number of feasible solutions found. For each performance indicator the mean and variance are represented by the middle line and surrounding shaded region, respectively.

Subfigures in the right show the differences between the empirical attainment functions (EAFs) of the non-dominated solutions. The plots in the left highlights the differences

in favour of Algorithm 1, and the plots in the right highlights the differences in favour of Algorithm 2. The colour level encodes the magnitude of the observed differences.

The lines in the left, centre and right correspond to the best, median and worst attainment surfaces, respectively. The statistics and EAFs have been determined based on 21

runs. The three subfigures on the bottom show all solutions generated by each optimizer in a single run, represented in the objective space. The solutions are taken from

the median run with respect to hypervolume out of 21 runs.

strate the potential and run time of the approach when applied

to a real problem. A model based approach is adopted, whereby

a representative engine model of the 1.0 litre 3-cylinder gasoline

direct injection (GDI) turbocharged engine with a low-pressure ex-

haust gas recirculation (LP EGR) system was used (Fig. 6). The en-

gine model was validated by dynamometer test data at various

engine speeds and loads for the baseline configuration given in

Table 4 . It is also tested over the two-minute segment of the WLTP

test cycle to consider the fuel consumption and emissions during

dynamic engine cycles (Fig. 7). The optimization problem is typ-

ical of the process that engineering teams would need to under-

take during the early development of a new engine version plat-

form. The problem is a constrained multi-objective problem seek-

ing to minimize fuel consumption and NOx emissions over a 2-

minute dynamic duty cycle. Seven decision variables are defined.

The first four define the hardware choices of cylinder compres-

14

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Fig. 4. Heatmap showing the constraint violation prevalence for the OSY problem.

Table 4

Maximum and minimum values for the full factorial design of experiment and sensitivity analysis.

Compression EGR cooler Turbine mass Compressor mass Spark offset Valve offset MAP offset

ratio size flow multiplier flow multiplier [CAD] [CAD] [in Hg]

Baseline 10.5 1.0 1.0 1.0 0 0 0

Min 10 0.25 0.75 0.75 -8 -10 0

Max 12 1.75 1.25 1.25 8 10 20

sion ratio (Giles et al., 2018), turbo machinery and EGR cooler siz-

ing (Dimitriou, Turner, Burke, & Copeland, 2018). The last three

relate to control variables that parameterise the engine control

logic (Giles, 2018). Specifically, the optimization problem consists

of seven decision variables:

x 1 ≡ Compression ratio

x 2 ≡ EGR cooler size

x 3 ≡ Turbine flow capacity

x 4 ≡ Compressor size

x 5 ≡ Spark timing [CAD]

x 6 ≡ Inatake and Exhaust Valve timing [CAD]

x 7 ≡ Manifold pressure target [in Hg] (12)

The first four decision variables are discrete, mean-

ing that they only take values from the following sets:

x 1 ∈ { 10 , 10 . 5 , 11 , 11 . 5 , 12 } , x 2 ∈ { 0 . 25 , 1 , 1 . 75 } , and x 3 , x 4 ∈

15

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Fig. 5. Heatmap showing the constraint violation prevalence for the speed reducer problem.

{ 0 . 75 , 1 , 1 . 25 } . The last three decision variables are continuous,
and can take any values from the following intervals: x 5 ∈ [−8 , 8] ,

x 6 ∈ [−10 , 10] , and x 7 ∈ [0 , 20] . For brevity, let the vector that

contains all decision variables be given by x = (x 1 , x 2 , . . . , x 7)
T .

The physical meaning of the objective and constraint functions

is as follows:

Minimise f 1 (x) ≡ Normalised cumulative fuel [-]
f 2 (x) ≡ Normalised cumulative NOx [-]

subject to g 1 (x) ≡ Turbine inlet temperature [K] ≤ m limit
g 2 (x) ≡ Number of knock occurrences ≤ g b2
g 3 (x) ≡ Peak cylinder pressure [bar] ≤ g b3
g 4 (x) ≡ Peak cylinder pressure rise [bar/rad] ≤ g b4
g 5 (x) ≡ Total work [kJ] ≥ g b5

(13)

The above optimization problem has two objectives to be min-

imised, namely fuel consumption and nitrogen oxides (NOx) emis-

sions. Both fuel consumption and NOx are measured over a pe-

riod of time and we take the cumulative values as the final per-

formance of a candidate design x . Constraints g 1 to g 4 are defined

as hardware protection limits, defining upper bounds on tempera-

tures and pressures to ensure the engine operates within its ther-

mal and mechanical limits (Parsons et al., 2021; Tang, 2016; Tor-

natore et al., 2019; Zhen et al., 2012). Constraint g 5 is defined to

ensure that a given configuration can meet the overall work out-

put specified by the duty cyle which represents a design require-

ment. The threshold on g 1 corresponds to the material limit for

fixed turbocharger (m limit). The thresholds for the other constraints

are defined with respect to a baseline configuration design. The de-

cision variable values for this design are shown in Table 4 and the

corresponding outputs are shown in Fig. 11 . 3 This baseline design

will be compared to the best designs obtained by the optimizers in

Section 7 . However, we would like to highlight that this compari-

son may not be totally fair since the precise set of criteria used to

3 Case study is commercially sensitive and performance is anonymised through

normalisation over the range of the values seen.

16

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Fig. 6. Schematic diagram of a turbocharged GDI engine with low pressure EGR routing.

Fig. 7. Desired engine torque and speed signals used in engine simulation for the 2-minute segment of the WLTP test cycle.

develop the baseline design is unavailable, and the baseline may

have been established using a broader set of objectives and con-

straints. The model runs in Matlab Simulink version 2017b envi-

ronment and includes a physics-based model developed in Ricardo

WAVE-RT 4 version 2016.2.

The sensitivity of the optimization objectives and constraints

are checked by two-level full factorial design for the minimum and

maximum values given in Table 4 (Fig. 8). The main purpose of giv-

ing the sensitivities for fuel and NOx is to demonstrate the engine

model is sensitive to changes in the parameters. The minimum and

4 WAVE-RT, part of the Ricardo Software product family Fluid Dynamics. Available

from: https://software.ricardo.com/software-updates/ricardo-software-2020-2

maximum values for control parameters given in Table 4 are far

from the optimum values to obtain the maximum brake torque and

efficiency.

7.2. Optimization results

Figure 9 and Table 5 show a comparison between the two pro-

posed constrained ParEGO algorithms and NSGA-II when applied to

the ICE design problem.

ParEGO-C2 outperforms ParEGO-C1 across the entire optimiza-

tion run as shown in Fig. 9 a, with tight confidence intervals and

a percentage improvement of 2.70% at the end of the optimization

run. Both ParEGO algorithms outperform NSGA-II, where the per-

17

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Fig. 8. Main effects (sensitivity) analysis of architecture and control parameters. CR: Compression ratio, EGR: EGR cooler size, TURB: Turbine mass flow multiplier, COMP:

Compressor mass flow multiplier, SPARK: Spark timing offset, VALVE: Valve timing offset, MAP: Manifold absolute pressure offset.

Table 5

Performance of ParEGO-C1, ParEGO-C2, and NSGA-II on the ICE design problem. The

performance is measured by the hypervolume indicator (the higher the better). The

results on this table also includes the number of solutions that dominate the base-

line engine design found during the entire optimization run. The statistics have

been determined based on 21 runs. The term Std is an abbreviation for standard

deviation, Max for maximum, and Min for minimum.

(a) Hypervolume

Optimizer Median Mean (Std) Max Min

ParEGO-C1 0.8855 0.8820 (0.0252) 0.9161 0.8061

ParEGO-C2 0.9098 0.9017 (0.0258) 0.9275 0.8284

NSGA-II 0.8114 0.7561 (0.1305) 0.9031 0.4550

(b) Number of solutions that dominate the baseline design

ParEGO-C1 61 57 (36) 126 0

ParEGO-C2 14 12 (5) 18 1

NSGA-II 6 24 (27) 70 0

centage improvement of ParEGO-C2 over NSGA-II is 11.43%, and for

ParEGO-C1 over NSGA-II is 8.73%. All results are statistically signif-

icant. Moreover, the EAFs in Fig. 9 b shows that ParEGO-C2 offers

better attainment across several regions of the PF when compared

with ParEGO-C1, whilst Fig. 9 d and f show that ParEGO-C1 and

ParEGO-C2, respectively, offer better attainment across the entire

PF when compared with NSGA-II.

Figure 9 c and e show the infeasibility score and number

of feasible solutions found during the optimization run, respec-

tively. ParEGO-C2 reports the lowest infeasibility score during the

first ≈150 evaluations, and the general trend shows that the in-

feasibility score increases during the optimization run. Although

ParEGO-C1 and NSGA-II report higher infeasibility score values

than ParEGO-C2 in the first ≈150 evaluations, their values de-

creases during the optimization run and remain stable after eval-

uation ≈220. A similar trend is captured by the number of feasi-

ble solutions found, as shown in Fig. 9 e, where ParEGO-C2 finds

the highest number during the beginning of the optimization

run, but as its number decreases, the number of feasible solu-

tions found by ParEGO-C1 and NSGA-II increases. This is a sim-

ilar trend observed for the OSY problem, where the infeasibility

score of ParEGO-C2 keeps increasing during the optimization run,

but decreases for both ParEGO-C1 and NSGA-II as shown in Fig. 2 c.

The same can be said about the number of feasible solutions as

shown in Fig. 2 e, where ParEGO-C2 finds the highest number in

the beginning of the optimization run but reports a small reduc-

tion as the number of evaluations progresses, while the number

of feasible solutions found by both ParEGO-C1 and NSGA-II keeps

increasing.

Figure 9 g, h and i shows all solutions evaluated, including the

initial set of solutions, taken from the median run with respect to

hypervolume. An interesting point about the initial set of solutions

is that many of the solutions are infeasible. In fact, in some runs

we have noted that there were no feasible solutions in the initial

set of solutions, but in all cases the optimizers have managed

to find feasible solutions during the optimization run. Moreover,

Fig. 9 g shows that ParEGO-C1 found many feasible solutions in

a region close to the PF, and many other infeasible solutions

found are in close proximity to this region. Figure 9 h shows that

ParEGO-C2 only found a few feasible solutions close to the PF

region (although with very good convergence), and found many

high-performance infeasible solutions further away from the fea-

sible region. This is a similar trend to that captured in Fig. 2 h for

the OSY problem, where many infeasible solutions are generated

in a region father away in objective space from the feasible region,

while ParEGO-C1 is more likely to generate infeasible solutions

closer to the feasible region. Finally, Fig. 9 i shows that NSGA-II

found many feasible solutions but most are sub-optimal.

The probability of violating an individual constraint along the

optimization run is shown in Fig. 10 for all optimization algo-

rithms. For ParEGO-C1 in Fig. 10 a, CPR is relatively problematic

across the optimization run. CPR is also problematic for ParEGO-

C2 as shown in Fig. 10 b but only after ≈100 evaluations, while

Work is always problematic along the entire optimization run

for ParEGO-C2. For NSGA-II, in general there are no problematic

constraints as shown in Fig. 10 c, although CPR persists in early

stages.

Figure 11 shows in a parallel coordinates plot the values ob-

tained for the objectives, constraints and decision variables. The

solutions obtained by the optimization algorithms are taken from

the median run with respect to hypervolume, and these are com-

pared with the baseline engine design. Notably, ParEGO offers a

better spread of solutions when compared with NSGA-II, and most

solutions reported by NSGA-II seem to be clustered around three

regions in the objective space. This is due to the narrower set of

values obtained by NSGA-II as shown in Fig. 11 , in particular with

respect to the continuous decision variables (i.e. spark timing off-

set, valve timing offset, and manifold absolute pressure offset). All

solutions found by the optimization algorithms have better NOx

emissions than the baseline design, and both ParEGO algorithms

have found solutions with better fuel consumption than the base-

line design. However, the baseline design has better NOx emissions

than the solutions found by NSGA-II.

The performance of the optimization algorithms is now com-

pared against the baseline engine design by considering all the

optimization runs. The percentage improvement of the best de-

signs found by ParEGO-C1, ParEGO-C2 and NSGA-II over the base-

line design are respectively 36.1%, 36.4% and 35.8% for NOx emis-

sions; and 1.82%, 2.03% and 1.56% for fuel consumption. Table 5 b

18

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Fig. 9. Performance of ParEGO-C1, ParEGO-C2 and NSGA-II on the ICE design problem. Subfigures in the left show the hypervolume indicator, infeasibility score, and the

number of feasible solutions found. For each performance indicator the mean and variance are represented by the middle line and surrounding shaded region, respectively.

Subfigures in the right show the differences between the empirical attainment functions (EAFs) of the non-dominated solutions. The plots in the left highlights the differences

in favour of Algorithm 1, and the plots in the right highlights the differences in favour of Algorithm 2. The colour level encodes the magnitude of the observed differences.

The lines in the left, centre and right correspond to the best, median and worst attainment surfaces, respectively. The statistics and EAFs have been determined based on 21

runs. The three subfigures on the bottom show all solutions generated by each optimizer in a single run, represented in the objective space. The solutions are taken from

the median run with respect to hypervolume out of 21 runs.

shows the number of solutions found during the optimization run

that dominate the baseline design. ParEGO-C1 found more solu-

tions that dominate the baseline design, and is the most consis-

tent of the three optimizers. NSGA-II could not find solutions that

dominate the baseline design in 8 out of 21 runs, while ParEGO-

C2 found at least one solution that dominates the baseline design

across all runs.

7.3. Discussion

To analyse the obtained results we have used a combination

of different quality indicators. Besides the hypervolume and EAFs,

which are considered standard quality indicators in the literature

(Audet et al. (2021)), we have looked into understanding more

about the constraint handling techniques of the algorithms by

19

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Fig. 10. Heatmap showing the constraint violation prevalence for the ICE design problem. Determined based on 21 runs. The following constraint names have been abbrevi-

ated. TurbTemp: Turbine temperature, Knock: Number of knock occurrences, CP: Cylinder pressure, CPR: Cylinder pressure rise, Work: Total work.

monitoring how infeasible new solutions are (via the infeasibility

score (Eq. (5))), the number of feasible solutions being generated,

and also the constraint violation prevalence across the different

constraints. This has revealed that some constraints are more ac-

tive than others, for instance, in the speed reduce problem from a

total of 11 constraints, 8 could be considered inactive (i.e. g 1 − g 6 ,

g 8 and g 11); in the OSY problem from a total of 6 constraints, two

could be considered as inactive (i.e. g 1 and g 4), and; the ICE design

problem from a total of 5 constraints only one is inactive (i.e. g 1).

ParEGO-C2 exhibits a lack of consistency in finding feasible so-

lutions for the OSY and ICE design problems when compared with

ParEGO-C1 and NSGA-II after ≈100 evaluations, and found many

high-performance infeasible solutions further away from the feasi-

ble region for these problems. For the speed reducer problem the

opposite trend was captured, that is, ParEGO-C2 was more effec-

tive at finding feasible solutions when compared with the other

two optimizers. The reason for this inconsistency remains unclear

but this trend was also captured by the infeasibility score, and

constraint violation prevalence across the constraints. This suggests

that in problems with very active constraints (such as OSY and ICE

design problems), the feasible region is not well captured by the

surrogate models of the constraints, and in such situation a penalty

function technique can be more effective at generating feasible so-

lutions when compared with constrained EI. Despite this, it was re-

vealed that the feasible solutions found by ParEGO-C2 offer better

convergence towards and across the Pareto front when compared

with ParEGO-C1 and NSGA-II, even when the latter was allowed to

run with a much larger evaluation budget.

The reason why NSGA-II found more feasible solutions than the

two ParEGO instances could be that variations operators such as

crossover are more likely to produce nearby solutions to the ex-

isting ones. On the other hand, ParEGO is more likely to find in-

feasible solutions as it queries the constraint models in an attempt

to learn where the boundaries of the feasible region are located.

Eventually, as the surrogate models become more accurate, ParEGO

is able to reveal the location of the Pareto optimal solutions.

20

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Fig. 11. Feasible non-dominated solutions shown in a parallel coordinates plot. The solutions are taken from the median run with respect to hypervolume out of 21 runs.

The baseline design is depicted by the dashed line, and the circles indicate the thresholds for the constraints. A small tolerance is applied to the discrete variable values so

that they are unlikely to overlap perfectly along the coordinates rulers. Fuel: Normalised cumulative fuel, NOx: Normalised cumulative NOx, TurbTemp: Turbine temperature,

Knock: Number of knock occurrences, CP: Cylinder pressure, CPR: Cylinder pressure rise, Work: Total work, CR: Compression ratio, EGR: EGR cooler size, TURB: Turbine mass

flow multiplier, COMP: Compressor mass flow multiplier, SPARK: Spark timing offset, VALVE: Valve timing offset, MAP: Manifold absolute pressure offset.

8. Conclusion

This paper has studied the application of a state-of-the-art

BOA, known as ParEGO, to solve an expensive constrained multi-

objective optimization problem characterised for having a mix

of continuous and discrete variables. For this, a real non-linear

and transient internal combustion engine (ICE) design problem has

been formulated, and the conventional ParEGO algorithm has been

extended to handle such type of problems. This includes: the

integration of a strategy to handle mixed continuous and dis-

crete variables; a new strategy to select a subset of training

points to construct a surrogate model and a criterion that ex-

ploits the presence of both feasible and infeasible solutions in

the training set; and the incorporation of two constraint han-

dling strategies—one based on penalty functions (ParEGO-C1) and

the other based on the constrained EI (ParEGO-C2). The pro-

posed ParEGO variants have been compared to a popular opti-

mization algorithm for the multi-objective study of ICE design

problems, known as NSGA-II. For this comparison to take place,

we also equipped NSGA-II for dealing with problems with a mix

of continuous and discrete variables. This comparative analysis

was conducted on a limited budget of 500 function evaluations,

and involved two benchmark problems taken from the litera-

ture (i.e. speed reducer and OSY), and the proposed ICE design

problem.

To analyse the obtained results we have employed a combina-

tion of different quality indicators. This includes the popular hyper-

volume and EAFs to measure the convergence towards and diver-

sity across the Pareto front. In addition, to better understand the

performance of the constraint handling techniques we monitor the

progress of several indicators during the optimization run, such as

the number of feasible solutions found, their degree of infeasibility,

and the prevalence of constraint violation across the different con-

straints. This has revealed that some constraints are more active

than others, and such information could be used for instance to

simplify the optimization problems since inactive constraints could

be omitted without affecting the feasible Pareto optimal front. The

key findings from this work are:

1. When selecting a subset of solutions to construct a surrogate

model, the obtained results suggest that ensuring a good bal-

ance between feasible and infeasible solutions may not always

be better than simply relying on the solutions performance, and

this depends on how active the constraints in the problem are.

2. Constrained ParEGO convergence towards the PF is better than

NSGA-II, and ParEGO-C2 is better than ParEGO-C1, confirmed by

both hypervolume and EAF.

3. NSGA-II is more sensitive to randomness (e.g. initial solutions)

when compared with ParEGO-C2. This has been quantified

by the standard deviation of the hypervolume indicator (see

Tables 2 and 5). The higher standard deviation obtained by

NSGA-II has been linked to lack of convergence. Running NSGA-

II for 10,0 0 0 function evaluations improved convergence and

lead to a reduction in the standard deviation (see Table 2).

4. ParEGO-C2 generated many infeasible solutions in the OSY

and ICE design problems when compared with ParEGO-C1 and

NSGA-II, and this tends to happens after generating very good

quality feasible solutions. However, for the speed reducer prob-

lem, ParEGO-C2 generated more feasible solutions than the

other two algorithms.

5. A comparison with a baseline engine design revealed that the

optimization algorithms are able to find improvements of up-to

36.4% for NOx emissions, and up-to 2.03% for fuel consumption.

The results shown in Table 5 b have also highlighted that: (i)

constrained ParEGO found solutions, in 21 out of 21 runs, that

dominate the baseline design while NSGA-II fail to do so in 8

out of 21 runs; and (ii) ParEGO-C1 found more solutions that

dominate the baseline design than the other two optimizers.

Based on the above key findings, we conclude that constrained

ParEGO methods are effective for solving modern ICE design opti-

mization problems, with expensive evaluations due to the new test

procedures for real-world engine conditions. This has also been

shown on similar benchmark problems.

Although ParEGO-C2 has shown better performance than

ParEGO-C1 across all optimization problems, many of the solutions

found by ParEGO-C2 during the later stages of the optimization

21

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

were infeasible. One potential solution to improve the perfor-

mance of ParEGO-C2 is to endow the algorithm with a local

search operator. This however would require that some amount of

the computational budget be devoted to perform a local search.

There are several factors that could have an influence on the

performance of both constraint handling approaches and this

takes us to discuss their pros and cons. A major difference is

that penalty function methods do not need to build a surrogate

of each constraint function, which besides avoiding all the com-

putational burden of having to construct several surrogates, also

avoids having to deal with the following possible issues, such as:

is the same set of training points used to build the surrogate of

the objective function suitable for the constraints? Or knowing

that the constraint functions can have different levels of com-

plexity is the same surrogate modelling approach appropriate for

all constraints? Although penalty functions are simple to apply,

there are drawbacks associated with the discontinuities that

could potentially be created between the feasible and infeasible

region, which could cause issues to the surrogate modelling

approaches.

For future work, the endeavour of the authors is to extend the

current work to handle uncertainties, which could arise from mul-

tiple sources including fidelity of evaluation functions and man-

ufacturing tolerances. Uncertainty quantification and management

is important in identifying designs that offer robust performance

across objectives and constraints. Directions for future work also

include, explore the application of different paradigms, such as the

use of Bayesian inference as in Tsionas (2019) , where the initial

decision variable ranges are considered to represent a prior belief

in the location of the Pareto front and Markov Chain Monte Carlo

converges on a posterior belief for the optimal values of the deci-

sion variables, using the scalarised objective functions as a likeli-

hood. Further extend the ParEGO algorithms for dealing with cat-

egorical variables, since currently it is limited to discrete variables

of the type ordinal. Another key endeavour is to test the proposed

ParEGO extensions on other real engineering problems, and also

on other benchmark problems, in particular with more tunable pa-

rameters, such as the number of levels in the discretization.

Contributions

The following uses the abbreviated names of the authors. JAD

and UO have collaborated in writing the paper; UO and RB have

formulated the real-world internal combustion engine design opti-

mization problem; JAD and SS have collaborated in the implemen-

tation of the ParEGO algorithm and in the design and implemen-

tation of the approach to handle a mix of continuous and discrete

variables; JAD designed and implemented the subset selection

strategies and implemented the Kriging model; DCO implemented

the probabilistic constraint handling approach; SS implemented

the penalty based approach; RJL led the industrial support at Ford

Motor Company; RB provided expert knowledge about the real-

world problem, and led the University of Bath DYNAMO studies;

RCP provided expert optimization advice; contributed to paper

development, and led the University of Sheffield DYNAMO studies.

CRediT authorship contribution statement

João A. Duro: Conceptualization, Methodology, Software, Inves-

tigation, Data curation, Writing – original draft, Writing – re-

view & editing, Visualization. Umud Esat Ozturk: Conceptualiza-

tion, Software, Investigation, Writing – original draft, Visualiza-

tion. Daniel C. Oara: Software, Methodology. Shaul Salomon: Soft-

ware, Methodology. Robert J. Lygoe: Conceptualization, Resources,

Project administration, Funding acquisition. Richard Burke: Con-

ceptualization, Writing – review & editing, Visualization, Super-

vision, Project administration, Funding acquisition. Robin C. Pur-

shouse: Conceptualization, Methodology, Writing – review & edit-

ing, Supervision, Project administration, Funding acquisition.

Acknowledgments

This work was conducted under the Advanced Propulsion Cen-

tre (UK) project DYNAMO, with funding from Innovate UK under

grant number 113130. Daniel C. Oura acknowledges EPSRC schol-

arship support (EP/M508135/1 and EP/M50 6 618/1). The authors

would like to thank Dr Byron Mason, Dr Edward Windward and Dr

Sam Le-Corre from Loughborough University and Dr Tomasz Duda

from University of Bath for their contribution in development of

the engine control model, Robert Norris from Ricardo plc for his

contribution to the development of the Ricardo WAVE-RT model,

Roshan Mathew from University of Bath for his role in setting up

the WAVE-RT Ricardo Software on the Balena High Performance

Computing (HPC) Service at the University of Bath, and Ricardo plc

for their support, including the provision of licenses for the WAVE-

RT software, which has been instrumental for the generation of

simulation results.

Appendix A. Background

A1. Kriging

The term Kriging was first coined by Matheron (1963) in hon-

our of Daniel Krige, a mining engineer from South Africa interested

in the application of mathematical statistics to ore validation, and

whose work lead to the development of Kriging from a geostatis-

tics perspective. Sacks et al. (1989) introduced the use of Kriging to

engineering problems developing the design and analysis of com-

puter experiments (DACE) model. This section provides some de-

tails about the Kriging modelling approach used in this paper, and

our implementation follows some recommendations from Forrester

et al. (2008) and Kleijnen (2017) to construct and search the sur-

rogate model.

Given the initial design x 1 , . . . , x N of N points where each x ∈

R n is a n -vector of continuous decision variables, and a vector of

corresponding scalar evaluations y = (y 1 , . . . , y N)
T we seek to learn

a mapping y = f (x) , where f is our expensive-to-evaluate func-

tion. This mapping is approximated by a sample path of a Gaussian

stochastic process (GP) with unknown mean μ and covariance σ 2
R;

σ 2 is the variance of the GP; and R is an N × N matrix param-

eterised by the n -dimensional vector θ = (θ1 , . . . , θn)
T and having

elements:

R ab = K(|| x a − x b ||) = exp

(

−

n
∑

i =1

θi | x
(a)
i

− x (b)
i

| 2

)

, (A.1)

where a, b ∈ { 1 , . . . , N} , x (a)
i

is the i th decision variable of the point

x a and the function K(|| x a − x b ||) measures the correlation be-

tween the responses at two design points. To learn θ a common

approach is to use maximum likelihood estimation (MLE), which

provides estimates for the mean and variance, respectively:

ˆ μ =
1 T R −1 y

1 T R −1 1
and ˆ σ 2 =

(y − 1 ̂ μ) T R −1 (y − 1 ̂ μ)

N
, (A.2)

where 1 is a n-dimensional column vector of ones. It is however

required to solve the following unconstrained optimization prob-

lem:

Maximise −N
2 ln (̂ σ 2) − 1

2 ln | R| ,
subject to θi = 10 τi where − 3 ≤ τi ≤ 2 , i = 1 , . . . , n,

(A.3)

22

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

which cannot be solved analytically and thus requires a numerical

optimization algorithm. The most computational expensive task in

(A.3) is to determine the inverse of R. For this, we use Cholesky

decomposition followed by forward and back substitution. In case

the decomposition fails, which might happen if R is close to singu-

lar, we assign a very small value to the objective function in (A.3) .

Based on our experiments we have observed that this approach

always lead to a well conditioned matrix at the end of the opti-

mization process.

To make a new prediction at x we use the MLE predictor func-

tion given by:

ˆ f (x) = ˆ μ + r
T
R

−1 (y − 1 ̂ μ) , (A.4)

where r = (K(|| x 1 − x ||) , . . . , K(|| x N − x ||)) T is a vector of correla-

tions between all known points and x . One of the key advantages

of Kriging is that each prediction has its own error estimate. This

is known as the mean squared error (MSE) and is given by the fol-

lowing expression:

ˆ ε 2 (x) = ˆ σ 2

[

1 − r
T
R

−1
r +

(1 − 1 T R −1
r) 2

1 T R −1 1

]

. (A.5)

A2. Background on ParEGO

ParEGO is a surrogate-based multi-objective optimization algo-

rithm that exhibits a promising performance for scenarios where

the number of evaluations is restricted in number. The algorithm

itself builds on the EGO algorithm, a single-objective optimizer

specifically designed for expensive objective functions. Some de-

tails about the EGO algorithm are as follows.

A2.1. EGO

The first step of EGO is to generate an initial set of solutions.

Different space-filling schemes could be used here, some of the

most popular ones are Latin Hypercube Sampling (Mckay, Beck-

man, & Conover, 20 0 0) or simply generate new solutions randomly

inside the decision space. Following the evaluation of the initial

solutions, a surrogate model is learnt by using the solution/fitness

pairs, where fitness corresponds to the value of the objective func-

tion. The next step is to use the surrogate model to estimate where

“best” to sample the next point. However, this does not imply that

the next solution to be evaluated corresponds literally to the loca-

tion that improves the estimated fitness, since we need to take into

account the model’s accuracy. In fact, a solution that has a good fit-

ness and low uncertainty, might not be as desirable as a solution

with a poor predicted fitness but with a high uncertainty. Hence,

we need some criterion that promotes a balance between explo-

ration and exploitation, where exploration is associated with ar-

eas in the search space with high uncertainty, whereas exploitation

corresponds to areas with better fitness. For this, EGO relies on the

EI function (Eq. (A.7)), and also on the prediction and error estima-

tion properties of the Kriging model (refer to Eqs. (A.4) and (A.5)).

More formally, the uncertainty in the model prediction is

the variance of a normal distributed random variable F (x) ∼

N(̂ f (x) , ̂ ε 2 (x)) at point x with mean ˆ f (x) and variance ˆ ε 2 (x) . Due
to the fact that F (x) could take different values, controlled by the

size of ˆ ε 2 (x) , we rely on the EI to balance ˆ f and ˆ ε . Let X denote a

set that contains all solutions evaluated so far, and let f (x +) de-

note the current best “known” function value that is located at

point x + , where:

x + = arg min x ∈X f (x) . (A.6)

The improvement at x is I(x) = max (f (x +) − F (x) , 0) , and the EI

is obtained by taking the expected value as given by E[I(x)] ≡

E[max (f (x +) − F (x) , 0)] . A closed form expression for this expec-

tation is given by:

E[I(x)] =

{

(f (x +) − ˆ f (x))�
(

f (x +) − ˆ f (x)
ˆ ε (x)

)

+ ˆ ε (x) φ
(

f (x +) − ˆ f (x)
ˆ ε (x)

)

if ˆ ε (x) > 0

0 if ˆ ε (x) = 0

(A.7)

where �(.) and φ(.) are the cumulative distribution function (CDF)

and probability density function (PDF), respectively. Note that, the

first term in Eq. (A.7) before the summation controls the exploita-

tion, and the second term after the summation controls the explo-

ration. The next point to be sampled is found by maximising the EI

function, which involves using a numerical optimization approach

since it cannot be solved analytically. The EGO algorithm completes

one iteration once the new point is evaluated. In the next iteration

the surrogate model is updated, and a new point is found again by

conducting a search over the EI and finding the point that max-

imises it. This procedure repeats itself until some termination cri-

terion is satisfied.

The above approach has been extended for dealing with multi-

objective problems by ParEGO. This is achieved by relying on

scalarisation functions which have been widely used to convert

multi-objective optimization problems into a single objective op-

timization problem.

A2.2. Scalarisation

Before we delve into scalarisation, the objectives need to be

converted to non-dimensional units. This requires estimating a

lower and upper bound with respect to each objective, respectively,

as follows:

z l i = min
x ∈X

f i (x) , i = 1 , . . . , M;

z u i = max
x ∈X

f i (x) , i = 1 , . . . , M. (A.8)

Note that the lower and upper bounds have been estimated

from solutions in X , meaning that as more solutions are added to

X , the estimated bounds are likely to change 5 The objectives are

then normalised as follows:

ˆ z i = (z i − z l i) / (z
u
i − z l i) , i = 1 , . . . , M. (A.9)

The use of scalarisation functions requires the use of refer-

ence direction vectors, and each vector targets the PF from a dif-

ferent direction. Let d be a reference direction vector that exists

in the set D of suitable reference direction vectors (Eq. A.10). D

is constructed by using a { M, h } simplex lattice design that con-

sists of M-dimensional points defined by the following coordinate

settings: the proportions assumed by each component d i where

i ∈ { 1 , . . . , M} take the h + 1 equally spaced values from 0 to 1.

D =

{

d = (d 1 , . . . , d M)
T |

M
∑

i =1

d i = 1 and d i ∈

{

0 ,
1

h
,
2

h
, . . . , 1

}

for all i = 1 , . . . , M }

(A.10)

In an iterative approach starting from the first reference direc-

tion vector, a scalar fitness value is calculated for each solution by

using a scalarizing function. This function maps an objective vec-

tor z corresponding to solution x into a scalar value with respect

to some weight vector w = (w 1 , . . . , w M)
T . The scalarizing function

5 In the literature it is common to use the ideal and nadir objective vectors to

normalise objectives. These objective vectors are defined with respect to the feasi-

ble space F . However, they cannot be used in practice when there are no feasible

solutions, which is a strong possibility in our case given the highly constrained na-

ture of the optimization problem. The alternative is to rely on all solutions irrespec-

tive of their feasibility status.

23

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

used is called the weighted Chebyshev Augmented and has the fol-

lowing form:

s (x) = max
1 ≤i ≤M

{

w i ̂ z i
}

+ ρ
M

∑

i =1

w i ̂ z i , (A.11)

where ρ is a small positive number which we set to 0.05 as sug-

gested in Knowles (2005) . It was mentioned in Giagkiozis, Pur-

shouse, & Fleming (2013) that when using certain scalarizing func-

tions (including the Chebyshev function), the objective vectors of

the solutions on the PF might not directly match with the pro-

jection of their corresponding reference direction vectors. This is

because an evenly distributed set of weighting vectors can only

produce well distributed Pareto-optimal solutions when the given

scalarisation function is linear in the weights w (Giagkiozis, Pur-

shouse, & Fleming, 2014), which is not the case for the Cheby-

shev function. However, there is an optimal weight vector 6 that

accounts for this discrepancy which is defined as:

w i = t i

/ M
∑

i =1

t i , where t i = (d i + ǫ) −1 , i = 1 , . . . , M, (A.12)

and ǫ is a small number set to 0.01. Each component in

Eq. (A.12) is normalised to ensure that the sum of all components

adds up-to one. The transformation in Eq. (A.12) is only optimal

for the weighted sum and weighted Chebyshev Augmented scalar-

ising functions. To use other scalarising functions there is a more

general approach suggested in Giagkiozis et al. (2013) .

A surrogate model can now be learnt by using the existing so-

lution/fitness pairs. A new solution is then found by maximising

the EI function, which is then added to X , and following its eval-

uation one iteration is completed. In the next iteration the same

procedure is applied to a new sub-problem, where all solutions

are scalarised with respect to a different reference direction vec-

tor. This is similar to the procedure described above for EGO, the

main difference is that as more solutions are generated by travers-

ing all reference direction vectors, multiple trade-off solutions are

expected to be found.

A3. Background on NSGA-II

NSGA-II (Deb et al., 2002) is a well known Pareto-dominance

based multi-objective evolutionary algorithm capable of handling

multi-objective problems. NSGA-II is chosen in this study due to

its current popularity in the study of multi-objective ICE design

problems, as in D’Errico et al. (2011) , Lotfan et al. (2016) , Corre

et al. (2019) . In this section we provide some details about NSGA-

II, including how it handles constraints. The extension to handle

problems with a mix of continuous and discrete variables will be

described in Section 4.1 .

NSGA-II evolves a set of solutions (also known as population 7)

by relying on genetic operators that conduct selection, crossover

and mutation. The main loop of the NSGA-II algorithm is as fol-

lows. Initially a parent population P is created by using some de-

sign of experiments technique (e.g. Latin Hypercube sampling). Fol-

lowing this, an offspring population Q is created by applying bi-

nary tournament selection, recombination, and mutation operators

to P . Next, an elitist-preserving approach and a parameterless nich-

ing operator are applied to the combined population R = P ∪ Q , and

6 Based on our simulation results, the optimal w for the Chebyshev function

obtained by solving the optimization problem in Eq. (11) by Giagkiozis et al.

(2013) can be approximated instead by using the transformation in Eq. (A.12) .
7 The term population is used in the context of population-based search methods

employed by evolutionary optimization algorithms and others, and refers to a con-

tainer of fixed size with solutions that are updated after each generation. But this

excludes BOAs, such as ParEGO, which relies on all evaluated solutions (kept in X)

during the course of the optimization run.

a subset of solutions from R are chosen to replace the population

in P by applying selection operators. This completes the first gen-

eration, and in subsequent generations the whole process repeats

itself by first creating a new Q from the current P and each gen-

eration ends once P is updated. This iterative process repeats it-

self until some termination criterion is satisfied (e.g. the maximum

number of generations has been exceeded).

There is a small difference between the above main loop, as de-

scribed in Deb et al. (2002) , and our own implementation. In the

first generation the combined population R is treated as the ini-

tial population, which is initialised by some design of experiments

technique. Following this, P is created by applying selection op-

erators to R as mentioned above, Q is created in the usual way,

and the two are combined to generate a new R . This completes

the first generation, and the same process repeats again for more

generations having R as the input for each generation. Some details

about the operators as as follows:

1. The elitist-preserving approach divides R into non-dominated

ranks and starting from the best rank to the worst one, only

the best ranks are allowed into P until its maximum size is ex-

ceeded.

2. The niching operator, known as crowding distance, is applied to

the solutions in last rank of P . It then determines how crowded

each solution is by measuring their distances in the objective

space, and the most crowded solutions are removed from the

last rank until the size of P is no longer exceeded.

3. The binary tournament selects two solutions from P at random,

and generates several pairs. A single solution is chosen from

each pair as the winner of a tournament selection, and the se-

lected solutions are used to create a new Q . The tournament

selection is as follows. The solutions are first compared by look-

ing into their non-dominated rank, and the solution with the

best rank is chosen. In case both solutions have the same rank,

then the least crowded solution is chosen (as determined by

the crowding distance operator).

4. The crossover and mutation are also called variation operators

and are applied to Q to make it more distinct from P . There

are many crossover and mutation operators in the literature to

choose from, and for continuous problems it is common to use

simulated binary crossover (Deb & Kumar, 1995) and polyno-

mial mutation (Deb & Goyal, 1996) when using NSGA-II.

NSGA-II handles constraints by relying on the concept of infea-

sibility score. The constraint violation of x with respect to the jth

constraint is v j (x) = max (g j (x) − c j , 0) , and the infeasibility score

of x is:

ξ (x) =

J
∑

j=1

v j (x) . (A.13)

Notably, the higher the infeasibility score, the higher is the degree

of constraint violation. The infeasibility score is used by a modified

definition of dominance, which states that solution x 1 dominates

solution x 2 if any of the following conditions is true:

1. Solution x 1 is feasible and solution x 2 is not.

2. Solutions x 1 and x 2 are both infeasible, but solution x 1 has a

smaller infeasibility score.

3. Solutions x 1 and x 2 are both feasible, and solution x 1 domi-

nates x 2 .

The above modified definition of dominance is used by the

elitist-preserving approach and it will interfere in the composition

of the non-dominated ranks. It is expected for solutions that are

feasible to be promoted to better ranks when compared with in-

feasible ones, and solutions which are closer to the feasible region

will be promoted to better ranks when compared with more infea-

sible solutions.

24

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

Appendix B. OSY and speed reducer design problem

formulations

The OSY problem (Osyczka & Kundu, 1995) is a bi-objective

problem with six decision variables and six constraints. The de-

cision variables are all continuous, and four of the constraints are

linear. The problem formulation is as follows:

Minimise f 1 (x) = −[25(x 1 − 2) 2 + (x 2 − 2) 2 + (x 3 − 1) 2

+(x 4 − 4) 2 + (x 5 − 1) 2] ,
Minimise f 2 (x) = x 2 1 + x 2 2 + x 2 3 + x 2 4 + x 2 5 + x 2 6 ,
subject to g 1 (x) ≡ x 1 + x 2 − 2 ≥ 0 ,

g 2 (x) ≡ 6 − x 1 − x 2 ≥ 0 ,
g 3 (x) ≡ 2 − x 1 + x 1 ≥ 0 ,
g 4 (x) ≡ 2 − x 1 + 3 x 2 ≥ 0 ,
g 5 (x) ≡ 4 − (x 3 − 3) 2 − x 4 ≥ 0 ,
g 6 (x) ≡ (x 5 − 3) 2 + x 6 − 4 ≥ 0 ,
0 ≤ x 1 , x 2 , x 6 ≤ 10 , 1 ≤ x 3 , x 5 ≤ 5 , 0 ≤ x 4 ≤ 6 .

(B.1)

The Speed reducer design problem (Gunawan et al., 2003) has

two objectives, seven decision variables and eleven constraints. The

decision variables are all continuous apart from one which is dis-

crete (i.e. x 3). The problem formulation is as follows:

Minimise f weight = f 1 (x) = 0 . 7854 x 1 x
2
2 (10 x

2
3 / 3 + 14 . 933 x 3 − 43 . 0934)

− 1 . 508 x 1 (x
2
6 + x 2 7) + 7 . 477(x 3 6 + x 3 7)

+ 0 . 7854(x 4 x
2
6 + x 5 x

2
7) ,

Minimise f stress = f 2 (x) =

√
(

745 x 4
x 2 x 3

)

2 +1 . 69 ×10 7

0 . 1 x 3
6

,

subject to g 1 (x) ≡ 1 / (x 1 x
2
2 x 3) − 1 / 27 ≤ 0 ,

g 2 (x) ≡ 1 / (x 1 x
2
2 x

2
3) − 1 / 397 . 5 ≤ 0 ,

g 3 (x) ≡ x 3 4 / (x 2 x 3 x
4
6) − 1 / 1 . 93 ≤ 0 ,

g 4 (x) ≡ x 3 5 / (x 2 x 3 x
4
7) − 1 / 1 . 93 ≤ 0 ,

g 5 (x) ≡ x 2 x 3 − 40 ≤ 0 ,
g 6 (x) ≡ x 1 /x 2 − 12 ≤ 0 ,
g 7 (x) ≡ 5 − x 1 /x 2 ≤ 0 ,
g 8 (x) ≡ 1 . 9 − x 4 + 1 . 5 x 6 ≤ 0 ,
g 9 (x) ≡ 1 . 9 − x 5 + 1 . 1 x 7 ≤ 0 ,
g 10 (x) ≡ f 2 (x) ≤ 1300 ,

g 11 (x) ≡

√
(

745 x 5
x 2 x 3

)

2 +1 . 575 ×10 8

0 . 1 x 3 7
≤ 1100 ,

2 . 6 ≤ x 1 ≤ 3 . 6 , 0 . 7 ≤ x 2 ≤ 0 . 8 , x 3 ∈ { 17 , . . . , 28 } ,
7 . 3 ≤ x 4 , x 5 ≤ 8 . 3 ,

2 . 9 ≤ x 6 ≤ 3 . 9 , 5 . 0 ≤ x 7 ≤ 5 . 5 .

(B.2)

References

Alcaraz, J., Landete, M., Monge, J. F., & Sainz-Pardo, J. L. (2020). Multi-objective evo-
lutionary algorithms for a reliability location problem. European Journal of Oper-
ational Research, 283 (1), 83–93. https://doi.org/10.1016/j.ejor.2019.10.043 .

Alonso, J. M., Alvarruiz, F., Desantes, J. M., Hernandez, L., Hernandez, V., &
Molto, G. (2007). Combining neural networks and genetic algorithms to predict
and reduce diesel engine emissions. IEEE Transactions on Evolutionary Computa-
tion, 11 (1), 46–55. https://doi.org/10.1109/TEVC.2006.876364 .

Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., & Salomon, L. (2021). Performance in-
dicators in multiobjective optimization. European Journal of Operational Research,
292 (2), 397–422. https://doi.org/10.1016/j.ejor.2020.11.016 .

Avilés, J., Mayo-Maldonado, J., & Micheloud, O. (2020). A multi-objective evolution-
ary approach for planning and optimal condition restoration of secondary dis-
tribution networks. Applied Soft Computing, 90 , 106182. https://doi.org/10.1016/j.
asoc.2020.106182 .

Bagheri, S., Konen, W., Allmendinger, R., Branke, J., Deb, K., Fieldsend, J., . . . Sind-
hya, K. (2017). Constraint handling in efficient global optimization. In GECCO -
17: Proceedings of the genetic and evolutionary computation conference (pp. 673–
680). New York, NY, USA: Association for Computing Machinery. https://doi.org/
10.1145/3071178.3071278 .

Bird, J. J., Wanner, E., Ekárt, A., & Faria, D. R. (2020). Optimisation of phonetic aware
speech recognition through multi-objective evolutionary algorithms. Expert Sys-
tems with Applications, 153 , 113402. https://doi.org/10.1016/j.eswa.2020.113402 .

Chen, Y., Zhou, A., & Das, S. (2021). Utilizing dependence among variables in evo-
lutionary algorithms for mixed-integer programming: A case study on multi-

objective constrained portfolio optimization. Swarm and Evolutionary Computa-
tion, 66 , 100928. https://doi.org/10.1016/j.swevo.2021.100928 .

Chugh, T., Sindhya, K., Hakanen, J., & Miettinen, K. (2019). A survey on handling
computationally expensive multiobjective optimization problems with evolu-
tionary algorithms. Soft Computing, 23 (9), 3137–3166. https://doi.org/10.1007/
s0 050 0- 017- 2965- 0 .

Chugh, T., Sindhya, K., Miettinen, K., Hakanen, J., & Jin, Y. (2016). On constraint
handling in surrogate-assisted evolutionary many-objective optimization. In
J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, & B. Paechter
(Eds.), International conference on parallel problem solving from nature (PPSN)
(pp. 214–224). Cham: Springer International Publishing. https://doi.org/10.1007/
978- 3- 319- 45823- 6 _ 20 .

Coello, C. C., & Pulido, G. (2005). Multiobjective structural optimization using a mi-
crogenetic algorithm. Structural and Multidisciplinary Optimization, 30 , 388–403.
https://doi.org/10.10 07/s0 0158-0 05-0527-z .

Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.). John Wiley & Sons .
Corre, S. D. L., Mason, B., Steffen, T., Winward, E., Yang, Z., Childs, T.,

. . . Lygoe, R. (2019). Application of multi-objective optimization techniques
for improved emissions and fuel economy over transient manoeuvres. In
WCX sae world congress experience . SAE International. https://doi.org/10.4271/
2019-01-1177 .

Couckuyt, I., Deschrijver, D., & Dhaene, T. (2014). Fast calculation of multiobjective
probability of improvement and expected improvement criteria for Pareto op-
timization. Journal of Global Optimization, 6 , 575–594. https://doi.org/10.1007/
s10898- 013- 0118- 2 .

De Ath, G., Everson, R. M., Rahat, A . A . M., & Fieldsend, J. E. (2021). Greed is good:
Exploration and exploitation trade-offs in bayesian optimisation. ACM Transac-

tions on Evolutionary Learning and Optimization, 1 (1), 1–22. https://doi.org/10.
1145/3425501 .

Deb, K., & Goyal, M. (1996). A combined genetic adaptive search (geneas) for engi-
neering design. Computer Science and Informatics, 26 (4), 30–45 .

Deb, K., & Kumar, A. (1995). Real-coded genetic algorithms with simulated binary
crossover: Studies on multimodal and multiobjective problems. Complex Sys-
tems, 9 (6), 431–454 .

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,

6 (2), 182–197. https://doi.org/10.1109/4235.996017 .
Dimitriou, P., Turner, J., Burke, R., & Copeland, C. (2018). The benefits of a mid-

route exhaust gas recirculation system for two-stage boosted engines. In-
ternational Journal of Engine Research, 19 (5), 553–569. https://doi.org/10.1177/
1468087417723782 .

Do, B., Ohsaki, M., & Yamakawa, M. (2021). Bayesian optimization for robust design
of steel frames with joint and individual probabilistic constraints. Engineering
Structures, 245 (15). https://doi.org/10.1016/j.engstruct.2021.112859 .

Drake, J. H., Starkey, A., Owusu, G., & Burke, E. K. (2020). Multiobjective evolution-
ary algorithms for strategic deployment of resources in operational units. Euro-
pean Journal of Operational Research, 282 (2), 729–740. https://doi.org/10.1016/j.
ejor.2019.02.002 .

Duro, J. A., Yan, Y., Giagkiozis, I., Giagkiozis, S., Salomon, S., Oara, D. C., . . . Flem-
ing, P. J. (2020). Liger: A cross-platform open-source integrated optimization and
decision-making environment. Applied Soft Computing . https://doi.org/10.1016/j.
asoc.2020.106851 . In Press

D’Errico, G., Cerri, T., & Pertusi, G. (2011). Multi-objective optimization of internal
combustion engine by means of 1D fluid-dynamic models. Applied Energy, 88 (3),
767–777. https://doi.org/10.1016/j.apenergy.2010.09.001 .

Emmerich, M. (2005). Single- and multi-objective evolutionary design optimization as-
sisted by gaussian random field metamodels . Technical University Dortmund Ph.D.
thesis. .

Emmerich, M., Deutz, A., & Klinkenberg, J.-W. (2008). The computation of the ex-
pected improvement in dominated hypervolume of Pareto front approximations.
Technical Report LIACS-TR 9-2008 . Leiden Institute for Advanced Computer Sci-
ence, Niels Bohrweg 1, Leiden University, The Netherlands .

Emmerich, M. T. M., Giannakoglou, K. C., & Naujoks, B. (2006). Single- and mul-
tiobjective evolutionary optimization assisted by Gaussian random field meta-
models. IEEE Transactions on Evolutionary Computation, 10 (4), 421–439. https:
//doi.org/10.1109/TEVC.2005.859463 .

Farmani, R., & Wright, J. A. (2003). Self-adaptive fitness formulation for con-
strained optimization. IEEE Transactions on Evolutionary Computation, 7 (5), 445–
455. https://doi.org/10.1109/TEVC.2003.817236 .

Feliot, P., Bect, J., & Vazquez, E. (2017). A bayesian approach to constrained single-
and multi-objective optimization. Journal of Global Optimization, 67 (1–2), 97–
133. https://doi.org/10.1007/s10898- 016- 0427- 3 .

Fonseca, C. M., Paquete, L., & López-Ibáñez, M. (2006). An improved dimension–
sweep algorithm for the hypervolume indicator. In Proceedings of the 2006
congress on evolutionary computation (cec’06) (pp. 1157–1163). IEEE Press. https:
//doi.org/10.1109/CEC.2006.1688440 .

Forrester, A. I., & Keane, A. J. (2009). Recent advances in surrogate-based optimiza-
tion. Progress in Aerospace Sciences, 45 , 50–79. https://doi.org/10.1016/j.paerosci.
20 08.11.0 01 .

Forrester, A. I. J., Sóbester, D. A., & Keane, A. J. (2008). Engineering design via surro-
gate modelling: A practical guide . John Wiley & Sons, Ltd. https://doi.org/10.1002/
9780470770801 .

Garrido-Merchán, E. C., & Hernández-Lobato, D. (2019). Predictive entropy search
for multi-objective bayesian optimization with constraints. Neurocomputing, 361 ,
50–68. https://doi.org/10.1016/j.neucom.2019.06.025 .

Giagkiozis, I., Purshouse, R., & Fleming, P. (2014). Generalized decomposition and

25

J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS
JID: EOR [m5G; September 27, 2022;15:56]

cross entropy methods for many-objective optimization. Information Sciences,
282 , 363–387. https://doi.org/10.1016/j.ins.2014.05.045 .

Giagkiozis, I., Purshouse, R. C., & Fleming, P. J. (2013). Generalized Decomposition.
In R. C. Purshouse, P. J. Fleming, C. M. Fonseca, S. Greco, & J. Shaw (Eds.), Evo-
lutionary multi-criterion optimization (pp. 428–442). Berlin, Heidelberg: Springer
Berlin Heidelberg. https://doi.org/10.1007/978- 3- 642- 37140- 0 _ 33 .

Giles, K., Lewis, A., Akehurst, S., Prakash, A., Redmann, J.-H., Cracknell, R., . . .
Turner, N. (2018). Octane response of a highly boosted direct injection spark ig-
nition engine at different compression ratios. In WCX world congress experience .
SAE International. https://doi.org/10.4271/2018-01-0269 .

Giles, K. (2018). Predicting abnormal combustion phenomena in highly booted spark

ignition engines . Department of Mechanical Engineering, University of Bath, UK
Ph.D. thesis. .

Gong, W., Cai, Z., & Zhu, L. (2009). An efficient multiobjective differential evolution
algorithm for engineering design. Structural and Multidisciplinary Optimization,

38 , 137–157. https://doi.org/10.10 07/s0 0158-0 08-0269-9 .
Gunawan, S., Azarm, S., Wu, J., & Boyars, A. (2003). Quality-assisted multi-objective

multidisciplinary genetic algorithms. AIAA Journal, 41 (9), 1752–1762. https://doi.
org/10.2514/2.7293 .

Hussein, R., & Deb, K. (2016). A generative kriging surrogate model for constrained
and unconstrained multi-objective optimization. In GECCO–16: Proceedings of the
genetic and evolutionary computation conference 2016 (pp. 573–580). New York,
NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2908812.
2908866 .

IDE (2021). The future of the automotive industry through digitalisation. Technical
Report . Institute of Digital Engineering . https://roadmap.ide.uk/

Jeong, S., & Obayashi, S. (2005). Efficient global optimization (EGO) for multi-
objective problem and data mining. In 2005 IEEE Congress on evolutionary com-
putation: vol. 3 (pp. 2138–2145). https://doi.org/10.1109/CEC.2005.1554959 .

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization
of expensive black-box functions. Journal of Global Optimization, 13 , 455–492.
https://doi.org/10.1023/A:1008306431147 .

Karra, P., & Kong, S.-C. (2010). Application of particle swarm optimization for diesel
engine performance optimization. In SAE 2010 world congress & exhibition . SAE
International. https://doi.org/10.4271/2010- 01- 1258 .

Keane, A. J. (2006). Statistical improvement criteria for use in multiobjective design
optimization. AIAA Journal, 44 (4), 879–891 .

Keyes, D. E., McInnes, L. C., Woodward, C., Gropp, W., Myra, E., Pernice, M., . . .
Wohlmuth, B. (2013). Multiphysics simulations: Challenges and opportunities.
The International Journal of High Performance Computing Applications, 27 (1), 4–
83. https://doi.org/10.1177/1094342012468181 .

Kleijnen, J. P. (2017). Regression and Kriging metamodels with their experimental
designs in simulation: A review. European Journal of Operational Research, 256 (1),
1–16. https://doi.org/10.1016/j.ejor.2016.06.041 .

Knowles, J. (2005). ParEGO: a hybrid algorithm with on-line landscape approxi-
mation for expensive multiobjective optimization problems. IEEE Transactions
on Evolutionary Computation, 10 (1), 50–66. https://doi.org/10.1109/TEVC.2005.
851274 .

Knowles, J., & Hughes, E. J. (2005). Multiobjective optimization on a budget of 250
evaluations. In C. A. C. Coello, A. H. Aguirre, & E. Zitzler (Eds.), Evolutionary
multi-criterion optimization. EMO 2005 . In Lecture Notes in Computer Science: vol.
3410 . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978- 3- 540- 31880- 4 _
13 .

Koziel, S., & Pietrenko-Dabrowska, A. (2022). Constrained multi-objective optimiza-
tion of compact microwave circuits by design triangulation and pareto front
interpolation. European Journal of Operational Research, 299 (1), 302–312. https:
//doi.org/10.1016/j.ejor.2021.08.021 .

Krige, D. G. (1951). A statistical approach to some basic mine valuation prob-
lems on the Witwatersrand. Journal of the Southern African Institute of Min-

ing and Metallurgy, 52 (6), 119–139 . https://journals.co.za/content/saimm/52/6/
AJA0038223X _ 479

Kuk, J. N., Gonalves, R. A., Pavelski, L. M., Guse Scós Venske, S. M., de Almeida, C. P.,
& Ramirez Pozo, A. T. (2021). An empirical analysis of constraint handling on
evolutionary multi-objective algorithms for the environmental/economic load
dispatch problem. Expert Systems with Applications, 165 , 113774. https://doi.org/
10.1016/j.eswa.2020.113774 .

Li, G., Li, M., Azarm, S., Hashimi, S. A., Ameri, T. A., & Qasas, N. A. (2009). Improv-
ing multi-objective genetic algorithms with adaptive design of experiments and
online metamodeling. Structural and Multidisciplinary Optimization, 37 , 447–461.
https://doi.org/10.10 07/s0 0158-0 08-0251-6 .

Li, M., Li, G., & Azarm, S. (2008). A kriging metamodel assisted multi-objective ge-
netic algorithm for design optimization. Journal of Mechanical Design, 130 (3).
https://doi.org/10.1115/1.2829879 .

Li, R., Emmerich, M. T., Eggermont, J., Bäck, T., Schütz, M., Dijkstra, J., &
Reiber, J. (2013). Mixed integer evolution strategies for parameter optimization.
Evolutionary Computation, 21 (1), 29–64. https://doi.org/10.1162/EVCO _ a _ 0 0 059 .

López-Ibáñez, M., Paquete, L., & Stützle, T. (2010). Exploratory analysis of stochas-
tic local search algorithms in biobjective optimization . In T. Bartz-Beielstein,
M. Chiarandini, L. Paquete, & M. Preuss (Eds.) (pp. 209–222)). Berlin, Heidel-
berg: Springer Berlin Heidelberg .

Lotfan, S., Ghiasi, R. A., Fallah, M., & Sadeghi, M. (2016). ANN-based modeling
and reducing dual-fuel engine’s challenging emissions by multi-objective evo-
lutionary algorithm nsga-ii. Applied Energy, 175 , 91–99. https://doi.org/10.1016/j.
apenergy.2016.04.099 .

Martínez-Frutos, J., & Herrero-Pérez, D. (2016). Kriging-based infill sampling crite-
rion for constraint handling in multi-objective optimization. Journal of Global
Optimization, 64 . https://doi.org/10.1007/s10898-015-0370-8 .

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58 (8), 1246–1266.
https://doi.org/10.2113/gsecongeo.58.8.1246 .

McGinley, B., Maher, J., O’Riordan, C., & Morgan, F. (2011). Maintaining healthy pop-
ulation diversity using adaptive crossover, mutation, and selection. IEEE Transac-
tions on Evolutionary Computation, 15 (5), 692–714. https://doi.org/10.1109/TEVC.
2010.2046173 .

Mckay, M. D., Beckman, R. J., & Conover, W. J. (20 0 0). A comparison of three meth-
ods for selecting values of input variables in the analysis of output from a com-
puter code. Technometrics, 42 (1), 55–61. https://doi.org/10.1080/0 0401706.20 0 0.
10485979 .

Miettinen, K., Mäkelä, M. M., & Toivanen, J. (2003). Numerical comparison of some
penalty-based constraint handling techniques in genetic algorithms. Journal of
Global Optimization, 27 , 427–446. https://doi.org/10.1023/A:1026065325419 .

Millo, F., Arya, P., & Mallamo, F. (2018). Optimization of automotive diesel engine
calibration using genetic algorithm techniques. Energy, 158 , 807–819. https://doi.
org/10.1016/j.energy.2018.06.044 .

Mlakar, M., Petelin, D., Tušar, T., & Filipi ̌c, B. (2015). GP-DEMO: Differential evolu-
tion for multiobjective optimization based on gaussian process models. Euro-
pean Journal of Operational Research, 243 (2), 347–361. https://doi.org/10.1016/j.
ejor.2014.04.011 .

Nowacki, H. (1980). Modelling of design decisions for CAD . In J. Encarnacao (Ed.)
(pp. 177–223). Berlin, Heidelberg: Springer Berlin Heidelberg .

Osyczka, A., & Kundu, S. (1995). A new method to solve generalized multicriteria
optimization problems using the simple genetic algorithm. Structural Optimiza-

tion, 10 (2), 94–99. https://doi.org/10.1007/bf01743536 .
Parsons, D., Orchard, S., Evans, N., Ozturk, U., Burke, R., & Brace, C. (2021). A com-

parative study into the effects of pre and post catalyst exhaust gas recirculation
on the onset of knock. International Journal of Engine Research, 22 (9), 2819–2829.
https://doi.org/10.1177/1468087420962294 .

Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E.-G., & Guerin, Y. (2020). Overview
and comparison of Gaussian process-based surrogate models for mixed continuous

and discrete variables: Application on aerospace design problems . In T. Bartz-Beiel-
stein, B. Filipi ̌c, P. Korošec, & E.-G. Talbi (Eds.) (pp. 189–224). Springer Interna-
tional Publishing .

Ramos, A., noz, J. M., Andrés, F., & Armas, O. (2018). NOx emissions from diesel
light duty vehicle tested under NEDC and real-word driving conditions. Trans-
portation Research Part D: Transport and Environment, 63 , 37–48. https://doi.org/
10.1016/j.trd.2018.04.018 .

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning .
MIT Press .

Rudolph, G. (2005). An evolutionary algorithm for integer programming. In In-
ternational conference on parallel problem solving from nature (PPSN): vol. 866
(pp. 139–148). https://doi.org/10.1007/3- 540- 58484- 6 _ 258 .

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis of
computer experiments. Statistical Science, 4 (4), 409–423 . www.jstor.org/stable/
2245858

Schonlau, M., Welch, W. J., & Jones, D. R. (1998). Global versus local search in con-
strained optimization of computer models . In N. Flournoy, W. F. Rosenberger, &
W. K. Wong (Eds.) (vol. 34, pp. 11–25)). Hayward, CA: Institute of Mathematical
Statistics .

Singh, P., Couckuyt, I., Ferranti, F., & Dhaene, T. (2014). A constrained multi-objective
surrogate-based optimization algorithm. In Proceedings of the 2014 ieee congress
on evolutionary computation (CEC) (pp. 3080–3087). https://doi.org/10.1109/CEC.
2014.6900581 .

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of
the 3rd international conference on genetic algorithms . https://doi.org/10.5555/
645512.657265 .

Tadros, M., Ventura, M., & Soares, C. G. (2019). Optimization procedure to minimize
fuel consumption of a four-stroke marine turbocharged diesel engine. Energy,
168 , 897–908. https://doi.org/10.1016/j.energy.2018.11.146 .

Tang, H. (2016). Application of variable geometry turbine on gasoline engines and the

optimisation of transient behaviours . Department of Mechanical Engineering, Uni-
versity of Bath Ph.D. thesis. .

Togun, N., & Baysec, S. (2010). Genetic programming approach to predict torque
and brake specific fuel consumption of a gasoline engine. Applied Energy, 87 (11),
3401–3408. https://doi.org/10.1016/j.apenergy.2010.04.027 .

Tornatore, C., Bozza, F., Bellis, V. D., Teodosio, L., Valentino, G., & Marchitto, L. (2019).
Experimental and numerical study on the influence of cooled EGR on knock
tendency, performance and emissions of a downsized spark-ignition engine. En-
ergy, 172 , 968–976. https://doi.org/10.1016/j.energy.2019.02.031 .

Tsionas, M. G. (2019). Multi-objective optimization using statistical models. Euro-
pean Journal of Operational Research, 276 (1), 364–378. https://doi.org/10.1016/j.
ejor.2018.12.042 .

Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of
engineering design optimization. Journal of Mechanical Design, 129 (4), 370–380.
https://doi.org/10.1115/1.2429697 .

Yu, X., & Gen, M. (2010). Introduction to evolutionary algorithms. Decision engineer-
ing . Springer London. https://doi.org/10.1007/978- 1- 84996- 129- 5 .

Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The en-
gine knock analysis—an overview. Applied Energy, 92 , 628–636. https://doi.org/
10.1016/j.apenergy.2011.11.079 .

26

	Methods for constrained optimization of expensive mixed-integer multi-objective problems, with application to an internal combustion engine design problem
	1 Introduction
	2 Bayesian optimization algorithms for constrained multi-objective optimization
	2.1 Probability of feasibility based approaches
	2.2 Penalty function based approaches
	2.3 Others
	2.4 Research gaps

	3 Preliminaries and background
	3.1 Definitions
	3.2 Bayesian optimization

	4 Proposed methodology
	4.1 Strategy to handle mixed continuous and discrete variables
	4.1.1 Direct conversion approach for the Kriging correlation function
	4.1.2 Mixed-integer solver for searching the surrogate model

	4.2 Choosing a subset of solutions to construct a surrogate model
	4.3 Constraint handling strategies
	4.3.1 ParEGO with penalty function based constraint handling (ParEGO-C1)
	4.3.2 ParEGO with constrained expected improvement based constraint handling (ParEGO-C2)

	5 Empirical analysis setup
	5.1 Optimisation algorithms setup
	5.2 Quality indicators

	6 Optimization of benchmark problems
	6.1 Test suite
	6.2 Comparative analysis between subset selection strategies
	6.3 Comparative analysis between proposed constrained ParEGO and NSGA-II

	7 Optimization of an internal combustion engine design problem
	7.1 Internal combustion engine design problem
	7.2 Optimization results
	7.3 Discussion

	8 Conclusion
	Contributions
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Background
	A1 Kriging
	A2 Background on ParEGO
	A2.1 EGO
	A2.2 Scalarisation

	A3 Background on NSGA-II

	Appendix B OSY and speed reducer design problem formulations
	References

