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a b s t r a c t 

Engineering design optimization problems increasingly require computationally expensive high-fidelity 

simulation models to evaluate candidate designs. The evaluation budget may be small, limiting the effec- 

tiveness of conventional multi-objective evolutionary algorithms. Bayesian optimization algorithms (BOAs) 

are an alternative approach for expensive problems but are underdeveloped in terms of support for con- 

straints and non-continuous design variables—both of which are prevalent features of real-world design 

problems. This study investigates two constraint handling strategies for BOAs and introduces the first 

BOA for mixed-integer problems, intended for use on a real-world engine design problem. The new BOAs 

are empirically compared to their closest competitor for this problem—the multi-objective evolutionary 

algorithm NSGA-II, itself equipped with constraint handling and mixed-integer components. Performance 

is also analysed on two benchmark problems which have similar features to the engine design prob- 

lem, but are computationally cheaper to evaluate. The BOAs offer statistically significant convergence im- 

provements of between 5.9% and 31.9% over NSGA-II across the problems on a budget of 500 design 

evaluations. Of the two constraint handling methods, constrained expected improvement offers better 

convergence than the penalty function approach. For the engine problem, the BOAs identify improved 

feasible designs offering 36.4% reductions in nitrogen oxide emissions and 2.0% reductions in fuel con- 

sumption when compared to a notional baseline design. The use of constrained mixed-integer BOAs is 

recommended for expensive engineering design optimization problems. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Complex manufacturing industries, such as automakers and 

their supply chains, are increasingly adopting digital technolo- 

gies to transform their processes and products ( IDE, 2021 ). Virtual 

engineering—the use of modelling and simulation to evaluate the 

performance of product designs—is used extensively within these 

industries, with increasing reliance on high-fidelity physics simu- 

lations, sometimes integrated together in complex multiphysics co- 

simulations ( Keyes et al., 2013 ), that are computationally costly to 
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execute ( Forrester & Keane, 2009 ). In this context, the number of 

alternative candidate designs that can be evaluated within a de- 

sign optimization process may be substantially constrained by the 

available resources. Within the academic literature, the maximum 

budget for such expensive problems is typically assumed to be in 

the region of 500 evaluations or fewer ( Chugh, Sindhya, Hakanen, 

& Miettinen, 2019; Keane, 2006; Knowles & Hughes, 2005 ). 

Within the automotive industry, the increased use of compu- 

tationally expensive simulations has been at least partially driven 

by commitments from governments around the world to achieve 

reductions in greenhouse gases and improvements in air quality. 

These commitments have led to tighter vehicle fuel consumption 

and emissions standards, with testing procedures more represen- 

tative of real-life driving conditions ( Ramos, noz, Andrés, & Armas, 

2018 ). The most recent vehicle test procedures such as the world- 

wide harmonised light vehicles test procedure (WLTP) and real driving 
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emissions (RDE) test procedure require evaluation of fuel consump- 

tion and exhaust emissions during 30-minute and 90–120-minute 

long tests. These tests need to be repeated at multiple tempera- 

tures, multiple altitudes and for multiple driving styles. Accurate 

evaluation of these test cycles requires multiple high-fidelity simu- 

lations that represent the transient response of the engine over the 

full test duration. Evaluation of a single engine design may take 

several hours to execute on a high performance computing plat- 

form, with resources available to conduct at most a few hundred 

such evaluations. Engine design engineers aim to find a Pareto op- 

timal set of designs that capture the inherent trade-off between 

fuel efficiency (carbon dioxide–CO2–emissions) and nitric oxide–

NOx–emissions. With a design space consisting of a dozen or more 

architectural variables and control parameters, together with a de- 

manding set of constraints to satisfy, identifying a feasible Pareto 

optimal set can be challenging on a small evaluation budget. As 

a result, many existing approaches have limited their ambition 

to identifying just a single point on the Pareto front, by solving 

single-objective problems ( Alonso et al., 2007; Karra & Kong, 2010; 

Millo, Arya, & Mallamo, 2018; Tadros, Ventura, & Soares, 2019; To- 

gun & Baysec, 2010 ). 

Over the past two decades, multi-objective evolutionary algo- 

rithms (MOEAs) have become very popular methods for identify- 

ing the Pareto optimal set of designs for a problem—recent exam- 

ples include ( Alcaraz, Landete, Monge, & Sainz-Pardo, 2020; Avilés, 

Mayo-Maldonado, & Micheloud, 2020; Bird, Wanner, Ekárt, & Faria, 

2020; Chen, Zhou, & Das, 2021; Drake, Starkey, Owusu, & Burke, 

2020; Kuk et al., 2021 ). There have also been attempts to use 

MOEAs to identify Pareto optimal sets of engine designs ( Corre 

et al., 2019; D’Errico, Cerri, & Pertusi, 2011; Lotfan, Ghiasi, Fallah, 

& Sadeghi, 2016 ). However, a recent survey of MOEA applications 

for expensive-to-evaluate problems identified criticism of the unre- 

alistically large number of evaluations that the algorithms required 

in order to achieve convergence ( Chugh et al., 2019 ). The response 

to this criticism has been to incorporate low-fidelity models into 

the optimization process, that aim to approximate the outputs of 

a high-fidelity simulation. These data-driven models are variously 

known as metamodels , surrogates or emulators , and are often esti- 

mated using data generated during the optimization process itself. 

Architectures for surrogate-assisted MOEAs vary in terms of the 

role of evolutionary computation in the search process. Here, we 

focus on a popular class of architectures, known as Bayesian Op- 

timization Algorithms (BOAs), that typically use evolutionary algo- 

rithms to search over a so-called acquisition function or infill crite- 

rion that is generated from progressively updated beliefs about the 

implicit functional form of the black-box simulation model. This 

implicit functional form is often encoded as a Gaussian process (or 

Kriging model) ( Krige, 1951; Rasmussen & Williams, 2006 ), and this 

approach has become popular for use in engineering applications 

( De Ath, Everson, Rahat, & Fieldsend, 2021; Forrester, Sóbester, & 

Keane, 2008; Wang & Shan, 2007 ). 

Despite the apparent promise of BOAs, uncertainty remains over 

their ability to handle common features of real-world engineer- 

ing applications such as engine design problems. Such problems 

typically feature a mix of continuous and discrete design vari- 

ables; however BOAs tend to assume continuous variables and, 

to our knowledge, no BOAs have yet been developed for mixed- 

integer variables. In addition to objectives, engineering problems 

tend also to feature a large number of constraints. However, as 

will be shown in the next section, constraints handling is a re- 

cent innovation in BOAs, with demonstrations of effectiveness only 

for very simple benchmark problems and no clear conclusion as to 

the most effective method to use. Since, for Kriging-based BOAs, 

the number of data points (i.e., evaluated designs) that can be 

used to build the surrogate model is limited by the computa- 

tional complexity of the estimation process, the choice of candi- 

date designs to inform the surrogate is also an open question. In 

this paper, motivated by our real-world engineering problem, we 

aim to advance BOA research by developing and testing the first 

mixed-integer BOA and examining alternative constraint handling 

and surrogate-building strategies, with a view to making firmer 

recommendations for other analysts considering using a BOA on 

their problem. Our algorithmic development builds on the seminal 

efficient global optimization (EGO) and Pareto efficient global opti- 

mization (ParEGO) methods by Jones, Schonlau, & Welch (1998) and 

Knowles (2005) respectively and is available to the community as 

open-source software ( Duro et al., 2020 ). 

The remainder of this paper is organised as follows. A literature 

review that covers the application of BOAs to constrained multi- 

objective problems is conducted in Section 2 . Some preliminaries 

and background on Bayesian optimization are in Section 3 . The 

proposed methodology in Section 4 covers the strategy to handle 

mixed continuous and discrete variables ( Section 4.1 ); a proposed 

algorithm to select a subset of training points for constructing a 

surrogate model ( Section 4.2 ); and the constraint handling strate- 

gies for ParEGO ( Section 4.3 ). The empirical analysis setup used 

in this paper is in Section 5 . The demonstration of the proposed 

methodology on benchmark problems is in Section 6 . The demon- 

stration on the real engineering problem is in Section 7 , and the 

paper concludes with Section 8 . 

2. Bayesian optimization algorithms for constrained 

multi-objective optimization 

In this review we consider Kriging based BOAs that have been 

applied to multi-objective problems with constraints, and the fo- 

cus is on their constraint handling strategy, the type of optimiza- 

tion problems that they have been applied to, and which strategy 

(if any) is used to manage the number of training points for con- 

structing the surrogate model. In the text below, unless stated, the 

decision variables are all continuous. 

2.1. Probability of feasibility based approaches 

This section discusses approaches that have used the probabil- 

ity of feasibility (PoF) which is often combined with an infill cri- 

terion such as the probability of improvement (PoI) or the expected 

improvement (EI) for handling constraints. 

Emmerich and colleagues ( Emmerich, 2005; Emmerich, Deutz, 

& Klinkenberg, 2008; Emmerich, Giannakoglou, & Naujoks, 2006 ) 

have shown how to integrate several infill strategies into a multi- 

objective evolutionary algorithm. Amongst them is the PoI, EI, and 

lower confidence bound. To determine the EI in the multi-objective 

context, their approach relies on the hypervolume indicator, and 

this is referred to as the hypervolume-based EI. In addition, the 

PoI and EI (including the hypervolume-based EI) have both been 

extended for handling constraints; this is achieved by multiplying 

their corresponding expressions by the PoF. To estimate the hyper- 

volume the authors proposed the use of a Monte Carlo approach, 

which requires decomposing the non-dominated region into a uni- 

form grid of cells, and performing a hypervolume calculation sep- 

arately for each cell. 

Couckuyt, Deschrijver, & Dhaene (2014) have shown that the 

hypervolume indicator could be also used to determine the PoI, 

leading to the hypervolume-based PoI. The same authors have also 

proposed an improvement to the hypervolume estimation which 

scales better with the number of objectives and number of solu- 

tions when compared with the approach used by Emmerich et al. 

(2006) . The work by Couckuyt et al. (2014) was only demonstrated 

on unconstrained multi-objective problems, and this led Singh, 

Couckuyt, Ferranti, & Dhaene (2014) to integrate the PoF into the 
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hypervolume-based PoI. Feliot, Bect, & Vazquez (2017) have pro- 

posed an improvement to the hypervolume estimation which com- 

pares solutions based on their objective value and constraint val- 

ues, and have demonstrated this on the hypervolume-based EI 

with the PoF. Other authors such as Martínez-Frutos & Herrero- 

Pérez (2016) and Do, Ohsaki, & Yamakawa (2021) , have combined 

the PoF with the hypervolume-based EI and the hypervolume- 

based PoI, respectively. 

On a separate research direction Forrester and colleagues 

( Forrester & Keane, 2009; Forrester et al., 2008 ) have proposed 

a multi-objective version of the EI that relies on determining the 

probability that a new design improves (or dominates) over exist- 

ing non-dominated solutions. Although the proposed formulation 

is limited to two objectives, they have combined with the PoF for 

dealing with constraints. 

In terms of how to manage the number of training points for 

the surrogate model, Emmerich et al. (2006) used local surrogate 

models as opposed to global models. The latter is used if the num- 

ber of points is not higher than 2 d, where d is the number of deci- 

sion variables, but once the number of points exceeds this thresh- 

old a local surrogate model is constructed around each point by 

using the closest (in terms of Euclidean distance) 2 d points in the 

decision space. In Forrester & Keane (2009) , strategies for select- 

ing a subset of training points are not discussed, but they recom- 

mend using other surrogate techniques that are cheaper-to-build 

(e.g. polynomial models) in case the number of points is higher 

than 500 or if there are more than 20 decision variables. More- 

over, the number of training points is not fixed in Singh et al. 

(2014) , Martínez-Frutos & Herrero-Pérez (2016) , Feliot et al. (2017) , 

Do et al. (2021) . 

In terms of the optimization problems, Emmerich et al. 

(2006) have demonstrated their approach on many unconstrained 

single- and multi-objective problems, and also on a multipoint air- 

foil optimization problem with three objectives and 10 constraints. 

Forrester & Keane (2009) have demonstrated their approach on a 

variant of the classic Nowacki beam problem ( Nowacki, 1980 ) with 

two objectives and five constraints. Singh et al. (2014) used the 

same Nowacki problem, and also a microwave filter design prob- 

lem with two objectives and seven constraints. Martínez-Frutos & 

Herrero-Pérez (2016) used three test problems with two objectives 

and two constraints. Feliot et al. (2017) used several test problems, 

including two-objective problems with 2–6 constraints, and a five- 

objective problem with 7 constraints. Do et al. (2021) have used a 

steel frame design problem with uncertain parameters, three ob- 

jectives and a scalable number of constraints depending on several 

structural parameters, up to a maximum of 13 probabilistic con- 

straints and 10 deterministic constraints (although it seems that 

only the probabilistic constraints are being surrogated). Their ap- 

proach was also demonstrated on a real-world two-bar truss prob- 

lem with two objectives and two constraints. The authors have 

noted that different runs of the optimization algorithm could lead 

to different Pareto-optimal solutions when the feasible region of 

the optimization problem is large. 

2.2. Penalty function based approaches 

The approaches described in this section rely on the use of 

penalty functions to handle constraints. This often means that the 

performance of the solutions is penalised depending on their con- 

straint violation. 

Chugh, Sindhya, Miettinen, Hakanen, & Jin (2016) have proposed 

an extension to a surrogate-assisted evolutionary multi-objective 

optimization algorithm, known as K-RVEA, for dealing with con- 

straints by making use of a penalty function based approach taken 

from Miettinen, Mäkelä, & Toivanen (2003) . K-RVEA uses reference 

direction vectors to decompose the original problem into a number 

of subproblems, and the subproblems are solved simultaneously to 

generate a set of solutions that approximate the entire Pareto front. 

The computationally expensive objective functions are replaced by 

surrogate models, but the constraints are not surrogated and there- 

fore are assumed to be inexpensive to evaluate. The training set 

used to construct the surrogates has a maximum fixed size. The 

major contribution of this work is to show the effect of infeasible 

solutions in the training set. For this, two approaches have been 

considered: in one case only feasible solutions are chosen; while 

in the other case both feasible and infeasible solutions are used. 

The simulation results show that having a mix of feasible and in- 

feasible solutions in the training set produces better results than 

just relying on feasible solutions. This approach has been demon- 

strated on three benchmarked problems with the number of ob- 

jectives ranging from 3 to 10 and the number of constraints from 

1 to 10. 

Hussein & Deb (2016) have also used a decomposition-based 

evolutionary algorithm with a penalty-based approach for han- 

dling constraints. The search is conducted over the EI, and a single 

Pareto optimal solution is found at a time. The fitness of each in- 

feasible solution is replaced by the worst objective function value 

of all feasible solutions plus the product of all normalised con- 

straint breaches. A subset of training points is chosen from an 

archive by selecting those with the shortest orthogonal distance 

to the reference direction vector. This algorithm has been demon- 

strated on several unconstrained test problems, and four two- 

objective test problems with 2–6 constraints. 

Koziel & Pietrenko-Dabrowska (2022) have used an infill crite- 

rion that relies on an inverse surrogate—predicts the decision vari- 

able values for a given objective vector. A point is chosen in ob- 

jective space by the use of a triangulation approach, where the 

point in the middle of the largest simplex is chosen to be eval- 

uated next. It is expected for points generated in this way to 

cover the Pareto front in a uniform manner. To handle the con- 

straints a penalty function approach is combined with a local 

search method. There is no strategy to manage the size of the 

training set, which increases at the end of each iteration. The al- 

gorithm has been demonstrated on two two-objective microwave 

circuit problems, a Branch-line coupler problem with three con- 

straints, and a impedance matching transformer problem with one 

constraint. 

2.3. Others 

Jeong & Obayashi (2005) utilise the EI of objective functions 

directly in the optimization process. This means that a surrogate 

model is constructed for each objective function (the constraints 

are not surrogated), and a genetic algorithm finds a solution that 

maximises the EI, individually for each objective function. The au- 

thors claim that their selection mechanism helps to identify non- 

dominated solutions. The constraints are handled by selecting only 

feasible solutions to construct the surrogate model. Initially the 

training points are generated by Latin Hypercube Sampling (LHS), 

and during the optimization more points are added to the training 

set by selecting those with the largest EI with respect to each ob- 

jective. The number of training points is not fixed. This algorithm 

has been demonstrated on a transonic airfoil design problems with 

two objectives and one constraint. 

Li, Li, & Azarm (2008) , Li et al. (2009) builds a surrogate model 

of each objective, and the optimization is conducted by a multi- 

objective evolutionary algorithm inspired by NSGA-II. The Kriging 

variance is used as a measure of correctness for the predicted re- 

sponses. At each generation the surrogate is used to evaluate all 

individuals in the population, and expensive evaluations take place 

if the Kriging variance is below than some threshold. To handle 

the constraints, a surrogate model of each constraint is constructed 

3 
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and a criterion that relies on the Kriging variance is used to indi- 

cate whether or not a solution is said to be feasible. The number of 

training points is not fixed. The algorithm has been demonstrated 

on five two-objecti ve test problems: two problems with 2 and 6 

constraints; and three unconstrained problems where one of the 

problems has discrete decision variables, while all the others only 

have continuous ones. It is not clear how the discrete nature of the 

optimization problem is handled in this approach. 

Mlakar, Petelin, Tušar, & Filipi ̌c (2015) have proposed a multi- 

objective optimization algorithm based on the concept of differ- 

ential evolution known as GP-DEMO. This algorithm relies on a 

sparse–approximation method which is more computationally ef- 

ficient than having to compute the inverse of the entire covariance 

matrix during the process of learning the surrogate model. The ap- 

proach is to retain most information contained in the full training 

set by reducing the size of the covariance matrix, as opposed to 

selecting a subset of training points. This algorithm has been ap- 

plied to several optimization problems with two objectives, where 

12 are benchmark problems (three of them with constraints), and 

two real-world problems. It is unclear how constraints are handled. 

Garrido-Merchán & Hernández-Lobato (2019) rely on the con- 

cept of entropy as an alternative to the EI and proposed an al- 

gorithm called Predicted Entropy Search for Multi-objective Op- 

timization with Constraints (PESMOC). The constraints are inte- 

grated into the predicted distribution of the Gaussian process mod- 

els in a similar way as done for the EI with PoF (see Emmerich 

et al., 2006 ). This algorithm has been demonstrated on several 

two-objective problems, including four test problems and three 

real-world problems, with the number of constraints ranging from 

2 to 6. 

2.4. Research gaps 

Following the above review, the research gaps identified are as 

follows: 

1. The BOAs reviewed above have been applied to several bench- 

mark and real-world problems, where the number of objectives 

ranges from 2 to 10, and the number of constraints from 1 to 

23. Most are continuous problems, and only in Li et al. (2009 , 

2008) there is a problem with solely discrete variables. There- 

fore, to the best of the authors’ knowledge, existing BOAs have 

not yet been applied to expensive constrained multi-objective 

problems with a mix of continuous and discrete decision vari- 

ables. 

2. The most popular constraint handling approach identified 

above is to use a combination of the EI with the PoF, known 

as constrained EI. An alternative approach found in three pub- 

lications ( Chugh et al., 2016; Hussein & Deb, 2016 ; Koziel & 

Pietrenko-Dabrowska, 2022 ) is to use penalty functions, which 

have been extensively used in the past to solve constrained op- 

timization problems ( Farmani & Wright, 2003; Miettinen et al., 

2003 ). However, it is not known which approach provides the 

best transformation to the cost landscape that would allow a 

BOA to offer the fastest convergence towards the Pareto-optimal 

front. 

3. Most BOAs reviewed above do not impose a fixed limit on the 

number of training points to construct the surrogate model. The 

approach adopted in Emmerich et al. (2006) is to construct a 

separate surrogate model for each point in the population, im- 

plying that the computational cost is expected to increase after 

each iteration as more points are added to the population. The 

approach in Chugh et al. (2016) relies only on a single surrogate 

model where the training set has a maximum fixed size, but 

their approach assumes that constraint functions are computa- 

tionally inexpensive. Hence, a criterion to manage the training 

set that could be applied to problems with computationally ex- 

pensive constraints is still an open challenge. 

3. Preliminaries and background 

This section introduces some definitions in Section 3.1 , and a 

short introduction to Bayesian optimization in Section A.2 . 

3.1. Definitions 

We focus on the following form of constrained multi-objective 

problem with continuous and discrete variables: 

Minimise f m (x ) , m = 1 , . . . , M;

subject to g j (x ) ≤ c j , j = 1 , . . . , J;
x r i ∈ [ x min 

r i 
, x max 

r i 
] , i = 1 , . . . , n r ;

x o i ∈ O (i ) , i = 1 , . . . , n o . 

(1) 

The above terms are defined as follows: 

1. A total of n r continuous decision variables are denoted as 

x r 1 , . . . , x r n r , and x 
min 
r i 

and x max 
r i 

denote the lower and upper 

bound, respectively, of the i th decision variable. Discrete vari- 

ables can be either of type ordered or unordered. The values 

that ordered decision variables are allowed to take have or- 

dered relations (e.g. cold/mild/hot), while no such relations ex- 

ist for unordered ones (e.g. colours). In this paper we only con- 

sider ordered discrete variables since the target application (see 

description in Section 7.1 ) does not have unordered ones. Let a 

total of n o ordered decision variables be denoted as x o 1 , . . . , x o n o , 

each of which is taken from a finite domain, respectively de- 

noted by O (1) , . . . , O (n o ) , where O (i ) ≡ { x min 
o i 

, . . . , x max 
o i 

} for all 

i = 1 , . . . , n o , and x min 
o i 

and x max 
o i 

denotes the lower and up- 

per bound, respectively. The domain defined by all decision 

variables constitutes a decision variable space D, also known 

as the search space. A solution to the problem in Eq. (1) is 

represented by an n -dimensional vector that contains all de- 

cision variables, where n = n r + n o , and is denoted as x = 

(x r 1 , . . . , x r n r , x o 1 , . . . , x o n o ) 
T ⊂ D. 

2. A total of M objective functions to be minimised are defined 

as f m : D → R , m = 1 , . . . , M, and the multi-dimensional space 

that the objective functions constitute R M is called the objective 

space. 

3. A total of J constraint functions to be satisfied are defined as 

g j : D → R , j = 1 , . . . , J. 

The corresponding objective and constraint vectors of a so- 

lution x are denoted by f (x ) = ( f 1 (x ) , . . . , f M (x )) 
T and g (x ) = 

(g 1 (x ) , . . . , g J (x )) 
T , respectively. A point in objective space is de- 

noted by f (x ) = z = (z 1 , . . . , z M ) 
T , and a point in constraint space 

is denoted by g (x ) = z c = (z c 1 , . . . , z c J ) 
T . In this paper the term so- 

lution and point will be used interchangeably and they both refer 

to a decision vector x . A solution x is said to be feasible if x ∈ D

and g j (x ) ≤ c j for all j = 1 , . . . , J, where c j is the constraint limit 

for the jth constraint function. The feasible set of all solutions is 

defined as: 

F = { x ∈ D : g j (x ) ≤ c j , j = 1 , . . . , J} . (2) 

When multiple conflicting objectives are involved, besides each 

objective having its own optimal solution, there is also a set of 

trade-off solutions where a gain in one objective leads to a sacrifice 

in the other. The best trade-offs among objectives can be identified 

in terms of Pareto optimality. Consider the following two feasible 

solutions x 1 , x 2 ∈ F , and let x 1 � x 2 denote that solution x 1 dom- 

inates x 2 . This implies that solution x 1 is no worse than x 2 in all 

objectives ( f i (x 1 ) ≯ f i (x 2 ) ∀ i = 1 , . . . , M), and x 1 is better than x 2 
in at least one objective ( ∃ j ∈ { 1 , . . . , M} such that f j (x 1 ) < f j (x 2 )) . 

When comparing solutions in a set (say F ′ ⊂ F), those solutions 
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that are not dominated by any other solution in F ′ are said to be 

non-dominated. The non-dominated solutions of the entire feasible 

set F form the Pareto-optimal set. In other words, a feasible solu- 

tion x ∗ ∈ F is said to be Pareto-optimal if there is no other solution 

in F that dominates it (i.e. iff ∄ x ∈ F such that x � x ∗). The set of 

all Pareto-optimal solutions is the Pareto-optimal set. z ∗ = f (x ∗) is 

a Pareto-optimal objective vector, and the set that contains them 

all is the Pareto-optimal front (PF). Moreover, we assume that f and 

g are both expensive to evaluate and are black box functions—that 

is, given x they return z and z c . 

3.2. Bayesian optimization 

For dealing with expensive-to-evaluate problems some opti- 

mization algorithms adopt the surrogate model approach. The sur- 

rogate (or also known as metamodel or emulator) is a cheap- 

to-evaluate model that emulates the input-output relationship of 

the expensive high fidelity simulation. A search procedure that re- 

places the original function with the surrogate is expected to run 

faster, but depending on how accurate the surrogate is, there is 

still some necessity to conduct expensive evaluations. These eval- 

uations could be used to improve the accuracy of the model in 

regions of the search space where there is lack of information, but 

we need to balance this with the task of finding the optimal solu- 

tion. 

Kriging is a type of surrogate model based on Gaussian Pro- 

cess theory ( Krige, 1951; Rasmussen & Williams, 2006 ) that has 

become very popular and is widely used for engineering appli- 

cations (see e.g. Forrester et al., 2008; Wang & Shan, 2007 ). In 

particular, the efficient global optimization (EGO) algorithm ( Jones 

et al., 1998 ), an optimizer for single-objective unconstrained prob- 

lems, uses the design and analysis of computer experiments (DACE) 

model ( Sacks, Welch, Mitchell, & Wynn, 1989 ). This is a Krig- 

ing based model parameterised by maximum-likelihood estimation 

(MLE) which, besides being capable of predicting responses at un- 

tried inputs, also quantifies the uncertainty (or variance) at those 

predictions through the mean squared error (MSE). More details 

about the Kriging model used in this study are found in the 

Appendix A.1 . 

EGO uses the EI infill criterion, which takes into account the 

uncertainty of the model to provide an estimate of where an im- 

provement is more likely to be. Due to its success in dealing 

with expensive problems, EGO has been extended for handling 

constraints ( Schonlau, Welch, & Jones, 1998 ), and later to handle 

multiple objectives in an algorithm known as ParEGO ( Knowles, 

2005 ). More details about EGO and how to extend it to the multi- 

objective domain are provided in Appendix A.2 . 

As reviewed in Section 2 there are many BOAs in the litera- 

ture which, in general, have in common an infill criterion such 

as the EI combined with the PoF. Although this paper focusses on 

how to extend ParEGO for handling constraints and mixed-integer 

variables, the proposed methodology can also be applied to other 

BOAs. 

4. Proposed methodology 

4.1. Strategy to handle mixed continuous and discrete variables 

Conventional ParEGO can only handle problems with a contin- 

uous search space. Problems with discrete, or a mix of continuous 

and discrete variables are not directly supported. Our strategy to 

handle such problems relies on a: 

1. a direct conversion approach ( Pelamatti, Brevault, Balesdent, 

Talbi, & Guerin, 2020 ) used for Gaussian process-based surro- 

gate models, where the Kriging correlation function is extended 

to handle both continuous and discrete variables ( Section 4.1.1 ); 

2. a simultaneous approach ( Li et al., 2013 ) 1 where discrete and 

continuous variables are optimised together when searching the 

surrogate model with an evolutionary algorithm ( Section 4.1.2 ). 

For all operations within the optimization algorithm, the set of 

values that ordinal variables can take are mapped into an integer 

set by using an integer coding . Before a candidate design is evalu- 

ated, the discrete variables are mapped back to their original val- 

ues. For instance, the set { 10 , 10 . 5 , 11 , 11 . 5 , 12 } that contains all al- 
lowed values for a given discrete variable, is converted to the set 

{ 1 , 2 , 3 , 4 , 5 } . 

4.1.1. Direct conversion approach for the Kriging correlation function 

The changes to the procedure used to construct a surro- 

gate model involve the use of a direction conversion approach 

( Pelamatti et al., 2020 ) that treats discrete variables as continuous. 

For this, the Kriging correlation function ( Eq. (A.1) ) is modified as 

follows: 

K(|| x a − x b || ) = exp 

( 

−

n r 
∑ 

i =1 

θi | x 
(a ) 
r i − x (b) r i | 2 −

n o 
∑ 

i =1 

θn r + i | x 
(a ) 
ˆ o i 

− x (b) 
ˆ o i 

| 2 

) 

, 

(3) 

where x (a ) r i 
is the i th continuous variable of the point x a , and x 

(a ) 
ˆ o i 

represents the continuous variable resulting from the integer cod- 

ing of the ordinal variable x (a ) o i 
. 

4.1.2. Mixed-integer solver for searching the surrogate model 

In a BOA, an evolutionary algorithm (EA) is used to search the 

surrogate model to find the solution that, e.g., maximises both the 

EI and the PoF. The simultaneous approach will be used by an opti- 

mization algorithm to search the surrogate model when both con- 

tinuous and discrete variables are involved. For this task we have 

chosen ACROMUSE ( McGinley, Maher, O’Riordan, & Morgan, 2011 ), 

a genetic algorithm for continuous single-objective problems, but 

note that any other evolutionary algorithm that relies on crossover 

and mutation operators (e.g. differential evolution), could be used 

instead. 

The simultaneous approach described by Li et al. (2013) con- 

sists of using multiple specialised crossover and mutation opera- 

tors in the same evolutionary algorithm. By specialised we mean 

that some crossover operators have been designed to operate only 

on continuous variables (e.g. simulated binary crossover) and may 

produce undesirable behaviour when applied to discrete variables. 

The same applies to mutation operators. The main idea is to use 

multiple crossover or mutation operators; each one will operate 

either on the continuous and discrete part of the decision vector. 

Li et al. (2013) have proposed an evolutionary algorithm known as 

MIES in the process of describing the simultaneous approach, but 

we do not use MIES in our study, rather we only borrow the sim- 

ple concept of using multiple crossover and mutation operators to 

extend ACROMUSE. Nevertheless, we use the same crossover and 

mutation operators for discrete variables in ACROMUSE that have 

been integrated into MIES, but we rely on different operators for 

handling continuous variables. Some details about the crossover 

and mutation operators used by ACROMUSE in this paper are as 

follows: 

1. Continuous variables: single-point crossover and polynomial 

mutation ( Deb & Goyal, 1996 ). Single-point crossover generates 

1 In Li et al. (2013) the authors mention two general approaches, one is an hierar- 

chical approach where discrete and continuous variables are optimized in separate 

“hierarchical” problems, and the other pursued in this paper is the simultaneous 

approach. 
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two offspring from every two parents, and for every pair of par- 

ent values a and b the offspring values are βa + (1 − β) b and 

(1 − β) a + βb, where β ∼ U(0 , 1) . 

2. Discrete variables: we use the uniform crossover ( Syswerda, 

1989 ) with a chance of 0.5 at each position, which is also called 

discrete crossover ( Yu & Gen, 2010 ). The discrete mutation is 

borrowed from Rudolph (2005) . Some details about these two 

discrete operators are as follows. 

In the discrete crossover, for every two parent solutions se- 

lected for crossover, each variable in the offspring solution is cho- 

sen randomly from either the first or second parent solution with 

equal probability. The discrete mutation relies on the difference be- 

tween two geometrical distributed variables, and the resulting dis- 

tribution has some attractive characteristics, such as: 

1. symmetry: no additional bias is introduced by the operator; 

2. accessibility: it is possible to reach any point within the search 

space by applying the operator a finite number of times to an 

individual solution. 

The operator has a step size parameter that controls the 

strength of the mutation, and more details (including a step-by- 

step procedure) can be found in Li et al. (2013) ( Algorithm 3 page 

38). 

Another important aspect is the procedure used for generating 

the initial set of solution involving both continuous and discrete 

variables, which is now described. To generate the initial set of so- 

lutions we use the space-filling method LHS and propose an exten- 

sion for dealing with discrete variables. First of all, each dimension 

of the search space is divided into N equal intervals, where N is 

the number of points to generate. Only one point is allowed inside 

each box defined by the intervals. The procedure generates a N × n 

matrix where n is the number of decision variables, and each col- 

umn contains the elements 0 , 1 , . . . , N − 1 . After all elements per 

column are randomly permuted, this matrix becomes a Latin hy- 

percube and it is denoted by L . Then, let a total of N solutions 

be denoted by x 1 , . . . , x N , and the decision variables of solution x k , 

where k ∈ { 1 , . . . , N} , are initialised as follows: 

x r i = x min 
r i 

+ 
x max 
r i 

− x min 
r i 

N 
(U(0 , 1) + L ki ) , i = 1 , . . . , n r , 

x o i = x min 
o i 

+ L ki mod (x max 
o i 

− x min 
o i 

+ 1) , i = 1 , . . . , n o , (4) 

where the top equation is for continuous variables, and the bot- 

tom one is for discrete. L ki is the element from L for the k th 

solution and i th decision variable, U(0 , 1) draws a number from 

the continuous uniform distribution bounded between 0 and 1, 

and mod denotes the modulo operation. Note that in Eq. (4) both 

x r i and x o i can only take values from within their limits, that is, 

x r i ∈ [ x min 
r i 

, x max 
r i 

] and x o i ∈ { x min 
o i 

, . . . , x max 
o i 

} . 
ACROMUSE is used by ParEGO for training and searching the 

surrogate model; however the discrete crossover and integer mu- 

tation mentioned above only operate for the second task. Train- 

ing the surrogate corresponds to the task of solving the single- 

objective optimization problem in (A.3) where all variables are 

continuous. Searching the surrogate model corresponds to the task 

of finding the solution that maximises the EI function ( Eq. (A.7) ), 

and there could be a mix between continuous and discrete vari- 

ables. 

4.2. Choosing a subset of solutions to construct a surrogate model 

The most computational demanding task of constructing the 

Kriging model (A.1) is to estimate θ in the Kriging correlation func- 

tion ( Eq. (A.1) ) that best fits the data. The approach used requires 

solving the single-objective optimization problem in (A.3) by using 

a numerical optimization algorithm, where the inverse of R needs 

to be determined for each function evaluation. Given that R is a 

N × N dimensional matrix where N is the number of solutions, it is 

expected for the computational cost to increase as more solutions 

are added to X – the set that contains all solutions that have been 

evaluated so far. To ensure that the construction of the surrogate 

model does not become prohibitively expensive, in this section we 

discuss a computationally cheap strategy with a criterion that ex- 

ploits the presence of both feasible and infeasible solutions. This 

builds on the findings from Chugh et al. (2016) where the simula- 

tion results indicate it is preferable to have a mix of feasible and 

infeasible solutions in the training set, rather than relying just on 

feasible solutions. 

The criterion used not only preserves the best performing solu- 

tions but also those that could inform us about the location of in- 

feasible regions across the search space. Let N max denote the max- 

imum number of solutions that can be used to construct the sur- 

rogate model, and let half of the required solutions be denoted by 

H = ⌈ N max / 2 ⌉ , then consider the following cases with respect to 

the solutions in X : 

1. All solutions are feasible: select H solutions with the best fit- 

ness value; and select the remaining solutions with the short- 

est distance to the operating reference direction vector. For the 

latter, the performance vector z of each solution x is projected 

into the M − 1 simplex, and then its distance to the reference 

direction vector is measured by the Euclidean norm (this pro- 

cedure is shown mathematically in Algorithm 1 lines 26–30). In 

this situation there are no infeasible solutions in X , therefore 

the constraints can be ignored and the best performing solu- 

tions are chosen. 

2. All solutions are infeasible: select H solutions with the lowest 

infeasibility score; and select the remaining solutions by using 

the criterion from point 1. 

3. There is a mix of feasible and infeasible solutions. The objec- 

tive here is to have a good balance of feasible and infeasible 

solutions in the subset. Consider the following three cases: 

(a) The number of infeasible and the number of feasible solu- 

tions are each not smaller than H: select a total of H so- 

lutions by applying the criterion from point 1 to all feasi- 

ble solutions; and select the remaining ( N max − H) solutions 

from amongst all infeasible ones by choosing those with 

the lowest infeasibility score. Given that there is a sufficient 

number of solutions from both categories (feasible and in- 

feasible) to ensure an equal distribution, the first priority is 

to focus on the best performing feasible solutions, following 

which the remaining solutions are chosen from the infeasi- 

bility ones based on their infeasibility score (less infeasible 

first). 

(b) The number of infeasible solutions is less than H, and the 

number of feasible solutions is not smaller than H: Select all 

infeasible solutions; and select the remaining solutions from 

amongst all feasible ones by applying criterion from point 1. 

(c) The number of infeasible solutions is not smaller than H, 

and the number of feasible solutions is less than H: Se- 

lect all feasible solutions; and select the remaining solutions 

from amongst all infeasible ones by choosing those with the 

lowest infeasibility score. 

The steps of the above procedure are shown in Algorithm 1 . For 

this, the solutions in X are divided into two sets: X f contains the 

feasible solutions, and X i contains the infeasible ones. The output 

from the algorithm is a subset X ′ such that X ′ ⊆ X . A resume of 

the steps is as follows. The subset X ′ contains all solutions if the 

number of solutions in X is not higher than N max (lines 2–3). Point 

1 above corresponds to lines 4–5, where the procedure to select 

the best performing solutions is shown in lines 21–30. The remain- 

ing cases are as follows: point 2 above corresponds to lines 6–8; 

6 
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Algorithm 1 Choose a subset of solutions to construct a surrogate 

model. 

Require: a feasible set of solutions X f , an infeasible set of solu- 

tions X i , subset size N max , current reference direction vector d 

Ensure: a subset X ′ of size N max 

1: H = ⌈ N max / 2 ⌉ ⊲ Half of the required solutions 

2: if |X i | + |X f | ≤ N max then ⊲ All solutions are selected 

3: X ′ ← X i ∪ X f 

4: else if |X i | = 0 then ⊲ All solutions are feasible 

5: X ′ ← ChooseBestPerformingSolutions ( X f , N max , d ) 

6: else if |X f | = 0 then ⊲ All solutions are infeasible 

7: X ′ ← H solutions from X i with the smallest infeasibility 

score (Equation A.13) 

8: X ′ ← X ′ ∪ ChooseBestPerformingSolutions ( X i \ X ′ , N max −

|X ′ | , d ) 
9: else if |X i | ≥ H and |X f | ≥ H then ⊲ Both X f and X i have at 

least H solutions 

10: X ′ ← ChooseBestPerformingSolutions ( X f , H, d ) 

11: X ′′ ← N max − |X ′ | solutions from X i with the smallest 

infeasibility score (Equation A.13) 

12: X ′ ← X ′ ∪ X ′′ 

13: else if |X i | < H and |X f | ≥ H then ⊲ X i has less than H 

solutions 

14: X ′ ← X i 

15: X ′ ← X ′ ∪ ChooseBestPerformingSolutions ( X f , N max −

|X ′ | , d ) 
16: else if |X i | ≥ H and |X f | < H then ⊲ X f has less than H 

solutions 

17: X ′ ← X f 

18: X ′′ ← N max − |X ′ | solutions from X i with the smallest 

infeasibility score (Equation A.13) 

19: X ′ ← X ′ ∪ X ′′ 

20: else 

21: X ′ ← X i ∪ X f ⊲ This point should never be reached but is 

kept for completion 

22: end if 

23: procedure ChooseBestPerformingSolutions ( X , N, d ) 

24: X ′ ← ⌈ N/ 2 ⌉ solutions from X with the best fitness value 

(Equation A.11) 

25: X ′′ ← X \ X ′ 

26: for all x ∈ X ′′ do 

27: ˆ z (x ) ← project z (x ) to the M − 1 simplex, implying that 

ˆ z (x ) = z (x ) || z (x ) || −1 
1 

28: �(x , d ) ← || ̂ z (x ) − d || 2 
29: end for 

30: X ′′′ ← N − ⌈ N/ 2 ⌉ solutions from X ′′ with the smallest �

distance 

31: X ′ ← X ′ ∪ X ′′′ 

32: return X ′ 

33: end procedure 

point 3a to lines 9-12; point 3b to lines 13-15; and point 3c to 

lines 16-19. 

4.3. Constraint handling strategies 

4.3.1. ParEGO with penalty function based constraint handling 

(ParEGO-C1) 

The main idea is to transform a constrained problem into an 

unconstrained one by adding a penalty to infeasible solutions 

based on the degree of constraint violation. The information pro- 

vided by infeasible solutions can be used to steer the search to- 

wards feasible and optimal regions. For instance, a solution that vi- 

olates the constraints only by a small margin might be more valu- 

able than a feasible solution with very poor performance. The ap- 

proach described here is derived from Farmani & Wright (2003) . 

The scalarised fitness of infeasible solutions is penalised accord- 

ing to the degree of infeasibility and the fitness of the solutions in 

X . The penalty is applied in two stages. At first, the fitness of all 

infeasible solutions that are better than the “best” solution is set 

equal to the fitness of the “best” solution. The best solution is the 

feasible solution with the best fitness. If no feasible solutions exists 

in X , the best solution is the one with least constraint violation. In 

the second stage, all infeasible solutions are further penalised ac- 

cording to their original fitness and the degree of constraint viola- 

tion. More formally this approach is as follows. 

We use an infeasibility score given by: 

˙ ξ (x ) = 
1 

J 

J 
∑ 

j=1 

v j (x ) / v 
max 
j , (5) 

where v max 
j 

is the highest constraint violation for the jth constraint 

found with respect to all infeasible solutions in X . Following this, 

the procedure identifies the best solution, as follows: 

x ∗ = 

{

arg min x ∈X f s (x ) , if |X f | > 0 , 

arg min x ∈X ˙ ξ (x ) , otherwise , 
(6) 

where the first case selects the feasible solution with the best fit- 

ness, and in case there are no feasible solutions then the second 

case selects the least infeasible solution with respect to the mod- 

ified infeasibility score ( Eq. (5) ). The fitness of all infeasible solu- 

tions are now penalised as follows. The first penalisation ensures 

that their fitness is not better than the best solution, that is: 

˙ s (x ) = 

{

s (x ∗) if s (x ) < s (x ∗) 
s (x ) , otherwise 

(7) 

where ˙ s (x ) is the penalised fitness score of x . To determine the 

second penalisation the original fitness and modified infeasibility 

score are normalised so that the values lie in the range between 0 

and 1, as follows: 

s̄ (x ) = (s (x ) − s min ) / (s max − s min ) , 

ξ̄ (x ) = ( ˙ ξ (x ) − ˙ ξmin ) / ( ˙ ξmax − ˙ ξmin ) , 
(8) 

where s min and s max are the lowest and highest original fitness of 

all solutions, and ˙ ξmin and ˙ ξmax are the lowest and highest modi- 

fied infeasibility score of all infeasible solutions. Finally, all infeasi- 

ble solutions are further penalised according to their original cost 

function and the degree of constraint violation as follows: 

s̈ (x ) = ˙ s (x ) + 
e 2( ̄s (x )+ ̄ξ (x )) −1 

e 2 − 1 
, (9) 

and their current fitness is replaced by s̈ (x ) . The exponential func- 

tion in Eq. (9) ensures that solutions of low infeasibility get a slight 

reduction in the rate of penalty, and this helps to maintain the fit- 

ness of solutions that slightly violated the constraints. 

ParEGO with penalty-based constraint handling is now re- 

ferred to as ParEGO-C1 for short, and a pseudo-code is shown in 

Algorithm 2 . The general steps are as follows. An initial set of so- 

lutions is generated by using some space filling design strategy 

(line 1), and once all solutions are evaluated the objective and con- 

straints values are stored respectively in Z and G (lines 2–3). Fol- 

lowing the construction of a set of reference direction vectors D 

(line 4), an iterative procedure starts where the reference direc- 

tions are processed one at the time (line 7). Each time all reference 

directions are visited, the set D is shuffled (line 6). This is to avoid 

any bias due to using the same sequence of reference directions re- 

peatedly during the optimization process. A scalarised fitness value 

is determined for each solution and stored in S (line 9). The fitness 

7 
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Algorithm 2 ParEGO with penalty function based constraint han- 

dling (ParEGO-C1). 

Parameters: initial set size N init , surrogate model maximum set 

size N max 

1: X ← generate initial set of solutions with size N init 

2: Z ← f (X ) ⊲ evaluate the objectives of the solutions in the 

initial set 

3: G ← g (X ) ⊲ evaluate the constraints of the solutions in the 

initial set 

4: D ← set of all reference direction vectors (Equation A.10) 

5: while termination criteria not satisfied do 

6: Shuffle the set D 

7: for all d ∈ D do 

8: update objective lower and upper bounds (Equation A.8) 

9: S ← for each solution calculate a scalar fitness value 

(Equation A.11) 

10: S ′ ← penalise infeasible solutions according to their 

degree of constraint violation (Equation A.9) 

11: X ′ ← select a subset of solutions from X with maximum 

size N max (Section 4.2) 

12: ˆ s ← fit a surrogate model to X ′ and corresponding 

fitness values in S ′ 

13: x new ← find a solution that maximises the EI 

(Equation A.7) 

14: X ← X ∪ x new , Z ← Z ∪ f (x new ) and G ← G ∪ g (x new ) 

⊲ evaluate and store new solution 

15: end for 

16: end while 

values are updated by penalising infeasible solutions according to 

their degree of constraint violation (line 10). Following the selec- 

tion of a subset of solutions (line 11), these are used as training 

data to construct a surrogate model (line 12). The surrogate model 

is used by the EI function and a solution is found by maximizing it 

(line 13). Following its evaluation, the new solution is added to X , 

its objective and constraint values are store respectively in Z and 

G, and this completes one iteration (line 14). 

4.3.2. ParEGO with constrained expected improvement based 

constraint handling (ParEGO-C2) 

The EI formulation in Eq. (A.7) is extended to handle con- 

straints. A surrogate model of the constraint function can be used 

to influence the expectation of improvement, that is: in case the 

surrogate indicates a constraint violation with a low error, the EI 

should have a low value; and if the surrogate error is high, then 

we cannot be sure if the constraint is violated, and therefore the 

EI should be higher. Based on this premise, the approach described 

in Forrester & Keane (2009) calculates the probability that the pre- 

diction of the constraint model is smaller than the constraint limit, 

that is, the probability that the constraint is met. More formally, 

let the mean and variance of the model at x be given by ˆ g (x ) 

and ˆ ε 2 (x ) , respectively. The probability that the constraint is met 

is given by: 

P [ g(x ) < c] = �

(

c − ˆ g (x ) 

ˆ ε (x ) 

)

, (10) 

where g(x ) is the constraint function, and c is the constraint limit. 

The constraint EI is obtained by multiplying E[ I(x )] by P [ g(x ) < c] , 

and this can be easily extended for dealing with multiple ( J) con- 

straints as follows: 

E[ I(x )]�J 
j=1 

P [ g j (x ) < c j ] . (11) 

In problems with a constrained optima (different from the un- 

constrained optima), most improvement reported by the EI func- 

tion ( Eq. (A.7) ) corresponds to infeasible regions. This implies that 

the improvement in the feasible region is likely to be close to zero, 

which makes it more difficult to search for the constrained optima 

when using the constraint EI function ( Eq. (11) ). To address this we 

have adopted a recommendation by Bagheri et al. (2017) , which 

consists of replacing the current best “known” function value in 

Eq. (A.7) by the feasible solution with the best fitness, or the least 

infeasible solution in case all solutions are infeasible. For the lat- 

ter, the chosen solution has the lowest infeasibility score, as deter- 

mined by Eq. (A.13) . 

ParEGO with probabilistic-based constraint handling is now re- 

ferred to as ParEGO-C2 for short, and a pseudo-code is shown in 

Algorithm 3 . Algorithm 2 and 3 share many steps in common, 

Algorithm 3 ParEGO with constrained EI based constraint han- 

dling (ParEGO-C2). 

Parameters: initial set size N init , surrogate model maximum set 

size N max 

1: X ← generate initial set of solutions with size N init 

2: Z ← f (X ) ⊲ evaluate the objectives of the solutions in the 

initial set 

3: G ← g (X ) ⊲ evaluate the constraints of the solutions in the 

initial set 

4: D ← set of all reference direction vectors (Equation A.10) 

5: while termination criteria not satisfied do 

6: Shuffle the set D 

7: for all d ∈ D do 

8: update objective lower and upper bounds (Equation A.8) 

9: S ← for each solution calculate a scalar fitness value 

(Equation A.11) 

10: X ′ ← select a subset of solutions from X with maximum 

size N max (Section 4.2) 

11: ˆ s ← fit a surrogate model to X ′ and corresponding 

fitness values in S 

12: { ̂ g j } 
J 
j=1 

← fit a separate surrogate model to each 

constraint function w.r.t. X ′ and G 

13: x new ← find a solution that maximises the constraint EI 

(Equation 11) 

14: X ← X ∪ x new , Z ← Z ∪ f (x new ) and G ← G ∪ g (x new ) 

⊲ evaluate and store new solution 

15: end for 

16: end while 

hence, we focus only on the differences between the two algo- 

rithms. In Algorithm 3 the fitness values are no longer penalised 

as in line 10 of Algorithm 2 . Instead, a surrogate model is con- 

structed for each constraint function (line 12) based on the sub- 

set of solutions chosen in line 10. All learnt surrogate models are 

combined into the constraint EI function, and following its max- 

imization, a new solution is found (line 13). Two points that are 

noteworthy: 

1. A total of J surrogate models are constructed in line 12 

Algorithm 3 , and this task is expected to be computationally 

more expensive than the approach used that penalises the fit- 

ness values in line 10 Algorithm 2 . 

2. The surrogate modelling task in line 12 Algorithm 3 relies on 

the subset X ′ . This prevents the construction of the surrogates 

from becoming prohibitively expensive since the number of so- 

lutions in X can be too high. However, note that the approach 

in line 10 Algorithm 2 relies on the entire solution set X which 

could be advantageous in case the subset X ′ lacks important 

information about where infeasible solutions are meant to exist 

in the search space. 
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5. Empirical analysis setup 

This section provides details about the parameter setup for 

ParEGO and NSGA-II ( Deb, Pratap, Agarwal, & Meyarivan, 2002 ), 

and also about the quality indicators used to evaluate the solutions 

sets obtained by the optimization algorithms. Note that NSGA-II 

is chosen in this study to be compared with ParEGO due to its 

current popularity for the study of multi-objective internal com- 

bustion engine design problems, as in D’Errico et al. (2011) , Lotfan 

et al. (2016) , Corre et al. (2019) . Some details about NSGA-II includ- 

ing its implementation and how it handles constraints are provided 

in Appendix A.3 . 

5.1. Optimisation algorithms setup 

The budget for both optimization algorithms is set to N = 500 

function evaluations, which includes the evaluation of the initial 

set of solutions. Note that relying on 500 or fewer function eval- 

uations is considered the general agreement on what constitutes 

a constrained budget ( Chugh et al., 2019; Keane, 2006; Knowles 

& Hughes, 2005 ). All solutions evaluated during the optimization 

run are saved in an archive, and each run is repeated 21 times 

with a different random seed. The initial set for each optimiza- 

tion algorithm is generated by LHS, and the set size is fixed to 

N init = 100 . The justification for this lies in the need to validate 

the optimization model used by the internal combustion engine 

design problem, which is the primary focus of this study. It was 

agreed that 100 designs provide sufficient coverage on a 7 deci- 

sion variable problem for validation purposes. For consistency, the 

initial set used by the benchmark problems was also generated by 

LHS with a set size of 100. 

In NSGA-II, the size of both the parent and offspring popula- 

tions are set to N P = N init / 2 , and the number of generations is 

given by (N − N P ) /N P . The crossover and mutation operators for 

continuous variables are simulated binary crossover ( Deb & Kumar, 

1995 ) and polynomial mutation ( Deb & Goyal, 1996 ). The distri- 

bution index for simulated binary crossover and polynomial muta- 

tion is set to 15 and 20, respectively. For the discrete variables we 

use the same discrete crossover and discrete mutation operators 

mentioned in Section 4.1.2 for ACROMUSE. The step size parame- 

ter in the discrete mutation operators is set to be equal to 10% of 

the length defined by the upper and lower bound of each decision 

variable. The probability of crossover and mutation are respectively 

set to 90% and 10%. The same probability of crossover is used by 

Knowles (2005) when comparing NSGA-II with ParEGO. The prob- 

ability of mutation is suggested by Li et al. (2013) for dealing with 

mixed integer problems. 

Specifically for ParEGO, the number of reference direction vec- 

tors is set to 10 (this ensures that all direction vectors are pro- 

cessed exactly 50 times for the given budget, and is a very close 

number to the 11 chosen by Knowles, 2005 ). To construct the 

surrogate model we used a maximum of N max = 100 solutions. 

ACROMUSE is used for training and searching the surrogate model. 

Training the surrogate corresponds to the task of solving the 

single-objective optimization problem in (A.3) . Searching the sur- 

rogate corresponds to the task of finding the solution that max- 

imises the EI function. This either corresponds to Eq. (A.7) in case 

ParEGO-C1 is used ( Algorithm 2 ), or Eq. (11) in case ParEGO-C2 

is used ( Algorithm 3 ). The following setup is used by ACROMUSE. 

The crossover and mutation operators for continuous variables are 

single-point crossover and polynomial mutation, and for discrete 

variables we use the same operators mentioned above for NSGA-II. 

The probability of crossover and mutation is the same as defined 

for NSGA-II. More details about the crossover and mutation opera- 

tors in ACROMUSE are found in Section 4.1.2 . Based on several ex- 

periments we found that setting an initial population size to 20 n , 

where n is the number of decision variables, provides the best con- 

vergence. The termination criterion for ACROMUSE is as follows: 

1. Determine the difference between the current best fitness in 

the population and the best fitness of the previous generation, 

and store the result in an archive; 

2. Determine the mean of the last 20 elements in the archive, and 

terminate the optimization run if the result is below a very 

small number (i.e. 10 −6 ); 

3. To ensure that the optimization terminates in case the above 

condition cannot be satisfied, a maximum number of genera- 

tions is set to 100 n . 

5.2. Quality indicators 

There are several quality indicators in the literature for com- 

paring the performance of optimization algorithms ( Audet, Bigeon, 

Cartier, Le Digabel, & Salomon, 2021 ), and we have used the fol- 

lowing ones in this study: 

1. The hypervolume indicator is used to measure the convergence 

and diversity across the Pareto front, and its exact value is de- 

termined by a dimension-sweep algorithm ( Fonseca, Paquete, 

& López-Ibáñez, 2006 ). The hypervolume is calculated with re- 

spect to a non-dominated set that is identified from the archive 

that contains all evaluated solutions found during an optimiza- 

tion run. In order to show the hypervolume progress during an 

optimization run, a non-dominated set is determined after each 

evaluation, which serves as an input to the dimension-sweep 

algorithm. In some optimization runs the non-dominated solu- 

tions may not include any feasible solutions, and this is more 

likely to happen during the first few evaluations. In case there 

are no feasible solutions in a solution set then the hypervolume 

is calculated with respect to all infeasible non-dominated solu- 

tions, in order to provide some insight into the dynamics of the 

optimization algorithms. To test the statistical significance of 

the results we employ the Wilcoxon’s rank-sum test ( Conover, 

1999 ) with a significance level of 5%. This provides an indica- 

tion of whether the hypervolume performance of an algorithm 

is significantly different from another. In addition, when two 

algorithms are compared, we will state the relative percentage 

difference (RPD) 2 , or simply percentage improvement, with re- 

spect to their median hypervolume values across the 21 repli- 

cations. The reference point used by the hypervolume compu- 

tation is {−0 . 1 , 2630 . 0 } , { 7100 , 1700 } and { 0 . 9035 , 0 . 67 } , corre- 
sponding to the OSY, speed reducer, and engine design prob- 

lems, respectively. The hypervolume values are then normalised 

in the range between 0 and 1, and for this we divide it by 

7 . 15 × 10 5 , 4 . 5 × 10 6 and 120, corresponding to the OSY, speed 

reducer and engine design problems, respectively. These refer- 

ence points have been obtained by taking the worst case ob- 

served across the union of all runs. 

2. We will show the differences between the empirical attainment 

functions (EAFs) ( López-Ibáñez, Paquete, & Stützle, 2010 ) when 

comparing two algorithms. This provides visual information of 

where an algorithm has done better than the other across the 

Pareto front by considering multiple optimization runs. It also 

shows the best, median and worst attainment surfaces, corre- 

sponding to the lines at the bottom, centre and top, respectively 

(assuming minimisation). 

3. The performance of the constraint handling approaches is eval- 

uated during the optimization run by showing the infeasibility 

score ( Eq. (5) ), and the number of feasible solutions that have 

2 The relative percentage difference between two numbers v 1 and v 2 is deter- 

mined by taking their absolute difference divided by their arithmetic mean, i.e., 

| v 1 − v 2 | / [(v 1 + v 2 ) / 2] × 100 . 
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been found. We have observed that the infeasibility score can 

be very noisy between evaluations, and as a smoother, we em- 

ploy a moving mean with a sliding window of length 10. The 

mean of each point is calculated over the neighbouring points, 

and the sliding window is centred in the current and previous 

elements. Following the smoothing of each optimization run, 

the mean and standard deviation is then taken. A similar ap- 

proach was used for the number of feasible solutions, where 

each point along the optimization run gives the number of fea- 

sible solutions found in the previous 10 evaluations, including 

the current point. 

4. We use a heatmap to show which constraints are more likely 

to be violated during the optimization run. Each row in the 

heatmap represents a constraint and the columns correspond 

to the evaluations across the optimization run. To compute the 

heatmap each constraint is processed separately as follows. At 

any given evaluation during the optimization run a constraint 

may have been violated (1) or not (0). We take the average 

across all runs to calculate a probability that the constraint is 

likely to be violated, for instance, consider a total of 5 runs 

then the vector (0,1,0,1,1) indicates that the constraint has been 

violated in the second, fourth and fifth run, but it is not vio- 

lated in the first and third runs. The average of the vector gives 

0.6, which indicates that the probability of violating the con- 

straint at this particular evaluation is 60%. For smoothing pur- 

poses, these probabilities are then averaged across 10 consecu- 

tive evaluations, implying that there are a total 50 cells in the 

heatmap shown across the x-axis corresponding to a total of 

500 function evaluations. 

6. Optimization of benchmark problems 

6.1. Test suite 

The constrained ParEGO proposed in this paper is intended to 

be used in solving expensive constrained mixed-integer problems, 

such as the target internal combustion engine (ICE) problem (inves- 

tigated in Section 7.1 ), which has 4 ordinal plus 3 continuous deci- 

sion variables, 2 objectives and 5 constraints. However an obstacle 

to comprehensive analysis of such genuinely expensive problems 

is that the computational budget required for extensive empiri- 

cal experimentation is infeasible. To conduct this type of analysis, 

we require benchmark problems with comparatively low evalua- 

tion times. Unfortunately there are very few benchmark problems 

in existence with similar characteristics to the ICE problem. To the 

authors’ knowledge, there is only one constrained mixed-integer 

benchmark problem in existence and one further constrained (but 

continuous variable) problem which has a similar number of con- 

straints to the ICE problem. 

The first is a quasi-real-world problem known as the speed re- 

ducer ( Gunawan, Azarm, Wu, & Boyars, 2003 ). There are several 

formulations available for this problem in the literature, including, 

Coello & Pulido (2005) and Gong, Cai, & Zhu (2009) . The problem 

has two objectives, seven decision variables and eleven constraints. 

The decision variables are all continuous apart from the third de- 

cision variable which is discrete (i.e. x 3 in Eq. (B.2) ). The problem 

formulation is available in Eq. (B.2) in Appendix B . Based on our 

own numerical experiments, we discovered that the fourth, fifth, 

sixth and eleventh constraints are not active, which means that 

there are only seven active constraints in this problem. The sec- 

ond problem is known as OSY ( Osyczka & Kundu, 1995 ) and it is a 

bi-objective optimization problem with six decision variables and 

six constraints. The decision variables are all continuous, and four 

of the constraints are linear. The problem formulation is available 

in Eq. (B.1) in Appendix B . 

6.2. Comparative analysis between subset selection strategies 

In this section we study the impact that different strategies 

for selecting a subset of solutions for constructing the surrogate 

model have on the performance of ParEGO-C1 and ParEGO-C2 

when applied to the OSY and speed reducer problems. The cri- 

terion adopted by the subset selection strategies considered is as 

follows: 

1. Proposed strategy in Algorithm 1 (PA); 

2. Best performing solutions (BP). In this case the solutions are 

chosen based on the procedure ChooseBestPerformingSolutions 

in Algorithm 1 . This criterion only takes into account the fit- 

ness of the solutions (as determined by Eq. (A.11) ), and their 

constraint values are not taken into account. First, half of the 

allowed number of solutions with the best fitness value are 

selected, and second, select the remaining solutions with the 

shortest distance to the reference direction vector; 

3. Random (RD). The order of all solutions is shuffled and the first 

N max solutions are selected. 

Table 1 shows the hypervolume obtained by ParEGO-C1 and 

ParEGO-C2 with different subset selection strategies. Based on the 

Wilcoxon’s rank-sum test results, we use the following notation in 

Table 1 , where [-], [+] and [ ≈] corresponds respectively to signifi- 

cantly worse than, better than, and equal to PA. Consider the fol- 

lowing observations: 

1. OSY: PA reports the best median hypervolume performance for 

both ParEGO-C1 and ParEGO-C2. For ParEGO-C1, the percentage 

improvement of PA over BP is 4.57%, and PA over RD is 13.09%. 

For ParEGO-C2, the percentage improvement of PA over BP is 

3.46%, and PA over RD is 1.16%. The results for ParEGO-C2 are 

statistically significant, but the results for ParEGO-C1 are not. 

2. Speed reducer: BP reports the best median hypervolume perfor- 

mance for both ParEGO-C1 and ParEGO-C2. The percentage im- 

provement of BP over PA is only 0.001% and 0.13% for ParEGO- 

C1 and ParEGO-C2, respectively. PA performs marginally better 

than RD with a percentage improvement of just 0.1% and 0.07%, 

for ParEGO-C1 and ParEGO-C2, respectively. These results are 

not statistically significant. 

So far we have compared the algorithms by using the hyper- 

volume indicator, and these are now compared by visualising the 

differences between their EAFs. This is only shown for the statis- 

tical significant results, that is, it considers only the comparison 

between PA and BP with ParEGO-C2 for the OSY problem. Figure 1 

shows the EAFs differences and their magnitude is encoded by the 

colour level. The obtained results in Fig. 1 a show that PA has bet- 

ter attainment on the upper left region of the PF when compared 

with BP, but BP has better attainment across the lower left region 

of the PF. A similar trend is captured in Fig. 1 b between PA and 

RD, but the region attained by RD is much smaller than the region 

attained by BP. 

Based on the above results, PA has better hypervolume when 

compared with BP and PA for the OSY problem, although the re- 

sults are not statistically significant for ParEGO-C1, but they are 

for ParEGO-C2. The EAFs indicates that this overall improvement 

comes at the cost of some regions across the PF over others. For 

the speed reducer problem the results are not statistical signifi- 

cant, meaning that for this problem the subset selection strategies 

have a low influence on the performance of the algorithms. These 

results suggest that ensuring a good balance between feasible and 

infeasible solutions can be better than simply relying on their per- 

formance. In the following section, the constrained ParEGO algo- 

rithms with PA will be compared to NSGA-II. 
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Table 1 

Comparison of subset selection strategies on the performance of ParEGO-C1 and ParEGO-C2 when applied to the OSY and speed reducer 

problems. The performance is measured by the hypervolume indicator (the higher the better). The statistics have been determined based 

on 21 runs. The term Std is an abbreviation for standard deviation, Max for maximum, and Min for minimum. Results are shown to 4 

significant figures, and the best ones have been underlined. 

Hypervolume OSY Speed reducer 

Optimizer Median Mean (Std) Max Min Median Mean (Std) Max Min 

ParEGO-C1(PA) 0.7257 0.6709 (0.1693) 0.8982 0.3090 0.9359 0.9342 (0.0058) 0.9413 0.9192 

ParEGO-C1(BP) 0.6933 [ ≈] 0.6656 (0.1331) 0.8496 0.3504 0.9359 [ ≈] 0.9357 ( 0.0034 ) 0.9410 0.9295 

ParEGO-C1(RD) 0.6366 [ ≈] 0.6504 ( 0.1187 ) 0.8736 0.3983 0.9349 [ ≈] 0.9348 (0.0035) 0.9397 0.9240 

ParEGO-C2(PA) 0.9434 0.9450 ( 0.0119 ) 0.9657 0.9282 0.9397 0.9399 (0.0029) 0.9460 0.9353 

ParEGO-C2(BP) 0.9113 [-] 0.9158 (0.0146) 0.9461 0.8920 0.9409 [ ≈] 0.9408 ( 0.0019 ) 0.9444 0.9369 

ParEGO-C2(RD) 0.9325 [-] 0.9324 (0.0125) 0.9554 0.9118 0.9390 [ ≈] 0.9391 (0.0033) 0.9483 0.9343 

Fig. 1. Comparison of subset selection strategies for ParEGO-C2 by showing the differences between the empirical attainment functions (EAFs) of the feasible non-dominated 

solutions for a total of 21 runs on the OSY problem. For each subfigure, the plot in the left highlights the differences in favour of algorithm 1, and the plot in the right 

highlights the differences in favour of Algorithm 2. The colour level encodes the magnitude of the observed differences. The lines in the left, centre and right correspond to 

the best, median and worst attainment surfaces, respectively. 

Table 2 

Comparison between ParEGO-C1, ParEGO-C2 and NSGA-II when applied to the OSY and speed reducer problems. The performance is 

measured by the hypervolume indicator (the higher the better). The first three rows show the performance obtained after 500 function 

evaluations. The second last row shows the performance obtained by NSGA-II after 10,0 0 0 function evaluations. The last row shows 

the number of function evaluations required by each successful run from NSGA-II to achieve the median performance obtained by 

ParEGO-C2, and in the same row, the numbers between {∗} indicate the number of successful runs out of 21 that have obtained a 

better hypervolume value than ParEGO-C2. The statistics have been determined based on 21 runs. The term Std is an abbreviation for 

standard deviation, Max for maximum, and Min for minimum. Results are shown to 4 significant figures, and the best ones have been 

underlined. 

Hypervolume OSY Speed reducer 

Optimizer Median Mean (Std) Max Min Median Mean (Std) Max Min 

ParEGO-C1 0.7257 0.6709 (0.1693) 0.8982 0.3090 0.9359 0.9342 (0.0058) 0.9413 0.9192 

ParEGO-C2 0.9434 0.9450 ( 0.0119 ) 0.9657 0.9282 0.9397 0.9399 ( 0.0029 ) 0.9460 0.9353 

NSGA-II (500) 0.6840 0.6593 (0.1576) 0.8850 0.3549 0.8799 0.8593 (0.0663) 0.9269 0.6764 

NSGA-II (10000) 0.9001 0.9037 (0.0962) 0.9994 0.5373 0.9515 0.9465 (0.0138) 0.9537 0.9055 

2265 { 6 } 2315 (765) 3190 1413 1798 { 18 } 2268 (1745) 7944 781 

6.3. Comparative analysis between proposed constrained ParEGO and 

NSGA-II 

This section presents results for the constraint ParEGO algo- 

rithms (ParEGO-C1 and ParEGO-C2), and NSGA-II when applied to 

the OSY and speed reducer problems. Both ParEGO algorithms use 

the subset selection strategy PA. 

Table 2 shows a comparison between the algorithms in term 

of hypervolume. In the third row, the results obtained for NSGA- 

II correspond to 500 function evaluations, and the results in the 

second last row correspond to a very generous 10,0 0 0 function 

evaluations. For now we will only focus on the 500 function eval- 

uations case. ParEGO-C2 outperforms ParEGO-C1, with a percent- 

age improvement of 26.1% for the OSY problem, and 0.42% for the 

speed reducer problem. The percentage improvement of ParEGO- 

C2 and ParEGO-C1 over NSGA-II is respectively 31.9% and 5.9% for 

the OSY problem, and respectively 6.57% and 6.17% for the speed 

reducer problem. Results are statistically significant (see Table 3 ), 

with the only exception of ParEGO-C1 versus NSGA-II for the OSY 

problem. 

Figures 2 and 3 show the evolution of three indicators along the 

optimization run, and also the EAFs differences between the algo- 

rithms for the OSY and speed reducer problems, respectively. The 

indicators are the hypervolume, infeasibility score ( Eq. (5) ), and 

number of feasible solutions found during the optimization run. In 

addition, the three bottom subfigures in Figs. 2 and 3 , show all so- 

lutions evaluated during a single optimization run, and the chosen 

run has the closest hypervolume value to the median from a total 

of 21 runs. Consider the following observations: 

1. ParEGO-C2 shows faster convergence in terms of hypervolume 

when compared with ParEGO-C1 and NSGA-II ( Fig. 2 a and 3 a). 

In addition, ParEGO-C2 has the lowest standard deviation when 

compared with ParEGO-C1 and NSGA-II for both problems, 

11 



J.A. Duro, U.E. Ozturk, D.C. Oara et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 
JID: EOR [m5G; September 27, 2022;15:56 ] 

Table 3 

p-values obtained by the Wilcoxon’s rank-sum test. A p-value lower than 0.05 (corre- 

sponding to a significance level of 5%) indicates rejection of the null hypothesis that the 

two samples being compared have equal medians. The values above and below the main 

diagonal corresponds to the OSY and speed reducer problems, respectively. The numbers 

500 and 10,000 after NSGA-II indicate the number of function evaluations after which the 

results have been obtained. 

Optimizer ParEGO-C1 ParEGO-C2 NSGA-II (500) NSGA-II (10 0 0 0) 

ParEGO-C1 — 3 . 13 × 10 −8 0.7247 9 . 32 × 10 −7 

ParEGO-C2 6 . 23 × 10 −4 — 3 . 13 × 10 −8 0.01931 

NSGA-II (500) 8 . 41 × 10 −8 3 . 13 × 10 −8 — 7 . 21 × 10 −7 

NSGA-II (10000) 2 . 66 × 10 −5 7 . 05 × 10 −5 1 . 67 × 10 −7 —

while NSGA-II shows the highest. The relatively high standard 

deviation by NSGA-II during first ≈25 evaluations is caused by 

the fact that some optimization runs have not found feasible 

solutions up-to this point, and in case there are no feasible so- 

lutions then the hypervolume is calculated with respect to the 

infeasible solutions, which may cause the hypervolume to show 

unrealistic high performance. 

2. The optimizers show different trends when in comes to the in- 

feasibility score and number of feasible solutions found during 

the optimization run as follows: 

(a) For the OSY problem in Fig. 2 c, ParEGO-C2 has the low- 

est infeasibility score during the first ≈30 evaluations, and 

subsequently reports the highest infeasibility score includ- 

ing the highest standard deviation. Whereas the infeasibility 

score of ParEGO-C1 and NSGA-II decreases along the opti- 

mization run. 

(b) For the speed reducer problem, the infeasibility score of 

ParEGO-C2 remains comparatively low across the entire op- 

timization run when compared with the other optimizers as 

shown in Fig. 3 c, but the infeasibility score of ParEGO-C1 re- 

mains very high when compared with NSGA-II and ParEGO- 

C2 during the entire optimization run. 

3. All evaluated solutions in a single optimization run are shown 

in the bottom plots of Figs. 2 and 3 , corresponding to the OSY 

and speed reducer problems, respectively. Although it is true 

that variance can be very high across different optimization 

runs, especially for NSGA-II, we have observed that these solu- 

tions capture the general trend across most runs. Consider the 

following observations: 

(a) Most solutions found by ParEGO-C2 for the speed reducer 

problem are feasible ( Fig. 3 h). In the OSY problem, there is 

an area in the objective space (top-left region in Fig. 2 h) 

with many infeasible solutions. These solutions are respon- 

sible for the high infeasibility score shown by ParEGO-C2 

and have mostly been found after evaluation ≈40. 

(b) ParEGO-C1 found many feasible solution when compared 

with the other algorithms as shown in Fig. 2 g for the OSY 

problem, but many are found in a sub-optimal region when 

compared with those found by ParEGO-C2. In the speed re- 

ducer problem, ParEGO-C1 found considerably less feasible 

solutions than ParEGO-C2 ( Fig. 3 g), and there are many in- 

feasible solutions found that are in sub-optimal regions in 

the objective space far from the edges of the PF. 

The probability of violating an individual constraint along the op- 

timization run is shown in Figs. 4 and 5 , corresponding to the OSY 

and speed reducer problems, respectively. The first 100 evaluations 

shows the evaluation of the initial set of solutions which is com- 

mon for all optimization algorithms. For the OSY problem, g 2 and 

g 5 have the highest probability of being violated. This is evident 

during the evaluation of the initial set of solutions but also in sub- 

sequent evaluations, and in particular for ParEGO-C2 as shown in 

Fig. 4 b. For the speed reducer problem, g 7 is the most active con- 

straint, while g 9 and g 10 are the second most active constraints. 

This is more evident for ParEGO-C1 as shown in Fig. 5 a than it is 

for ParEGO-C2 and NSGA-II. Constraints such as g 4 , g 5 , g 6 and g 11 
are never active, and others such as g 1 , g 2 and g 3 , and g 8 , show 

very low level of activity in comparison. This indicates that out of 

11 constraints there are only 3 (i.e. g 7 , g 9 and g 10 ) that seem to be 

posing difficulties to the optimization algorithms. In contrast, for 

the OSY problem there are at least 4 out of 6 constraints (i.e. g 2 , g 3 , 

g 5 and g 6 ) that seem to be posing difficulties to the optimization 

algorithms (in particular to ParEGO-C2). The above results suggest 

that the constraints in the speed reducer problem were less ac- 

tive when compared with the constraints from the OSY problem. 

In such a scenario it is expected for a subset selection strategy that 

takes into account the constraint violation of the solutions to show 

less impact. This is corroborated by the lack of statistical signifi- 

cance shown by the results when comparing the subset selection 

strategies in Table 1 for the speed reducer problem. 

So far we have only discussed results obtained by the optimiz- 

ers up to a maximum of 500 function evaluations. For this tight 

budget it is clear that the two ParEGO algorithms, in particular 

ParEGO-C2, have better performance than NSGA-II. We therefore 

ask the questions how many more function evaluations would be 

required for NSGA-II to show a similar performance to that ob- 

tained by ParEGO-C2, and how good are the results obtained by 

ParEGO-C2? To answer these two questions, the second last row in 

Table 2 shows the hypervolume obtained by NSGA-II after 10,0 0 0 

function evaluations (a prohibitively expensive budget for many 

real-world applications, in particular ICE design problems), and the 

last row in Table 2 shows the number of function evaluations re- 

quired by each optimization run of NSGA-II to obtain a better hy- 

pervolume value than the median performance of ParEGO-C2. In 

that: 

1. Considering first the hypervolume values obtained by the op- 

timizers. ParEGO-C2 has better hypervolume median perfor- 

mance than NSGA-II for the OSY problem with a percentage im- 

provement of 4.70%, and NSGA-II shows better performance in 

the speed reducer problem with a percentage improvement of 

1.25%. These results give some indication that the solution sets 

obtained by ParEGO-C2 offers a good approximation to the true 

PF for both problems. 

2. Consider now the number of function evaluations required by 

each run from NSGA-II to achieve the same median perfor- 

mance as that obtained by ParEGO-C2. NSGA-II requires a me- 

dian of 2265 function evaluations for the OSY problem, where 

only 6 out of 21 runs successfully achieve a better performance 

than ParEGO-C2 within the limit of 10k evaluations. This sug- 

gests that some NSGA-II runs may require more than 10,0 0 0 

function evaluations in order to achieve the same median per- 

formance that was obtained by ParEGO-C2. For the speed re- 

ducer problem, 18 runs out of 21 from NSGA-II successfully 

achieve a better performance than ParEGO-C2, requiring a me- 

dian of 1798 function evaluations. 
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Fig. 2. Performance of ParEGO-C1, ParEGO-C2 and NSGA-II on the OSY problem. Subfigures in the left show the hypervolume indicator, infeasibility score, and the number of 

feasible solutions found. For each performance indicator the mean and variance are represented by the middle line and surrounding shaded region, respectively. Subfigures 

in the right show the differences between the empirical attainment functions (EAFs) of the non-dominated solutions. The plots in the left highlights the differences in favour 

of algorithm 1, and the plots in the right highlights the differences in favour of Algorithm 2. The colour level encodes the magnitude of the observed differences. The lines 

in the left, centre and right correspond to the best, median and worst attainment surfaces, respectively. The statistics and EAFs have been determined based on 21 runs. The 

three subfigures on the bottom show all solutions generated by each optimizer in a single run, represented in the objective space. The solutions are taken from the median 

run with respect to hypervolume out of 21 runs. 

Overall, the above results provide some evidence that ParEGO 

endowed with a constraint handling approach can be effective at 

dealing with constrained multi-objective problems with a mix of 

continuous and discrete variables on a tight budget scenario, and 

in such circumstances ParEGO has shown to be more effective 

than NSGA-II. In the following section we will show results for 

the application of these optimization algorithms to an expensive- 

to-evaluate ICE design problem. 

7. Optimization of an internal combustion engine design 

problem 

7.1. Internal combustion engine design problem 

The approach is applied to a real engineering problem consist- 

ing of the optimisation of an internal combustion engine design 

and controller algorithm. The aim of this application is to demon- 
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Fig. 3. Performance of ParEGO-C1, ParEGO-C2 and NSGA-II on the speed reducer problem. Subfigures in the left show the hypervolume indicator, infeasibility score, and the 

number of feasible solutions found. For each performance indicator the mean and variance are represented by the middle line and surrounding shaded region, respectively. 

Subfigures in the right show the differences between the empirical attainment functions (EAFs) of the non-dominated solutions. The plots in the left highlights the differences 

in favour of Algorithm 1, and the plots in the right highlights the differences in favour of Algorithm 2. The colour level encodes the magnitude of the observed differences. 

The lines in the left, centre and right correspond to the best, median and worst attainment surfaces, respectively. The statistics and EAFs have been determined based on 21 

runs. The three subfigures on the bottom show all solutions generated by each optimizer in a single run, represented in the objective space. The solutions are taken from 

the median run with respect to hypervolume out of 21 runs. 

strate the potential and run time of the approach when applied 

to a real problem. A model based approach is adopted, whereby 

a representative engine model of the 1.0 litre 3-cylinder gasoline 

direct injection (GDI) turbocharged engine with a low-pressure ex- 

haust gas recirculation (LP EGR) system was used ( Fig. 6 ). The en- 

gine model was validated by dynamometer test data at various 

engine speeds and loads for the baseline configuration given in 

Table 4 . It is also tested over the two-minute segment of the WLTP 

test cycle to consider the fuel consumption and emissions during 

dynamic engine cycles ( Fig. 7 ). The optimization problem is typ- 

ical of the process that engineering teams would need to under- 

take during the early development of a new engine version plat- 

form. The problem is a constrained multi-objective problem seek- 

ing to minimize fuel consumption and NOx emissions over a 2- 

minute dynamic duty cycle. Seven decision variables are defined. 

The first four define the hardware choices of cylinder compres- 
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Fig. 4. Heatmap showing the constraint violation prevalence for the OSY problem. 

Table 4 

Maximum and minimum values for the full factorial design of experiment and sensitivity analysis. 

Compression EGR cooler Turbine mass Compressor mass Spark offset Valve offset MAP offset 

ratio size flow multiplier flow multiplier [CAD] [CAD] [in Hg] 

Baseline 10.5 1.0 1.0 1.0 0 0 0 

Min 10 0.25 0.75 0.75 -8 -10 0 

Max 12 1.75 1.25 1.25 8 10 20 

sion ratio ( Giles et al., 2018 ), turbo machinery and EGR cooler siz- 

ing ( Dimitriou, Turner, Burke, & Copeland, 2018 ). The last three 

relate to control variables that parameterise the engine control 

logic ( Giles, 2018 ). Specifically, the optimization problem consists 

of seven decision variables: 

x 1 ≡ Compression ratio 

x 2 ≡ EGR cooler size 

x 3 ≡ Turbine flow capacity 

x 4 ≡ Compressor size 

x 5 ≡ Spark timing [CAD] 

x 6 ≡ Inatake and Exhaust Valve timing [CAD] 

x 7 ≡ Manifold pressure target [in Hg] (12) 

The first four decision variables are discrete, mean- 

ing that they only take values from the following sets: 

x 1 ∈ { 10 , 10 . 5 , 11 , 11 . 5 , 12 } , x 2 ∈ { 0 . 25 , 1 , 1 . 75 } , and x 3 , x 4 ∈ 
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Fig. 5. Heatmap showing the constraint violation prevalence for the speed reducer problem. 

{ 0 . 75 , 1 , 1 . 25 } . The last three decision variables are continuous, 
and can take any values from the following intervals: x 5 ∈ [ −8 , 8] , 

x 6 ∈ [ −10 , 10] , and x 7 ∈ [0 , 20] . For brevity, let the vector that 

contains all decision variables be given by x = (x 1 , x 2 , . . . , x 7 ) 
T . 

The physical meaning of the objective and constraint functions 

is as follows: 

Minimise f 1 (x ) ≡ Normalised cumulative fuel [-] 
f 2 (x ) ≡ Normalised cumulative NOx [-] 

subject to g 1 (x ) ≡ Turbine inlet temperature [K] ≤ m limit 
g 2 (x ) ≡ Number of knock occurrences ≤ g b2 
g 3 (x ) ≡ Peak cylinder pressure [bar] ≤ g b3 
g 4 (x ) ≡ Peak cylinder pressure rise [bar/rad] ≤ g b4 
g 5 (x ) ≡ Total work [kJ] ≥ g b5 

(13) 

The above optimization problem has two objectives to be min- 

imised, namely fuel consumption and nitrogen oxides (NOx) emis- 

sions. Both fuel consumption and NOx are measured over a pe- 

riod of time and we take the cumulative values as the final per- 

formance of a candidate design x . Constraints g 1 to g 4 are defined 

as hardware protection limits, defining upper bounds on tempera- 

tures and pressures to ensure the engine operates within its ther- 

mal and mechanical limits ( Parsons et al., 2021; Tang, 2016; Tor- 

natore et al., 2019; Zhen et al., 2012 ). Constraint g 5 is defined to 

ensure that a given configuration can meet the overall work out- 

put specified by the duty cyle which represents a design require- 

ment. The threshold on g 1 corresponds to the material limit for 

fixed turbocharger ( m limit ). The thresholds for the other constraints 

are defined with respect to a baseline configuration design. The de- 

cision variable values for this design are shown in Table 4 and the 

corresponding outputs are shown in Fig. 11 . 3 This baseline design 

will be compared to the best designs obtained by the optimizers in 

Section 7 . However, we would like to highlight that this compari- 

son may not be totally fair since the precise set of criteria used to 

3 Case study is commercially sensitive and performance is anonymised through 

normalisation over the range of the values seen. 
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Fig. 6. Schematic diagram of a turbocharged GDI engine with low pressure EGR routing. 

Fig. 7. Desired engine torque and speed signals used in engine simulation for the 2-minute segment of the WLTP test cycle. 

develop the baseline design is unavailable, and the baseline may 

have been established using a broader set of objectives and con- 

straints. The model runs in Matlab Simulink version 2017b envi- 

ronment and includes a physics-based model developed in Ricardo 

WAVE-RT 4 version 2016.2. 

The sensitivity of the optimization objectives and constraints 

are checked by two-level full factorial design for the minimum and 

maximum values given in Table 4 ( Fig. 8 ). The main purpose of giv- 

ing the sensitivities for fuel and NOx is to demonstrate the engine 

model is sensitive to changes in the parameters. The minimum and 

4 WAVE-RT, part of the Ricardo Software product family Fluid Dynamics. Available 

from: https://software.ricardo.com/software-updates/ricardo-software-2020-2 

maximum values for control parameters given in Table 4 are far 

from the optimum values to obtain the maximum brake torque and 

efficiency. 

7.2. Optimization results 

Figure 9 and Table 5 show a comparison between the two pro- 

posed constrained ParEGO algorithms and NSGA-II when applied to 

the ICE design problem. 

ParEGO-C2 outperforms ParEGO-C1 across the entire optimiza- 

tion run as shown in Fig. 9 a, with tight confidence intervals and 

a percentage improvement of 2.70% at the end of the optimization 

run. Both ParEGO algorithms outperform NSGA-II, where the per- 
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Fig. 8. Main effects (sensitivity) analysis of architecture and control parameters. CR: Compression ratio, EGR: EGR cooler size, TURB: Turbine mass flow multiplier, COMP: 

Compressor mass flow multiplier, SPARK: Spark timing offset, VALVE: Valve timing offset, MAP: Manifold absolute pressure offset. 

Table 5 

Performance of ParEGO-C1, ParEGO-C2, and NSGA-II on the ICE design problem. The 

performance is measured by the hypervolume indicator (the higher the better). The 

results on this table also includes the number of solutions that dominate the base- 

line engine design found during the entire optimization run. The statistics have 

been determined based on 21 runs. The term Std is an abbreviation for standard 

deviation, Max for maximum, and Min for minimum. 

(a) Hypervolume 

Optimizer Median Mean (Std) Max Min 

ParEGO-C1 0.8855 0.8820 ( 0.0252 ) 0.9161 0.8061 

ParEGO-C2 0.9098 0.9017 (0.0258) 0.9275 0.8284 

NSGA-II 0.8114 0.7561 (0.1305) 0.9031 0.4550 

(b) Number of solutions that dominate the baseline design 

ParEGO-C1 61 57 (36) 126 0 

ParEGO-C2 14 12 ( 5 ) 18 1 

NSGA-II 6 24 (27) 70 0 

centage improvement of ParEGO-C2 over NSGA-II is 11.43%, and for 

ParEGO-C1 over NSGA-II is 8.73%. All results are statistically signif- 

icant. Moreover, the EAFs in Fig. 9 b shows that ParEGO-C2 offers 

better attainment across several regions of the PF when compared 

with ParEGO-C1, whilst Fig. 9 d and f show that ParEGO-C1 and 

ParEGO-C2, respectively, offer better attainment across the entire 

PF when compared with NSGA-II. 

Figure 9 c and e show the infeasibility score and number 

of feasible solutions found during the optimization run, respec- 

tively. ParEGO-C2 reports the lowest infeasibility score during the 

first ≈150 evaluations, and the general trend shows that the in- 

feasibility score increases during the optimization run. Although 

ParEGO-C1 and NSGA-II report higher infeasibility score values 

than ParEGO-C2 in the first ≈150 evaluations, their values de- 

creases during the optimization run and remain stable after eval- 

uation ≈220. A similar trend is captured by the number of feasi- 

ble solutions found, as shown in Fig. 9 e, where ParEGO-C2 finds 

the highest number during the beginning of the optimization 

run, but as its number decreases, the number of feasible solu- 

tions found by ParEGO-C1 and NSGA-II increases. This is a sim- 

ilar trend observed for the OSY problem, where the infeasibility 

score of ParEGO-C2 keeps increasing during the optimization run, 

but decreases for both ParEGO-C1 and NSGA-II as shown in Fig. 2 c. 

The same can be said about the number of feasible solutions as 

shown in Fig. 2 e, where ParEGO-C2 finds the highest number in 

the beginning of the optimization run but reports a small reduc- 

tion as the number of evaluations progresses, while the number 

of feasible solutions found by both ParEGO-C1 and NSGA-II keeps 

increasing. 

Figure 9 g, h and i shows all solutions evaluated, including the 

initial set of solutions, taken from the median run with respect to 

hypervolume. An interesting point about the initial set of solutions 

is that many of the solutions are infeasible. In fact, in some runs 

we have noted that there were no feasible solutions in the initial 

set of solutions, but in all cases the optimizers have managed 

to find feasible solutions during the optimization run. Moreover, 

Fig. 9 g shows that ParEGO-C1 found many feasible solutions in 

a region close to the PF, and many other infeasible solutions 

found are in close proximity to this region. Figure 9 h shows that 

ParEGO-C2 only found a few feasible solutions close to the PF 

region (although with very good convergence), and found many 

high-performance infeasible solutions further away from the fea- 

sible region. This is a similar trend to that captured in Fig. 2 h for 

the OSY problem, where many infeasible solutions are generated 

in a region father away in objective space from the feasible region, 

while ParEGO-C1 is more likely to generate infeasible solutions 

closer to the feasible region. Finally, Fig. 9 i shows that NSGA-II 

found many feasible solutions but most are sub-optimal. 

The probability of violating an individual constraint along the 

optimization run is shown in Fig. 10 for all optimization algo- 

rithms. For ParEGO-C1 in Fig. 10 a, CPR is relatively problematic 

across the optimization run. CPR is also problematic for ParEGO- 

C2 as shown in Fig. 10 b but only after ≈100 evaluations, while 

Work is always problematic along the entire optimization run 

for ParEGO-C2. For NSGA-II, in general there are no problematic 

constraints as shown in Fig. 10 c, although CPR persists in early 

stages. 

Figure 11 shows in a parallel coordinates plot the values ob- 

tained for the objectives, constraints and decision variables. The 

solutions obtained by the optimization algorithms are taken from 

the median run with respect to hypervolume, and these are com- 

pared with the baseline engine design. Notably, ParEGO offers a 

better spread of solutions when compared with NSGA-II, and most 

solutions reported by NSGA-II seem to be clustered around three 

regions in the objective space. This is due to the narrower set of 

values obtained by NSGA-II as shown in Fig. 11 , in particular with 

respect to the continuous decision variables (i.e. spark timing off- 

set, valve timing offset, and manifold absolute pressure offset). All 

solutions found by the optimization algorithms have better NOx 

emissions than the baseline design, and both ParEGO algorithms 

have found solutions with better fuel consumption than the base- 

line design. However, the baseline design has better NOx emissions 

than the solutions found by NSGA-II. 

The performance of the optimization algorithms is now com- 

pared against the baseline engine design by considering all the 

optimization runs. The percentage improvement of the best de- 

signs found by ParEGO-C1, ParEGO-C2 and NSGA-II over the base- 

line design are respectively 36.1%, 36.4% and 35.8% for NOx emis- 

sions; and 1.82%, 2.03% and 1.56% for fuel consumption. Table 5 b 
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Fig. 9. Performance of ParEGO-C1, ParEGO-C2 and NSGA-II on the ICE design problem. Subfigures in the left show the hypervolume indicator, infeasibility score, and the 

number of feasible solutions found. For each performance indicator the mean and variance are represented by the middle line and surrounding shaded region, respectively. 

Subfigures in the right show the differences between the empirical attainment functions (EAFs) of the non-dominated solutions. The plots in the left highlights the differences 

in favour of Algorithm 1, and the plots in the right highlights the differences in favour of Algorithm 2. The colour level encodes the magnitude of the observed differences. 

The lines in the left, centre and right correspond to the best, median and worst attainment surfaces, respectively. The statistics and EAFs have been determined based on 21 

runs. The three subfigures on the bottom show all solutions generated by each optimizer in a single run, represented in the objective space. The solutions are taken from 

the median run with respect to hypervolume out of 21 runs. 

shows the number of solutions found during the optimization run 

that dominate the baseline design. ParEGO-C1 found more solu- 

tions that dominate the baseline design, and is the most consis- 

tent of the three optimizers. NSGA-II could not find solutions that 

dominate the baseline design in 8 out of 21 runs, while ParEGO- 

C2 found at least one solution that dominates the baseline design 

across all runs. 

7.3. Discussion 

To analyse the obtained results we have used a combination 

of different quality indicators. Besides the hypervolume and EAFs, 

which are considered standard quality indicators in the literature 

( Audet et al. (2021) ), we have looked into understanding more 

about the constraint handling techniques of the algorithms by 
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Fig. 10. Heatmap showing the constraint violation prevalence for the ICE design problem. Determined based on 21 runs. The following constraint names have been abbrevi- 

ated. TurbTemp: Turbine temperature, Knock: Number of knock occurrences, CP: Cylinder pressure, CPR: Cylinder pressure rise, Work: Total work. 

monitoring how infeasible new solutions are (via the infeasibility 

score ( Eq. (5) )), the number of feasible solutions being generated, 

and also the constraint violation prevalence across the different 

constraints. This has revealed that some constraints are more ac- 

tive than others, for instance, in the speed reduce problem from a 

total of 11 constraints, 8 could be considered inactive (i.e. g 1 − g 6 , 

g 8 and g 11 ); in the OSY problem from a total of 6 constraints, two 

could be considered as inactive (i.e. g 1 and g 4 ), and; the ICE design 

problem from a total of 5 constraints only one is inactive (i.e. g 1 ). 

ParEGO-C2 exhibits a lack of consistency in finding feasible so- 

lutions for the OSY and ICE design problems when compared with 

ParEGO-C1 and NSGA-II after ≈100 evaluations, and found many 

high-performance infeasible solutions further away from the feasi- 

ble region for these problems. For the speed reducer problem the 

opposite trend was captured, that is, ParEGO-C2 was more effec- 

tive at finding feasible solutions when compared with the other 

two optimizers. The reason for this inconsistency remains unclear 

but this trend was also captured by the infeasibility score, and 

constraint violation prevalence across the constraints. This suggests 

that in problems with very active constraints (such as OSY and ICE 

design problems), the feasible region is not well captured by the 

surrogate models of the constraints, and in such situation a penalty 

function technique can be more effective at generating feasible so- 

lutions when compared with constrained EI. Despite this, it was re- 

vealed that the feasible solutions found by ParEGO-C2 offer better 

convergence towards and across the Pareto front when compared 

with ParEGO-C1 and NSGA-II, even when the latter was allowed to 

run with a much larger evaluation budget. 

The reason why NSGA-II found more feasible solutions than the 

two ParEGO instances could be that variations operators such as 

crossover are more likely to produce nearby solutions to the ex- 

isting ones. On the other hand, ParEGO is more likely to find in- 

feasible solutions as it queries the constraint models in an attempt 

to learn where the boundaries of the feasible region are located. 

Eventually, as the surrogate models become more accurate, ParEGO 

is able to reveal the location of the Pareto optimal solutions. 
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Fig. 11. Feasible non-dominated solutions shown in a parallel coordinates plot. The solutions are taken from the median run with respect to hypervolume out of 21 runs. 

The baseline design is depicted by the dashed line, and the circles indicate the thresholds for the constraints. A small tolerance is applied to the discrete variable values so 

that they are unlikely to overlap perfectly along the coordinates rulers. Fuel: Normalised cumulative fuel, NOx: Normalised cumulative NOx, TurbTemp: Turbine temperature, 

Knock: Number of knock occurrences, CP: Cylinder pressure, CPR: Cylinder pressure rise, Work: Total work, CR: Compression ratio, EGR: EGR cooler size, TURB: Turbine mass 

flow multiplier, COMP: Compressor mass flow multiplier, SPARK: Spark timing offset, VALVE: Valve timing offset, MAP: Manifold absolute pressure offset. 

8. Conclusion 

This paper has studied the application of a state-of-the-art 

BOA, known as ParEGO, to solve an expensive constrained multi- 

objective optimization problem characterised for having a mix 

of continuous and discrete variables. For this, a real non-linear 

and transient internal combustion engine (ICE) design problem has 

been formulated, and the conventional ParEGO algorithm has been 

extended to handle such type of problems. This includes: the 

integration of a strategy to handle mixed continuous and dis- 

crete variables; a new strategy to select a subset of training 

points to construct a surrogate model and a criterion that ex- 

ploits the presence of both feasible and infeasible solutions in 

the training set; and the incorporation of two constraint han- 

dling strategies—one based on penalty functions (ParEGO-C1) and 

the other based on the constrained EI (ParEGO-C2). The pro- 

posed ParEGO variants have been compared to a popular opti- 

mization algorithm for the multi-objective study of ICE design 

problems, known as NSGA-II. For this comparison to take place, 

we also equipped NSGA-II for dealing with problems with a mix 

of continuous and discrete variables. This comparative analysis 

was conducted on a limited budget of 500 function evaluations, 

and involved two benchmark problems taken from the litera- 

ture (i.e. speed reducer and OSY), and the proposed ICE design 

problem. 

To analyse the obtained results we have employed a combina- 

tion of different quality indicators. This includes the popular hyper- 

volume and EAFs to measure the convergence towards and diver- 

sity across the Pareto front. In addition, to better understand the 

performance of the constraint handling techniques we monitor the 

progress of several indicators during the optimization run, such as 

the number of feasible solutions found, their degree of infeasibility, 

and the prevalence of constraint violation across the different con- 

straints. This has revealed that some constraints are more active 

than others, and such information could be used for instance to 

simplify the optimization problems since inactive constraints could 

be omitted without affecting the feasible Pareto optimal front. The 

key findings from this work are: 

1. When selecting a subset of solutions to construct a surrogate 

model, the obtained results suggest that ensuring a good bal- 

ance between feasible and infeasible solutions may not always 

be better than simply relying on the solutions performance, and 

this depends on how active the constraints in the problem are. 

2. Constrained ParEGO convergence towards the PF is better than 

NSGA-II, and ParEGO-C2 is better than ParEGO-C1, confirmed by 

both hypervolume and EAF. 

3. NSGA-II is more sensitive to randomness (e.g. initial solutions) 

when compared with ParEGO-C2. This has been quantified 

by the standard deviation of the hypervolume indicator (see 

Tables 2 and 5 ). The higher standard deviation obtained by 

NSGA-II has been linked to lack of convergence. Running NSGA- 

II for 10,0 0 0 function evaluations improved convergence and 

lead to a reduction in the standard deviation (see Table 2 ). 

4. ParEGO-C2 generated many infeasible solutions in the OSY 

and ICE design problems when compared with ParEGO-C1 and 

NSGA-II, and this tends to happens after generating very good 

quality feasible solutions. However, for the speed reducer prob- 

lem, ParEGO-C2 generated more feasible solutions than the 

other two algorithms. 

5. A comparison with a baseline engine design revealed that the 

optimization algorithms are able to find improvements of up-to 

36.4% for NOx emissions, and up-to 2.03% for fuel consumption. 

The results shown in Table 5 b have also highlighted that: (i) 

constrained ParEGO found solutions, in 21 out of 21 runs, that 

dominate the baseline design while NSGA-II fail to do so in 8 

out of 21 runs; and (ii) ParEGO-C1 found more solutions that 

dominate the baseline design than the other two optimizers. 

Based on the above key findings, we conclude that constrained 

ParEGO methods are effective for solving modern ICE design opti- 

mization problems, with expensive evaluations due to the new test 

procedures for real-world engine conditions. This has also been 

shown on similar benchmark problems. 

Although ParEGO-C2 has shown better performance than 

ParEGO-C1 across all optimization problems, many of the solutions 

found by ParEGO-C2 during the later stages of the optimization 
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were infeasible. One potential solution to improve the perfor- 

mance of ParEGO-C2 is to endow the algorithm with a local 

search operator. This however would require that some amount of 

the computational budget be devoted to perform a local search. 

There are several factors that could have an influence on the 

performance of both constraint handling approaches and this 

takes us to discuss their pros and cons. A major difference is 

that penalty function methods do not need to build a surrogate 

of each constraint function, which besides avoiding all the com- 

putational burden of having to construct several surrogates, also 

avoids having to deal with the following possible issues, such as: 

is the same set of training points used to build the surrogate of 

the objective function suitable for the constraints? Or knowing 

that the constraint functions can have different levels of com- 

plexity is the same surrogate modelling approach appropriate for 

all constraints? Although penalty functions are simple to apply, 

there are drawbacks associated with the discontinuities that 

could potentially be created between the feasible and infeasible 

region, which could cause issues to the surrogate modelling 

approaches. 

For future work, the endeavour of the authors is to extend the 

current work to handle uncertainties, which could arise from mul- 

tiple sources including fidelity of evaluation functions and man- 

ufacturing tolerances. Uncertainty quantification and management 

is important in identifying designs that offer robust performance 

across objectives and constraints. Directions for future work also 

include, explore the application of different paradigms, such as the 

use of Bayesian inference as in Tsionas (2019) , where the initial 

decision variable ranges are considered to represent a prior belief 

in the location of the Pareto front and Markov Chain Monte Carlo 

converges on a posterior belief for the optimal values of the deci- 

sion variables, using the scalarised objective functions as a likeli- 

hood. Further extend the ParEGO algorithms for dealing with cat- 

egorical variables, since currently it is limited to discrete variables 

of the type ordinal. Another key endeavour is to test the proposed 

ParEGO extensions on other real engineering problems, and also 

on other benchmark problems, in particular with more tunable pa- 

rameters, such as the number of levels in the discretization. 

Contributions 

The following uses the abbreviated names of the authors. JAD 

and UO have collaborated in writing the paper; UO and RB have 

formulated the real-world internal combustion engine design opti- 

mization problem; JAD and SS have collaborated in the implemen- 

tation of the ParEGO algorithm and in the design and implemen- 

tation of the approach to handle a mix of continuous and discrete 

variables; JAD designed and implemented the subset selection 

strategies and implemented the Kriging model; DCO implemented 

the probabilistic constraint handling approach; SS implemented 

the penalty based approach; RJL led the industrial support at Ford 

Motor Company; RB provided expert knowledge about the real- 

world problem, and led the University of Bath DYNAMO studies; 

RCP provided expert optimization advice; contributed to paper 

development, and led the University of Sheffield DYNAMO studies. 

CRediT authorship contribution statement 

João A. Duro: Conceptualization, Methodology, Software, Inves- 

tigation, Data curation, Writing – original draft, Writing – re- 

view & editing, Visualization. Umud Esat Ozturk: Conceptualiza- 

tion, Software, Investigation, Writing – original draft, Visualiza- 

tion. Daniel C. Oara: Software, Methodology. Shaul Salomon: Soft- 

ware, Methodology. Robert J. Lygoe: Conceptualization, Resources, 

Project administration, Funding acquisition. Richard Burke: Con- 

ceptualization, Writing – review & editing, Visualization, Super- 

vision, Project administration, Funding acquisition. Robin C. Pur- 

shouse: Conceptualization, Methodology, Writing – review & edit- 

ing, Supervision, Project administration, Funding acquisition. 

Acknowledgments 

This work was conducted under the Advanced Propulsion Cen- 

tre (UK) project DYNAMO, with funding from Innovate UK under 

grant number 113130. Daniel C. Oura acknowledges EPSRC schol- 

arship support (EP/M508135/1 and EP/M50 6 618/1). The authors 

would like to thank Dr Byron Mason, Dr Edward Windward and Dr 

Sam Le-Corre from Loughborough University and Dr Tomasz Duda 

from University of Bath for their contribution in development of 

the engine control model, Robert Norris from Ricardo plc for his 

contribution to the development of the Ricardo WAVE-RT model, 

Roshan Mathew from University of Bath for his role in setting up 

the WAVE-RT Ricardo Software on the Balena High Performance 

Computing (HPC) Service at the University of Bath, and Ricardo plc 

for their support, including the provision of licenses for the WAVE- 

RT software, which has been instrumental for the generation of 

simulation results. 

Appendix A. Background 

A1. Kriging 

The term Kriging was first coined by Matheron (1963) in hon- 

our of Daniel Krige, a mining engineer from South Africa interested 

in the application of mathematical statistics to ore validation, and 

whose work lead to the development of Kriging from a geostatis- 

tics perspective. Sacks et al. (1989) introduced the use of Kriging to 

engineering problems developing the design and analysis of com- 

puter experiments (DACE) model. This section provides some de- 

tails about the Kriging modelling approach used in this paper, and 

our implementation follows some recommendations from Forrester 

et al. (2008) and Kleijnen (2017) to construct and search the sur- 

rogate model. 

Given the initial design x 1 , . . . , x N of N points where each x ∈ 

R n is a n -vector of continuous decision variables, and a vector of 

corresponding scalar evaluations y = (y 1 , . . . , y N ) 
T we seek to learn 

a mapping y = f (x ) , where f is our expensive-to-evaluate func- 

tion. This mapping is approximated by a sample path of a Gaussian 

stochastic process (GP) with unknown mean μ and covariance σ 2 
R; 

σ 2 is the variance of the GP; and R is an N × N matrix param- 

eterised by the n -dimensional vector θ = (θ1 , . . . , θn ) 
T and having 

elements: 

R ab = K(|| x a − x b || ) = exp 

( 

−

n 
∑ 

i =1 

θi | x 
(a ) 
i 

− x (b) 
i 

| 2 

) 

, (A.1) 

where a, b ∈ { 1 , . . . , N} , x (a ) 
i 

is the i th decision variable of the point 

x a and the function K(|| x a − x b || ) measures the correlation be- 

tween the responses at two design points. To learn θ a common 

approach is to use maximum likelihood estimation (MLE), which 

provides estimates for the mean and variance, respectively: 

ˆ μ = 
1 T R −1 y 

1 T R −1 1 
and ˆ σ 2 = 

(y − 1 ̂  μ) T R −1 (y − 1 ̂  μ) 

N 
, (A.2) 

where 1 is a n-dimensional column vector of ones. It is however 

required to solve the following unconstrained optimization prob- 

lem: 

Maximise −N 
2 ln ( ̂  σ 2 ) − 1 

2 ln | R| , 
subject to θi = 10 τi where − 3 ≤ τi ≤ 2 , i = 1 , . . . , n, 

(A.3) 
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which cannot be solved analytically and thus requires a numerical 

optimization algorithm. The most computational expensive task in 

(A.3) is to determine the inverse of R. For this, we use Cholesky 

decomposition followed by forward and back substitution. In case 

the decomposition fails, which might happen if R is close to singu- 

lar, we assign a very small value to the objective function in (A.3) . 

Based on our experiments we have observed that this approach 

always lead to a well conditioned matrix at the end of the opti- 

mization process. 

To make a new prediction at x we use the MLE predictor func- 

tion given by: 

ˆ f (x ) = ˆ μ + r 
T 
R 

−1 (y − 1 ̂  μ) , (A.4) 

where r = (K(|| x 1 − x || ) , . . . , K(|| x N − x || )) T is a vector of correla- 

tions between all known points and x . One of the key advantages 

of Kriging is that each prediction has its own error estimate. This 

is known as the mean squared error (MSE) and is given by the fol- 

lowing expression: 

ˆ ε 2 (x ) = ˆ σ 2 

[

1 − r 
T 
R 

−1 
r + 

(1 − 1 T R −1 
r) 2 

1 T R −1 1 

]

. (A.5) 

A2. Background on ParEGO 

ParEGO is a surrogate-based multi-objective optimization algo- 

rithm that exhibits a promising performance for scenarios where 

the number of evaluations is restricted in number. The algorithm 

itself builds on the EGO algorithm, a single-objective optimizer 

specifically designed for expensive objective functions. Some de- 

tails about the EGO algorithm are as follows. 

A2.1. EGO 

The first step of EGO is to generate an initial set of solutions. 

Different space-filling schemes could be used here, some of the 

most popular ones are Latin Hypercube Sampling ( Mckay, Beck- 

man, & Conover, 20 0 0 ) or simply generate new solutions randomly 

inside the decision space. Following the evaluation of the initial 

solutions, a surrogate model is learnt by using the solution/fitness 

pairs, where fitness corresponds to the value of the objective func- 

tion. The next step is to use the surrogate model to estimate where 

“best” to sample the next point. However, this does not imply that 

the next solution to be evaluated corresponds literally to the loca- 

tion that improves the estimated fitness, since we need to take into 

account the model’s accuracy. In fact, a solution that has a good fit- 

ness and low uncertainty, might not be as desirable as a solution 

with a poor predicted fitness but with a high uncertainty. Hence, 

we need some criterion that promotes a balance between explo- 

ration and exploitation, where exploration is associated with ar- 

eas in the search space with high uncertainty, whereas exploitation 

corresponds to areas with better fitness. For this, EGO relies on the 

EI function ( Eq. (A.7) ), and also on the prediction and error estima- 

tion properties of the Kriging model (refer to Eqs. (A.4) and (A.5) ). 

More formally, the uncertainty in the model prediction is 

the variance of a normal distributed random variable F (x ) ∼

N( ̂  f (x ) , ̂  ε 2 (x )) at point x with mean ˆ f (x ) and variance ˆ ε 2 (x ) . Due 
to the fact that F (x ) could take different values, controlled by the 

size of ˆ ε 2 (x ) , we rely on the EI to balance ˆ f and ˆ ε . Let X denote a 

set that contains all solutions evaluated so far, and let f (x + ) de- 

note the current best “known” function value that is located at 

point x + , where: 

x + = arg min x ∈X f (x ) . (A.6) 

The improvement at x is I(x ) = max ( f (x + ) − F (x ) , 0) , and the EI 

is obtained by taking the expected value as given by E[ I(x )] ≡

E[ max ( f (x + ) − F (x ) , 0)] . A closed form expression for this expec- 

tation is given by: 

E[ I(x )] = 

{ 

( f (x + ) − ˆ f (x ))�
(

f (x + ) − ˆ f (x ) 
ˆ ε (x ) 

)

+ ˆ ε (x ) φ
(

f (x + ) − ˆ f (x ) 
ˆ ε (x ) 

)

if ˆ ε (x ) > 0 

0 if ˆ ε (x ) = 0 

(A.7) 

where �(. ) and φ(. ) are the cumulative distribution function (CDF) 

and probability density function (PDF), respectively. Note that, the 

first term in Eq. (A.7) before the summation controls the exploita- 

tion, and the second term after the summation controls the explo- 

ration. The next point to be sampled is found by maximising the EI 

function, which involves using a numerical optimization approach 

since it cannot be solved analytically. The EGO algorithm completes 

one iteration once the new point is evaluated. In the next iteration 

the surrogate model is updated, and a new point is found again by 

conducting a search over the EI and finding the point that max- 

imises it. This procedure repeats itself until some termination cri- 

terion is satisfied. 

The above approach has been extended for dealing with multi- 

objective problems by ParEGO. This is achieved by relying on 

scalarisation functions which have been widely used to convert 

multi-objective optimization problems into a single objective op- 

timization problem. 

A2.2. Scalarisation 

Before we delve into scalarisation, the objectives need to be 

converted to non-dimensional units. This requires estimating a 

lower and upper bound with respect to each objective, respectively, 

as follows: 

z l i = min 
x ∈X 

f i (x ) , i = 1 , . . . , M;

z u i = max 
x ∈X 

f i (x ) , i = 1 , . . . , M. (A.8) 

Note that the lower and upper bounds have been estimated 

from solutions in X , meaning that as more solutions are added to 

X , the estimated bounds are likely to change 5 The objectives are 

then normalised as follows: 

ˆ z i = (z i − z l i ) / (z 
u 
i − z l i ) , i = 1 , . . . , M. (A.9) 

The use of scalarisation functions requires the use of refer- 

ence direction vectors, and each vector targets the PF from a dif- 

ferent direction. Let d be a reference direction vector that exists 

in the set D of suitable reference direction vectors ( Eq. A.10 ). D 

is constructed by using a { M, h } simplex lattice design that con- 

sists of M-dimensional points defined by the following coordinate 

settings: the proportions assumed by each component d i where 

i ∈ { 1 , . . . , M} take the h + 1 equally spaced values from 0 to 1. 

D = 

{ 

d = (d 1 , . . . , d M ) 
T | 

M 
∑ 

i =1 

d i = 1 and d i ∈ 

{ 

0 , 
1 

h 
, 
2 

h 
, . . . , 1 

} 

for all i = 1 , . . . , M } 

(A.10) 

In an iterative approach starting from the first reference direc- 

tion vector, a scalar fitness value is calculated for each solution by 

using a scalarizing function. This function maps an objective vec- 

tor z corresponding to solution x into a scalar value with respect 

to some weight vector w = (w 1 , . . . , w M ) 
T . The scalarizing function 

5 In the literature it is common to use the ideal and nadir objective vectors to 

normalise objectives. These objective vectors are defined with respect to the feasi- 

ble space F . However, they cannot be used in practice when there are no feasible 

solutions, which is a strong possibility in our case given the highly constrained na- 

ture of the optimization problem. The alternative is to rely on all solutions irrespec- 

tive of their feasibility status. 
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used is called the weighted Chebyshev Augmented and has the fol- 

lowing form: 

s (x ) = max 
1 ≤i ≤M 

{

w i ̂  z i 
}

+ ρ
M 

∑ 

i =1 

w i ̂  z i , (A.11) 

where ρ is a small positive number which we set to 0.05 as sug- 

gested in Knowles (2005) . It was mentioned in Giagkiozis, Pur- 

shouse, & Fleming (2013) that when using certain scalarizing func- 

tions (including the Chebyshev function), the objective vectors of 

the solutions on the PF might not directly match with the pro- 

jection of their corresponding reference direction vectors. This is 

because an evenly distributed set of weighting vectors can only 

produce well distributed Pareto-optimal solutions when the given 

scalarisation function is linear in the weights w ( Giagkiozis, Pur- 

shouse, & Fleming, 2014 ), which is not the case for the Cheby- 

shev function. However, there is an optimal weight vector 6 that 

accounts for this discrepancy which is defined as: 

w i = t i 

/ M 
∑ 

i =1 

t i , where t i = (d i + ǫ) −1 , i = 1 , . . . , M, (A.12) 

and ǫ is a small number set to 0.01. Each component in 

Eq. (A.12) is normalised to ensure that the sum of all components 

adds up-to one. The transformation in Eq. (A.12) is only optimal 

for the weighted sum and weighted Chebyshev Augmented scalar- 

ising functions. To use other scalarising functions there is a more 

general approach suggested in Giagkiozis et al. (2013) . 

A surrogate model can now be learnt by using the existing so- 

lution/fitness pairs. A new solution is then found by maximising 

the EI function, which is then added to X , and following its eval- 

uation one iteration is completed. In the next iteration the same 

procedure is applied to a new sub-problem, where all solutions 

are scalarised with respect to a different reference direction vec- 

tor. This is similar to the procedure described above for EGO, the 

main difference is that as more solutions are generated by travers- 

ing all reference direction vectors, multiple trade-off solutions are 

expected to be found. 

A3. Background on NSGA-II 

NSGA-II ( Deb et al., 2002 ) is a well known Pareto-dominance 

based multi-objective evolutionary algorithm capable of handling 

multi-objective problems. NSGA-II is chosen in this study due to 

its current popularity in the study of multi-objective ICE design 

problems, as in D’Errico et al. (2011) , Lotfan et al. (2016) , Corre 

et al. (2019) . In this section we provide some details about NSGA- 

II, including how it handles constraints. The extension to handle 

problems with a mix of continuous and discrete variables will be 

described in Section 4.1 . 

NSGA-II evolves a set of solutions (also known as population 7 ) 

by relying on genetic operators that conduct selection, crossover 

and mutation. The main loop of the NSGA-II algorithm is as fol- 

lows. Initially a parent population P is created by using some de- 

sign of experiments technique (e.g. Latin Hypercube sampling). Fol- 

lowing this, an offspring population Q is created by applying bi- 

nary tournament selection, recombination, and mutation operators 

to P . Next, an elitist-preserving approach and a parameterless nich- 

ing operator are applied to the combined population R = P ∪ Q , and 

6 Based on our simulation results, the optimal w for the Chebyshev function 

obtained by solving the optimization problem in Eq. (11) by Giagkiozis et al. 

(2013) can be approximated instead by using the transformation in Eq. (A.12) . 
7 The term population is used in the context of population-based search methods 

employed by evolutionary optimization algorithms and others, and refers to a con- 

tainer of fixed size with solutions that are updated after each generation. But this 

excludes BOAs, such as ParEGO, which relies on all evaluated solutions (kept in X ) 

during the course of the optimization run. 

a subset of solutions from R are chosen to replace the population 

in P by applying selection operators. This completes the first gen- 

eration, and in subsequent generations the whole process repeats 

itself by first creating a new Q from the current P and each gen- 

eration ends once P is updated. This iterative process repeats it- 

self until some termination criterion is satisfied (e.g. the maximum 

number of generations has been exceeded). 

There is a small difference between the above main loop, as de- 

scribed in Deb et al. (2002) , and our own implementation. In the 

first generation the combined population R is treated as the ini- 

tial population, which is initialised by some design of experiments 

technique. Following this, P is created by applying selection op- 

erators to R as mentioned above, Q is created in the usual way, 

and the two are combined to generate a new R . This completes 

the first generation, and the same process repeats again for more 

generations having R as the input for each generation. Some details 

about the operators as as follows: 

1. The elitist-preserving approach divides R into non-dominated 

ranks and starting from the best rank to the worst one, only 

the best ranks are allowed into P until its maximum size is ex- 

ceeded. 

2. The niching operator, known as crowding distance, is applied to 

the solutions in last rank of P . It then determines how crowded 

each solution is by measuring their distances in the objective 

space, and the most crowded solutions are removed from the 

last rank until the size of P is no longer exceeded. 

3. The binary tournament selects two solutions from P at random, 

and generates several pairs. A single solution is chosen from 

each pair as the winner of a tournament selection, and the se- 

lected solutions are used to create a new Q . The tournament 

selection is as follows. The solutions are first compared by look- 

ing into their non-dominated rank, and the solution with the 

best rank is chosen. In case both solutions have the same rank, 

then the least crowded solution is chosen (as determined by 

the crowding distance operator). 

4. The crossover and mutation are also called variation operators 

and are applied to Q to make it more distinct from P . There 

are many crossover and mutation operators in the literature to 

choose from, and for continuous problems it is common to use 

simulated binary crossover ( Deb & Kumar, 1995 ) and polyno- 

mial mutation ( Deb & Goyal, 1996 ) when using NSGA-II. 

NSGA-II handles constraints by relying on the concept of infea- 

sibility score. The constraint violation of x with respect to the jth 

constraint is v j (x ) = max (g j (x ) − c j , 0) , and the infeasibility score 

of x is: 

ξ (x ) = 

J 
∑ 

j=1 

v j (x ) . (A.13) 

Notably, the higher the infeasibility score, the higher is the degree 

of constraint violation. The infeasibility score is used by a modified 

definition of dominance, which states that solution x 1 dominates 

solution x 2 if any of the following conditions is true: 

1. Solution x 1 is feasible and solution x 2 is not. 

2. Solutions x 1 and x 2 are both infeasible, but solution x 1 has a 

smaller infeasibility score. 

3. Solutions x 1 and x 2 are both feasible, and solution x 1 domi- 

nates x 2 . 

The above modified definition of dominance is used by the 

elitist-preserving approach and it will interfere in the composition 

of the non-dominated ranks. It is expected for solutions that are 

feasible to be promoted to better ranks when compared with in- 

feasible ones, and solutions which are closer to the feasible region 

will be promoted to better ranks when compared with more infea- 

sible solutions. 
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Appendix B. OSY and speed reducer design problem 

formulations 

The OSY problem ( Osyczka & Kundu, 1995 ) is a bi-objective 

problem with six decision variables and six constraints. The de- 

cision variables are all continuous, and four of the constraints are 

linear. The problem formulation is as follows: 

Minimise f 1 (x ) = −[25(x 1 − 2) 2 + (x 2 − 2) 2 + (x 3 − 1) 2 

+(x 4 − 4) 2 + (x 5 − 1) 2 ] , 
Minimise f 2 (x ) = x 2 1 + x 2 2 + x 2 3 + x 2 4 + x 2 5 + x 2 6 , 
subject to g 1 (x ) ≡ x 1 + x 2 − 2 ≥ 0 , 

g 2 (x ) ≡ 6 − x 1 − x 2 ≥ 0 , 
g 3 (x ) ≡ 2 − x 1 + x 1 ≥ 0 , 
g 4 (x ) ≡ 2 − x 1 + 3 x 2 ≥ 0 , 
g 5 (x ) ≡ 4 − (x 3 − 3) 2 − x 4 ≥ 0 , 
g 6 (x ) ≡ (x 5 − 3) 2 + x 6 − 4 ≥ 0 , 
0 ≤ x 1 , x 2 , x 6 ≤ 10 , 1 ≤ x 3 , x 5 ≤ 5 , 0 ≤ x 4 ≤ 6 . 

(B.1) 

The Speed reducer design problem ( Gunawan et al., 2003 ) has 

two objectives, seven decision variables and eleven constraints. The 

decision variables are all continuous apart from one which is dis- 

crete (i.e. x 3 ). The problem formulation is as follows: 

Minimise f weight = f 1 (x ) = 0 . 7854 x 1 x 
2 
2 (10 x 

2 
3 / 3 + 14 . 933 x 3 − 43 . 0934) 

− 1 . 508 x 1 (x 
2 
6 + x 2 7 ) + 7 . 477(x 3 6 + x 3 7 ) 

+ 0 . 7854(x 4 x 
2 
6 + x 5 x 

2 
7 ) , 

Minimise f stress = f 2 (x ) = 

√ 
(

745 x 4 
x 2 x 3 

)

2 +1 . 69 ×10 7 

0 . 1 x 3 
6 

, 

subject to g 1 (x ) ≡ 1 / (x 1 x 
2 
2 x 3 ) − 1 / 27 ≤ 0 , 

g 2 (x ) ≡ 1 / (x 1 x 
2 
2 x 

2 
3 ) − 1 / 397 . 5 ≤ 0 , 

g 3 (x ) ≡ x 3 4 / (x 2 x 3 x 
4 
6 ) − 1 / 1 . 93 ≤ 0 , 

g 4 (x ) ≡ x 3 5 / (x 2 x 3 x 
4 
7 ) − 1 / 1 . 93 ≤ 0 , 

g 5 (x ) ≡ x 2 x 3 − 40 ≤ 0 , 
g 6 (x ) ≡ x 1 /x 2 − 12 ≤ 0 , 
g 7 (x ) ≡ 5 − x 1 /x 2 ≤ 0 , 
g 8 (x ) ≡ 1 . 9 − x 4 + 1 . 5 x 6 ≤ 0 , 
g 9 (x ) ≡ 1 . 9 − x 5 + 1 . 1 x 7 ≤ 0 , 
g 10 (x ) ≡ f 2 (x ) ≤ 1300 , 

g 11 (x ) ≡

√ 
(

745 x 5 
x 2 x 3 

)

2 +1 . 575 ×10 8 

0 . 1 x 3 7 
≤ 1100 , 

2 . 6 ≤ x 1 ≤ 3 . 6 , 0 . 7 ≤ x 2 ≤ 0 . 8 , x 3 ∈ { 17 , . . . , 28 } , 
7 . 3 ≤ x 4 , x 5 ≤ 8 . 3 , 

2 . 9 ≤ x 6 ≤ 3 . 9 , 5 . 0 ≤ x 7 ≤ 5 . 5 . 

(B.2) 
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