

This is a repository copy of *Recycling of Faecal Sludge: Nitrogen, Carbon and Organic Matter Transformation during Co-Composting of Faecal Sludge with Different Bulking Agents.*

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/190366/</u>

Version: Supplemental Material

Article:

Manga, M, Evans, BE, Ngasala, TM et al. (1 more author) (2022) Recycling of Faecal Sludge: Nitrogen, Carbon and Organic Matter Transformation during Co-Composting of Faecal Sludge with Different Bulking Agents. International Journal of Environmental Research and Public Health, 19 (17). 10592. ISSN 1660-4601

https://doi.org/10.3390/ijerph191710592

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary Information

Recycling of Faecal Sludge: Nitrogen, Carbon and Organic Matter Transformation during Co-Composting of Faecal Sludge with Different Bulking Agents

Musa Manga 1,2,3,*, Barbara E. Evans², Tula M. Ngasala⁴ and Miller A. Camargo-Valero^{2,5}

- ¹ The Water Institute at UNC, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 357 Rosenau Hall, 135 Dauer Drive, Chapel Hill, NC 27599, USA
- ² School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
- ³ Department of Construction Economics and Management, College of Engineering, Design, Art and Technology (CEDAT), Makerere University, Kampala P.O Box 7062, Uganda
- ⁴ Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
- ⁵ Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales 170003, Colombia
- * Correspondence: mmanga@email.unc.edu or musa.manga@mak.ac.ug

Table S1. Summary of composting temperatures recorded from piles section during the composting of FS with different bulking agents.

Pile	Pile	Composting	Composting	Composting	T-max	Composting	Total
	Section	Period to reach	Period with T	Period to	(°C)	Period to drop	Composting
		T≥55°C (Days)	≥ 55°C	attain T-max		T ≤ 45°C	period
			(Days)	(days)		(Days)	
SSD							
	Тор	16	46	20	58.2	71	
	Middle	16	40	17	56	72	
	Bottom	NT	NT	19	52.8	54	
	Sides	17	23	20	56.9	70	
	mean	NT ⁱ	NT ⁱⁱ	51 ⁱⁱⁱ	$53.5^{\rm iv}$	69 v	109
SCH							
	Тор	16	56	52	72	107	
	Middle	5	47	52	67	104	
	Bottom	NT	NT	63	53	64	
	Sides	16	56	52	71	100	
	mean	41 ⁱ	54^{ii}	52 ⁱⁱⁱ	65^{iv}	99v	136
SBW							
	Тор	14	27	35	69	47	
	Middle	11	25	27	70.2	47	
	Bottom	19	12	24	68.3	41	
	Sides	15	26	27	68.7	43	
	mean	16 ⁱ	22 ⁱⁱ	19 ⁱⁱⁱ	67^{iv}	44^{v}	57

NT:-Not attained. ⁱRepresents the composting period at which the mean composting temperature of all the monitored pile sections (top, middle, bottom and sides) reached temperature $\geq 55^{\circ}$ C. ⁱⁱⁱ Represents the composting period with which the mean composting temperature of all the monitored pile sections (top, middle, bottom and sides) was $\geq 55^{\circ}$ C. ⁱⁱⁱ Represents the composting period at which the mean composting temperature of all the monitored pile sections (top, middle, bottom and sides) was $\geq 55^{\circ}$ C. ⁱⁱⁱ Represents the composting period at which the mean composting temperature of all the monitored pile sections (top, middle, bottom and sides) reached the maximum temperature. ^{iv} Represents the maximum temperature recorded by the mean composting temperature of all the monitored pile sections (top, middle, bottom and sides) at a given composting period. ^v Represents the composting period at which the mean composting temperature of all the monitored pile sections (top, middle, bottom and sides) at a given composting period. ^v Represents the composting period at which the mean composting temperature of all the monitored pile sections (top, middle, bottom and sides) at a given composting period. ^v Represents the composting period at which the mean composting temperature of all the monitored pile sections (top, middle, bottom and sides) at a given composting period. ^v Represents the composting period at which the mean composting temperature sections (top, middle, bottom and sides) dropped to temperatures $\leq 45^{\circ}$ C.

Figure S1. Changes in (A) Ash content, (B) Total organic carbon losses, (C) Nitrogen Losses and (D) Organic matter losses during the composting of Faecal Sludge – FS with Brewery waste – SBW, Coffee husks – SCH, and Sawdust – SSD. Error bars represent the standard error of n = 2.

Table S2: Analytical methods and laboratory instruments used for analyzing compost samples for physical ar	ıd
chemical properties.	

Analysis	Method used	Instruments used (Model, Producer, Origin)	Reference
Composting Temperature		Stainless steel compost thermometer. TFA, D- Wertheim, Model 19.2008, UK	
Moisture Content	Gravimetric method	Gallenkamp Hot Box Bench Top Laboratory Oven with fan, Model CHF097.XX2.5; London, UK	[27]
Organic matter/ Volatile solids	Gravimetric method	Heavy Duty Muffle Furnace, 240V FA1730-1, Thermolyne thermos scientific, USA	[27]
рН	Potentiometric method	pH electrode of HACH sensION+ MM374 Multi-Parameter Benchtop meter, USA	58
EC	Potentiometric method	EC probe of HACH sensION+ MM374 Multi- Parameter Benchtop meter, USA	[58]
Total organic carbon (%)	Oxidation using Potassium dichromate		[27,29]
Nitrogen (%)	Semi-micro Kjeldahl method	Auto distillation unit, FOSS Kjeltec™ 8200; Hoganas, Sweden	[27,30]
Nitrate-N (NO3 ⁻ -N) (mg/kg)	Spectrophotometrically by Sodium salycilatum acid colorimetric method	DR6000 Benchtop Spectrophotometer, HACH, USA Absorbance measured at 419 nm wavelength.	[27,31]
Ammonium-N (NH4+-N) (mg/kg)	Spectrophotometric methods	DR6000 Benchtop Spectrophotometer, HACH, USA	[27,31]
CO ₂ -C evolution	Öhlinger [33] soil respiration techniques	Absorbance measured at 000mm wavelengur	[34,35]

Macro and micronutrients

Total phosphorus	Wet -digestion method	DR6000 Benchtop Spectrophotometer, HACH,	[27]
(TP) (g/kg)	of sample preparation,	USA	
	Ascorbic Acid method,		
	Spectrophotometric	Absorbance measured at 880nm wavelength	
	methods	-	
Total potassium	Wet digestion method	Flame photometer: - Model 420 Flame	[27]
(TK) (g/kg)	of sample preparation,	photometer, Sherwood scientific, UK	
	Flame photometry	-	
	- •	Measured at 766 nm a wavelength	

Analysis	Method used	Instruments used (Model, Producer, Origin)	Reference
Calcium (Ca) (g/kg)	Wet -digestion method of sample preparation, Atomic Absorption Spectrometry	Atomic Absorption Spectrophotometer – Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada	[27,36]
		Measured at 422.7 nm wavelength	[27]
Magnesium (Mg) (g/kg)	Wet -digestion method of sample preparation, Atomic Absorption Spectrometry	Atomic Absorption Spectrophotometer – Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada	[36]
		Measured at 285.2 nm wavelength	
lron (Fe) (mg/kg)	Wet -digestion method of sample preparation, Atomic Absorption Spectrometry	Atomic Absorption Spectrophotometer – Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada	[36]
		Measured at 248.3 nm wavelength	
Manganese (Mn) (mg/kg)	Wet -digestion method of sample preparation, Atomic Absorption Spectrometry	Atomic Absorption Spectrophotometer – Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada	[36]
		Measured at 279.5 nm wavelength	
Sodium (Na) (g/kg)	Wet digestion method of sample preparation, Flame photometry	Flame photometer: - Model 420 Flame photometer, Sherwood scientific, UK	[27]
Toxic Elements/ Us	arm motal	Measured at 589 nm wavelength	
Copper (Cu)	Wet -digestion method	Atomic Absorption Spectrophotometer –	[36]
(mg/kg)	of sample preparation, Atomic Absorption Spectrometry	Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada Measured at 324.8 nm wavelength	[]

Analysis	Method used	Instruments used (Model, Producer, Origin)	Reference
Zinc (Zn) (mg/kg)	Wet -digestion method of sample preparation, Atomic Absorption Spectrometry	Atomic Absorption Spectrophotometer – Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada Measured at 213.9 nm wavelength	[36]
Lead (Pb) (mg/kg)	Wet -digestion method of sample preparation, Atomic Absorption Spectrometry	Atomic Absorption Spectrophotometer – Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada	[36]
Nickel (Ni) (mg/kg)	Wet -digestion method of sample preparation, Atomic Absorption Spectrometry	Measured at 283.3 nm wavelength Atomic Absorption Spectrophotometer – Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada	[36]
Chromium (Cr) (mg/kg)	Wet -digestion method of sample preparation, Atomic Absorption Spectrometry	Atomic Absorption Spectrophotometer – Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada Measured at 357.9 nm wavelength	[36]
Cadmium (Cd) (mg/kg)	Wet -digestion method of sample preparation, Atomic Absorption Spectrometry	Atomic Absorption Spectrophotometer – Agilent 240Z AA (200 Series AA) with Programmable Sample Dispenser (PSD) 120 and Graphite Tube Atomizer (GTA) 120, Model, AA-01-0400, Agilent Technologies, Canada Measured at 228.8 nm wavelength	[36]