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ABSTRACT

We propose a new residual block for convolutional neural

networks and demonstrate its state-of-the-art performance in

medical image segmentation. We combine attention mecha-

nisms with group convolutions to create our group attention

mechanism, which forms the fundamental building block of

our network, FocusNet++. We employ a hybrid loss based on

balanced cross entropy, Tversky loss and the adaptive loga-

rithmic loss to enhance the performance along with fast con-

vergence. Our results show that FocusNet++ achieves state-

of-the-art results across various benchmark metrics for the

ISIC 2018 melanoma segmentation and the cell nuclei seg-

mentation datasets with fewer parameters and FLOPs.

Index Terms— Group Attention, Medical Image Seg-

mentation, Residual Learning

1. INTRODUCTION

Recently, the use of attention mechanisms in deep learning

has been shown to learn better features [1] [2]. Learning

better feature extractors is the most important task a network

can do, especially for attention-based architectures, as the

attention mechanisms are learnt over the extracted features.

This has resulted in an general emphasis on optimizing con-

volutions. The simplest form of attention networks are the

Spatial Transformer Networks [3] that learn the regions of

interest from images with random clutter or noise. One of

the first major visual attention methods was a two-level ap-

proach [4], where the images were first passed through an

RCNN and selective search algorithms to generate propos-

als, followed by a gating operation using softmax over the

ImageNet classes to remove low probability proposals. The

remaining patches were then passed through a SVM classi-

fier. The approach worked well on a subset of the ImageNet

dataset, but requires a large amount of computation as well

as hyperparameter tuning. SE-Nets [5] proposed to global
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average pool feature map (channel) information into a single

vector creating a global representation. Using ’Squeeze-and-

excitation’, CNNs levaraged channel wise context to improve

accuracy. One of the first works to explicitly show how filter

groups leads to learn better representations is Deep roots [6],

where, a sparse connecting structure resembling a tree root

reduces parameters without any significant effect on the net-

work accuracy. The impact of group convolutions was made

apparent with ResNeXt [7] which performed impressively on

the ILSVRC 2016 tasks. In this research, we extend group

convolutions by incorporating attention mechanisms inside

filter groups.

To this end, we propose FocusNet++, a deep learning archi-

tecture for medical image segmentation that harnesses the

power of grouped convolutions, and combines them with a

FocusNet-style attention mechanism [1] to get an improved

performance compared to FocusNet, with fewer than half

the parameters than it’s successor. We enhance the decod-

ing using fine-grained information from each decoder scale,

which helps improve the network’s segmentation ability. We

compare with state of the art architectures, namely, Wide

UNet and UNet++ [8], R2U-Net [9], Attention U-Net [2],

BCDU-Net [10] and FocusNet [1] to show the superiority of

our method.

The rest of this paper is organized as follows. We introduce

FocusNet++ in Section 2 where we describe our novel group

attention block, as well as the loss function used for our ex-

periments. Section 3 summarizes our experiments on the skin

cancer and cell nuclei segmentation datasets highlighting

our model’s state-of-the-art performance with reduced pa-

rameters and FLOPs compared to benchmark state-of-the-art

medical image segmentation architectures. Our conclusions

are provided in Section 4.

2. FOCUSNET++

Figure 1 shows the FocusNet++ architecture that adopts an

encoder-decoder structure to learn multi-scale features for

medical image segmentation. We carefully designed a group



Fig. 1: The figure shows the architecture diagram for FocusNet++. The input image is processed by a series of residual group

attention-max pooling blocks into a bottleneck and then decoded into a segmentation mask.

attention block, called the Residual Group Attention Net-

work, that employs our novel attention methodology inside

group convolutions for effective feature learning. Our net-

work aims to address the problem of the relatively inferior

decoding ability of existing segmentation architectures, com-

bined with better feature extraction via our group attention

block. We do this by creating a scheme that combines the

output from each decoder scale to the final output, which

leads to superior performance. The output from each scale

passes through a Conv-BN-LeakyReLU-Conv-Sigmoid block

to give intermediate outputs that are up-sampled, if required,

to the output size, and then concatenated.

Finally, the concatenated volume is passed through a Conv-

BN-LeakyReLU-Conv-sigmoid block to get the output seg-

mentation map. In the encoder, the feature is down-sampled

by a max-pooling operation. We add skip connections from

the encoder to the decoder, rather than concatenating them.

To up-sample the feature in decoder, we repeat the values in

a kernel from a lower scale into an up-sampling scale and

letting convolutions learn their values. We use dropout oper-

ation in the bottleneck layer to avoid over-fitting.

The receptive field of the first convolution kernel is 5 × 5.

Following that, all convolutions kernels have a receptive

field of 3 × 3 when used for feature extraction, and 1 × 1
when used to learn attention weights (i.e. preceding the

sigmoid gating). The number of filters in each layer are

32 → 64 → 128 → 192 → 256 → 192 → 128 → 64 → 32,

divided into 4 filter groups in each layer. The general struc-

ture of FocusNet++ is similar to the U-Net architecture, apart

from the mentioned changes.

2.1. Residual Group Attention Network (ResGANet)

As shown in Figure 2, the ResGANet employs pixel-wise at-

tention inside filter groups, followed by combining the groups

via a permutation invariant 1D convolution embedding. The

squeeze and excitation block then re-calibrates the feature

maps, which is followed by the residual mapping. The input

to ResGANet is a feature volume that is processed by a 1× 1
convolution operation. The general form of the aggregated

transformation mapping is,

M = ∁ri=1Pi(x)

where M is the output of the residual block, ∁ denotes con-

catenation, and Pi(x) is some transformation learnt by r sep-

arate stackings of trainable neurons transforming some input

x. Here, r = 4, as we divide this input features into groups

of four, to be processed by four separate convolution groups.

Each group, alternatively, is responsible for learning the at-

tention weights for the group to it’s right, and the next group

learns the features that need to be extracted. The attention

weights for each attention group are obtained via two BN-

LeakyReLU-Conv operations followed by a Conv-Sigmoid op-

eration to get the per-pixel weights. Each attention group

transforms its input in the following way,

Ar = σ(Wa, δ(xr,Wk))

where Wk and Wa are the convolution weights and the

attention weights respectively, xr is the rth group that is

input into this block, and δ denotes the LeakyReLU activa-

tion. The residual block contains two BN-LeakyReLU-Conv



Fig. 2: Our novel residual block that first employs pixel-

wise attention inside filter groups, followed by combining

the groups via a permutation invariant embedding. The

squeeze-and-excitation block then re-calibrates the feature

maps, which is followed by the residual mapping.

operations followed by a skip connection that adds the fea-

tures from the previous step to the residual block features.

If the residual mapping is given by Or = xr + F (xr) then

the network learns this F (xr) using some weights Wk as

F (xr) = δ(xr,Wk). The output from the residual block is

multiplied point-wise with the output from the attention block

as A = Ar

⊙

Or, weighting the pixels with a higher impor-

tance more prominently. Here,
⊙

denotes the Hadamard

product. The attention-infused output for each group propa-

gates further in the block and is processed with a convolution

block with a 1 × 1 receptive field and twice the number of

filters. These intermediate filter maps are then concatenated

and passed through a final 1 × 1 convolution. The feature

maps are then re-calibrated using a squeeze-and-excitation

operation that, finally, is followed by a residual connection.

2.2. Hybrid adaptive logarithmic loss

In order to have better recall, we adapt the balanced cross

entropy loss with the Tversky loss in a novel way to create

our hybrid loss function. The loss is defined as,

HL = (k)Cb + (1− k)TL (1)

where Cb = Ωp log(p̂) + (1 − Ω)(1 − p) log(1 − p̂), TL =
∑

c(1 − TI), the subscript indicates a summation over the

number of classes c, and TI = |G∩P |
|G∩P |+α|P\G|+β|G\P | . To

create a higher emphasis on the true positives, we select Ω =
0.7. Generally, α = 0.3, β = 0.7 proves to be the optimal

setting in TL, adding higher weights to optimize over false

positives and false negatives, so we retain those hyperparam-

eter values. We weight the influence of both losses equally by

setting k = 0.5. In order to optimize the loss further, we use a

function whose derivative gives a non-linear response closer

to the global minimum leading to a heavy penalty for mis-

classification. Hence, to mitigate the problem of pixel-class

imbalance and poor convergence close to the minimum, we

use the adaptive logarithmic loss [11] for our problem. The

loss is defined as,

ALL−HL(x) =

{

ω ln
(

1 + |HL|
ǫ

)

|HL| < γ

|HL| − C otherwise

(2)

where C = γ − ω ln
(

1 +
(

γ
ǫ

))

. We observe that the default

hyperparameters of this loss are optimal for our experiments.

Hence, we set γ = 0.1, ω = 10.0 and ǫ = 0.5.

3. EXPERIMENTS

For all experiments, the train-validate-test data split is fixed

and no data augmentation is used. As a pre-processing step,

we scale all pixel values to the range [0,1]. We convert the

segmentation mask to binary by setting every pixel above the

threshold of 0.5 to 1. All our experiments are trained with

the hybrid loss (ALL-HL) strategy. The experiments are con-

ducted using Keras [12] using a TensorFlow backend. The

batch size for all experiments is kept constant at eight. The

networks are trained on Nvidia GTX 1080Ti GPUs using a

carefully constructed learning rate schedule, optimized for

every architecture. All architectures were trained for a maxi-

mum of 50 epochs and the best model weights were saved by

monitoring the validation loss. No early stopping was used.

3.1. Skin Cancer Segmentation

Method Precision Recall DI JI

FCN [13] 0.7176 0.8966 0.7861 0.7013

U-Net [14] 0.7398 0.9043 0.8167 0.7268

Wide UNet [8] 0.7439 0.9167 0.8224 0.7334

R2U-Net [9] 0.7381 0.9122 0.8271 0.7511

BCU-Net [10] 0.7576 0.9272 0.8637 0.7665

UNet++ [8] 0.7516 0.8889 0.8437 0.7435

Attn U-Net [2] 0.7526 0.9286 0.8741 0.7813

FocusNet [1] 0.7805 0.9328 0.8676 0.7751

FocusNet++ 0.8322 0.9471 0.9014 0.8271

Table 1: Segmentation results on ISIC 2018 dataset.

The ISIC 2018 skin cancer segmentation dataset [15] has

become a major benchmark dataset for the evaluation of med-

ical imaging algorithms. We use the 2594 images with corre-

sponding ground truths for our experiments. We divide these



Fig. 3: Results for skin cancer segmentation. From left, original image, ground truth, segmentation results from Attention

U-Net [2], FocusNet [1] and FocusNet++.

Fig. 4: Results for cell nuclei segmentation. From left, original image, ground truth, segmentation results from BCDU-Net

[10], Attention U-Net [2], FocusNet [1] and FocusNet++.

Architecture Params FLOPs

UNet [14] 7.94×108 16.12×108

UNet++ [8] 9.04×108 42.44×108

BCDU-Net [10] 20.66×108 39.76×108

Attn U-Net [2] 8.91×108 17.82×108

FocusNet [1] 19.07×108 91.36×108

FocusNet++ 7.80×108 15.64×108

Table 2: Comparing the model complexity and performance

(on ISIC 2018) for FocusNet++ against state of the art seg-

mentation architectures.

images into a training set of 1815 images, a validation set of

259 images, and a test set of 520 images. We resize every

images to a smaller 256×256 size, via an anti-aliasing down-

sampling technique.

Table 1 summarizes our results for the experiments. Focus-

Net++ significantly outperforms every architecture across all

metrics for the ISIC 2018 dataset with considerably fewer pa-

rameters and FLOPs. We get a 4.6% higher JI over the next

best model. Table 2 summarizes the number of parameters

and FLOPs of each architecture.

3.2. Cell Nuclei Segmentation

We now consider the segmentation of smaller regions inside

images. For this, we use the cell nuclei segmentation dataset

[16], which was a part of the Data Science Bowl 2018. It con-

tains 670 images which we divided into a training set of 540

and a validation set of 130. We resize all images to 256×256.

For this task, we evaluate the performance of our architecture

by reducing the number of parameters (via reducing the num-

ber of filters per layer) for it in a way that it has fewer than one

million FLOPs. We also reduced the number of parameters

for the other architectures to account for the smaller size of

this dataset so that we don’t overfit. Our results are summa-

rized in Table 3. FocusNet++ outperforms BCDU-Net with

2.5 times fewer parameters and 10 times fewer FLOPs.

Method Params FLOPs Precision Recall

U-Net [14] 3.62 1.89 0.8976 0.9052

BCU-Net [10] 5.22 9.98 0.9024 0.9078

Attn U-Net [2] 2.32 1.84 0.8782 0.9019

FocusNet [1] 5.03 22.38 0.9016 0.8981

FocusNet++ 1.84 0.98 0.9173 0.9139

Table 3: Segmentation results on the cell nuclei segmentation

dataset. Params and FLOPs are of the order of ×108.

4. CONCLUSION

We proposed an extremely efficient and accurate medical

image segmentation architecture, FocusNet++, based on our

novel residual group attention block that outperforms existing

state-of-the-art architectures. We also propose an extremely

lightweight variant of this architecture that outperforms ar-

chitectures that are almost 2.5 times its size. We adapt the

Tversky loss and balanced cross entropy loss in the adaptive

logarithmic loss setting to boost performance over true posi-

tives and true negatives in order to obtain more well-rounded

segmentations. Based on our experiments, our architecture

requires lesser parameters and FLOPs, while giving better

results compared to other architectures.
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