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Abstract  

Designing sophisticated energy sources that can offer a large amount of electricity for various 

energy storage uses is a pressing need. In this study, Trimethoprim (TMP) was functionalized as a 

rich supply of nitrogen and oxygen on graphene oxide (FGO-TMP), using graphene oxide layers 

adorned with trimethoprim functional groups. Then, using a simple approach to synthesize FGO-

TMP/Pd complex for supercapacitor applications, palladium ions were reacted and fixed on the 

FGO-TMP composite surface. The FGO-TMP/Pd composite produced was characterized as a 

symmetric capacitor with a capacitance of 330 F g-1 at 5 mV s-1 and high energy and power 

densities of 60.3 W h Kg-1 and 1200 W kg-1, respectively. After 10000 cycles at 8 A g-1, this 

symmetric device retained 93.7 percent of its original capacitance, proving the remarkable 

capacitive performance of the developed platform as well as ultra-stability for such sophisticated 

energy storage devices. Topological analysis of the electron density distribution and its Laplacian 

at the bonding critical points and Bader atomic charges of the GO layer in both FGO-TMP and 

FGO-TMP/Pd composites confirms more concentrated bond charges in FGO-TMP/Pd, indicating 

effective improvement in electrode material behavior in a supercapacitor.  

Keywords: functional groups, palladium ions, symmetric capacitor, energy applications, 

topological analysis 

1. Introduction 

High energy demand, limited natural fossil fuel supplies, and environmental concerns have 

prompted extensive research and development efforts to advance effective electrode components 

for new energy storage and conversion systems with maximum electrochemical capability, 

including environmentally sustainable materials and low-cost synthesis methods[1–3]. Because of 

their effective charging/discharging mechanism, high power capacity efficiency, low maintenance 
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requirement, and long lifespan, supercapacitors (SCs) have emerged as high electrochemical 

potential systems frequently used in the setup of high-power applications and kinetic energy 

transfer. The stored energy in SCs is often caused by ion adsorption at the electrolyte/electrode 

interfaces and a rapid faradic redox process in the bulk electrodes[4–6]. The design and 

manufacture of efficient electrode materials have sparked a lot of attention in terms of having quick 

energy storage at a high charge-discharge current density to improve the pseudocapacitive 

behavior of SCs devices[7]. Carbon fibers, carbon aerogels, activated carbon, carbon nanotubes, 

and porous graphene are among the carbon-based materials that have been reported to have a large 

surface area and excellent electrical conductivity[8–17]. Conducting polymers (CPs) and transition 

metal oxides (TMOs) have also been widely used as supercapacitor electrode materials[18–20]. 

Graphene has gained interest in the domain of SCs electrode material investigation because of its 

2D nanostructure, high theoretical gravimetric capacitance, theoretical surface area (2600 m2 g-1), 

thermal conductivity, and mechanical stability [21,22]. Its unique property might significantly 

improve the electrochemical efficiency of SCs, making it a suitable electrode material for SC 

applications[23]. Graphene oxide (GO), reduced graphene oxide (rGO), and functionalized 

reduced graphene oxide (F-rGO) have all been used as independent electrodes in EDLC 

SCs[24,25]. To improve the electrochemical behavior of capacitive performance, the loading of 

metal and metal oxide with graphene and its derivatives might prevent them from restacking, 

making them excellent candidates for high-performance SCs[26]. Meanwhile, numerous noble 

metals, including ruthenium (Ru)[27,28], nickel (Ni)[29,30], platinum (Pt)[31,32], and gold 

(Au)[33,34], have succeeded to develop in energy storage systems with graphene derivatives. 

Despite the fact that there have been few studies on graphene/Pd electrode materials in SCs, the 

current research might become a significant topic in the next years. Kalambate et al. recently 
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employed a two-step approach to creating a composite of N-GNS-PdNP-PANI that delivered 230 

F g-1 capacitance and kept 96 percent of its total capacitance following 3000 prolonged cycles[35]. 

Wei et al. used a PdPGO composite electrode material inside a symmetric device to achieve a 

capacitance of 595 F g-1 at 1 A g-1. Capacitance retention measured as 88 percent after 5000 

cycles[36]. In another work, Kumar et al. used an electrochemical synthesis method to create 

hybrid electrodes of rGO nanosheets and palladium nanoparticles as effective materials in 

symmetric supercapacitors. The assembled three-electrode device demonstrated a phenomenal 

capacitance of 1524.7 F g-1 at a scan rate of 20 mV s-1 and enhanced cycle life (92.1 percent; 2000 

cycles). This research created a new technique for making Pd-E-ErGO composites using in-situ 

electrochemical reduction and electrode material deposition, which might be useful in next-

generation enhanced electrochemical capacitors[37]. Kim et al. employed an efficient microwave 

approach to fabricate electrodes of 3D G-CNT-Pd nanostructures with an excellent specific 

capacity of 1615 F g-1 at 10 mV s-1, an extremely high oxidation/reduction capacitance owing to 

high porosity, a high ratio of specific surface area, and capacitance-like redox responding of the 

palladium nanoparticles [38]. In the present research, we designed and developed a simple method 

for synthesizing FGO-TMP in which TMP functional groups were covalently functionalized GO 

and then Pd2+ ions were reacted and adsorbed on the surface of the FGO-TMP composite. A DFT 

investigation, different surface analysis methodologies, and electrochemical studies were used to 

evaluate the synthesized FGO-TMP and FGO-TMP/Pd composites. The electrode material is made 

using an efficient, flexible, and low-cost electrodeposition method on a piece of stainless steel that 

acts as the current collector. Furthermore, the porous structure of GO sheets is prevented from 

aggregating by the TMP and TMP/Pd composite, allowing the electrolyte to permeate into the 

electrodeposited composite. Meanwhile, a symmetric SC was built and evaluated in 1M H2SO4 
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electrolyte utilizing FGO-TMP/Pd electrode. With a large capacitance value of 687 F g-1 and 

remarkable cycle life (95.8 percent; 10000 cycles) over a long time, while retaining good rate 

capability, the FGO-TMP/Pd composite represents a significant improvement in the 

electrochemical performance of SCs. This also means that the FGO-TMP and FGO-TMP/Pd 

composites have good electrochemical connections, high specific capacitance and cycle 

endurance. 

 

2. Experimental 

2.1. Materials  

All compounds utilized in this study were selected from high-quality analytical-grade substances 

and purchased from Sigma-Aldrich. In the following tests, double-distilled water was also used. 

2.2. Synthesis of GO 

The production of GO powder from natural graphite was done using a modified Hummers method. 

In order to regulate the temperature, 2 g graphite powder, and 1.5 g NaNO3 were blended in a 1L 

container, then 67.5 ml concentrated H2SO4 was added and agitated in an ice bath. The mentioned 

mixture was then gently added 9 g of KMnO4 and stirred for 2 hours before being kept at 20 °C 

for 5 days with continual stirring to generate a viscous brownish liquid. After that, the mixture was 

agitated for 1 hour while 200 ml of H2SO4 (5 wt percent) aqueous solution was added dropwise. 

The resultant precipitate was washed numerous times with 6ml H2O2 (30 percent aqueous solution) 

and double distilled water to remove manganese, permanganate the remaining ions, and purify it 

further. GO was eventually vacuum dried[39–41]. 

2.3. Synthesis procedure of FGO-TMP and FGO-TMP/Pd 
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FGO-TMP was synthesized by acylating GO with thionyl chloride (SOCl2) in a two-step 

esterification method. Firstly, powdered graphene (1.5 g) was dissolved in 60 mL SOCl2 at 70 °C, 

resulting in a suspension that was refluxed for 1 day in a nitrogen environment. The excess quantity 

of SOCl2 was efficiently eliminated by adding tetrahydrofuran to the mixture described above and 

allowing it to run through a filter column. The generated GO-Cl (3 g) was then dissolved in a 

solution of trimethoprim (2.9 g) and dimethyl sulfoxide (DMSO) (60 mL) and kept at 80 °C for 2 

days in a neck flask connected to a refluxing device under a nitrogen atmosphere. After that, the 

remnant solid-state substance was cooled to room temperature after being filtered and washed with 

water and methanol many times to eliminate any remaining agent. TMP covalently functionalized 

GO was obtained after progressively vacuum drying the nanoplatelets (FGO-TMP). The FGO-

TMP/Pd combination was made by reacting Pd(NO3)2 (5 mmol) with FGO-TMP (4.02 g) in 

methanol in a simple one-step procedure (50 ml). After that, the reaction mixture was cooled and 

kept at 25°C for 2 days after being refluxed at 65°C for 4 hours. The black precipitate was filtered 

before vacuum dried after being washed twice with ethanol (Fig. 1). 
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Fig. 1. All FGO-TMP and FGO-TMP/Pd synthesis procedures are shown in this schematic. 
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3. Instrumentation 

3.1. Characterization 

The efficacy of produced materials was assessed using a variety of characterization approaches. 

FT-IR (Thermo Nicolet Avatar 360), XRD (INEL, Equinox 3000), and Raman spectroscopy 

(Almega Thermo Nicolet) were used to evaluate the materials generated in this case. The gadget 

was chosen as Quantera II (Physical Electronics, Minneapolis, Minnesota, USA). On samples, 

XPS (Bes-Tec photoelectron spectrometer) examination was done with monochromatic Al KR 

(1486.6 eV) irradiation. The surface area of synthetic materials was investigated using the BET 

(BELSORP-mini II) technology. FE-SEM (Mira III LM, Tuscan) and TEM (model Zeiss-EM10C 

Company) were used for morphological assessment of materials. Standard assessment procedures 

were used for all of the studies. 

3.2. Electrochemical setup 

Electrochemical methods in general (CV, GCD, and EIS) were carried out in 1M H2SO4 electrolyte 

using an electrochemical workstation (Ivium V21508, Vertex). A combination of samples (FGO-

TMP and FGO-TMP/Pd) were combined and dispersed in ethanol with carbon black (20%), 

graphite (15%), and polytetrafluoroethylene (PTFE) to make the working electrodes (5 percent). 

A uniform mixture (1 mg) was then squeezed onto a rustproof steel piece with a 1 cm2 current 

collector. The constructed working electrode served as both the positive and negative electrodes 

in the two-electrode symmetric system. Also, a polypropylene (PP) film was used as the separator 

and immersed in a 1M H2SO4 solution. It is important to remember that the mass of SSC devices 

was similar to that of three-electrode cells[42]. CV measurements may be used to calculate the 

specific capacitance (Cs) of sample electrodes using the following equation 1[43,44]: 

𝐶𝑠 = ∫ 𝐼 𝑑𝑉𝑚 𝑣 ∆𝑉                                     (1) 
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where I denotes the current (A), v denotes the potential (V), V denotes the potential window (V), 

v denotes the scan rate (mV s-1), and m denotes the mass (g) of electroactive materials put on the 

electrode. Equation 2[45,46] was used to compute the specific capacitance (C) values of electrodes 

using GCD data in order to verify the results. 

𝐶 =  𝐼 ∆𝑡∆𝑉 𝑚                                     (2) 

Where I signifies discharge current (A), t denotes interval time (s), ΔV denotes potential discharge 

duration decrease (V), and m denotes active material mass (g) on the electrode surface. Equation 

3[47] may also be used to obtain the capacitance values for a single electrode: 

𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 =  4 C𝑑𝑒𝑣𝑖𝑐𝑒 𝑚              (3)   
where Cdevice signifies the anticipated capacitance of a two-electrode configuration and m denotes 

the mass of active materials in both electrodes. Equations 4 and 5 were used to obtain the energy 

and power density values for further electrochemical investigations, respectively[47,48]. 

𝐸𝑑(𝑊 ℎ 𝐾𝑔−1) = 17.2 C𝑑𝑒𝑣𝑖𝑐𝑒  . ΔV2              (4) 

𝑃𝑑(𝑊 𝐾𝑔−1) =  𝐸𝑑 × 3600∆𝑡                           (5) 

Where Ed, Δt, Cdevice, Pd, ΔV and are energy density, discharge duration, total specific capacitance 

value, power density, and potential variation, respectively. 

Based on linear Randles-Sevcik equation 6, the slope of peak current vs. square root of the scan 

rate is equal to the real surface area of the electroactive material deposited on the surface of the 

electrode[49]: 

Ip = (2.69 × 105). n3/2. A.C. D1/2. ν1/2         (6) 
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Where n represents the total number of contributed electrons in a redox reaction, which is 

commonly set equal to 1, A is the area of the electrode (cm2), C is the electroactive species 

concentration in solution (mol/cm3), D is the diffusion coefficient (cm2/s), and ν is the scan rate 

(V/s). 

 

3.3. Computational Details 

The theoretical charge density distribution of the FGO composites was calculated using Bader's 

Atoms in Molecules (AIM)[50] analysis, density functional theory (DFT)[51,52], and the B3LYP 

[53] hybrid functional in the Vienna Ab Initio Simulation Package VASP[54,55] with dispersion 

correction[56]. The topological characteristics and electron density distribution of FGO-TMP and 

FGO-TMP/Pd composites at the bond critical points (bcp) of the GO layer of both complexes are 

calculated using the AIM-UC[57] package using the charge density information acquired via 

VASP optimization. We also used Bader tools from the Henckelman group to compute atomic 

charges. 

 

4. Results and Discussion 

XPS analysis is used to explore the chemical nature and binding energies of the bonds present on 

the surface of GO, FGO-TMP, and FGO-TMP/Pd and the surface chemical state and chemical 

composition of the materials (Fig. 2a). The CasaXPS software (version 2.3, 2018) that comes with 

the XPS method is used to evaluate the spectra. Fig. 2a indicates the presence of O1s (26.47 

percent) and C1s (73.53 percent) in the GO findings. C1s (80.88, 79.81 percent), O1s (17.08, 16.77 

percent), and N1s (2.03, 2.99 percent) are the percentages of components in FGO-TMP and FGO-

TMP/Pd. As a result, the proportion of Pd 3d in FGO-TMP/Pd is 0.44 percent, indicating that the 
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Pd complex is present. The presence of primary components of produced samples evaluated as C 

1s (284.3 – 284.2 eV), O 1s (532.3 – 532.2 eV), N 1s (399.3 – 399.2 eV), and Pd 3d seems to be 

worth noticing (339.2 eV). The C 1s peaks of FGO-TMP and FGO-TMP/Pd composite were 

compared by deconvoluting each spectrum, as shown in Fig. 2b and 2c, respectively. The 

deconvolution of the C1s peak of FGO-TMP shows the peaks at 284.6, 284.9, 285.9, 286.8, 288.08, 

and 289.07 eV corresponding to the C-C, C-OH, C-N, C=O, C(O)N, and C(O)O. Fig. 2c shows 

the peak of C 1s for the FGO-TMP/Pd, which itself includes six peaks at C-C (284.5), C-OH 

(284.8), C-N (285.8), C=O (286.6), C(O)N (288.1), and C(O)O (289.1) eV. The N 1s region 

spectrum is deconvoluted for FGO-TMP and FGO-TMP/Pd in three and four type peaks of 

nitrogen, respectively. As shown in Fig. S1a, the peaks at 400.4, 398.6, and 405.1 eV are due to 

the presence of N-C, N=C, and N-H bonding. The N1s deconvolution peaks for the FGO-TMP/Pd 

include N=C (400.8), N-C (400.2), and N-H (406.6) eV (Fig. S1b)[58]. The N-Pd group may be 

responsible for appearing a new distinct peak in the N1s spectrum at 401.8 eV, demonstrating that 

nitrogen was effectively doped with palladium in FGO-TMP/Pd. As may be seen in Figures S1c 

and S1d, The binding energies of C=O (531.3, 531.3), C-OH (532.3, 532.1), and C-O-C (533.1, 

533.3) were also shown by the O1s deconvolution peak for the FGO-TMP and FGO-TMP/Pd. Pd 

3d5/2, Pd 3d3/2, and Pd-N were assigned to the binding energies of Pd 3d for FGO-TMP/Pd shown 

by the untreated substrate at 337.7, 342.6, and 339.2 eV, respectively (Fig. 2d)[59].  
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Fig. 2. (a) Full range XPS spectra of GO, FGO-TMP, and FGO-TMP/Pd; (b) Deconvolution of C 1s 

spectra of FGO-TMP; (c) Deconvolution of C 1s spectra of FGO-TMP/Pd; and (d) XPS of Pd 3d (FGO-

TMP/Pd). 

 

The specific surface area and pore size distribution of the GO, FGO-TMP, and FGO-TMP/Pd 

composite are further examined using N2 adsorption-desorption analysis to better understand the 
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charge storage mechanism. According to IUPAC regulations, all synthesized materials showed a 

similar adsorption isotherm, which could be categorized as type III (Fig. 3a). Mesoporous and 

microporous synthesized materials frequently give this classification[39]. Table S1. shows the 

structural differences between the three samples. The surface areas of FGO-TMP and FGO-

TMP/Pd BET were found to be 49.776 and 71.351 m2/g, respectively, while the surface area of 

GO was only 24.188 m2/g. 

Furthermore, the micropore size distributions of the three samples are similar, with the most 

micropores measured between 1.2 and 1.8 nm[60]. The pattern of pore size observed further 

supports these conclusions (presented in Fig 3a). Because of the functionalization of GO with TMP 

and TMP/Pd ligands, the pore volume of FGO-TMP and FGO-TMP/Pd has increased compared 

to GO (Fig. 3a). 
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Fig. 3. (a) N2 adsorption/desorption isotherms and pore size distribution (BJH) for GO, FGO-TMP, and 

FGO-TMP/Pd composite; (b) FT-IR of GO, FGO-TMP, and FGO-TMP/Pd composite; (c) XRD 

diffractogram of GO, FGO-TMP, and FGO-TMP/Pd composite; (d) Confocal Raman spectroscopy results 

of GO, FGO-TMP, and FGO-TMP/Pd composite. 

 

For pure GO, FGO-TMP, and FGO-TMP/Pd, FTIR spectra in the 4000-400 cm-1 region are shown 

in Fig. 3b. Oxygen-derived groups are visible in the GO spectrum. For the FTIR spectrum of GO, 

the stretching of C=O, C-O-C, C-O, and C-OH bonds related to the epoxide was located at 1724, 

1219, 1048, and 1377 cm-1, respectively. In this case, each appeared peak arises from the C-C 

stretching vibration (1471 cm-1) and stretching vibration of the C=C group of GO (1570 cm-1). The 

peaks at 1570 and 1471 cm-1 indicate the C=C and C-C bonds in the GO[61]. According to the 

FGO-TMP and FGO-TMP/Pd spectrum, the new peaks can be seen at 2914-2923 cm-1 and 1330-

1332 cm-1, which correspond to the stretching of C-H sp3 and C–N. The bonds identified at 1410 

and 1390 cm-1 (N-C=O stretching) show that TMP and TMP/Pd were successfully attached to GO. 
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Fig. 3b shows the Pd-N vibration peak at 472 cm-1 with other typical GO bonds, supporting the 

FGO-TMP/Pd complex's lucrative functionalization route[62,63].  

The XRD patterns of the GO, FGO-TMP, and FGO-TMP/Pd are given in Fig. 3c. The GO showed 

a prominent diffraction peak at 2ɵ =11° and 43°, respectively, when interlayer distances were 0.79 

and 0.21 nm. An increased basal distance is caused by the effective insertion of distinct groups of 

hydroxyl, carbonyl, and epoxide on the outer side of GO. The total diffraction intensity of graphene 

oxide was reduced due to the chemical functionalization. Two maximums with identical widths 

have been observed for FGO-TMP and FGO-TMP/Pd at 22.65° and 24.79°, respectively, equating 

to d-spacing of 3.9 and 3.6 nm. In the FGO-TMP/Pd spectrum (JCPDS no. 01-087-0645)[37], 

diffraction peaks at 40.98°, 46.84°, 69.19°, and 79.84° are connected to the (111), (200), (220), 

and (311) crystallographic planes of the facing centered cubic structure of the Pd nanoparticles, 

respectively. The computed peaks at 2ɵ of 8.38°, 38.48°, and 78.42° for FGO-TMP and 2ɵ of 

12.03°, 15.18°, 28.38°, and 30.18° for FGO-TMP/Pd indicate the production of monoclinic 

crystals of TMP and TMP/Pd. These peaks imply that functional groups at the GO surface have 

successfully covalently bonded[64].   

To further understand the interaction between the TMP and TMP/Pd in the FGO-TMP and FGO-

TMP/Pd composites, Raman spectroscopy was used, and the corresponding Raman spectra of the 

FGO-TMP and FGO-TMP/Pd composite with that of GO are shown in Fig. 3d. GO shows peaks 

at 1341 and 1573 cm-1 corresponding to the D-band and G-band, respectively. The Raman peaks 

at 1358, and 1366 cm-1 in Fig. 3d correspond to the D-band of FGO-TMP and FGO-TMP/Pd, 

respectively, for the mode of breathing generated by sp2 ring defects[34]. The FGO-TMP and 

FGO-TMP/Pd show similar peaks corresponding to the G-band but with an ID/IG ratio increase 

from 0.985 for GO to 1.027 and 1.046 for FGO-TMP and FGO-TMP/P, respectively. The D peak 
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in graphite whiskers is tied to the peaks reported in FGO-TMP and FGO-TMP/Pd at 1040 and 

1059 cm-1[65]. 

 

 
Fig. 4. FE-SEM images of a) FGO-TMP and c) FGO-TMP/Pd composite; EDX analysis with inset 

showing the mass and atomic percentage of b) FGO-TMP and d) FGO-TMP/Pd composite. 
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Fig. 5. TEM Images of a) FGO-TMP and b) FGO-TMP/Pd composite. 

 

FE-SEM is a valuable tool for determining material morphology since it takes into account the 

effects of functionalization and accelerating variables on particular structures. Fig. 4a and 4c show 

the overall morphology of the as-synthesized FGO-TMP and FGO-TMP/Pd composites. The 

typical thickness of pores is between 10 and 500 nanometers. The presence of C, N, Pd, and O is 

further confirmed by EDX investigation of FGO-TMP and FGO-TMP/Pd shown in Fig. 4b and 

4c. The images of EDX mapping of the FGO-TMP/Pd composite are indicated in Fig. S2. 

According to the pictures, C, N, O, and Pd atoms have similar element distribution, showing the 

uniform dispersion of Pd atoms. TEM photos of the intensity of the electron attenuated by FGO-

TMP and FGO-TMP/Pd platelets with varying thickness diameters are shown in Figs. 5a and 5b. 

This implies a sheet-like shape with varied transparencies of roughly 200, 100, and 50 nm in the 

investigated region. The dark patches depict a dense nanostructure of multiple GO or GO layers 

with diverse oxygen functional groups stacked together[66]. 
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5. Computational Results 

By adding TMP functional groups to the GO layer, we developed FGO-TMP and FGO-TMP/Pd 

composites. We added four TMP groups to the GO sheet in each compound in order to consider 

various TMP/Pd complexes on the GO layer of FGO-TMP/Pd and have the same amount of TMP 

on both FGO-TMP and FGO-TMP/Pd. The minimum energy structures of FGO-TMP and FGO-

TMP/Pd used in our calculations are shown in Fig. S3a and S4a, respectively, where their 

components include the GO layer, TMP, and TMP/Pd groups. For clarity, the minimum energy 

structures of FGO-TMP and FGO-TMP/Pd used in our calculations are shown in Fig. S3b and 

S4b. Analysis of the topology of electron density bcp(r) and its Laplacian 2bc(r) at bonding crucial 

points (bcp) of FGO-TMP and FGO-TMP/Pd composites was carried out based on Bader's AIM 

to shed additional insight on the charge density distribution and atomic charges of the FGO-

TMP/Pd electrode in SC devices. The values and discrepancies of bcp(r) and 2bc(r) of C-C and C-

H bonds of the GO layer of FGO-TMP and FGO-TMP/Pd composites are shown in Table S2 and 

Fig. 6, respectively. The ranges of electron density and Laplacian of C-C and C-H bonds of GO 

layer of FGO-TMP-Pd complex are 1.631 to 2.325 eÅ-3 and -13.397 to -30.397 eÅ-5 with an 

average of 1.999 eÅ-3 and -24.683 eÅ-5 compared to ranges of 1.691 to 2.308 eÅ-3 and -15.407 to 

-29.989 eÅ-5 and average of 1.996 eÅ-3 and -24.594 eÅ-5 on FGO-TMP, respectively.  
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Fig. 6. The differences of (a) the Laplacian of electron density ∇2ρbcp(r) and (b) electron density ρbcp(r) of 

carbon atoms of GO layer of FGO-TMP and FGO-TMP/Pd complexes. To find the atoms refer to Fig. S5. 

 

In Fig. 7, we also displayed ∇2ρbcρ(r) of the GO layer of FGO-TMP/Pd, which shows strong charge 

density accumulation between the bonds, with positive and negative contours indicating charge 

concentration and depletion, respectively. Table S3 shows the findings of Bader charge and atomic 

volume analyses of carbon, oxygen, and hydrogen atoms in the GO layer of both FGO-TMP/Pd 

and FGO-TMP complexes. On the GO layer of the FGO-TMP/Pd and FGO-TMP structures, the 

average charge of the atoms is -0.293 and -0.276e, respectively, demonstrating that the FGO-
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TMP/Pd composite has greater charges. The more electronegative oxygen atoms have higher 

volume as well as more negative charges, according to the examination of each atom volume. The 

increased average electron density, Laplacian, and atomic charges values of the GO layer in the 

FGO-TMP/Pd composite illustrate that the bonding charges in this compound are more localized 

than those in FGO-TMP, suggesting a significant improvement in the behavior of the electrode 

material in a supercapacitor. 

 

 

Fig. 7. In the light of the AIM theory, the contour line plot of Laplacian of electron density of five phenyl 

rings of the GO layer of FGO-TMP/Pd produced from theoretical charge density. Contours are drawn in 3 

eÅ-5 intervals. Positive Laplacian values are shown by solid blue lines, whereas red dotted lines represent 

negative Laplacian values. Refer to Fig. S5 to locate the atoms.  

  

6. Electrochemical Measurement 
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The capacitance efficiency of the FGO-TMP and FGO-TMP/Pd complex was studied using cyclic 

voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance 

spectroscopy (EIS) in a three-electrode setup with 1 M H2SO4 solution. Figures 8a and 8b show 

CV evaluations and measurements of produced electrode samples recorded at scanning speeds of 

5-100 mV s-1. The measured profiles of CV maintain their quasi-rectangular shape as the scanning 

rate increases (5 to 100 mV s-1), confirming their high-rate performance and capacitive qualities. 

A more rectangular shape was also shown to result in lower charge transfer resistance and, as a 

result, a faster rate of ion diffusion[30]. In the voltage range, -0.5 V to 0.7 V, the CV curve of 

FGO-TMP/Pd has a larger rectangular area, clearly suggesting that the composite has superior 

EDLC behavioral patterns. Meanwhile, in the potential range of -0.3 V to 0.6 V, the FGO-TMP 

CV curve seems to have weak redox peaks, indicating pseudocapacitance behavior. FGO-TMP/Pd 

utilizes both the pseudocapacitor and the EDLC processes for energy storage, while FGO-TMP 

exclusively uses the EDLC mechanism. The CV curves for FGO-TMP and FGO-TMP/Pd complex 

are shown in Fig. 8c at the same scan rate (5 mV s-1) for comparison. For FGO-TMP and FGO-

TMP/Pd electrodes, the highest computed specific capacitance values were 315 and 687 F g-1, 

respectively, at 5 mV s-1. FGO-TMP and FGO-TMP/Pd complex capacitance decreased as the 

number of scan rates increased (Fig. 8d). 

The Randles-Sevcik plots of FGO-TMP and FGO-TMP/Pd complex are exhibited in Fig. 8e. As 

the scan rate is grown from 5 to 100 mV s−1, the peak current (Ip) enhances. More notably, Ip differs 

linearly with the square root of the scan rate (v1/2), as reported by the Randles-Sevcik equation (6). 

These observations suggest that redox reactions at the electrode-electrolyte interface are fast and 

quasi-reversible and are only limited by electrolyte diffusion. As a result, as indicated in Fig. 8e, 

it is evident that the slope achieved for FGO-TMP/Pd is about 4 times higher than FGO-TMP. This 
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may be seen as an essential indication of the increase in the specific surface area value when 

TMP/Pd is introduced to GO. [67]. 
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Fig. 8. CV scans of a) FGO-TMP and b) FGO-TMP/Pd at incremental rates from 5 to 100 mV s-1, c) CV 

plot of the FGO-TMP and FGO-TMP/Pd at 5 mV s-1, and d) Specific capacitances of FGO-TMP and 

FGO-TMP/Pd electrodes at different scan rate. e) Randles-Sevcik plots of the FGO-TMP and FGO-

TMP/Pd. 

 

GCD tests were utilized to investigate the modified electrodes' supercapacitive efficiency under 

ideal circumstances. Fig. 9a shows the GCD diagrams for the improved electrodes with FGO-TMP 

and FGO-TMP/Pd in the described potential window, as determined by their respective CV 

analyses at 1.0 A g-1 current density. All of the graphs are linear, triangular in design, symmetric, 

and quite sharp, as can be seen. Furthermore, the increased columbic performance, bidirectional 

action, and superior capacitor outcomes of specimens could be deduced using identical charging 

and discharging durations. GCD graphs of FGO-TMP and FGO-TMP/Pd electrodes at current 

densities of 0.5 to 16 A g-1 are shown in Fig. S7a and S7b. Despite the fact that both FGO-TMP 

and FGO-TMP/Pd are supercapacitive, FGO-TMP/Pd has a longer discharge time (t =774.2s) than 

FGO-TMP (t =247.9s) at 1 A g-1. This emphasizes FGO-TMP/Pd higher capacity and energy 

storage capabilities. FGO-TMP/Pd has an estimated capacitance of 645.2 F g-1, higher than FGO-
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TMP (275.4 F g-1) at 1 A g-1. They are also compared to the specific capacitances of Pd composites 

previously discussed (See Table 1). Also, the comparison of electrochemical activity of FGO-TMP 

and FGO-TMP-Pd with the porous graphene composites is shown in the table S4. The FGO-

TMP/Pd high capacitance performance might be explained by the synergistic effect of the GO and 

TMP/Pd complex. The projected specific capacitance diagram based on the discharge current 

density is shown in Fig. 9b. As the current density grows, the values of specific capacitance 

decrease due to the sluggish pace of redox reactions at a high current density. Because of the good 

interfacial connection between the GO and TMP/Pd complex, which facilitates facile electron 

transport during the electrochemical examination, the FGO-TMP/Pd hybrids exhibit a remarkable 

electrochemical performance. We further expect that the TMP/Pd combination in GO will improve 

ion transport in the electrolyte, enabling access to almost all electrode pores. The specific capacity 

is raised as a result of the complete insertion reaction (with long cycle durability). A counter ion 

from the aqueous electrolyte H2SO4 stabilizes the charge on the FGO-TMP/Pd. The following 

mechanism governs the electrochemical reaction of FGO-TMP/Pd (Fig. S6): TMP expels 

hydrogen (H+) and palladium (Pd+2) ions from the complex during the charging process and 

absorbs HSO4
- ions to form Pd0. TMP is introduced with H+ (HNO3) during discharging time, and 

Pd0 ions return to Pd+2 ions. TMP/Pd functional groups on the surface of GO sheets not only lead 

to a high capacitance value (EDLC and pseudocapacitance), but also prevent GO sheets from 

moving[36]. 

Moreover, the cyclic durability of materials was investigated at 8 A g-1 for 10000 consecutive 

cycles using galvanostatic procedures (Fig. 9c)[68,69]. The determined capacitance preservation 

based on a cycle number reveals that the FGO-TMP/Pd electrodes have outstanding 

cyclic durability, with only a 4.2 % reduction in electrochemical consistency during the cyclic 



25 
 

charge/discharge operation. The capacitance preservation of FGO-TMP, on the other hand, 

dropped by 7.1 %. The significant improvement in electrochemical properties of FGO-TMP/Pd 

could be associated with a number of aspects, such as electrode activation, that mainly increases 

the accessible electroactive regions in enormous quantity and enhances electrolyte functionality 

and the presence of TMP/Pd ligands with superior supercapacitive efficiency than FGO-TMP. 

Also, the SC data and cycling durability of the electrodes were appraised from GCD plots and 

remarkably matched the CV measurements. The inclusion of TMP/Pd in the composites, which 

can operate as obstacles to inhibit GO restacking, may account for the improved stability of FGO-

TMP/Pd. On the surface of GO, the TMP/Pd combination can function as a conductive route for 

enhanced electrochemical behavior and cyclability. More Importantly, the synergistic action of 

TMP, Pd metal, and GO decrease the surface resistance and ion diffusion of electrode/electrolyte, 

providing an excellent channel for better electrochemical activity. 
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Fig. 9. a) Charge-discharge plots of the FGO-TMP and FGO-TMP/Pd at 1 A g-1, b) The capacitance of 

the FGO-TMP and FGO-TMP/Pd at different current density values from 0.5 to 16 A g-1, c) Cyclic 

stability plot of the FGO-TMP and FGO-TMP/Pd at 8 A g-1, and d) Nyquist plot of the FGO-TMP and 

FGO-TMP/Pd based supercapacitor in H2SO4 electrolyte and the corresponding equivalent circuit 

simulation results. 

 

Table 1. Different values of Method, electrolyte, specific capacitance, and cycle stability for Pd 

composite electrodes compared with FGO-TMP and FGO-TMP/Pd composite. 

Materials Method Electrolyte Specific 

capacitance (F g-1) 

Cycling stability Ref. 

Pd/MnOx Electrodeposition  0.5 M Na2SO4 186 F g-1                  
at (1 mA cm-2) 

95% over 250 
cycles 

[70] 

Pd-WO3  Hydrothermal method 1 M Na2SO4 34 F g-1                    
at (0.5 A g-1) 

86.9% over 1100 
cycles 

[71] 

Pd@CdIF-8 Hydrothermal method 7 M KOH 502 F g-1                  
at (0.05 A g-1) 

83.6% over 10000 
cycles 

[72] 

PdO/PPy 
PdO/PPy/rGO 

Electrodeposition method 1 M H2SO4 
 

335 F g-1  
595 F g-1                  

at (1 A g-1) 

- 
88% 

over 5000 cycles 

[36] 
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Pd/MoO3  Hydrothermal method 1 M Na2SO4 501 F g-1                   
at (1 mA g-1) 

94% over 1000 
cycles 

[73] 

3D-Pd/rGO 
nanostructure 

Hydrothermal method 0.5 M H2SO4 582.8 F g-1                    
at (2 mV s-1) 

92.7% over 3000 
cycles 

[74] 

rGO/CNT@Pd + 
PANI Nf 

Hydrothermal route 2 M H2SO4 611.8 F g-1                  
at (1.5 A g-1) 

84.3% over 10000 
cycles 

[75] 

Pd NPs-graphene Chemical approach 1M KCl 637 F g-1                  
at (1.25 A g-1) 

91.4% over 10000 
cycles 

[76] 

GO@NHC-Pd Multistep approach 0.5 M K2SO4 105.3 F g-1                  
at (0.1 A g-1) 

96.9% over 2500 
cycles 

[77] 

FGO-TMP 

FGO-TMP/Pd 

Chemical method 1 M H2SO4 

 

315 F g-1  

687 F g-1               

at (1 A g-1) 

92.9%  

95.8% 

over 10000 cycles 

This 

Work 

 

The EIS method was used to explore the depth of the internal charge transfer processes at the 

electrode/electrolyte contact. The Nyquist plots of FGO-TMP and FGO-TMP/Pd are shown in Fig. 

9d. EIS experiments were performed using a DC potential of roughly -0.45 V and a 5 mV AC 

potential throughout a frequency range of 10 mHz to 100 kHz. The equivalent circuit depicts a 

diffusion-controlled process in low-frequency regions as a linear graph. It consists of five distinct 

elements of Rct (charge transfer resistance), Rs (bulk solution), CPE (constant phase element), CF 

(maximum pseudocapacitance), and Zw (Warburg impedance), which could be used to implement 

the result of EIS assessment[78,79]. The FGO-TMP/Pd electrode has a lower Rct (8.51) than FGO-

TMP (13.72), suggesting superior electrical characteristics. The FGO-TMP/Pd electrode exhibits 

good electrical conductivity and an acceptable Rct value for practical supercapacitor applications. 

Reduced charge collection on the electrode surface and capacitive performance in high-frequency 

zones are also caused by the aforementioned charge transfer process. Nyquist plots, on the other 

hand, show the morphology of a vertical line as it moves toward the imaginary part Z" axis by 

increasing the impedance real part (Z') over low-frequency zones as a result of diffusion resistance 

caused by ion transport restriction[80]. The FGO-TMP/Pd electrode demonstrated remarkable 
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pseudocapacitive performance in low-frequency zones based on the parameters mentioned above. 

The FGO-TMP/Pd electrode also seems to have a greater slope, implying a lower Rs value (2.71 

Ω) than the FGO-TMP electrode (3.64 Ω). The Zw is a straight line at low frequencies, and these 

graphs indicate the lengths of ion diffusion paths. FGO-TMP and FGO-TMP/Pd have Zw of 0.44 

and 0.61, respectively. As we can see, modifying FGO-TMP resulted in shorter ion diffusion paths 

and fewer ion transport impediments. Finally, as demonstrated in Table 2, the FGO-TMP/Pd 

electrode electrochemically outperforms the FGO-TMP electrode. 

 

Table. 2. Calculated EIS parameters by the CNLS fitting of experimental impedance. 

 Rs (Ω) CPE-Y0 (mF) CPE-N Zw Rct (Ω) CF (mF) 

FGO-TMP 3.64 0.31 0.84 0.44 13.72 60.12 

FGO-TMP/Pd 2.71 0.45 0.88 0.61 8.51 153.63 

 

7. Electrochemical behaviour of a symmetrically arranged supercapacitor 

In an SSC cell with a 1M H2SO4 electrolyte, the electrochemical behavior of the samples was also 

investigated. FGO-TMP/Pd//FGO-TMP/Pd and FGO-TMP//FGO-TMP have standard CV curve 

forms ranging from 0 to 1.2 and 0 to 0.9 V, respectively. Fig. 10a and 10b show the symmetrical 

systems' CV curves at scan rates ranging from 5 to 100 mV s-1. The prospective window had a 

more substantial backdrop when the sweep rate was increased. It is generally known that CV 

patterns with a well-defined rectangular form result in lower charge transfer resistance and, as a 

result, a greater ion diffusion rate. Fig. 10c is the CV of the asymmetric supercapacitor with FGO-

TMP/Pd//FGO-TMP/Pd and FGO-TMP//FGO-TMP at 50 mV s-1 in the 1 M H2SO4 solution. The 

approximately optimum rectangular shape was created from FGO-TMP/Pd composite modified 
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electrode, delivering an ideal capacitive performance owing to the presence of Pd as a 

conductive/electroactive structure, according to the findings of Fig. 10a. In addition, in Fig. 10d, 

the SC vs. sweep rate fluctuations are shown. At 5 mV s-1, cells comprising FGO-TMP/Pd//FGO-

TMP/Pd and FGO-TMP//FGO-TMP had specific capacitances of 330 and 157 F g-1, respectively.  
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Fig. 10. CV scans of a) FGO-TMP//FGO-TMP and b) FGO-TMP/Pd//FGO-TMP/Pd at incremental rates 

from 5 to 100 mV s-1; c) CV plot of the FGO-TMP//FGO-TMP and FGO-TMP/Pd//FGO-TMP/Pd at 5 
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mV s-1, and d) Specific capacitances of FGO-TMP//FGO-TMP and FGO-TMP/Pd//FGO-TMP/Pd 

electrodes at different scan rate. 

 

Fig. 11a shows charge/discharge diagrams for FGO-TMP/Pd and FGO-TMP symmetric devices 

at 1 A g-1. GCD graphs for two produced electrodes at varying current densities are also shown in 

Fig. S7c and S7d. These figures display symmetric shapes when viewed at varying current 

densities, revealing their distinctive supercapacitive character. The SC graphs vs. current density 

are given in Fig. 11b. At 1 A g-1, the FGO-TMP/Pd/FGO-TMP/Pd and FGO-TMP/FGO-TMP 

devices had specific capacitances of 287 and 139 F g-1, respectively.  

In Fig. 11c, the specific capacitance of the FGO-TMP/Pd//FGO-TMP/Pd electrode retains roughly 

93.7 percent of its original value, while the FGO-TMP//FGO-TMP electrode retains 91.9 percent 

of its initial capacitance value after 10000 cycles. This cyclic stability test shows that FGO-

TMP/Pd has high electrochemical stability in SSC devices. Furthermore, as shown in Fig. 11d, the 

GCD findings were used to calculate Ed and Pd. The as-designed FGO-TMP/Pd//FGO-TMP/Pd 

system indicated an Ed of 60.3, 57.5, 52.2, 45.9, 36.7, and 26.2 W h kg-1 at respective Pd of 1200, 

2400, 4800, 9600, 19200 and 38400 W kg-1. The FGO-TMP//FGO-TMP demonstrate Ed value of 

16.4, 15.6, 14.2, 12.5, 10.1, and 7.2 W h kg-1 at 900, 1800, 3600, 7200, 14400 and 28800 W kg-1, 

which outperforms several recently published devices, such as Pd-WO3 (10.6 W h kg-1 at 198 W 

kg-1)[71], Pd@CdIF-8 (78.85 W h kg-1 at 493 W kg-1)[72], Pd/MoO3 (69.58 W h kg-1 at 249 W kg-

1)[73], rGO/CNT@Pd + PANI Nf (85 W h kg-1 at 10200 W kg-1)[75], and Pd NPs-graphene (56 

W h kg-1 at 1166 W kg-1)[76]. 
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Fig. 11. a) charge-discharge plots of FGO-TMP//FGO-TMP and FGO-TMP/Pd//FGO-TMP/Pd at 1 A g-1; 

b) The capacitance of the FGO-TMP//FGO-TMP and FGO-TMP/Pd//FGO-TMP/Pd at different current 

density values from 0.5 to 16 A g-1 c) Cyclic stability plot of the FGO-TMP//FGO-TMP and FGO-

TMP/Pd//FGO-TMP/Pd at 8 A g-1; d) comparison of FGO-TMP//FGO-TMP and FGO-TMP/Pd//FGO-

TMP/Pd with others[71–73,75,76] in a Ragone plot. 

 

8. Conclusion 
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This study created and confirmed chemically synthesized FGO-TMP and FGO-TMP/Pd using 

DFT, various surface studies, and various electrochemical methods. Palladium ions were reacted 

and fixed on the surface of the FGO-TMP composite, resulting in enhanced electron transport 

(doping process) between the electrode/electrolyte interface and, as a result, improved 

supercapacitive functioning of the constructed device. Within a three-electrode cell, the 

manufactured composite of FGO-TMP/Pd had a capacity of 687 F g-1 at 5 mV s-1, which was 

higher than that of FGO-TMP (315 F g-1). The increased specific capacitance of the FGO-TMP/Pd 

composite is due to the synergistic effect of individual elements. The charge transport capabilities 

of TMP/Pd are combined with the unique structure of GO on the electrode/electrolyte interface, 

resulting in potential palladium-based supercapacitor electrode materials. In a 1M H2SO4 

electrolyte, FGO-TMP/Pd//FGO-TMP/Pd demonstrated good capacitance (330 F g-1 at 5 mV s-1) 

and capacitance retention of 93.7 percent for symmetric arrangement. The FGO-TMP/Pd//FGO-

TMP/Pd device also achieved a high value of Ed (60.3 W h kg-1) at 1200 W kg-1. According to the 

topological calculations performed in this work, FGO-TMP/Pd has a greater charge distribution 

than FGO-TMP, making it more effective as a supercapacitor electrode material. In this approach, 

combining palladium ions with graphene-based composites has a lot of potential for improving the 

electrochemical properties of future energy storage systems. 
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